
Discounted Properties of Probabilistic Pushdown
Automata?

Tomáš Brázdil, Václav Brožek, Jan Holeček, and Antonı́n Kučera

Faculty of Informatics, Masaryk University,
Botanická 68a, 60200 Brno,

Czech Republic.
{brazdil,brozek,holecek,kucera}@fi.muni.cz

Abstract. We show that several basic discounted properties of probabilistic
pushdown automata related both to terminating and non-terminating runs can be
efficiently approximated up to an arbitrarily small given precision.

1 Introduction

Discounting formally captures the natural intuition that the far-away future is not as
important as the near future. In the discrete time setting, the discount assigned to a state
visited after k time units is λk, where 0 < λ < 1 is a fixed constant. Thus, the “weight”
of states visited lately becomes progressively smaller. Discounting (or inflation) is a
key paradigm in economics and has been studied in Markov decision processes as well
as game theory [17, 14]. More recently, discounting has been found appropriate also
in systems theory (see, e.g., [5]), where it allows to put more emphasis on events that
occur early. For example, even if a system is guaranteed to handle every request even-
tually, it still makes a big difference whether the request is handled early or lately, and
discounting provides a convenient formalism for specifying and even quantifying this
difference.

In this paper, we concentrate on basic discounted properties of probabilistic push-
down automata (pPDA), which provide a natural model for probabilistic systems with
unbounded recursion [8, 3, 9, 2, 13, 11, 12]. Thus, we aim at filling a gap in our knowl-
edge on probabilistic PDA, which has so far been limited only to non-discounted proper-
ties. As the main result, we show that several fundamental discounted properties related
to long-run behaviour of probabilistic PDA (such as the discounted gain or the total
discounted accumulated reward) are expressible as the least solutions of efficiently con-
structible systems of recursive monotone polynomial equations whose form admits the
application of the recent results [16, 7] about a fast convergence of Newton’s approx-
imation method. This entails the decidability of the corresponding quantitative prob-
lems (we ask whether the value of a given discounted long-run property is equal to or
bounded by a given rational constant). A more important consequence is that the dis-
counted long-run properties are computational in the sense that they can be efficiently

? Supported by the research center Institute for Theoretical Computer Science (ITI), project
No. 1M0545.

approximated up to an arbitrarily small given precision. This is very different from the
non-discounted case, where the respective quantitative problems are also decidable but
no efficient approximation schemes are known1. This shows that discounting, besides
its natural practical appeal, has also mathematical and computational benefits.

We also consider discounted properties related to terminating runs, such as the dis-
counted termination probability and the discounted reward accumulated along a ter-
minating run. Further, we examine the relationship between the discounted and non-
discounted variants of a given property. Intuitively, one expects that a discounted prop-
erty should be close to its non-discounted variant as the discount approaches 1. This
intuition is mostly confirmed, but in some cases the actual correspondence is more
complicated.

Concerning the level of originality of the presented work, the results about termi-
nating runs are obtained as simple extensions of the corresponding results for the non-
discounted case presented in [8, 13, 9]. New insights and ideas are required to solve the
problems about discounted long-run properties of probabilistic PDA (the discounted
gain and the total discounted accumulated reward), and also to establish the correspon-
dence between these properties and their non-discounted versions. A more detailed dis-
cussion and explanation is postponed to Sections 3 and 4.

Since most of the proofs are rather technical, they are not included in this paper. The
main body of the paper contains the summary of the main results, and the relationship
to the previous work is carefully discussed at appropriate places. Proofs in full detail
can be found in [1].

2 Basic Definitions

In this paper, we use N, N0, Q, and R to denote the sets of positive integers, nonnegative
integers, rational numbers, and real numbers, respectively. We also use the standard
notation for intervals of real numbers, writing, e.g., (0, 1] to denote the set {x ∈ R | 0 <
x ≤ 1}.

The set of all finite words over a given alphabet Σ is denoted Σ∗, and the set of all
infinite words over Σ is denoted Σω. We also use Σ+ to denote the set Σ∗ \ {ε} where ε is
the empty word. The length of a given w ∈ Σ∗ ∪ Σω is denoted len(w), where the length
of an infinite word is ω. Given a word (finite or infinite) over Σ, the individual letters of
w are denoted w(0),w(1), · · · .

Let V , ∅, and let → ⊆ V × V be a total relation (i.e., for every v ∈ V there is
some u ∈ V such that v→ u). The reflexive and transitive closure of → is denoted →∗.
A path in (V, →) is a finite or infinite word w ∈ V+ ∪ Vω such that w(i−1)→w(i) for
every 1 ≤ i < len(w). A run in (V, →) is an infinite path in V . The set of all runs that
start with a given finite path w is denoted Run(w).

A probability distribution over a finite or countably infinite set X is a function f :
X → [0, 1] such that

∑
x∈X f (x) = 1. A probability distribution f over X is positive if

f (x) > 0 for every x ∈ X, and rational if f (x) ∈ Q for every x ∈ X. A σ-field over a set
Ω is a set F ⊆ 2Ω that includes Ω and is closed under complement and countable union.

