FI:MV011 Statistics I - Course Information
MV011 Statistics I
Faculty of InformaticsSpring 2009
- Extent and Intensity
- 2/2. 4 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- RNDr. Ivo Moll, CSc. (lecturer)
doc. Mgr. Kamila Hasilová, Ph.D. (seminar tutor)
Mgr. Jana Meluzínová (seminar tutor)
RNDr. Tomáš Pavlík, Ph.D. (seminar tutor)
Mgr. Ondřej Pokora, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Faculty of Informatics
Contact Person: RNDr. Marie Budíková, Dr. - Timetable
- Tue 8:00–9:50 D2
- Timetable of Seminar Groups:
MV011/02: Mon 8:00–9:50 B007, T. Pavlík
MV011/03: Mon 10:00–11:50 B007, J. Meluzínová
MV011/04: Fri 12:00–13:50 B007, O. Pokora - Prerequisites (in Czech)
- Předpokládá se znalost diferenciálního a integrálního počtu jedné a více proměnných a znalost lineární algebry.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, B-AP)
- Applied Informatics (programme FI, N-AP)
- Information Technology Security (programme FI, N-IN)
- Bioinformatics (programme FI, B-AP)
- Bioinformatics (programme FI, N-AP)
- Information Systems (programme FI, N-IN)
- Informatics with another discipline (programme FI, B-BI)
- Informatics with another discipline (programme FI, B-FY)
- Informatics with another discipline (programme FI, B-GE)
- Informatics with another discipline (programme FI, B-GK)
- Informatics with another discipline (programme FI, B-CH)
- Informatics with another discipline (programme FI, B-IO)
- Informatics with another discipline (programme FI, B-MA)
- Informatics with another discipline (programme FI, B-TV)
- Informatics (programme FI, B-IN)
- Informatics (programme FI, N-IN)
- Mathematical Informatics (programme FI, B-IN)
- Parallel and Distributed Systems (programme FI, B-IN)
- Parallel and Distributed Systems (programme FI, N-IN)
- Computer Graphics and Image Processing (programme FI, B-IN)
- Computer Graphics (programme FI, N-IN)
- Computer Networks and Communication (programme FI, B-IN)
- Computer Networks and Communication (programme FI, N-IN)
- Computer Systems and Data Processing (programme FI, B-IN)
- Computer Systems (programme FI, N-IN)
- Embedded Systems (eng.) (programme FI, N-IN)
- Programmable Technical Structures (programme FI, B-IN)
- Theoretical Informatics (programme FI, N-IN)
- Upper Secondary School Teacher Training in Informatics (programme FI, N-SS) (2)
- Artificial Intelligence and Natural Language Processing (programme FI, B-IN)
- Artificial Intelligence and Natural Language Processing (programme FI, N-IN)
- Image Processing (programme FI, N-AP)
- Course objectives
- Upon completing this course, students will be able to perform basic computer aided statistical data set analysis, resulting in tables, graphs and numerical characteristics; will understand basic probability concepts; will be able to solve probability tasks related to explained theory (in some cases using statistical software); will be able to generate realizations of selected types random variables using statistical software.
- Syllabus
- Data files, empirical characteristics and graphs, numerical characteristics.
- Probability space, property of probability, conditional probability, Bayes' theorem, stochastic independence of events.
- Construction of classical probability and of probability distributions using probability function and density.
- Random variables and vectors. Probability distribution and distribution function.
- Discrete and continuous random variables and vectors. Typical distribution laws. Simultaneous and marginal distributions.
- Stochastic independence of random variables and vectors. The sequence of independent trials.
- Quantiles, expectation, variance, covariance, correlation coeficient and their properties.
- Weak law of large number and central limit theorem.
- Literature
- BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ and Pavel OSECKÝ. Popisná statistika (Descriptive Statistics). 3., doplněné vyd. Brno: Masarykova univerzita, 1998, 52 pp. ISBN 80-210-1831-3. info
- BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ and Pavel OSECKÝ. Teorie pravděpodobnosti a matematická statistika. Sbírka příkladů. (Probability Theory and Mathematical Statistics. Collection of Tasks.). 3rd ed. Brno: Masarykova univerzita, 2004, 127 pp. ISBN 80-210-3313-4. info
- OSECKÝ, Pavel. Statistické vzorce a věty. 1. vyd. Brno: Masarykova univerzita, 1998, [29] list. ISBN 8021017589. info
- ANDĚL, Jiří. Statistické metody. 1. vyd. Praha: Matfyzpress, 1993, 246 s. info
- Assessment methods
- The weekly class schedule consists of 2 hour lecture and 2 hours of class exercises. Throughout semester, students elaborate a semester project and write a test. The examination is written, consisting of test part and exercises part.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- Study Materials
The course is taught annually.
- Enrolment Statistics (Spring 2009, recent)
- Permalink: https://is.muni.cz/course/fi/spring2009/MV011