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1 Introduction

Since the seminal paper by Peterka (1981), it has been well understood
in the technical sciences that on the way from the Bayesian formula to the
standard recursive least square method for an ARX model estimation, or the
Kalman �lter estimation, several assumptions about information contained
in observed input and output variables have to be adopted. While such
assumptions are well justi�ed and easy to interpret in technical applications
like LQG observer-based state feedback or adaptive control, the technical
assumptions may be violated in some other areas like economics.

Our attention is focused on the natural condition of control (henceforth
NCC or condition). In this way, we would like to stimulate the discussion
on the proper use of the information available to econometricians and on
the adaptation of theoretical model concepts to a particular estimation algo-
rithm. We review the development of the model estimation from a conceptual
Bayesian solution � resulting in a generic functional recursion on conditioned
probability density functions (c.p.d.f.) � to famous Kalman �lter equations,
and demonstrate the loss of optimality in the case when the assumptions
used for the development of the standard Kalman �lter are not satis�ed.

The natural condition of control is an assumption made in the control
system literature. This mathematical assumption signi�cantly simpli�es the
algorithm for the optimal estimation of unknown variables like parameters
or state (latent) variables. The condition says that if an external observer
(econometrician/statistician) is at the same time also the one who controls
the system, then his control decisions, if optimal, do not provide any addi-
tional information about the state of the system, and vice versa.

In contrast to economic applications, the NCC is a credible assumption
in the technical sciences. The observer and controller is one person, the sys-
tem under his control is well identi�ed and he uses algorithms that lead to
optimal estimation and decisions. On the other hand in economic applica-
tions, it is always almost di�cult to argue that the condition holds, because
the observer (econometrician) is almost always di�erent from the controller.
The econometrician observes the real-time decisions (of workers, employers,
central bankers, treasurers, etc.) with a substantial time delay. Moreover,
economic models that he uses are often poorly identi�ed.

The NCC is a mathematical assumption, and its violation is di�cult to
detect in the data. The problem is di�erent from the one of model misspec-
i�cation that manifests itself in residuals, shock estimates, or model implied
expectations. But, if we (economic agents or econometricians) objectively
know that the condition does not hold, i.e. there are observed control vari-
ables that are not explicitly included in our models (the NCC is violated),
the NCC entitles us to use that knowledge in our favor. There are two ef-
fects we can expect. The �rst, we improve the e�ciency of our estimates.
The second, because the observed control variable is a result of optimal de-
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cision, we can use that variable to infer the encoded underlying information
to improve our own knowledge about the modelled system.

We are going to review the condition's validity for the estimation of
dynamic stochastic general equilibrium (DSGE) models. We choose them
because they have become the norm for an optimal policy and decision anal-
ysis in policy institutions such as central banks. At the same time, they are
exactly the class of economic models for which the NCC is the most relevant.
In the experiments we are going to conduct with the models, we will assume
that 1.) econometrician di�ers from the controller, but 2.) the econometri-
cian knows the data generating process, 3.) he also knows the technology for
recovering hidden (unobserved) variables, but, and this an important twist,
4.) out of a data-rich database, the econometrician decides to use only a
limited subset of observed time series, which he assumes, carry all relevant
information. 1.)-4.) is a scenario very close to the reality.

In fact, the choice of observable variables matters. There are many de-
cision variables in DSGE models that are implicit in the DSGE's reduced
forms but the variables have direct observable counterparts. For instance,
such variables may be labor income, capital income, or all kinds of fees or tax
revenues. For model dynamics they may be viewed as being of a second-order
importance because they do not carry any extra information for the dynam-
ics. Output, prices, and interest rates carry the whole piece of information.
But from the estimation point of view, the variables, if observed, carry an
important piece of information about the optimal (control) decisions from
which we can infer the believes of the other agents, and use them to improve
our beliefs. By de�nition of the DSGE models, every decision is optimal.
And by the construction of the Kalman �lter, every decision variable must
be present in the estimation. Otherwise the �lter does not provide optimal
estimates.