1 For example, the existing approximation methods for the (non-discounted) gain employ the
decision procedure for the existential fragment of (R,+, ∗,≤), which is rather inefficient.

2

A probability space is a triple (Ω,F ,P) where Ω is a set called sample space, F is a
σ-field over Ω whose elements are called events, and P : F → [0, 1] is a probability
measure such that, for each countable collection {Xi}i∈I of pairwise disjoint elements of
F we have that P(

⋃
i∈I Xi) =

∑
i∈I P(Xi), and moreover P(Ω)=1. A random variable

over a probability space (Ω,F ,P) is a function X : Ω → R ∪ {⊥}, where ⊥ < R is
a special “undefined” symbol, such that {ω ∈ Ω | X(ω) ≤ c} ∈ F for every c ∈ R. If
P(X=⊥) = 0, then the expected value of X is defined by E[X] =

∫
ω∈Ω

X(ω) dP.

Definition 1 (Markov Chain). A Markov chain is a triple M = (S , → ,Prob) where S
is a finite or countably infinite set of states, → ⊆ S ×S is a total transition relation, and
Prob is a function which to each state s ∈ S assigns a positive probability distribution
over the outgoing transitions of s. As usual, we write s x

→ t when s→ t and x is the
probability of s→ t.

To every s ∈ S we associate the probability space (Run(s),F ,P) where F is the σ-field
generated by all basic cylinders Run(w) where w is a finite path starting with s, and
P : F → [0, 1] is the unique probability measure such that P(Run(w)) = Π len(w)−1

i=1 xi

where w(i−1) xi→w(i) for every 1 ≤ i < len(w). If len(w) = 1, we put P(Run(w)) = 1.

Definition 2 (probabilistic PDA). A probabilistic pushdown automaton (pPDA) is a
tuple ∆ = (Q, Γ, δ,Prob) where Q is a finite set of control states, Γ is a finite stack
alphabet, δ ⊆ (Q × Γ) × (Q × Γ≤2) is a transition relation (here Γ≤2 = {w ∈ Γ∗ |
len(w) ≤ 2}), and Prob : δ → (0, 1] is a rational probability assignment such that for
all pX ∈ Q × Γ we have that

∑
pX→qα Prob(pX → qα) = 1.

A configuration of ∆ is an element of Q × Γ∗, and the set of all configurations of ∆
is denoted C(∆).

To each pPDA ∆ = (Q, Γ, δ,Prob∆) we associate a Markov chain M∆ = (C(∆),→,Prob),
where pε 1

→ pε for every p ∈ Q, and pXβ x
→ qαβ iff (pX, qα) ∈ δ, Prob∆(pX→ qα) =

x, and β ∈ Γ∗. For all p, q ∈ Q and X ∈ Γ, we use Run(pXq) to denote the set of
all w ∈ Run(pX) such that w(n) = qε for some n ∈ N, and Run(pX↑) to denote the
set Run(pX) r

⋃
q∈Q Run(pXq). The runs of Run(pXq) and Run(pX↑) are sometimes

referred to as terminating and non-terminating, respectively.

3 Discounted Properties of Probabilistic PDA

In this section we introduce the family of discounted properties of probabilistic PDA
studied in this paper. These notions are not PDA-specific and could be defined more
abstractly for arbitrary Markov chains. Nevertheless, the scope of our study is limited
to probabilistic PDA, and the notation becomes more suggestive when it directly reflects
the structure of a given pPDA.

For the rest of this section, we fix a pPDA ∆ = (Q, Γ, δ,Prob∆), a nonnegative reward
function f : Q × Γ → Q, and a discount function λ : Q × Γ → [0, 1). The functions
f and λ are extended to all elements of Q × Γ+ by stipulating that f (pXα) = f (pX)
and λ(pXα) = λ(pX), respectively. One can easily generalize the presented arguments
also to rewards and discounts that depend on the whole stack content, provided that this

3

dependence is “regular”, i.e., can be encoded by a finite-state automaton which reads
the stack bottom-up. This extension is obtained just by applying standard techniques
that have been used in, e.g., [10]. Also note that λ can assign a different discount to
each element of Q × Γ, and that the discount can also be 0. Hence, we in fact work
with a slightly generalized form of discounting which can also reflect relative speed of
transitions.

We start by defining several simple random variables. The definitions are param-
etrized by the functions f and λ, control states p, q ∈ Q, and a stack symbol X ∈ Γ. For
every run w and i ∈ N0, we use λ(wi) to denote Π i

j=0λ(w(j)), i.e., the discount accumu-
lated up to w(i). Note that the initial state of w is also discounted, which is somewhat
non-standard but technically convenient (the equations constructed in Section 4 become
more readable).

