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Abstract: This paper derives, tests and discusses a comprehensive and easy to use 
nonparametric option-valuation model, using a representative set of historical data on 
underlying asset returns jointly with an assumption of minimalistic implied 
information on current market trend and volatility expectations. Its testing on 
empirical data from Warsaw Stock Exchange trading for two distinct periods of 2014 
suggests that such distribution-free models are capable of delivering useful market 
insights as well as applicability features, in particular wherever derivative markets are 
relatively new, incomplete, illiquid, or with regard to the valuation of real options. 
Keywords: option pricing, nonparametric simulation, inefficient markets, Warsaw 
Stock Exchange, WIG 20 Index 
JEL codes: C14, G13 
Introduction 
Since inception of the Black-Scholes model (B-S), two distinct theoretical approaches 
have been predominantly used to derive the value of financial options (Black and 
Scholes, 1973, applied both). The first (equilibrium models), represented by e.g. 
Merton (1976), Cox et al. (1985), Hull and White (1987), assumes stochastic 
processes spanning the economy and estimates their parameters. The other 
(no-arbitrage models), by e.g. Cox and Ross (1976), Harrison and Kreps (1979), 
Rubinstein (1994), tries to calibrate to a set of market prices in complete markets. 
Both methods derive from the premise that all market prices are correct (in other 
words, markets are efficient) and therefore they cannot, by definition, allow profit 
opportunities. However, their assumptions have always been disputed, both from the 
theoretical and empirical points of view (a technical summary is provided by 
Campbell et al., 1997, pp. 27-80; see also the contextual narrative by Vlachý, 2013). 
Early studies (Black and Scholes, 1972) found that B-S systematically biases the 
impacts of the strike price and the time to maturity on option prices. Following Latane 
and Rendleman (1976), focus has shifted towards the measure of implied volatility. 
Rubinstein (1994) documented the existence and development of the volatility smile 
and volatility skew. Shimko (1993) and others demonstrated that implied 
distributions of S&P 500 are negatively skewed and leptokurtic, all refuting the 
lognormality assumption of Black and Scholes (1973). An elaborate analysis of the 
distributional effects is provided by e.g. Stádník (2014), who derived them from 
trading feedbacks. 
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Researchers have sought to redress these issues by incorporating stochastic volatility 
(Hull and White, 1987) and jumps (Bates, 1996) into parametric models. However, 
Das and Sundaram (1999) showed that these features mitigate, but do not eliminate 
the smile. Aside from empirical rebuttals, the efficiency assumption has been 
disproved fundamentally, as by Grossmann and Stiglitz (1980), and finally made 
unconvincing by the joint-hypothesis argument, which stipulates that the market 
efficiency theory is not falsifiable, and thus cannot be proved by any conceivable test 
(Lo and MacKinlay, 1999). 
Ultimately, regardless of the existence of parametric models that do describe actual 
behavior of markets more realistically than B-S (i.e. improve data fit), they are not 
widely used by practitioners, who consider them impractical and revert to simple B-S, 
without need for fundamental theoretical substantiation, using it solely as a 
smoothing tool, calibrated against observed implied volatilities (Dumas et al., 1998; 
Bates, 2003; Berkowitz, 2010). 
Some or all of these concerns have motivated various attempts to use 
non-parametrical, i.e. distribution-free, models derived directly from observed 
historical returns, which is an approach resembling the heuristics used by 
practitioners many decades before the B-S era (Vlachý, 2014). Most of these models 
use interpolation and smoothing techniques such as kernel regression (Aït-Sahalia 
and Lo, 1998), neural networks (Hutchinson et al., 1994) or splines (Bates, 2000). 
The fundamental argument against this family of models is that they require vast 
amounts of option market price data for calibration, even as they do not constitute 
any general theory of option pricing. They are also overtly prone to overfitting and 
data-snooping (Campbell et al., 1997, pp. 523-524). 
Direct use of the discrete historical distribution function histogram is much less 
common in literature and subsumes two distinct approaches. On the one hand, 
Stutzer (1996) and Alcock, Carmichael (2008) utilized the relative entropy principle 
for predictive pricing based solely on historical returns. This measure is designated in 
Stutzer’s pioneering paper as “canonical estimator”, and the line of reasoning is 
further developed and generalized by Liu (2010) within the framework of uncertainty 
theory. On the other hand, Chen and Palmon (2005) used the Capital Asset Pricing 
Model to derive the risk-adjusted discount rate, requiring complete series of historical 
option price data. Virtually all available studies rely on market prices from S&P 500 
trading. 
The research presented herein is innovative in two aspects. It applies data from the 
Warsaw Stock Exchange, intentionally selecting a developing market with a degree of 
efficiency and completeness substantially lower than that of major international 
markets (Strawiński and Ślepaczuk, 2008), while offering quantities of 
well-documented market information. We note that parametric option-valuation 
models were tested by Piontek (2007) and Kaminski (2013) (the remarkable 
evolutionary algorithm approach pursued by Myszkowski and Rachwalski, 2009, 
unfortunately did not engage options). Furthermore, we use a distribution-free model 
which does not derive from historical derivative prices, using just a single pair of 
current quotes for its calibration. The goals are to derive the model, apply it to two 
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distinct trading days in 2014 (chosen as to comprise situations with both a positive 
and negative implied drift) and discuss the results. 
1 Statistical Analysis of the Market 
1.1 Historical Returns of the Underlying Asset  
Ten years of daily closing prices for the Warsaw Stock Exchange WIG 20 Index are 
used, on a moving basis (WIG 20 is a capitalization-weighted price index published 
since 1994). Table 1 summarizes the distribution statistics for returns over various 
holding periods (commensurate with current settlement dates) as of June 12, 2014 
and October 28, 2014, respectively. 