Our paper is closely related to the literature on DSGE models in data
rich environment. Boivin and Giannoni (2006) propose a framework for
exploiting information from a large datasets to improve the estimation of
DSGE models. Our arguments go a similar direction. In comparison to
the data-rich literature we provide justi�cation why the use of all available
information in estimation is a must. It is the dictate of the natural condition
of control. In contrast to Boivin and Giannoni, who work with empirical
relationships, we use only the information that can be linked directly to a
decision process captured by the model (like the variables listed above).1 In
that respect we are also using the information springing from cross-equation
restrictions.

For the convention, the paper is structured as follows. We begin by

1On the ground of NCC, the methodology proposed in Schorfheide, Sill and Kryshko (2010)
is an example of an inconsistent and ine�cient use of available information. The o�-model
variables, if relevant at all, should be used to update the information of the model states
(variables, factors or whatever you wish to call it) and not be treated exogenously.
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reviewing the derivation of the basic Kalman �lter equations from the en-
gineering point of view. It will help us to understand the motivation and
consequences of the natural condition of control. In the third section, we
show how the engineering world maps in to the world of dynamic stochastic
general equilibrium models. In the fourth section, we illustrate our points
on a neoclassical growth model.

2 State Estimation and Output Prediction

In engineering typically, the motivation of parameter and/or state estimation
is the optimal control problem. The de�nition of the model is then implied
by this task. Consider a discrete-time dynamic system depicted in Figure 1
with the observable/measurable input sequence ut and output sequence yt
and some hidden variables that can be interpreted as the system parameters
θ or system state xt. The input sequence enters in a closed loop, in which
the control decision is based on the system states estimates.

Figure 1: Dynamic system (DSGE model)

 

yt ut 
(θ, xt) 

ετ 

(θ, xt) 
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2.1 Optimal control problem

Let the sequence of input and output data observed at time interval from t1
up to time t2 be D

t2
t1

= {ut1 , yt1 , ..., ut2 , yt2}. If the initial time t1 = 1, it can
be omitted, i.e. Dt

1 = Dt.
Suppose, we have observed the input-output sequence up to the time t

and are looking for optimal control on T step prediction horizon with opti-

mality criterion minE
{
J
(
Dt+T
t+1

)∣∣∣Dt
}
. This optimization problem requires

the joint probability density function p(Dt+T
t+1 |Dt). Using the chain rule, this

c.p.d.f. can be written as

p(Dt+T
t+1 |D

t) = p(yt+T |Dt+T−1
1 , ut+T )p(ut+T |Dt+T−1

1 )×...×p(yt+1|Dt
1, ut+1)p(ut+1|Dt)

The set of c.p.d.f.s p(yτ |Dτ−1, uτ ) for τ = t + 1, ..., t + T de�nes the
dependence of system output yτ on system history up to the time τ − 1, and
the system input at time τ . These c.p.d.f.s de�ne the model of the system.

The set of c.p.d.f.s p(uτ |Dτ−1
1 ) for τ = t = 1, ..., t + T is a general

description of the law by which the input uτ is generated. We will call this
set of c.p.d.f.s as the control law. Note the information delay in the control
law; while the input uτ is applied to the system to generate its output in the
τ -th period, the output yτ is not available to calculate the control law uτ .

2

2.2 State Estimation

If there exists a hidden (latent) variable xt of �xed dimension such that

p(xt+1, yt|Dt−1, xt, ut) = p(xt+1, yt|xt, ut)

it is called the state of the system. xt constrains all the information about
the system history that is relevant to predict the values {xt+1, yt}. Using
the state de�nition above, the output model can be obtained as a marginal
distribution

p(yt|xt, ut) =
∫
p(xt+1, yt|xt, ut)dxt+1

and the state transition model as a conditioned distribution

p(xt+1|xt, ut, yt) =
p(xt+1, yt|xt, ut)
p(yt|xt, ut)

.

This re�ects the fact that for the prediction of state xt+1, the information
about the output in the t-th period is available and should be incorporated
in the optimal prediction (see the sampling scheme in Figure 2). To calculate

2In engineering applications it is typically assumed that a continuous process is observed
at regular intervals τ = tTs with sampling period Ts and the input is constant during the
sampling period, i.e. u(τ) = ut for tTs ≤ τ < (t+ 1)Ts.
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the output prediction

p(yt|Dt−1, ut) =
∫
p(yt|ut, xt)p(xt|Dt−1, ut)dxt

information about the state given by the c.p.d.f. p(xt|Dt−1, ut) is required
at each step of the recursion. That is the point when the NCC comes in to
play.

