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1 Introduction

This paper provides a new approach for computing equilibria in which the stationary dis-

tribution of agents is a part of an optimal nonlinear, second-best in a general equilibrium,

Bewley type economy with heterogenous agents. We formulate the optimal government

policy problem as a calculus of variations problem where the government maximizes an

objective functional subject to a system of operator constraints: 1) the first order condi-

tions from the individual agent’s problem; 2) the stationarity condition on the distribution

function; and, 3) the aggregate market clearing conditions. The first order necessary con-

ditions of the government functional problem given by the Euler-Lagrange equation (with

transversality conditions) form altogether a system of functional equations in individual

agents’ and government’s policies and in the distribution function over agents’ individual

state variables. We solve this system numerically by the standard projection method.

It should be emphasized that our approach does not use any additional restrictions or

assumptions on the equilibrium allocations but is strictly derived from the first order and

envelope conditions and from the stationarity of the endogenous distribution in the steady

state. Our main contribution is in the formulation of the Euler-Lagrange equation for the

government problem and for the stationary distribution over individual state variables.

In this way, we are able to solve simultaneously for the government optimal policy, for

the optimal individual allocations, and for the (from a government’s point of view) optimal

distribution of agents in the steady state. Additionally, the derived first-order transversality

conditions for the boundary agents allow for a qualitative analysis of the shape of the

optimal government policy function. To our knowledge, this paper is the first one that

provides a solution method for this kind of problem.

Our approach can be applied to a wide range of government optimal fiscal or monetary

policy problems. We illustrate this general methodology on a steady state Ramsey problem

with heterogeneous agents. We recast the original Ramsey (1927) and Lucas (1990) nor-

mative question for an economy with heterogeneous agents: What choice of a tax schedule

will lead to maximal social welfare in the steady state, consistent with given government

consumption and with market determination of quantities and prices? What is the wel-

fare differential with respect to social welfare resulting from the existing progressive tax

schedule in the U.S. economy and as well as from the usual flat-tax reform?

The tradeoff between efficiency and income or wealth distribution plays a central role

in analyzing tax policies. In dynamic, general equilibrium models with household hetero-

geneity from uninsurable idiosyncratic risk, a tax schedule provides incentives for agents to

accumulate wealth. The optimal tax schedule seeks to arrive at such a steady state where

the distribution of agents is optimal with respect to the aggregate welfare in the economy.
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The steady state wealth distribution is perhaps the most important part of the resulting

equilibrium: it determines equilibrium prices and fractions of poor and rich agents, i.e.

all elements that affect agents’ ability to self-insure against idiosyncratic shocks through

the accumulated buffer stock of savings. In our example, we find a welfare maximizing

tax schedule on the total income from labor and capital which takes into account simul-

taneously its effects on agents’ allocations and on the stationary distribution of agents in

a steady state. Previous models analyzing the effects of government policies in this class

of models were limited to sub-optimal policy reforms exogenously imposed on the model.

Within the context of optimal taxation, several papers have analyzed the steady state im-

plications (and transition paths) resulting from an ad hoc flat-tax reform or from an ad

hoc removal of double taxation of capital income.

In this paper, we solve for the optimal tax schedule on the total income that maxi-

mizes aggregate welfare in a steady state of a standard neoclassical, general equilibrium,

full information and full commitment economy with heterogeneous agents and incomplete

markets. In order to evaluate the benefits of the optimal tax schedule, we compare the

steady state aggregate levels, welfare, efficiency and distribution of resources associated

with this optimal tax schedule to a simulated steady state of the U.S. economy with the

existing progressive tax schedule and to a steady state resulting from a standard flat-tax

reform.

The optimal tax schedule we find is a function that is neither progressive nor monotone.

It is a positive, U-shaped function, taxing the lowest income at 45%, decreasing to a

minimum of 19% and rising to 62% at the highest level of total income. It provides

incentives for agents to accumulate assets while preserving the equality measures in the

economy. Its impact on aggregate levels and welfare is large. Compared to the progressive

tax schedule steady state, average welfare increases by 4.4%, capital stock by 49%, output

by 15.8%, and consumption by 5.8%. Relative to the flat-tax steady state, welfare goes up

by 0.8%, capital stock by 15%, output by 4.5%, and consumption by 1.1%. The marginal

tax rate is also a U-shaped function, but almost flat at the low incomes, reaching negative

levels around the average income, and then rising to positive levels.