Table 1 Distribution Statistics for WIG 20 Returns 
June 1, 2004–June 12, 2014 

 1-day 8-day 99-day 
Measurements 2 516 2 511 2 449 
Mean  0.000151  0.000772  0.010903 
Standard Deviation  0.017055  0.036694  0.118397 
Skewness -0.486821 -0.671478 -0.986851 
Excess Kurtosis  4.208649  3.580423  2.085892 
Jarque-Bera 252.52 223.94 482.77 

October 1, 2004–October 28, 2014 
 1-day 24-day 52-day 
Measurements 2 524 2 500 2 472 
Mean  0.000121  0.002185  0.005282 
Standard Deviation  0.015398  0.061004  0.088763 
Skewness -0.300997 -1.085466 -1.197860 
Excess Kurtosis  3.123150  5.130782  4.192125 
Jarque-Bera 39.71 963.87 737.55 

Source: Author, WSE (2014) 
The measures demonstrate major deviations from normality (Thadewald and Büning, 
2007). Kernel-smoothed return distributions (in percentage returns) for 1- and 99-
day holding periods are charted under Figure 1 and illustrate considerable differences 
in their characteristics. 
Both Table 1 and Figure 1 also clearly refute the broadly accepted heuristic of 
volatility scaling with the square root of time, as well as virtually any other 
practicable scaling function.  
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Figure 1 Distribution of WIG20 Returns, 1-day/99-day (June 1, 2004–June 12, 2014) 

Source: Author 
1.2 Implied Characteristics of Derivative Prices  
Two types of derivatives on WIG 20 are currently traded on the Warsaw Stock 
Exchange (WSE, 2014); futures and European-style plain-vanilla call and put options. 
Settlement is cash (denominated in PZL), delivery/exercise is made on the third 
Friday of the four nearest months of March, June, September and December (the 
cycle was modified in the course of 2014 to include short-term monthly option-expiry 
dates). 
Extant derivative prices (all as of June 12, 2014 and October 28, 2014, respectively, 
closing) facilitate calculations of the implied drift and volatilities. The drift may be 
implied from either futures prices (as F) using (1) as in Chow et al. (2000), or pairs 
of call and put prices, assuming both contracts were traded at strike price X (as P-
CX), using the put-call parity assumption using (2), as in Hull (2012, pp. 221-231). It 
is important to note that the put-call parity is distribution-neutral for European 
options. Implied volatilities X are calculated by iteration of the Black (1976) model, 
assuming the drift implied by futures prices (3). 

F = (1 / T) ln(F / S), (1) 
P-CX = T ln[X / (S + PX – CX)], (2) 

Cx = e–rT [F N(d1) – X N(d2)], d1 = [ln(F/X) + (X2/2)T] / ( √T), d2 = d1 – √T,  (3) 
where T represents the time to expiry of the contract, S the spot price of the 
underlying asset, F the futures price for that asset, and PX resp. CX put and call option 
prices at strike price X. N(x) is the distribution function of the normalized normal 
distribution. 
The annualized results for all relevant contracts and contract combinations are 
summarized in Table 2 (Appendix). For the sake of completeness only (these figures 
do not appear in any calculations), current index levels were 2 476.39 on June 12, 
2014 and 2 456.73 on October 28, 2014. 