IpXq(w) =

1 if w ∈ Run(pXq)
0 otherwise

IλpXq(w) =

λ(wn−1) if w ∈ Run(pXq), w(n−1) , w(n) = qε
0 otherwise

R f
pXq(w) =

∑n−1

i=0 f (w(i)) if w ∈ Run(pXq), w(n−1) , w(n) = qε
0 otherwise

R f ,λ
pXq(w) =

∑n−1

i=0 λ(wi) · f (w(i)) if w ∈ Run(pXq), w(n−1) , w(n) = qε
0 otherwise

G f
pX(w) =

limn→∞

∑n
i=0 f (w(i))

n+1 if w ∈ Run(pX↑) and the limit exists
⊥ otherwise

G f ,λ
pX (w) =

limn→∞

∑n
i=0 λ(wi)· f (w(i))∑n

i=0 λ(wi) if w ∈ Run(pX↑) and the limit exists

⊥ otherwise

X f ,λ
pX (w) =

∑∞

i=0 λ(wi) f (w(i)) if w ∈ Run(pX↑)
0 otherwise

The variable IpXq is a simple indicator telling whether a given run belongs to Run(pXq)
or not. Hence, E[IpXq] is the probability of Run(pXq), i.e., the probability of all runs
w ∈ Run(pX) that terminate in qε. The variable IλpXq is the discounted version of IpXq,
and its expected value can thus be interpreted as the “discounted termination probabil-
ity”, where more weight is put on terminated states visited early. Hence, E[IλpXq] is a
meaningful value which can be used to quantify the difference between two configura-
tions with the same termination probability but different termination time. From now
on, we write [pXq] and [pXq, λ] instead of E[IpXq] and E[IλpXq], respectively, and we
also use [pX↑] to denote 1 −

∑
q∈Q[pXq]. The computational aspects of [pXq] have

been examined in [8, 13], where it is shown that the family of all [pXq] forms the least

4

solution of an effectively constructible system of monotone polynomial equations. By
applying the recent results [16, 7] about a fast convergence of Newton’s method, it is
possible to approximate the values of [pXq] efficiently (the precise values of [pXq] can
be irrational). In Section 4, we generalize these results to [pXq, λ].

The variable R f
pXq returns to every w ∈ Run(pXq) the total f -reward accumulated

up to qε. For example, if f (rY) = 1 for every rY ∈ Q × Γ, then the variable returns
the number of transitions executed before hitting the configuration qε. In [9], the condi-
tional expected value E[R f

pXq | Run(pXq)] has been studied in detail. This value can be
used to analyze important properties of terminating runs; for example, if f is as above,
then ∑

q∈Q

[pXq] · E[R f
pXq | Run(pXq)]

is the conditional expected termination time of a run initiated in pX, under the condi-
tion that the run terminates (i.e., the stack is eventually emptied). In [9], it has been
shown that the family of all E[R f

pXq | Run(pXq)] forms the least solution of an ef-
fectively constructible system of recursive polynomial equations. One disadvantage of
E[R f

pXq | Run(pXq)] (when compared to [pXq, λ] which also reflects the length of ter-
minating runs) is that this conditional expected value can be infinite even in situations
when [pXq] = 1.

The discounted version R f ,λ
pXq of R f

pXq assigns to each w ∈ Run(pXq) the total dis-
counted reward accumulated up to qε. In Section 4, we extend the aforementioned
results about E[R f

pXq | Run(pXq)] to the family of all E[R f ,λ
pXq | Run(pXq)]. The ex-

tension is actually based on analyzing the properties of the (unconditional) expected
value E[R f ,λ

pXq]. At first glance, E[R f ,λ
pXq] does not seem to provide any useful information,

at least in situations when [pXq] , 1. However, this expected value can be used to ex-
press not only E[R f ,λ

pXq | Run(pXq)], but also other properties such as E[G f ,λ
pX] or E[X f ,λ

pX]
discussed below, and can be effectively approximated by Newton’s method. Hence, the
variable R f ,λ

pXq and its expected value provide a crucial technical tool for solving the
problems of our interest.

The variable G f
pX assigns to each non-terminating run its average reward per tran-

sition, provided that the corresponding limit exists. For finite-state Markov chains, the
average reward per transition exists for almost all runs, and hence the corresponding
expected value (also called the gain2) always exists. In the case of pPDA, it can happen
that P(G f

pX=⊥) > 0 even if [pX↑] = 1, and hence the gain E[G f
pX] does not necessar-

ily exist. A concrete example is given in Section 4. In [9], it has been shown that if
all E[Rg

tY s | Run(tYs)] are finite (where g(rZ) = 1 for all rZ ∈ Q × Γ), then the gain
is guaranteed to exist and can be effectively expressed in first order theory of the re-
als. This result relies on a construction of an auxiliary finite-state Markov chain with
possibly irrational transition probabilities, and this method does not allow for efficient
approximation of the gain.