The efficiency and distributional effects of the optimal tax are the main mechanisms

behind these large changes. Related to the efficiency are the general equilibrium effects: a

higher stock of capital increases productivity of labor and, therefore, the income of poor

agents. For the steady state distributional effects, the optimal tax schedule concentrates

the agents around the mean at high levels of wealth, something what a social planner with

an access to the first-best, lump-sum transfers would do. The high tax rate at low income

levels provides incentives for these agents to save more for precautionary reasons in the long
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run steady state. The even higher tax rate on high incomes discourages additional savings

by the wealthiest agents. In the middle of the total income levels, the tax rate is lower

than the one found for the flat-tax reform. In this way, the optimal tax schedule solves the

tradeoff between efficiency and equality. For comparison, the ad hoc flat tax reform also

increases aggregate levels but does not take into account the distribution of agents. On

the other hand, the progressive tax schedule provides too much short-run insurance at the

cost of the long-run average levels.

Finally, in order to evaluate the short run costs of the optimal tax reform, we compute

transitions from the progressive and the flat-rate tax schedule steady states to the steady

state of the optimal tax schedule. We find that a majority of population, 73%, would benefit

from a reform that replaces the progressive tax schedule by the optimal tax schedule. On

the other hand, only one third of agents would support the reform starting from the steady

state with flat tax. These results as well as a detailed efficiency and distributional analysis

are described in a great detail in the following sections.

We limit our example to the optimal tax schedule on the total income from labor and

capital that is needed to raise a given fraction of GDP. There are several reasons why we

choose this setup. First, the tax on the total income enables us to study a tax system with

a non-degenerate distribution of agents in a steady state. If the government had an access

to a lump-sum, first best taxation the model would collapse to a representative agent one.

Second, to a large extent the current U.S. tax code does not distinguish between the sources

of taxable income. The last reason for a simple tax on the total income is the complexity

of the problem we solve.

By focusing on a steady state analysis and by imposing a single tax rate on labor and

capital income we tried to isolate the shape of the optimal tax schedule on total income. The

closest paper to ours is Conesa and Krueger (2006), who compute the optimal progressivity

of the income tax code in an overlapping generations economy. They search in a class of

monotone tax functions to find a welfare maximizing tax schedule. We show in this paper

that limiting the analysis to monotone functions seems rather restrictive with respect to

welfare maximization.

In this paper, we do not address the following important issues related to optimal tax-

ation: the issue of time-consistency, the issue of the optimal capital income tax rate in the

steady state, and the distortionary effects of taxation on labor supply. Our government

is fully and credibly committed, the tax schedule is constant over time.1 Aiyagari (1995)

showed that for our class of models with incomplete insurance markets and borrowing

constraints, the optimal tax rate on capital income is positive even in the long run (see

1For the time-consistency problem see Kydland and Prescott (1977) and Klein and Rios-Rull (2004).
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also a recent paper by Conesa, Kitao, and Krueger (2009)).2 Due to the complexity of our

work, we study the simplest utility maximization problem on the consumption-investment

margin. However, we would like to stress that our methodology can be applied to different

aggregate welfare criteria and a wide variety of optimal government policy problems, in-

cluding those with endogenous labor supply, separate taxation of labor and capital incomes

as well as public goods, population growth, or a life-cycle earnings process as in Ventura

(1999). Finally, in future research we also plan to analyze a much more difficult problem,

that of a stationary competitive equilibrium which is the limit of the optimal dynamic tax

schedule.

The paper is organized as follows. The following section describes the economy with

heterogeneous agents, defines the stationary recursive competitive equilibrium and the

stationary Ramsey problem. Section 3 specifies the equilibrium as a system of functional

equations and defines the operator stationary Ramsey problem. Section 4 formulates the

Ramsey problem by means of the calculus of variations. The first-order necessary conditions

for the optimal government policy schedule expressed in the form of a generalized Euler-

Lagrange equation including the transversality conditions and related analytical results are

described in Section 5. Section 6 illustrates our approach by an example of the optimal

income tax schedule. Section 7 presents the numerical solution and Section 8 concludes.