-0,2 -0,1 0 0,1 0,2 -0,6 -0,3 0 0,3 0,6
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The values suggest major pricing inconsistencies when considered within the bounds 
of conventional parametric valuation models. While the short-term options display a 
distinct volatility smile, the other series are skewed. Significant differences in futures- 
and option-based drift also expose gross deviations from put-call parity. This is 
unambiguous market inefficiency, reflecting primarily on its low liquidity, combined 
with positive transaction costs and the bid-offer spread. 
According to June 12 prices, an intensive normal backwardation, expressed by the 
negative drift (the implied dividend yield can be readily derived by the drift’s 
subtraction from the current risk-free rate), has also been implied in the short term. 
This has been presumably due to forthcoming dividends, as well as bearish sentiment 
linked to anticipated impacts of the Polish pension reform (WSE, 2014; Allen & Overy, 
2014). 
2 Deriving the Nonparametric Model 
The precedent findings suggest that the observed market processes cannot be fully 
explained by equilibrium or arbitrage-free models, meriting the testing of a 
non-parametric model based on historical simulation. Its rationale can be best 
described using the following intuitive reasoning: Investors presume (i.e. have 
experience) that the distribution of returns generally follows that of historical returns 
over the time to expiry of the contract (1.1), barring currently expected drift and 
volatility. Their ad-hoc projections (1.2) are used to calibrate the distribution. 
To achieve meaningful results, a historical underlying asset price dataset clearly 
needs to be available, subsuming a sufficiently diverse scope of market scenarios. In 
the present case this is satisfied by the inclusion of various realized shocks during the 
pertinent 10-year period (including e.g. the U.S. subprime mortgage crisis, collapse 
of Bear Stearns and Lehman Brothers, Greece bailout, as well as Euro debt 
downgrade), as illustrated by Figure 2. 

Figure 2 Distribution of WIG20 Daily Returns (June 1, 2004–June 12, 2014) 

Source: Author 
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Various methods may be considered in practice to obtain reasonable estimates of 
drift and volatility over the holding period, including econometric models, panel 
research or the auctioning of appropriate financial instruments. It also suffices to 
partially complete the market using either an existing price of a pair of call and put 
options, or a single option jointly with the futures price. In the present model design, 
available pairs of at-the-money options will be used. 
It is essential to emphasize the assumption that the particular pair of derivative 
quotations used for calibration would be the only relevant forward-looking 
information available in the market (otherwise risk-neutrality would not hold). All 
other realized derivative prices are thus ignored in the model construct and used in 
this study solely for its empirical testing. As a matter of fact, this may be considered 
a realistic framework in illiquid markets, where the trader starts with a benchmark to 
calibrate his/her model. Subsequent quotations, matched against open positions in 
the book then serve to recalibrate in a dynamically changing bid-offer price band. 
Denoting the current price of the underlying asset S, the option exercise period T, 
historical prices Si for i = {0, ... n}, historical periodical returns Ri,T = Si+T-1 / Si-1 for i 
= {1, ... n – T} with N = n – T, and the normalized strike price *X = X / S, call (C) 
and put (P) option values can be calculated based on a histogram of historical returns 
Ri,T as in (4) and (5). 

hist*C = E(e-kT max{Ri,T – *X, 0}),  (4) 
hist*P = E(e-kT max{*X – Ri,T, 0}), (5)  where E(.) represents the conditionally expected value, kT the appropriate discount rate, and *C = C / S and *P = P / S normalized values of strike and put options, respectively. 

The original Ri,T distribution is fundamentally not risk-neutral and kT would thus have 
to represent a risk-adjusted discount rate as in Stutzer (1996) or Chen and Palmon 
(2005). Option valuation according to (4) and (5) also provides neither for the 
underlying asset’s expected drift, nor volatility. Accordingly, the historical returns 
have to be adjusted using a transformation *Ri,T = ƒ(Ri,T). We use the function 
specified by (6). 

