MA012 Statistics II

Faculty of Informatics
Autumn 2020
Extent and Intensity
2/2/0. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
Teacher(s)
Mgr. Ondřej Pokora, Ph.D. (lecturer)
Guaranteed by
Mgr. Ondřej Pokora, Ph.D.
Department of Computer Science – Faculty of Informatics
Supplier department: Faculty of Science
Timetable
Mon 16:00–17:50 A318
  • Timetable of Seminar Groups:
MA012/01: Mon 18:00–19:50 A215, O. Pokora
MA012/02: Thu 10:00–11:50 A215, O. Pokora
MA012/03: Thu 12:00–13:50 A215, O. Pokora
Prerequisites
Prerequisites: calculus, basics of linear algebra, probability and statistics (including basic experience with software R) from course MV011 Statistics I.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The course introduces students to advanced methods of mathematical statistics -- explains the algorithms, computational procedures, conditions, interpretation of results and practical use of these methods for the analysis of real datasets in statistical software R. After completing the course, the student will understand the principles of advanced statistical methods (analysis of variance, nonparametric tests, goodness-of-fit tests, correlation analysis, principal component analysis, generalized linear models, regression diagnostics, independence testing), will be able to use them in analyzing real datasets and will be able to interpret the results.
Learning outcomes
After completing the course the student will be able to:
- explain the principles and algorithms of advanced methods of mathematical statistics;
- perform a statistical analysis of the real dataset in the software R;
- interpret the results obtained by the statistical analysis.
Syllabus
  • Analysis of variance (ANOVA): one- and two-factor, with interactions.
  • Nonparametric tests: rank tests.
  • Goodness-of-fit tests.
  • Correlation analysis, correlation coefficients, rank correlation coefficients.
  • Regression diagnostics.
  • Autocorrelation, multicollinearity.
  • Principal component Analysis (PCA).
  • Generalized linear models (GLM): logistic regression and use of ROC curve, some other GLM.
  • Contingency tables and independence testing.
Literature
  • ANDĚL, J. Základy matematické statistiky. Praha: MFF UK, 2005. info
  • RAO, C. Radhakrishna. Lineární metody statistické indukce a jejich aplikace. Translated by Josef Machek. Vyd. 1. Praha: Academia, 1978, 666 s. URL info
  • BERNSTEIN, Stephen and Ruth BERNSTEIN. Schaum's outline of theory and problems of elements of statistics : descriptive statistics and probability. New York, N.Y.: McGraw-Hill, 1999, vii, 354. ISBN 0070050236. info
  • ANDĚL, Jiří. Statistické metody. 1. vyd. Praha: Matfyzpress, 1993, 246 s. info
Teaching methods
Lectures: 2 hours a week. Practical classes: 2 hour a week – in R software. Distance form: online lectures, practical classes and discussions.
Assessment methods
Exercises: active involvement in problem solving and homeworks, working with ROPOTs, in-time solution of interim and final tasks. Final examination: distance form. Distance form of the final exam: online work with a ROPOT, theoretical questions and problem solving. ROPOTs, final problem solving and the exam are evaluated in points, total achievable points >= 100. For successful completion, it is necessary to achieve at least 50 points.
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
Teacher's information
https://is.muni.cz/auth/el/fi/podzim2020/MA012/index.qwarp
The course is also listed under the following terms Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018, Autumn 2019, Autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.
  • Enrolment Statistics (Autumn 2020, recent)
  • Permalink: https://is.muni.cz/course/fi/autumn2020/MA012