Appendix contains the proofs and analytical results.

2 The Economy

The economy is populated by a continuum of infinitely lived agents on a unit interval. Each

agent has preferences over consumption in period t ≥ 0, ct, given by a utility function

E

∞∑
t=0

βtU(ct), 0 < β < 1,

where U : R+ → R is a twice continuously differentiable, strictly increasing and strictly

concave function. We assume that the utility function satisfies the Inada conditions.

At all t ≥ 0, each agent is identified by an endogenous state variable, the accumulated

stock of capital, kt ∈ B = [k,∞) with k = 0, and by an exogenous labor productivity

shock zt ∈ Z = {z1, z2, . . . , zJ}. The shock represents labor efficiency units and follows a

first-order Markov chain with a transition function Q(z, z′) = Prob(zt+1 = z′|zt = z). We

assume that Q is monotone, satisfies the Feller property and the mixing condition defined

in Stokey, Lucas, and Prescott (1989). As the labor productivity shock is independent

2For the optimal capital tax with two types of agents see Chamley (1986) and Judd (1985).
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across agents there is no uncertainty at the aggregate level. We preserve the heterogeneity

in the economy by assuming incomplete markets.

In each period, agents supply labor and accumulated capital stock to a representative

firm with a production function F (Kt, Lt), where Kt ∈ B is the aggregate capital stock,

Lt ∈ R+ is the aggregate effective labor. The production function is concave, twice contin-

uously differentiable, increasing in both arguments, and displays constant returns to scale.

Profit maximization implies the following factor prices

rt = FK(Kt, Lt) − δ and wt = FL(Kt, Lt), (1)

where δ ∈ (0, 1) is the depreciation rate of capital.

Finally, there is a government that finances its expenditures by taxing the agents in

the economy. We assume the government is fully committed to a sequence of tax schedules

π = {πt}∞t=0 to finance its expenditures. We assume that these expenditures equal a

constant fraction of output, g, in each period, that they are not returned to the agents,

and that the government cannot use the first best, lump-sum taxation.3 The policy π is

applied to a broadly defined taxable activity of each agent, xt ∈ R+. We will assume that

xt = x(zt, kt) where x : Z × B → R+ and xz, xk > 0. Thus in each period, the policy

schedule is a function πt : R+ → R, so that an agent with a total income from labor and

capital, yt ∈ R+, yt = y(kt, zt) = rtkt + wtzt, and a taxable activity xt = x(kt, zt) pays

taxes πt(xt)xt and is left with an after-tax income yt − πt(xt)xt. In our example in Section

6, we illustrate this policy by a proportional taxation of this total income from labor and

capital, i.e. when x = y.

The economy’s state is characterized by the sequence of government policies π, and by

a distribution of agents over capital and shock in each period, λ = {λt}∞t=0. The latter is

in each period a probability measure defined on subsets of the state space, describing the

heterogeneity of agents over their individual state (z, k) ∈ Z × B. Let (B,B) and (Z,Z)

be measurable spaces, where B denotes the Borel sets that are subsets of B and Z is the

set of all subsets of Z.

2.1 Stationary Recursive Competitive Equilibrium

We will analyze the economy in a stationary recursive competitive equilibrium in which

the government policy schedule and the distribution of agents are time-invariant. Given

the equilibrium prices and the time-invariant government policy π, an agent (z, k) solves

3Our analysis equally applies to the case when government finances any expenditures {Gt}∞t=0 and
corresponding revenue neutral reforms.
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the following dynamic programming problem

v(z, k) = max
c,k+

{
u(c) + β

∑
z+

v(z+, k+)Q(z, z+)

}
, (2)

subject to a budget constraint

c(z, k) + k+(z, k) ≤ y + k − π(x(z, k))x(z, k), (3)

with taxable activity x(z, k), total income y = rk + wz, a borrowing constraint,

k+(z, k) ≥ k. (4)

Definition 1 (Stationary Recursive Competitive Equilibrium) For a given share

of government expenditures g and a time-invariant government policy schedule π, a station-

ary recursive competitive equilibrium is a set of functions (v, c, y, x, k+), aggregate levels