In Section 4, we examine the properties of the discounted gain E[G f ,λ
pX] which

are remarkably different from the aforementioned properties of the gain (these
results constitute the first highlight of our paper). First, we always have that
P(G f ,λ

pX=⊥ | Run(pX↑)) = 0 whenever [pX↑] > 0, and hence the discounted gain is

2 The gain is one of the fundamental concepts in performance analysis.

5

guaranteed to exist whenever [pX↑] = 1. Further, we show that the discounted gain
can be efficiently approximated by Newton’s method. One intuitively expects that the
discounted gain is close to the value of the gain as the discount approaches 1, and we
show that this is indeed the case when the gain exists (the proof is not trivial). Thus, we
obtain alternative proofs for some of the results about the gain that have been presented
in [9], but unfortunately we do not yield an efficient approximation scheme for the (non-
discounted) gain, because we were not able to analyze the corresponding convergence
rate. More details are given in Section 4.

The variable X f ,λ
pX assigns to each non-terminating run the total discounted reward

accumulated along the whole run. Note that the corresponding infinite sum always ex-
ists and it is finite. If [pX↑] = 1, then the expected value E[X f ,λ

pX] exactly corresponds
to the expected discounted payoff, which is a fundamental and deeply studied concept
in stochastic programming (see, e.g., [17, 14]). In Section 4, we show that the family of
all E[X f ,λ

pX] forms the least solution of an effectively constructible system of monotone
polynomial equations. Hence, these expected values can also be effectively approxi-
mated by Newton’s method by applying the results of [16, 7]. We also show how to
express E[X f ,λ

pX | Run(pX↑)], which is more relevant in situations when 0 < [pX↑] < 1.

4 Computing the Discounted Properties of Probabilistic PDA

In this section we show that the (conditional) expected values of the discounted random
variables introduced in Section 3 are expressible as the least solutions of efficiently
constructible systems of recursive equations. This allows to encode these values in first
order theory of the reals, and design efficient approximation schemes for some of them.

Recall that first order theory of the reals (R,+, ∗,≤) is decidable [18], and the ex-
istential fragment is even solvable in polynomial space [4]. The following definition
explains what we mean by encoding a certain value in (R,+, ∗,≤).

Definition 3. We say that some c ∈ R is encoded by a formula Φ(x) of (R,+, ∗,≤) iff
the formula ∀x.(Φ(x)⇔ x=c) holds.

Note that if a given c ∈ R is encoded by Φ(x), then the problems whether c = % and
c ≤ % for a given rational constant % are decidable (we simply check the validity of the
formulae Φ(x/%) and ∃x.(Φ(x) ∧ x ≤ %), respectively).

For the rest of this section, we fix a pPDA ∆ = (Q, Γ, δ,Prob∆), a nonnegative reward
function f : Q × Γ → Q, and a discount function λ : Q × Γ → [0, 1). As a warm-up,
let us first consider the family of expected values [pXq, λ]. For each of them, we fix the
corresponding first order variable 〈〈pXq, λ〉〉〈〈pXq, λ〉〉〈〈pXq, λ〉〉, and construct the following equation (for
the sake of readability, each variable occurrence is typeset in boldface):

〈〈pXq, λ〉〉〈〈pXq, λ〉〉〈〈pXq, λ〉〉 =
∑
pX

x
→qε

x · λ(pX) +
∑
pX

x
→rY

x · λ(pX) · 〈〈rYq, λ〉〉〈〈rYq, λ〉〉〈〈rYq, λ〉〉

+
∑
pX

x
→rYZ, s∈Q

x · λ(pX) · 〈〈rY s, λ〉〉〈〈rY s, λ〉〉〈〈rY s, λ〉〉 · 〈〈sZq, λ〉〉〈〈sZq, λ〉〉〈〈sZq, λ〉〉

(1)

6

Thus, we produce a finite system of recursive equations (S1). This system is rather
similar to the system for termination probabilities [pXq] constructed in [8, 13]. The only
modification is the introduction of the discount factor λ(pX). A proof of the following
theorem is also just a technical extension of the proof given in [8, 13] (see [1]).

Theorem 4. The tuple of all [pXq, λ] is the least nonnegative solution of the
system (S1).

Now consider the expected value E[R f ,λ
pXq]. For all p, q ∈ Q and X ∈ Γ we fix a first order

variable 〈〈pXq〉〉〈〈pXq〉〉〈〈pXq〉〉 and construct the following equation:

〈〈pXq〉〉〈〈pXq〉〉〈〈pXq〉〉 =
∑
pX

x
→qε

x · λ(pX) · f (pX) +
∑
pX

x
→rY

x · λ(pX) ·
(
[rYq] · f (pX) + 〈〈rYq〉〉〈〈rYq〉〉〈〈rYq〉〉

)
+

∑
pX

x
→rYZ, s∈Q

x · λ(pX) · ([rY s] · [sZq] · f (pX) + [sZq] · 〈〈rY s〉〉〈〈rY s〉〉〈〈rY s〉〉 + [rY s, λ] · 〈〈sZq〉〉〈〈sZq〉〉〈〈sZq〉〉)

(2)

Thus, we obtain the system (S2). Note that termination probabilities and discounted
termination probabilities are treated as “known constants” in the equations of (S2).