Suppose the information about the state p(xt|Dt−1) based on the data
up to time t − 1 is available. This information can be updated after a new
input-output observation {ut, yt} has been obtained using the Bayes formula

p(xt|Dt) =
p(yt|Dt−1, xt, ut)p(xt|Dt−1, ut)

p(yt|Dt−1, ut)
=

p(yt|xt, ut)
p(yt|Dt−1, ut)

p(xt|Dt−1),

where the properties of the state and the natural condition of control for the
state estimation (Peterka, 1981) p(xt|Dt−1, ut) = p(xt|Dt−1) are used to get
the second term.

The NCC assumption cannot be deduced from the properties of the dy-
namic system itself but rather from the process of information accumulation.
In the technical context, its interpretation is twofold:

1. The condition p(xt|Dt−1, ut) = p(xt|Dt−1) says that the control vari-
able ut does not provide any additional information about the state
of the system xt. This assumption is valid e.g. in the framework of
observer-based LQG control � incomplete information feedback � with
the control variable based on state estimate ut = f

(
E[xt|Dt−1]

)
. In

this case the control variable ut does not provide any additional knowl-
edge then the information contained in the data set Dt−1.

2. Using the equality

p(xt|Dt−1, ut)p(ut|Dt−1) = p(ut|xt, Dt−1)p(xt|Dt−1),

the condition p(xt|Dt−1, ut) = p(xt|Dt−1) implies that also p(ut|Dt−1, xt) =
p(ut|Dt−1). If the state-estimation and control is performed by the
same subject, the system input is based only on the available data and
is not modi�ed by the state estimate, which does not provide any �new�
information for the calculation of the control law.

If any additional information about the system state is available to cal-
culate the control law, the standard Kalman �lter is not optimal from the
Bayesian inference/information accumulation point of view. That is why
some applications in the economic literature may not fully comply with the
NCC assumption: typically in multi-agent environment where individual
agents operate based on di�erent information content, the control action of
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one agent may provide additional information to the remaining agents, i.e.
p(xt|Dt−1) 6= p(xt|Dt−1, ut). If this additional information is not used to
evaluate their optimal control strategy, their behavior is not optimal from
the Bayesian inference/information accumulation point of view.

As an example, assume a statistitian observing a linear system controlled
by (complete information) state feedback. Then his (noisy) observation of
controlled variable ut = −Kxt + eut provides signi�cant information about
the state.

If the statistitian knows the control law K, interpreting the control vari-
able ut as an additional observation de�ned by c.p.d.f. p(ut|xt) = peu(ut +
Kxt) in parallel to the observed outputs yt = Cxt + Dut + eyt de�ned by
p(yt|xt, ut) = pey(yt − Cxt − Dut), the optimal data update step of state
estimation process (Kalman �lter) should cover input update step

p(xt|Dt−1, ut) ∝ p(ut|xt)p(xt|Dt−1)

and output update step

p(xt|Dt) = p(xt|Dt−1, ut, yt) ∝ p(yt|xt, ut)p(xt|Dt−1, ut).

If the statistitian does not know the control law K, he is not able to
incorporate this information into the state estimation process. However, if
he knows that NCC is not satis�ed3 and he is sure that the observed control
variable ut provides additional information about the state xt, he may try
to recover this information. One of his options is adaptation of his behavior
based on estimation of the control law K as an unknown parameter of the
observation model p(ut|xt,K).

In the DSGE models the rational expectations operate over the informa-
tion set that is pooled by the agents. But the idea of information hetero-
geneity has becoming popular in the adaptive learning literature.