(K,L), prices (r, w), and a probability measure λ, such that

1. given prices and the government policy, the policy functions solve each agent’s opti-

mization problem (2);

2. firms maximize profit (1);

3. the probability measure is time invariant,

λ(z+, B+) =
∑

z

∫
{(z,k)∈Z×B: k+(z,k)∈B+}

Q(z, z+)λ(z, k) dk, (5)

for all (z+, B+) ∈ Z × B;

4. the aggregate conditions hold,

K =
∑

z

∫
k+(z, k)λ(z, k) dk, (6)

L =
∑

z

∫
z λ(z, k) dk; (7)

5. the government budget constraint holds at equality,

g =
∑

z

∫
π(x(z, k))x(z, k)λ(z, k) dk /F (K,L); (8)

6. and the allocations are feasible,∑
z

∫ [
c(z, k) + k+(z, k)

]
λ(z, k) dk + gF (K,L) = F (K,L) + (1 − δ)K. (9)
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Agents have rational expectations, take the behavior of prices as given by a predeter-

mined function that depends on aggregate variables in equation (1). As we look for optimal

government policy schedule the goal of our paper is to solve the following stationary Ram-

sey problem.

Definition 2 (Stationary Ramsey Problem) A solution to the Ramsey problem for a

stationary economy with heterogeneous agents is a time-invariant government policy sched-

ule π : R+ → R that maximizes social welfare in the steady state,

max
π

∑
z

∫
v(z, k;π)λ(z, k;π) dk,

consistent with a given government consumption and with allocations satisfying the defini-

tion of the stationary recursive competitive equilibrium, where v : Z × B → R is the value

function of individual agents and λ : Z ×B → [0, 1] is the stationary distribution.

Our notation indicates that the value and distribution functions depend on the government

policy, π, i.e. v(z, k;π) and λ(z, k;π), respectively.

It is easy to show that the solution to the Stationary Ramsey Problem is equivalent to

that of maximizing the average current period utility,

max
π

∑
z

∫
u(c(z, k;π))λ(z, k;π) dk.

In the following Sections, we will characterize the optimal government policy schedule using

this latter specification.4

3 The Operator Stationary Ramsey Problem

Since the problem is to find an optimal, welfare maximizing time-invariant function π :

R+ → R, the Stationary Ramsey Problem can be transformed into an operator form. In

order to express the stationary recursive competitive equilibrium in this form, we define two

operators: an operator on the Euler equation, F , and that on the stationary distribution,

L.

For a given government policy schedule π : R+ → R the Euler equation operator is

defined on the savings function h : Z × B → B, and the stationary distribution operator

is defined on the distribution function λ : Z × B → [0, 1], and the savings function h. We

4Our analysis of optimal government policies can also be applied to other types of welfare functions.
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will assume that these functions are square integrable functions on some closed domain5:

h, λ ∈ L2(Z × B) where L2(Z × B) is a Hilbert space with the inner product (u, v) =∫
Z×B

u(t)v(t)dt. The operator F : C1(Z×B) ⊂ L2(Z×B) → C1(Z×B) ⊂ L2(Z×B) is the

mapping from a space of continuously differentiable functions into a space of continuously

differentiable functions; and the operator L : C1(Z × B) × C1(Z × B) → C1(Z × B) ⊂
L2(Z ×B).

Operator F on the Euler Equation An individual agent’s allocations are character-

ized by the Euler equation from the optimization problem (2)-(4). For all (z, k) ∈ Z ×B,

u′(y − π(x)x+ k − k+) ≥ β
∑
z+

u′(y+ − π(x+)x+ + k+ − k++) · (10)

· {
1 + y+

k

[
π(x+) + π′(x+)x+

]
x+

k

}
Q(z, z+),

where

y = rk + wz,

x = x(z, k),

y+ = rk+ + wz+,

x+ = x(z+, k+),

x+
k = xk(z

+, k+),

y+
k = r

∂k+

∂k
.

Clearly, y − π(x)x is disposable income and {1 + y+
k − [π(x+) + π′(x+)x+]x+

k } is the next

period ‘after-policy’ marginal return to capital where π′ is the marginal government policy

schedule.