As opposed to (S1), the equations of system (S2) do not have a good intuitive mean-
ing. At first glance, it is not clear why these equations should hold, and a formal proof
of this fact requires advanced arguments. The proof of the following theorem is already
non-trivial (see [1]).

Theorem 5. The tuple of all E[R f ,λ
pXq] is the least nonnegative solution of the system (S2).

The conditional expected values E[R f ,λ
pXq | Run(pXq)] make sense only if [pXq] > 0,

which can be checked in time polynomial in the size of ∆ because [pXq] > 0 iff
pX→∗qε, and the reachability problem for PDA is in P (see, e.g., [6]). The next theorem
says how to express E[R f ,λ

pXq | Run(pXq)] using E[R f ,λ
pXq].

Theorem 6. For all p, q ∈ Q and X ∈ Γ such that [pXq] > 0 we have that

E[R f ,λ
pXq | Run(pXq)] =

E[R f ,λ
pXq]

[pXq]
(3)

Now we turn our attention to the discounted long-run properties of probabilistic
PDA introduced in Section 3. These results represent the core of our paper.

As we already mentioned, the system (S1) can also be used to express the family
of termination probabilities [pXq]. This is achieved simply by replacing each λ(pX)
with 1 (thus, we obtain the equational systems originally presented in [8, 13]). Hence,
we can also express the probability of non-termination:

[pX↑] = 1 −
∑
q∈Q

[pXq] (4)

7

Note that this equation is not monotone (by increasing [pXq] we decrease [pX↑]), which
leads to some complications discussed in Section 4.1.

Now we have all the tools that are needed to construct an equational system for the
family of all E[X f ,λ

pX]. For all p ∈ Q and X ∈ Γ, we fix a first order variable 〈〈pX〉〉〈〈pX〉〉〈〈pX〉〉 and
construct the following equation, which gives us the system (S5):

〈〈pX〉〉〈〈pX〉〉〈〈pX〉〉 =
∑
pX

x
→rY

x · λ(pX) · ([rY↑] · f (pX) + 〈〈rY〉〉〈〈rY〉〉〈〈rY〉〉)

+
∑
pX

x
→rYZ

x · λ(pX) · ([rY↑] · f (pX) + 〈〈rY〉〉〈〈rY〉〉〈〈rY〉〉)

+
∑
pX

x
→rYZ, s∈Q

x · λ(pX) ·
(
[rY s] · [sZ↑] · f (pX) + [sZ↑] · E[R f ,λ

rY s] + [rY s, λ] · 〈〈sZ〉〉〈〈sZ〉〉〈〈sZ〉〉
)
(5)

The equations of (S5) are even less readable than the ones of (S2). However, note that
the equations are monotone and efficiently constructible. The proof of the following
theorem is based on advanced arguments.

Theorem 7. The tuple of all E[X f ,λ
pX] is the least nonnegative solution of the system (S5).

In situations when [pX↑] < 1, E[X f ,λ
pX | Run(pX↑)] may be more relevant than E[X f ,λ

pX].
The next theorem says how to express this expected value.

Theorem 8. For all p, q ∈ Q and X ∈ Γ such that [pX↑] > 0 we have that

E[X f ,λ
pX | Run(pX↑)] =

E[X f ,λ
pX]

[pX↑]
(6)

Concerning the equations of (S6), there is one notable difference from all of the pre-
vious equational systems. The only known method of solving the problem whether
[pX↑] > 0 employs the decision procedure for the existential fragment of (R,+, ∗,≤),
and hence the best known upper bound for this problem is PSPACE. This means that
the equations of (S6) cannot be constructed efficiently, because there is no efficient way
of determining all p, q and X such that [pX↑] > 0.

The last discounted property of probabilistic PDA which is to be investigated is the
discounted gain E[G f ,λ

pX]. Here, we only managed to solve the special case when λ is a
constant function.

Theorem 9. Let λ be a constant discount function such that λ(rY) = κ for all rY ∈
Q × Γ, and let p ∈ Q, X ∈ Γ such that [pX↑] = 1. Then

E[G f ,λ
pX] = (1 − κ) · E[X f ,λ

pX] (7)

A proof of Theorem 9 is simple. Let w ∈ Run(pX↑). Since both limn→∞
∑n

i=0 λ(wi) and
limn→∞

∑n
i=0 λ(wi) f (w(i)) exist and the latter is equal to (1−κ)−1 the claim follows from

the linearity of the expected value.

8

Note that the equations of (S7) can be constructed efficiently (in polynomial time),
because the question whether [pX↑] = 1 is equivalent to checking whether [pXq] = 0
for all q ∈ Q, which is equivalent to checking whether pX 6→∗ qε for all q ∈ Q. Hence,
it suffices to apply a polynomial-time decision procedure for PDA reachability such
as [6].