*Ri,T = T (Ri,T – RT) + ET,  (6) 
where RT equals the mean of the original distribution Ri,T. 
The particular form of (6) has been chosen to capture the utmost information vested 
in the original empirical returns function, including its skew and kurtosis, modifying 
the mean and standard deviation only. Options written on the transformed 
distribution of *Ri,T then become risk-neutral, due to its expected future value being 
equal to ET (this argument is substantiated by e.g. rational expectations, as in Muth, 
1960), and their present values can thus be calculated using the continuously 
compounded risk-free rate r as in (7) and (8). 

*C = e–rT ∑ max{*Ri,T – *X, 0} / N,  (7) 
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*P = e–rT ∑ max{*X – *Ri,T, 0} / N. (8) 
The model is calibrated by numerically solving the equation system including (6), (7) 
and (8) for T and ET while setting the prices *C and *P equal to a pair of realized 
at-the-money option prices. 
Tables 3 and 4 (Appendix) compile the results, comparing realized, B-S and 
simulated option prices for relevant strikes (calibration points highlighted bold). B-S 
prices are calculated using implied at-the-money volatilities and the Black (1976) 
formula with futures-implied drift. 
3 Discussion 
The results suggest that nonparametric simulation outperforms B-S in actual option 
price predictions with most out-of-the money options, which B-S tends to undervalue. 
B-S also clearly tends to perform worse in the normal backwardation situation (i.e. on 
June 12). This is due to the fundamental assumptions of B-S resulting from the 
efficient market hypothesis that is clearly not supported by the empirical data. 
Nevertheless, some trades were, in fact, executed at prices much closer to B-S 
valuation. This is probably due to the actual usage of B-S as the preferred smoothing 
instrument by traders at low market liquidity; otherwise, it would be impossible to 
explain such a conformity concurrently with the observed breaches of put-call parity. 
Another interesting finding relates to the realized market prices of 8-day put options 
struck at 2 300 and 2 350, respectively, on June 12. Whereas the conventionally 
applied implied volatility measure (Table 2) seems to indicate a relative dearth of the 
2 300 contract, non-parametric simulation (Table 3) shows its price to be adequate, 
but that of the 2 350 contract to be low. In practice, this would signify a potential 
arbitrage opportunity. 
A final remark should be made on the intra-day dynamics of actual trading. Traders 
in an imperfect market, such as that on the WSE, do not base their quotations on a 
complete set of market prices, but rather on the latest quotations, combined with the 
existing (long or short) positions in their own books. The proposed trading system 
thus conveniently represents an iteration process, responding to the most current 
information available in the market. 
Conclusions 
The model derived in this paper has been shown to be a meaningful heuristic and 
efficient information carrier, providing both analytical and trading skills. 
In the context of various existing alternatives, the model compares as follows: In 
contrast to most parametric models, it accounts for the volatility smile/smirk, 
autocorrelations and other empirically observed features of real-world markets. In 
contrast to any parametric model, it does not make particular economic assumptions, 
such as that of efficient or complete markets, only put-call parity. The put-call parity 
functionality, on the other hand, may be considered a positive feature, distinguishing 
it from most non-parametric models. Also, compared to more sophisticated 
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parametric and most non-parametric models, it is simple and straightforward to 
interpret, implement and use. 
Subject to further research and testing, the proposed model can thus be considered 
an attractive alternative to the existing option-pricing models in the cases where an 
extensive and representative historical dataset of underlying asset prices is available, 
with the derivative market being new, incomplete or illiquid. It may also offer 
interesting application opportunities for particular real-option valuation problems. 
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 Appendix 

Table 2 Implied WIG 20 Market Characteristics 
June 12, 2014 

 8-day 99-day 190-day 
F -22.86 % -8.48 % -3.23 % 
P-C2000  -9.59 %  
P-C2100  -8.98 %  
P-C2350 -23.41 %   
P-C2400  -8.52 %  
P-C2450 -24.85 %   
P-C2500 -21.10 %   
 call put call put call put 2000   26.11 % 21.28 %  26.06 % 2100   23.66 % 20.50 %  21.76 % 2300  25.84 %  18.76 %   2350 20.67 % 19.72 %     2400  18.96 % 17.71 % 17.63% 18.18 %  2450 16.93 % 17.64 %     2500 16.27 % 15.64 %   17.28 %  2550 16.70 %      2600 20.18 %  15.71 %    2700   15.51 %    2800 30.85 %  15.42 %    2900     15.03 %  3000 42.93 %      