The solution of the Euler equation is a time invariant savings function h : Z × B →
B. In the stationary equilibrium, prices, as functions of the aggregate capital K, are

constant. When the government searches for the optimal policy schedule it needs to take

into account the effect of its policy on prices. For this reason it will be advantageous to

introduce aggregate capital,K, as an explicit variable in the specification of the equilibrium.

In order to make this effect more transparent, we will write the equilibrium prices as

r(K) and w(K). As the savings function depends on the aggregate capital stock (through

equilibrium prices) and on the government policy, π, we denote k+ = h(z, k;K,π) and

k++ = h(z+, k+;K,π) = h(z+, h(z, k;K,π);K,π). Since K =
∑

z

∫
kλ(z, k;π) dk, the

optimal savings function is affected through prices by the distribution function λ.

5In more precise terms we actually assume that the functions are from the subspace W 1,2(Z×B) which
contains L2(Z × B)-functions which have weak derivatives of order one.
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In the text below, we present only the case of the unconstrained agents (i.e. those for

whom the Euler equation holds with equality and k+(z, k;K,π) > k). The case of the

borrowing constrained agents is discussed in Appendix A.

The operator on Euler equation F is defined by,

F(h;π) ≡ u′(c) − β
∑
z+

u′(c+)
{
1 + y+

k − [π(x+) + π′(x+)x+
]
x+

k

}
Q(z, z+), (11)

where

c = y(z, k;K) − π(x(z, k;K))x(z, k;K) + k − h(z, k;K,π),

y(z, k;K) = r (K) k + w (K) z,

c+ = y(z+, h(z, k;K,π);K) − π(x(z+, h(z, k;K, π);K))x(z+, h(z, k;K,π);K)

+ h(z, k;K,π) − h(z+, h(z, k;K,π);K,π),

and the terms y+
k = yk(z

+, h(z, k;K,π);K) and x+
k = xk(z

+, h(z, k;K,π);K) are the

marginal effects of individual savings on income y and taxable activity x in the next

period. The operator equation is simply F(h) = 0.

Operator L on the Stationary Distribution In order to guarantee a unique sta-

tionary distribution of agents in the steady state we need to assume that the government

policy function π is such that the resulting individual agents’ behavior does not display

pathological features (for example, that wealthy agents save less than poor agents). The

following assumption is used in virtually all models with heterogeneous agents as a part of

conditions for the existence of a unique equilibrium and is innocuous.

Assumption 1 Assume that for all z ∈ Z and for a given (K,π), the individual savings

function h : Z ×B → B is a monotone function of k over the whole interval [k(z),∞].

Thus for all z ∈ Z and for a given pair (K,π), there exists an inverse function h−1 assigning

a current value of capital k to savings k+ according to k = h−1(z, k+;K,π). In Section 6,

we show in Theorem 2 that our example economy is consistent with this assumption.

In the stationary recursive competitive equilibrium, under the Assumption 1 above, the

operator L for equation (5) is

L(λ, h;π) ≡ λ(z+, k+;K,π) −
∑

z

λ[z, h−1(z, k+;K,π);K,π]Q(z, z+), (12)

for all (z+, k+) ∈ Z × [h(k(z), z), k(z)].

The related operator equation is L(λ, h) = 0.
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Definition 3 (Operator Stationary Recursive Competitive Equilibrium) Given

a share of government expenditures g and a time-invariant government policy schedule π,

an operator stationary recursive competitive equilibrium is a set of operators (F ,L), prices

(r, w), a savings function h, a probability measure λ, and aggregate levels (K,L) such that

1. given prices and government policy π, the policy function h is the solution to each

agent’s optimization problem in the operator equation

F(h;π) = 0, (13)

2. firms maximize profit (1),

3. the time-invariant probability measure is the solution to the operator equation

L(h, λ;π) = 0, (14)

4. the capital and labor markets clear, (6)-(7),

5. the government budget constraint (8) holds at equality,

6. and the allocations are feasible, (9).

We can now specify an operator version of the Stationary Ramsey Problem.