Since all equational systems constructed in this section contain just summation,
multiplication, and division, one can easily encode all of the considered discounted
properties in (R,+, ∗,≤) in the sense of Definition 3. For a given discounted property c,
the corresponding formula Φ(x) looks as follows:

∃v
(
solution(v) ∧ (∀u

(
solution(u)⇒ v ≤ u

)
∧ x = vi

)
Here v and u are tuples of fresh first order variables that correspond (in one-to-one fash-
ion) to the variables employed in the equational systems (S1), (S2), (S3), (S4), (S5),
(S6), and (S7). The subformulae solution(v) and solution(u) say that the variables of v
and u form a solution of the equational systems (S1), (S2), (S3), (S4), (S5), (S6), and
(S7). Note that the subformulae solution(v) and solution(u) are indeed expressible in
(R,+, ∗,≤), because the right-hand sides of all equational systems contain just summa-
tion, multiplication, division, and employ only constants that themselves correspond to
some variables in v or u. The vi is the variable of v which corresponds to the considered
property c, and the x is the only free variable of the formula Φ(x). Note that Φ(x) can
be constructed in space which is polynomial in the size of a given pPDA ∆ (the main
cost is the construction of the system (S6)), but the length of Φ(x) is only polynomial
in the size of ∆, λ, and f . Since the alternation depth of quantifiers in Φ(x) is fixed, we
can apply the result of [15] which says that every fragment of (R,+, ∗,≤) where the al-
ternation depth of quantifiers is bounded by a fixed constant is decidable in exponential
time. Thus, we obtain the following theorem:

Theorem 10. Let c be one of the discounted properties of pPDA considered in this sec-
tion, i.e., c is either [pXq, λ], E[R f ,λ

pXq], E[R f ,λ
pXq | Run(pXq)], E[X f ,λ

pX], E[X f ,λ
pX | Run(pX↑)],

or E[G f ,λ
pX] (in the last case we further require that λ is constant). The problems whether

c = % and c ≤ % for a given rational constant % are in EXPTIME.

The previous theorem extends the results achieved in [8, 9, 13] to discounted
properties of pPDA. However, in the case of discounted long-run properties
E[X f ,λ

pX], E[X f ,λ
pX | Run(pX↑)], and E[G f ,λ

pX], the presented proof is completely different
from the non-discounted case. Moreover, the constructed equations take the form which
allows to design efficient approximation scheme for these values, and this is what we
show in the next subsection.

4.1 The Application of Newton’s Method

In this section we show how to apply the recent results [16, 7] about fast convergence
of Newton’s method for systems of monotone polynomial equations to the discounted
properties introduced in Section 3. We start by recalling some notions and results pre-
sented in [16, 7].

9

Monotone systems of polynomial equations (MSPEs) are systems of fixed point
equations of the form x1 = f1(x1, · · · , xn), · · · , xn = fn(x1, · · · , xn), where each fi is
a polynomial with nonnegative real coefficients. Written in vector form, the system is
given as x = f (x), and solutions of the system are exactly the fixed points of f . To f we
associate the directed graph H f where the nodes are the variables x1, . . . , xn and (xi, x j)
is an edge iff x j appears in fi. A subset of equations is a strongly connected component
(SCC) if its associated subgraph is a SCC of H f .

Observe that each of the systems (S1), (S2), and (S5) forms a MSPE. Also observe
that the system (S1) uses only simple coefficients obtained by multiplying transition
probabilities of ∆ with the return values of λ, while the coefficients in (S2) and (S5) are
more complicated and also employ constants such as [rYq], [rY s, λ], E[R f ,λ

pXq], or [rY↑].
The problem of finding the least nonnegative solution of a given MSPE x = f (x)

can be obviously reduced to the problem of finding the least nonnegative solution for
F(x) = 0, where F(x) = f (x) − x. The Newton’s method for approximating the least
solution of F(x) = 0 is based on computing a sequence x(0), x(1), · · · , where x(0) = 0
and

x(k+1) = xk − (F′(xk))−1 F(xk)

where F′(x) is the Jacobian matrix of partial derivatives. If the graph H f is strongly
connected, then the method is guaranteed to converge linearly [16, 7]. This means that
there is a threshold k f such that after the initial k f iterations of the Newton’s method,
each additional bit of precision requires only 1 iteration. In [7], an upper bound for k f

is presented.
For general MSPE where H f is not necessarily strongly connected, a more struc-

tured method called Decomposed Newton’s method (DNM) can be used. Here, the com-
ponent graph of H f is computed and the SCCs are divided according to their depth.
DNM proceeds bottom-up by computing k · 2t iterations of Newton’s method for each
of the SCCs of depth t, where t goes from the height of the component graph to 0. After
computing the approximations for the SCCs of depth i, the computed values are fixed,
the corresponding equations are removed, and the SCCs of depth i−1 are processed
in the same way, using the previously fixed values as constants. This goes on until all
SCCs are processed. It was demonstrated in [13] that DNM is guaranteed to converge to
the least solution as k increases. In [16], it was shown that DNM is even guaranteed to
converge linearly. Note, however, that the number of iterations of the original Newton’s
method in one iteration of DNM is exponential in the depth of the component graph
of H f .

