FI:MV011 Statistics I - Course Information
MV011 Statistics I
Faculty of InformaticsSpring 2015
- Extent and Intensity
- 2/2. 4 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. Mgr. Jan Koláček, Ph.D. (lecturer)
Mgr. Ondřej Pokora, Ph.D. (lecturer)
Mgr. Ondřej Černý (seminar tutor)
Mgr. Eva Janoušková, Ph.D. (seminar tutor)
Mgr. Ondřej Pokora, Ph.D. (seminar tutor)
Mgr. Jana Svobodová (seminar tutor)
Mgr. Michal Theuer, Ph.D. (seminar tutor) - Guaranteed by
- doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Faculty of Informatics
Supplier department: Faculty of Science - Timetable
- Wed 10:00–11:50 D1
- Timetable of Seminar Groups:
MV011/01: Wed 12:00–13:50 A320, J. Svobodová
MV011/02: Wed 8:00–9:50 C525, M. Theuer
MV011/03: Thu 10:00–11:50 C525, M. Theuer
MV011/04: Thu 18:00–19:50 A320, O. Černý
MV011/05: Tue 10:00–11:50 B204, O. Pokora
MV011/06: Tue 12:00–13:50 B116, O. Pokora
MV011/07: Wed 8:00–9:50 B116, O. Pokora - Prerequisites
- Prerequisites: calculus in one and several variables, basics of linear algebra.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 36 fields of study the course is directly associated with, display
- Course objectives
- Upon completing this course, students will be able to perform basic computer aided statistical data set analysis in R language, resulting in tables, graphs and numerical characteristics; will understand basic probability concepts; will be able to solve probability tasks related to explained theory (in some cases using statistical software); will be able to generate realizations of selected types random variables using statistical software; has basic knowledge of statistical hypothesis testing, will be able carry out tests in statistical software and interpret the results.
- Syllabus
- Introduction to the probability theory.
- Random variables and vectors. Probability distribution and distribution function.
- Discrete and continuous random variables and vectors. Typical distribution laws. Simultaneous and marginal distributions.
- Stochastic independence of random variables and vectors. The sequence of independent trials.
- Quantiles, expectation, variance, covariance, correlation coeficient and their properties.
- Weak law of large number and central limit theorem.
- Data files, empirical characteristics and graphs, numerical characteristics. Descriptive statistics in R language.
- Random sample, point and interval estimators.
- Basics of testing hypothesis. Testing hypothesis in R language.
- Regression analysis in R language.
- Literature
- recommended literature
- FORBELSKÁ, Marie and Jan KOLÁČEK. Pravděpodobnost a statistika I. 1. vyd. Brno: Masarykova univerzita, 2013. Elportál. ISBN 978-80-210-6710-3. url info
- FORBELSKÁ, Marie and Jan KOLÁČEK. Pravděpodobnost a statistika II. 1. vyd. Brno: Masarykova univerzita, 2013. Elportál. ISBN 978-80-210-6711-0. url info
- not specified
- BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ and Pavel OSECKÝ. Teorie pravděpodobnosti a matematická statistika. Sbírka příkladů. (Probability Theory and Mathematical Statistics. Collection of Tasks.). 3rd ed. Brno: Masarykova univerzita, 2004, 127 pp. ISBN 80-210-3313-4. info
- BUDÍKOVÁ, Marie, Maria KRÁLOVÁ and Bohumil MAROŠ. Průvodce základními statistickými metodami (Guide to basic statistical methods). vydání první. Praha: Grada Publishing, a.s., 2010, 272 pp. edice Expert. ISBN 978-80-247-3243-5. URL info
- BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ and Pavel OSECKÝ. Popisná statistika (Descriptive Statistics). 3., doplněné vyd. Brno: Masarykova univerzita, 1998, 52 pp. ISBN 80-210-1831-3. info
- ANDĚL, Jiří. Statistické metody. 1. vyd. Praha: Matfyzpress, 1993, 246 s. info
- Teaching methods
- Lectures, Exercises
- Assessment methods
- The weekly class schedule consists of 2 hour lecture and 2 hours of class exercises. Throughout semester, students fill in question sets and solve practical task in R. The examination is written: theory and examples. Final grade: A ... 46 - 50 points B ... 41 - 45 points C ... 36 - 40 points D ... 31 - 35 points E ... 26 - 30 points F ... 0 - 25 points
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
- Enrolment Statistics (Spring 2015, recent)
- Permalink: https://is.muni.cz/course/fi/spring2015/MV011