Definition 4 (Operator Stationary Ramsey Problem) A solution to the Operator

Stationary Ramsey Problem for an economy in a stationary recursive competitive equilib-

rium in Definition 1 is a time-invariant government policy π that maximizes social welfare

in the steady state,

arg max
π

∑
z

∫ k

k

W (v (z, k;K,π))λ(z, k;K,π) dk, (15)

subject to a system of operator equations (13)-(14), consistent with equilibrium prices (1)

and the market clearing conditions (6)-(7) in Definition 1, where v : Z × B → R is the

value function of individual agents, λ : Z×B → [0, 1] is the stationary distribution, W is a

positive linear social aggregator function, k is the exogenously given lower bound on capital

holding, and k is the endogenous upper bound on individual savings, i.e. k = h(z, k;K,π).
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4 Ramsey Problem as Calculus of Variations Problem

The first-order conditions for the solution π to the Operator Stationary Ramsey Problem

in Definition 4 are best formulated in the calculus of variations.6 As it is standard, the

government policy function π and its derivative π′ are treated as two independent functions.

Additionally, since we are looking for the government policy as a function of individual

activity x rather than capital k, we now reformulate the problem with activity x as an

independent variable.

The social welfare function in equation (15) at the new coordinates x is

∑
z

∫ k

k

W [u (c (z, k;K,π, π′))] λ(z, k;K,π, π′) dk =
∑

z

∫ x(z)

x(z)

W [z, x;K,π(x), π′(x)] dx

with

W [z, x;K,π(x), π′(x)] ≡ W [u (c (z, k(z, x;K);K,π, π′))] λ [z, k(z, x;K);K,π, π′] kx (z, x;K) ,

(16)

where kx [z, x;K] = [xk(z, k(z, x;K);K)]−1 is the inverse function to the marginal effect of

individual savings on the taxable activity xk.

Before we proceed further, we have to clarify two important aspects of this dynamic

optimal problem. First, observing that K, which determines the equilibrium prices, is one

of the arguments in the objective function above, we have to use the condition on the

aggregate capital stock. Writing the condition properly using the fact that K also depends

on the government policy π and its derivative π′, we get at the new coordinates

K =
∑

z

∫ k

k

k λ(z, k;K,π, π′) dk =
∑

z

∫ x(z)

x(z)

K[z, x;K, π(x), π′(x)] dx,

where

K[z, x;K,π(x), π′(x)] ≡ k(z, x;K)λ [z, k(z, x;K);K,π, π′] kx (z, x;K) .

Second, the bounds on taxable activity, x(z) and x(z), for each z ∈ Z, are endogenous

functions of a chosen government policy. The lower bound x(z) = x(z, k;K) depends

on z, on the exogenously given lower bound on capital, k, and on the equilibrium prices

6Mirlees (1976) also uses the calculus of variations to derive the first-order conditions for the optimum
income tax schedule in an economy with heterogenous agents. However, while his problem is a static
one with an exogenously imposed distribution of agents’ abilities we have a dynamic problem with an
endogenous distribution of agents.
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determined by K. The upper bound x(z) = x(z, k;K) depends on z, on the endogenous

upper bound of capital, k, and also on K. 7

Finally, we also need to reformulate the side condition of the problem given by the

government budget constraint in equation (8), i.e.

∑
z

∫ k

k

[π(x(z, k;K))x(z, k;K) − g y(z, k;K)] λ(z, k;K, π, π′) dk

=
∑

z

∫ x(z)

x(z)

G[z, x;K,π(x), π′(x)] dx = 0, (17)

where

G[z, x;K,π(x), π′(x)] ≡ [π(x)x− g y (z, k(z, x;K);K,π, π′)] λ [z, k(z, x;K);K,π, π′] kx (z, x;K) .

Definition 5 (Calculus of Variation Ramsey Problem) The Ramsey problem in the

calculus of variation is formulated as the following generalized isoperimetric problem,

max
∑

z

∫ x(z)

x(z)

W [z, x;K,π(x), π′(x)] dx, (18)

subject to

∑
z

∫ x(z)

x(z)

G[z, x;K,π(x), π′(x)] dx = 0, (19)

with the definition of the aggregate capital stock in equation (17), the individual policy

function h given implicitly by the operator Euler equation (13), the distribution function,

λ, given implicitly by the operator equation (14), the endogenously determined bounds of

taxable activity, x(z) and x(z) for all values of z ∈ Z, and the free values of the government

policy at the extreme lower and upper bounds, π(x(z)), and π(x(z)).