Now we show how to apply these results to the systems (S1), (S2), and (S5). First,
we also add a system (S0) whose least solution is the tuple of all termination probabil-
ities [pXq] (the system (S0) is very similar to the system (S1), the only difference is
that each λ(pX) is replaced with 1). The systems (S0), (S1), (S2), and (S5) themselves
are not necessarily strongly connected, and we use H to denote the height of the com-
ponent graph of (S0). Note that the height of the component graph of (S1), (S2), and
(S5) is at most H. Now, we unify the systems (S0), (S1), (S2), and (S5) into one equa-
tion system S. What we obtain is a MSPE with three types of coefficients: transition
probabilities of ∆, the return values of λ, and non-termination probabilities of the form

10

[rY↑] (the system (S4) cannot be added to S because the resulting system would not be
monotone). Observe that

– (S0) and (S1) only use the transition probabilities of ∆ and the return values of λ as
coefficients;

– (S2) also uses the values defined by (S0) and (S1) as coefficients;
– (S5) uses the values defined by (S0), (S1) and (S2) as coefficients, and it also uses

coefficients of the form [rY↑].

This means that the height of the component graph of S is at most 3H. Now we can
apply the DNM in the way described above, with the following technical modification:
after computing the termination probabilities [rYq] (in the system (S0)), we compute
an upper approximation for each [rY↑] according to equation (4), and then subtract
an upper bound for the overall error of this upper approximation bound with the same
overall error (here we use the technical results of [7]). In this way, we produce a lower
approximation for each [rY↑] which is used as a constant when processing the other
SCCs. Now we can apply the aforementioned results about DNM.

Note that once the values of [pXq], [pXq, λ], E[R f ,λ
pXq], and E[X f ,λ

pX] are computed

with a sufficient precision, we can also compute the values of E[R f ,λ
pXq | Run(pXq)] and

E[G f ,λ
pX] by equations given in Theorem 6 and Theorem 9, respectively. Thus, we obtain

the following:

Theorem 11. The values of [pXq], [pXq, λ], E[R f ,λ
pXq], E[X f ,λ

pX], E[R f ,λ
pXq | Run(pXq)], and

E[G f ,λ
pX] can be approximated using DNM, which is guaranteed to converge linearly. The

number of iterations of the Newton’s method which is needed to compute one iteration
of DNM is exponential in H.

In practice, the parameter H stays usually small. A typical application area of PDA are
recursive programs, where stack symbols correspond to the individual procedures, pro-
cedure calls are modeled by pushing new symbols onto the stack, and terminating a pro-
cedure corresponds to popping a symbol from the stack. Typically, there are “groups” of
procedures that call each other, and these groups then correspond to strongly connected
components in the component graph. Long chains of procedures P1, · · · , Pn, where each
Pi can only call P j for j > i, are relatively rare, and this is the only situation when the
parameter H becomes large.

4.2 The Relationship Between Discounted and Non-discounted Properties

In this section we examine the relationship between the discounted properties intro-
duced in Section 3 and their non-discounted variants. Intuitively, one expects that a
discounted property should be close to its non-discounted variant as the discount ap-
proaches 1. To formulate this precisely, for every κ ∈ (0, 1) we use λκ to denote the
constant discount function that always returns κ.

The following theorem is immediate. It suffices to observe that the equational sys-
tems for the non-discounted properties are obtained from the corresponding equational
systems for discounted properties by substituting all λ(pX) with 1.

11

Theorem 12. We have that

– [pXq] = limκ↑1[pXq, λκ]
– E[R f

pXq] = limκ↑1 E[R f ,λκ
pXq]

– E[R f
pXq | Run(pXq)] = limκ↑1 E[R f ,λκ

pXq | Run(pXq)]

The situation with discounted gain E[G f ,λ
pX] is more complicated. First, let us realize that

E[G f
pX] does not necessarily exist even if [pX↑] = 1. To see this, consider the pPDA

with the following rules:

pX
1
2
→ pYX, pY

1
2
→ pYY, pZ

1
2
→ pZZ, pX

1
2
→ pZX, pY

1
2
→ pε, pZ

1
2
→ pε

The reward function f is defined by f (pX) = f (pY) = 0 and f (pZ) = 1. Intuitively,
pX models a one-dimensional symmetric random walk with distinguished zero (X),
positive numbers (Z) and negative numbers (Y). Observe that [pX↑] = 1. However, one
can show that P(G f

pX=⊥) = 1, which means that E[G f
pX] does not exist. The example is

elaborated to a greater detail in [1].
The following theorem says that if the gain does exist, then it is equal to the limit of

discounted gains as κ approaches 1. The opposite direction, i.e., the question whether the
existence of the limit of discounted gains implies the existence of the (non-discounted)
gain is left open. The proof of the following theorem is not trivial and relies on several
subtle observations (see [1]).