3 General Equilibrium Models

Now we turn our attention to the dynamic stochastic general equilibrium
(DSGE) model. We work with the following (log-linear) DSGE model:

Γ0(θ)xt = Γ1(θ)Etxt+1 + Γ2(θ)xt−1 + Γ3(θ)εt, (1)

where xt is (n× 1) vector of endogenous variables (log-deviations from their
steady state), and εt is (k× 1) vector of unobservable exogenous iid shocks.
For simplicity in notation, we assume that n = k. This assumption will
be relaxed in the later discussion. Γ0(θ), Γ1(θ), Γ2(θ) and Γ3(θ) are (time
invariant) matrices of structural parameters. Their elements are functions

3detection of NCC violation may be a separate topic of interest
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Figure 2: Sampling from a continuous process - logic for the Kalman �lter
timing

timeτ = (t-1)Ts τ = tTs τ = (t+1)Ts

yt

ut

ut+1
yt-1

ut-1

Note:

of deep structural parameters, θ. Et(.) is the rational expectation operator
conditional on the modelM and information available to the economic agents
at time t � the information matrix is Ωt ∈ (xt, xt−1, ..., x0, εt,M). The
structural matrices Γ0(θ), Γ1(θ), Γ2(θ) and Γ3(θ) are such that the model
has unique and stable equilibrium.

Solving for the rational expectations Et(.), model (1) has a minimum
state representation

xt = A(θ)xt−1 +B(θ)εt. (2)

Equation (2) characterizes the dynamic equilibrium in the reduced form.
A(θ) and B(θ) are functions of Γs and through them they are functions of
the deep structural parameters θ.

The states of the model xt are linked to their observed counterparts via
the measurement equation

yt = Cxt, (3)
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where yt is (m × 1) vector of observable variables, and C is the (m × n)
(usually identity) matrix that maps the model variables in to yt.

(2) and (3) establish together the state-space representation of (1).
Estimating (2) and (3), it is standard to assume that (i) model (1) is the

accurate representation of the world and the decisions taken in it, and (ii) yt
of the dimension m× 1 is the only information that the outside observer has
available to estimate and evaluate xt. Of course, in reality this is not always
true, and for policy oriented models such assumptions are unjusti�ed. Here
is one example for all.

DSGE models include implicit de�nitions of variables that have observ-
able counterparts, e.g. income tax or capital (property) tax revenues. They
almost never explicitly appear in DSGE models. Tax rates a�ect dynamics
indirectly via resource allocation, but the tax revenues per se never appear
in the minimum-state representation as they do not bring any additional
information about the dynamics. Unless we are interested in estimating the
model, carrying around the capital tax revenues as an extra variable is not
necessary. But if we estimate the model, we must include it.4

In the language of the previous section, xt are model states and (2) can
be view as a model of control in closed loop (or full-state control). The hid-
den (implicit) control variables in DSGE models can be contemporaneously
expressed as follows

Γ0(θ)xt = Γ0(θ1)xt + ut.

ut = Γ0(θ2)xt is the cumulative e�ect of the structural parameters Γ0(θ2).
If there is ut that it is observed, we have to extend the observation

equation (3) to inform the estimates of θ and xt. To facilitate that fact, we
augment measurement equation (3) to

xt = A(θ)xt−1 +B(θ)εt (4)[
ut
yt

]
=

[
Γ0(θ2) 0

0 CA(θ)

]
xt−1 +

[
I 0
0 CB(θ)

]
+
[
εut
εt

]
(5)

Let us illustrate the bene�t of such a state-space speci�cation on a simple
example.

4 Illustration

We run a Monte Carlo experiment to demonstrate our point that optimally
using the whole disposable information improves estimates of latent (state)
variables. This is done �rst under the assumption of information pooling
but its partial use, and then under the assumption that one of the control

4For similar reasons, the demand for money is excluded from the model, because it does
not carry any additional information about the in�ation rate and output gap. But when
the output gap is not observable, then money has additional forecasting power.
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variables is generated based on a more precise information about the state
variables.

We use a simple real business cycle model to generate arti�cial data of
private consumption, hours worked, investment, consumption tax receipts,
and of disposable income. Those series form our set of disposable informa-
tion. In the �rst experiment, we assume that an econometrician (observer)
uses only two series out of the set. In the following experiments we gradually
expand the information set that the econometrician utilizes and observe the
e�ciency and consistency improvement. But let us de�ne the real business
cycle model �rst.

In the model, there are two sectors � household and �rm.