October 28, 2014 
 24-day 52-day 234-day 
F – -1.72 % 0.51 % 
P-C2300 0.97 %   
P-C2350 -5.16 % -1.65 %  
P-C2400 0.10 % 1.60 % 0.71 % 
P-C2450 1.35 % 0.33 %  
P-C2500 1.98 % 2.22 % 0.60 % 
P-C2550 -7.50 %   
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 call put call put call put 2000    23.46 %  13.86 % 2100  26.68 %     2200    16.17 %  11.97 % 2300 22.56 % 17.51 %  15.87 %  11.65 % 2350 14.84 % 17.44 % 15.67 % 15.38 %   2400 18.04 % 16.13 % 18.09 % 14.73 % 13.32 % 12.80 % 2450 18.09 % 15.62 % 17.77 % 15.83 %   2500 15.87 % 12.55 % 16.53 % 12.55 % 11.73 % 11.61 % 2550 15.55 % 20.57 % 15.45 %    2600 16.10 %  14.69 %  11.30 %  2700 19.14 %  15.74 %  11.11 %  2800   17.22 %  11.20 %  2900   18.66 %  11.63 %  
Source: Author, WSE (2014) 

 Table 3 Realized and Modelled Option Prices (June 12, 2014) 
8-day call put X realized B-S simul. realized B-S simul. 
2 000  466.75 465.77  0.00 0.00 
2 100  366.80 365.83  0.00 0.01 
2 200  266.85 266.03  0.00 0.16 
2 300  166.98 167.06 1.20 0.07 1.13 
2 350 118.70 117.71 118.47 1.40 0.78 2.51 
2 400  71.76 72.20 5.89 4.80 6.22 
2 450 34.00 35.04 34.00 17.99 18.05 17.99 
2 500 10.90 12.70 11.25 43.10 45.68 45.22 
2 550 2.60 3.22 3.10  86.18 87.03 
2 600 1.20 0.55 0.99  133.48 134.90 
2 700  0.00 0.11  232.88 233.96 
2 800 0.10 0.00 0.03  332.82 333.83 

99-day call put X realized B-S simul. realized B-S simul. 
2 000 430.80 421.55 428.30 4.10 1.36 7.73 
2 100 337.60 326.19 336.49 10.00 5.34 15.24 
2 200  237.54 249.15  16.01 27.24 
2 300  160.65 168.61 43.00 38.46 46.03 
2 350  128.07 132.45  55.54 59.54 
2 400 100.00 99.86 100.00 76.75 77.00 76.75 
2 450  76.11 72.67  102.92 99.09 
2 500  56.68 50.55  133.15 126.63 
2 550  41.22 33.82  167.36 159.57 
2 600 21.95 29.29 22.56  205.09 197.98 
2 700 8.57 13.79 10.71  288.92 285.46 
2 800 2.95 5.93 4.94  380.40 379.02 

Source: Author, WSE (2014) 
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Table 4 Realized and Modelled Option Prices (October 28, 2014) 
24-day call put X realized B-S simul. realized B-S simul. 
2 100    0.65 0.00 0.78 
2 200       
2 300 159.30 158.74 161.37 3.84 2.83 5.44 
2 350 106.15 114.19 116.64 10.15 8.19 10.63 
2 400 74.00 75.56 76.68 19.86 19.48 20.60 
2 450 45.26 45.24 45.26 39.09 39.08 39.09 
2 500 20.00 24.17 22.75 62.75 67.93 66.50 
2 550 8.24 11.41 10.12 116.85 105.09 103.79 
2 600 3.50 4.73 4.36    
2 700 1.13 0.55 0.62    

52-day call put X realized B-S simul. realized B-S simul. 
2 000    0.75 0.03 2.02 
2 100       
2 200    2.28 2.78 9.01 
2 300    10.89 12.88 18.04 
2 350 118.15 121.43 131.35 19.70 23.76 26.55 
2 400 92.45 87.98 94.91 33.00 40.13 39.94 
2 450 64.30 60.74 64.30 59.15 62.72 59.15 
2 500 38.90 39.85 40.74 77.00 91.65 85.42 
2 550 20.72 24.78 24.18    
2 600 9.82 14.59 13.74    
2 700 3.15 4.29 4.47    
2 800 1.20 1.02 1.58    
2 900 0.50 0.20 0.40    

Source: Author, WSE (2014) 
 