Theorem 13. If E[G f
pX] exists, then E[G f

pX] = limκ↑1 E[G f ,λκ
pX].

Since limλ↑1 E[G f ,λ
pX] can be effectively encoded in first order theory of the reals, we ob-

tain an alternative proof of the result established in [9] saying that the gain is effectively
expressible in (R,+, ∗,≤). Actually, we obtain a somewhat stronger result, because the
formula constructed for limλ↑1 E[G f ,λ

pX] encodes the gain whenever it exists, while the
(very different) formula constructed in [9] encodes the gain only in situation when a
certain sufficient condition (mentioned in Section 3) holds. Unfortunately, Theorem 13
does not yet help us to approximate the gain, because the proof does not give any clue
how large κ must be chosen in order to approximate the limit upto a given precision.

5 Conclusions

We have shown that a family of discounted properties of probabilistic PDA can be
efficiently approximated by decomposed Newton’s method. In some cases, it turned
out that the discounted properties are “more computational” than their non-discounted
counterparts. An interesting open question is whether the scope of our study can be
extended to other discounted properties defined, e.g., in the spirit of [2]. More open
questions concern decidability of discounted properties of more complex models like
Markov decision process and recursive stochastic games in general.

12

References

1. T. Brázdil, V. Brožek, J. Holeček, and A. Kučera. Discounted properties of probabilistic
pushdown automata. Technical report FIMU-RS-2008-08, Faculty of Informatics, Masaryk
University, 2008.

2. T. Brázdil, J. Esparza, and A. Kučera. Analysis and prediction of the long-run behavior
of probabilistic sequential programs with recursion. In Proceedings of FOCS 2005, pages
521–530. IEEE Computer Society Press, 2005.

3. T. Brázdil, A. Kučera, and O. Stražovský. On the decidability of temporal properties of
probabilistic pushdown automata. In Proceedings of STACS 2005, volume 3404 of Lecture
Notes in Computer Science, pages 145–157. Springer, 2005.

4. J. Canny. Some algebraic and geometric computations in PSPACE. In Proceedings of
STOC’88, pages 460–467. ACM Press, 1988.

5. L. de Alfaro, T. Henzinger, and R. Majumdar. Discounting the future in systems theory.
In Proceedings of ICALP 2003, volume 2719 of Lecture Notes in Computer Science, pages
1022–1037. Springer, 2003.

6. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for model check-
ing pushdown systems. In Proceedings of CAV 2000, volume 1855 of Lecture Notes in Com-
puter Science, pages 232–247. Springer, 2000.

7. J. Esparza, S. Kiefer, and M. Luttenberger. Convergence thresholds of Newton’s method for
monotone polynomial equations. In Proceedings of STACS 2008, 2008.

8. J. Esparza, A. Kučera, and R. Mayr. Model-checking probabilistic pushdown automata. In
Proceedings of LICS 2004, pages 12–21. IEEE Computer Society Press, 2004.

9. J. Esparza, A. Kučera, and R. Mayr. Quantitative analysis of probabilistic pushdown au-
tomata: Expectations and variances. In Proceedings of LICS 2005, pages 117–126. IEEE
Computer Society Press, 2005.

10. J. Esparza, A. Kučera, and S. Schwoon. Model-checking LTL with regular valuations for
pushdown systems. Information and Computation, 186(2):355–376, 2003.

11. K. Etessami and M. Yannakakis. Algorithmic verification of recursive probabilistic systems.
In Proceedings of TACAS 2005, volume 3440 of Lecture Notes in Computer Science, pages
253–270. Springer, 2005.

12. K. Etessami and M. Yannakakis. Checking LTL properties of recursive Markov chains. In
Proceedings of 2nd Int. Conf. on Quantitative Evaluation of Systems (QEST’05), pages 155–
165. IEEE Computer Society Press, 2005.

13. K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic grammars, and mono-
tone systems of non-linear equations. In Proceedings of STACS 2005, volume 3404 of Lec-
ture Notes in Computer Science, pages 340–352. Springer, 2005.

14. J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1996.
15. D. Grigoriev. Complexity of deciding Tarski algebra. Journal of Symbolic Computation,

5(1–2):65–108, 1988.
16. S. Kiefer, M. Luttenberger, and J. Esparza. On the convergence of Newton’s method for

monotone systems of polynomial equations. In Proceedings of STOC 2007, pages 217–226.
ACM Press, 2007.

17. M.L. Puterman. Markov Decision Processes. Wiley, 1994.
18. A. Tarski. A Decision Method for Elementary Algebra and Geometry. Univ. of California

Press, Berkeley, 1951.

13