Households maximize their expected life-time welfareE0[
∑∞

t=0 β
t (Ct+Ht)

1−σ

1−σ +
ξ log (1− Lt)] subject to a budget constraint wtLt+(1−rt−1−δ)Kt−1 +Tt =
(1− τc)Ct +Kt. The household's welfare derives from consumption Ct and
leasure 1 − Lt. The level of consumption is fuelled by the habit Ht, which
depends on the past consumption and an iid habit shock: Ht = φCt−1e

εt ,
with φ ∈ (0, 1) and εt ∼ N(0, σ2

c ). Time spend by work Lt brings disutility
but it is compensated by hourly wage wt. The consumption is taxed by
the government at the rate of τc ∈ (0, 1). Next, the household is the only
owner of physical capital Kt in the economy, which is, together with labor,
a factor of production. Firms rent the capital and pay the households the
interest rt−1 in return. The physical capital depreciates over time by the
rate δ ∈ (0, 1). The household further receives the lump-sum transfers Tt
from the government, who operates on the balanced budget. The household
discounts the future by the discount factor β ∈ (0, 1). σ > 0 is the measure
of household's risk aversion.

Firms maximize their pro�ts Πt = Yt−rtKt−1−wtLt by optimally hiring
labour and capital to produce the consumption goods Yt. They use a Cobb-
Douglas technology: Yt = AtK

α
t−1L

1−α
t . At is the total factor productivity

and follows a log-linear AR(1) process: logAt = ρ logAt−1 + εAt . εAt ∼
N(0, σ2

A) and we interpret is as the productivity shocks. α ∈ (0, 1) is the
share of capital in production.

In equilibrium, all (labour, capital, and consumption goods) markets
clear in this economy. The dynamic equilibrium of the model economy is
then characterised by four equations: (i) the Euler equation for consumption,
(ii) labour demand, (iii) resource constraint, and (iv) exogenous supply of
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technology. (
Ct + φCt−1e

εt

Et{Ct+1}+ φCt

)−σ
= β(1− δ − αAtKα−1

t−1 L
α
t ) (6)

ξ
1− Lt
Cσt

=
(

1− τc
1− α

)
Lαt

AtKα
t−1

(7)

AtK
α
t−1L

1−α
t = Ct +Kt − (1− δ)Kt−1 (8)

logAt = ρ logAt−1 + εAt (9)

We use the following values to parametrize the equilibrium: α = 0.60, β =
0.97, ξ = 1, σ = 3, τc = 0.2, δ = 0.01, φ = 0.5, ρ = 0.9, σc = σA = 0.01.

The model is solved using the methodology proposed by King, Plosser
and Rebello (1988). First, the model steady state is computed. Second, (6)
- (9) are log-linearized around the steady state, and we obtain the model
in the form of (similar to 1). Third, the log-linear model is solved for the
rational expectations Et(.). The result is the state equation (2). There are
four state variables

[
Ct Kt Lt At

]
and two structural shocks

[
εt εAt

]
.

The model is used to simulate the set of disposable information. The
set consists of the measures of private consumption C̄t, hours worked L̄t,
gross private investment Īt, sales tax receipts T̄t, and disposable income
D̄It. The �rst two variables are direct counterparts of the state variables Ct
and Lt. The other three are de�nitions implicitly included in (6)-(9). They
are functions of the model variables (states). The gross private investment
is de�ned as Īt = Kt− (1− δ)Kt−1, consumption tax receipts T̄t = τcCt, and
the disposable income D̄It = AtK

α
t−1L

1−α
t . All the variables are measured

with an error that is iid. We cannot measure any direct counterparts of
the physical capital stock and the total factor productivity. Those variables
remain latent states.

4.1 Monte Carlo Experiment

In the �rst experiment, we assume that an econometrician (observer), who
wants to estimate the model (6)-(9), decides to use the information contained
in the measures of consumption C̄t and hours worked L̄t. He knows the
structural model and its parametrization, and he wants to learn the latent
states Kt and At.

The assumptions of this experiment resemble a set up common to eco-
nomic applications. (6)-(9) contains four states {Ct, Lt,Kt, At}. The econo-
metrician knows the disposable data, but he decides to use the measures that
are naturally the closest to the model variables. Because there are no direct
counterparts of Kt nor At in his database, he estimates them as latent. The
results are plotted in Figure 3. The solid (pink) lines are the actual (simu-
lated and known to us) series of Kt (top panel) and At (lower panel). The
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widest (blue) interval corresponds in both panels to the uncertainty of the
estimates. We see that very often the estimate of capital or technology is
indistinguishable from zero.