Note that since k is endogenous, the endpoint x(z) is equality constrained.

7Clearly, the maximal interval is [x(z), x(z)] where x(z) is the lower bound of the lowest shock, z, and
x(z) is the upper bound of the highest shock, z. So any taxable activity interval associated with a shock
z ∈ Z is a subinterval of the maximal interval, [x(z), x(z)] ⊂ [x(z), x(z)].
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5 Necessary Conditions for the Optimal Government

Policy Schedule

In order to derive the first-order conditions, we define the Lagrange function L for the

Calculus of Variations Ramsey Problem in Definition 5 as

L(z, x) =

⎧⎪⎨⎪⎩
0 for x ∈ [x(z), x(z)),

W(z, x) + μG(z, x) for x ∈ [x(z), x(z)],

0 for x ∈ (x(z), x(z)],

(20)

for each z ∈ Z = {z, z}.
Note that the social welfare function in (16) is the sum of integrands W(z, x) =

W [z, x;K,π(x), π′(x)] integrated on the intervals [x(z), x(z)] for each z ∈ Z. The same is

true for integrands L(z, x) in equation (20).

Interestingly, as we show in Theorem 1 below, where we derive the first-order conditions,

the relevant Lagrange function that emerges from the solution to the maximization problem

is one amended by a term which captures the effect of the distribution of capital on the

social welfare: L̃(z, x) = L(z, x)+ΨK(z, x), where Ψ is the marginal effect of the aggregate

capital on social welfare.8 In other words, the term ΨK(z, x) takes into account the effect

of prices (determined by the aggregate capital) on social welfare of agents characterized by

(z, x).

Theorem 1 (First Order Necessary Conditions) Using the modified Lagrange func-

tion L̃ for the Calculus of Variations Ramsey Problem in Definition 5,

L̃(z, x) =

⎧⎪⎨⎪⎩
0 for x ∈ [x(z), x(z)),

W(z, x) + μG(z, x) + ΨK(z, x) for x ∈ [x(z), x(z)],

0 for x ∈ (x(z), x(z)],

(21)

for each z ∈ Z = {z, z}, the first order necessary conditions for the Ramsey problem are

1. the Euler-Lagrange condition,∑
z

(
L̃π(z, x) − d

dx
L̃π′(z, x)

)
= 0; (22)

2. the transversality condition on the free boundary value, π(x(z)), at the equality con-

strained endpoint, x(z),[
L̃(z, x) −

(
π′(x) − kx(z, x)

ωπ(z, x)

)
L̃π′(z, x)

]
x=x(z)

= 0; (23)

8Note that Ψ is the effect of variation in K on the variation in L, i.e. δL/δK.
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3. the transversality condition on the free boundary value π(x(z)) at x(z)[
L̃π′(z, x)

]
x=x(z)

= 0; (24)

4. and the condition on the Langrange multiplier, μ, at which (19) is satisfied.

The marginal effect Ψ of the aggregate capital stock on social welfare is

Ψ ≡ ΨK

∑
z

{∫ x(z)

x(z)

LK(z, x)dx+ [(L(z, x) − π′(x)Lπ′(z, x)) xK ]x=x(z)

+ [(L(z, x) − π′(x)Lπ′(z, x)) (xK + xkωK)]x=x(z)

}
,

with

Ψ−1
K ≡ 1 −

∑
z

{∫ x(z)

x(z)

KK(z, x)dx+ [(K(z, x) − π′(x)Kπ′(z, x)) xK ]x=x(z) (25)

+ [(K(z, x) − π′(x)Kπ′(z, x)) (xK + xkωK)]x=x(z)

}
.

Proof For the proof and more detailed specifications of all terms see the Appendix.