The econometrician's choice of observable variables results in the loss of
e�ciency and consistency. The con�dence intervals are wide but at the same
time they do not often cover the actual series.

Next, the econometrician exploits the disposable information. The econo-
metrician thinks carefully and realizes that the whole disposable information
in fact is structurally linked to his model and can help to inform his estimates.
The light intervals in Figure 3 show the gain in e�ciency and consistency.
While the observation on disposable income and investment are very infor-
mative about the level of capital and productivity, the tax revenues are found
to contribute only marginally.

Prior to any estimation we can evaluate the Fisher information matrix
in order to see, in principle, how much new information we can expect to
obtain when asking the data. It is a coherent way to summarize and analyze
the information content for example presented in Figure 3. The Fisher Infor-
mation matrix can help us to prioritize among variables we consider to select
from the set of available information, which may be particularly helpful if
we happen to have a constraint on the computational power available.

4.2 Estimated Model

Now we repeat the above experiments with the US data. In contrast to the
prior analysis, we will see that empirically consumption and hours worked
su�ciently inform the estimates of capital and technology. Adding the ob-
servations on the �xed private investment does not add to the e�ciency very
much.

The data used in this section are taken from the Fred (the Federal Re-
serve Economic Data managed by the Federal Reserve Bank of St. Louis5).
We use the annual series of the real personal consumption expenditures
(mnenomic: PCECCA96), annual series of real private �xed investment
(mnemonic: FPICA), and annualized series of total hours worked, which
is the product of monthly seasonally adjusted series of average weekly hours
worked in private industries (mnemonic: AWHNONAG) and of the total
non-farm payrolls (mnemonic: PAYEMS). Per capita terms are taken with
respect to the total civilian labor force (mnemonic: CLF16OV). There are
two time spans we consider. The �rst one is relevant for consumption that
spans from 1949 to 2009. The second time span is for hours worked and
investment that we observe from 1965 and 1967, respectively, to 2009. The
model is estimated on the relevant samples between 1950 and 2009.

Because model (6)-(8) is without nominal rigidities, we treat it as a

5Web page http://research.stlouisfed.org/fred2/.
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Figure 3: Estimates of capital stock and labor productivity (MC experiment)

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

4

5

[ quarters ]

P
er

ce
nt

ag
e 

de
vi

at
io

n 
fr

om
 s

te
ad

y 
st

at
e

Physical Capital

Actual

Obs + DI Obs + T

Obs + I

0 10 20 30 40 50 60 70 80 90 100
−8

−6

−4

−2

0

2

4

6

[ quarters ]

P
er

ce
nt

ag
e 

de
vi

at
io

n 
fr

om
 s

te
ad

y 
st

at
e

Technology

Actual
Obs + T

Obs

Obs + DI

Obs + I

Note: The graph presents the results of a Monte Carlo experiment with model (6)-(9) as
parametrized in the text. The shocks are drawn from iids. In both panels, the solid line is
the actual series (capital stock - top panel; technology - lower panel). The shaded bands
around the actual series are the estimated 2std (smoothed) con�dence intervals conditioned
on a set of observables. The baseline information set (Obs)� consumption and hours work
observed � and the baseline set extended for the consumption tax receipts (Obs+T) yield
the two widest con�dence intervals. The baseline set extended for disposable income
(Obs+DI) or investment (Obs+I) provide the most narrow con�dence intervals and pin
down the level of the actual states very precisely.

growth model and estimate it on an annual frequency. Because of the non-
stationary nature of the actual data, we have to have a stochastic trend
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within the model. Therefore, instead of (9) we now assume that the technol-
ogy At is labor augmenting and follows the �rst-di�erence stationary process
with drift:

∆ logAt = (1− ρ)∆Ā+ ρ∆ logAt−1 + εAt . (10)

∆Ā > 0 is the drift term, which sets the economy on an exogenous but
balanced growth path. Both capital and consumption grow at that rate in
the long run.

The transitory parameters {φ, ρ} and the variances {εct , εat } are estimated
using the maximum likelihood. The other parameters are kept �xed at their
parametrized values mentioned above. We will not report the results here but
instead we show the estimates of the capital stock Kt and labor augmenting
technology At.

In the top two panels of Figure 4, we compare the con�dence intervals
for Kt and At. Explicitly appreciating that a capital accumulation happens
through investment, we see that adding the investment among our observable
variables improves our con�dence by about 2 percent. The standard errors
become lower.

The model's good (in-sample) predictive power for investment explains
the marginal gain in e�ciency. The graph in the third panel of Figure (4
compares the model implied investment (when treated as latent) to the actu-
ally realized (observed) data. Clearly, the private consumption expenditures
and hours worked data carry enough information about investment at thus
the capital stock and technology.

The same conclusion can be made from the (out-of-sample) forecasting
exercise. The investment as an observable has a weak information content
about the transitory parameters, variances and the mean value of Kt and
At. In Figure 5 we report the results on pseudo real-time forecasts. The
5-year rolling forecasts coincide under the two setups.
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Figure 4: Estimates of capital stock and labor productivity (US data)
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Note: The top two panels show the relative e�ciency of the capital stock estimate (top
left) and labor augmenting technology estimated (top right) when (i) the information
on the growth of consumption and hours worked is used (model 1), and (ii) when that
information is extended with the investment growth (model 2). The shaded areas are
computed as 100(std(Xt,model1)/std(Xt,model2)− 1). Positive values mean that the model
with more information (model 2) outperforms the model with less information (model 1).
This is the case of the estimate of labor augmenting technology over the whole sample
period 1951 - 2009. In case of the capital stock, model 2 starts to outperform after the
year 1971 when we accumulate enough new information from hours worked and investment
that we start observing in 1965 and 1967, respectively.
The lower panel plots the estimate of the latent investment growth implied by the model 1
(dashed line). The solid line is the actual observed series used in the estimation of model
2. From the graph we see that the model structure (6)-(8) and (10) has a strong predictive
power about investment.
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Figure 5: Pseudo real-time forecast (US data)
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Note: The pseudo real-time forecast exercise starts in 1990, and we roll 5-year forecast
window through the end of our sample in 2009. The solid line is the actual or smoothed
estimate available in 2009, and the dash lines are the rolling 5-year forecasts. The forecasts
based on both model 1 (consumption and hours worked observed) and model 2 (including
investment growth) exhibit the same central tendencies. That is why we only report the
results based on model 1. The two forecasts di�er in their e�ciency.

5 Final Remarks

We reviewed the basic derivation of Kalman �lter equations with the focus
on the role of the natural condition of control. We were interested what this
condition implies for the estimation of DSGE models used in economics. We
provided a theoretically consistent justi�cation for the use of all available
(observable) information that can be structurally linked to the model. Un-
der the assumption of information pooling, we showed that that leads to a
signi�cantly improved e�ciency.

The NCC can provide an alternative structural perspective for the DSGE
model developers. The model may be well speci�ed but the NCC still can be
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violated. It is because the condition does not deal with the model structure
per se but with the �ow of information in it.

We would like to look at the possible avenues for formal testing of the
NCC. We would like to use them for the empirical assessment of decision
rules. DSGE models consist of optimal decision (control) rules, thus, in
principle, each equation can be subject to the testing.

In the future work we also relax the assumption of information pooling,
and look at the case of an agent with a signi�cant market power and private
information. If the NCC should hold the remaining market players should
try to infer the private information encoded in the decisions of the domi-
nant player and adapt to it. The NCC then leads to the adaptive learning
arguments.

References

Boivin J., and M. Giannoni (2006), �DSGE Models in a Data-Rich Environ-
ment,� NBER Working Paper No.12772.

King R. G., Plosser Ch., and Rebelo S. T. (1988), �Production, growth and
business cycles : I. The basic neoclassical model,� Journal of Monetary Eco-
nomics, vol. 21(2-3), pages 195-232.

Peterka, V. (1981), �Bayesian Approach to System Identi�cation � in P.
Eykho� (ed) Trends and Progress in System Identi�cation (Pergamon Press),
Oxford. Also available at http://moodle.utia.cas.cz/moodledata/4/peterka.pdf

17


	Introduction
	State Estimation and Output Prediction
	Optimal control problem
	State Estimation

	General Equilibrium Models
	Illustration
	Monte Carlo Experiment
	Estimated Model

	Final Remarks