Inspecting the first order conditions in Theorem 1, we see that the condition (22) forms a

functional equation in the unknown government policy function, π, with the side conditions

(23)-(24) and the condition on the value of the Lagrangean multiplier, μ. From the setup

of the problem it is clear that the only free boundary values of the government policies are

the values at the lower and upper bounds, x(z) and x(z). Additionally, the more detailed

first-order conditions in the Appendix contain savings and distribution functions, h and λ,

and their derivatives with respect to π, π′, and K, i.e. hπ, hπ′ , hK , hπ′π′ , hπ′π, λπ, λπ′ , λK ,

λπ′π′ , and λπ′π, respectively.

If we knew how agents’ saving policies h and simultaneously how the distribution λ

depend on the government policy schedule, i.e. if we could solve at equilibrium prices

for the optimal policy π which is a function of the distribution and prices which in turn

are determined by h(π, π′) which is itself a function of the optimal policy and prices, the

task of the derivation of the first order conditions for this dynamic optimization would be

straightforward. However, not only we have to solve for these functions simultaneously

but also we are in a much more difficult situation since these functions are specified only

implicitly as operator equations. The proper specification of the derivative of the sav-

ings and distribution functions with respect to the government policy functions requires a

generalized concept of derivative, the so called Frechet derivative.
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5.1 The Effects of Government Policy on Stationary Recursive

Equilibrium

For any government policy schedule π, an agents’ saving policy and the distribution func-

tions are known only implicitly as a solution to the two operator equations (13)-(14) to-

gether with the aggregate conditions specifying the equilibrium stationary prices. In order

to derive the first order conditions in the calculus of variation, we need to specify the

derivatives of the integrand functions, W and G, with respect to the marginal changes in

government policy, π and π′. For this purpose, we use the concept of generalized derivatives

on mappings between two Banach spaces (B-spaces), the Fréchet derivatives.9

Definition 6 (The Fréchet Derivative) Given a nonlinear operator N (u) on function

u, its Fréchet differential is defined by

NuΔ≡∂N (u+ εΔ)

∂ε
|ε=0,

where Nu is the Fréchet derivative.

We now formulate functional equations for the unknown F-derivatives hπ, hπ′ , hK ,

hπ′π′ , hπ′π, λπ, λπ′ , λK , λπ′π′ , and λπ′π. The following Lemma derives the effects of the

government policy function π on the operator Euler equation by specifying five unknown

“sensitivity” functions hπ : Z × K −→ R
+, hπ′ : Z × K −→ R

+, hK : Z × K −→ R
+,

hπ′,π : Z ×K −→ R
+, and hπ′π′ : Z ×K −→ R

+.

Lemma 1 (The Effects of π, π′, and K on the Euler Equation) The total F-

derivatives of the operator Euler equation F with respect to the government policy function

π, to its derivative π′, and to the aggregate capital stock K are, respectively,

Fπ = u′′(c)cπ − β
∑
z+

{
u′′(c+)c+πR

+ + u′(c+)R+
π

}
Q(z, z+) = 0, (26)

Fπ′ = u′′(c)cπ′ − β
∑
z+

{
u′′(c+)c+π′R

+ + u′(c+)R+
π′
}
Q(z, z+) = 0, (27)

FK = u′′(c)cK − β
∑
z+

{
u′′(c+)c+KR

+ + u′(c+)R+
K

}
Q(z, z+) = 0, (28)

9The compliance of the Frechet derivatives (also called the F-derivatives) with the derivations of the
first order conditions in the calculus of variation is reflected by the fact that the F-differential is identical
to the variation. Our derivations are more complicated than the standard Fréchet derivative because our
operators are recursive.
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and further

Fπ′π′ = u′′′ (c) [cπ′ ]2 + u′′ (c) cπ′π′ (29)

− β
∑
z+

{[
u′′′
(
c+
) [
c+π′
]2

+ u′′
(
c+
)
c+π′π′

]
R+ + 2u′′

(
c+
)
c+π′R

+
π′

+ u′
(
c+
)
R+

π′π′
}
Q(z, z+) = 0,

and

Fπ′π = u′′′ (c) cπ′cπ + u′′ (c) cπ′π (30)

− β
∑
z+

{[
u′′′
(
c+
)
c+π′c

+
π + u′′

(
c+
)
c+π′π

]
R+ + u′′

(
c+
) [
c+π′R

+
π + c+πR

+
π′
]

+ u′
(
c+
)
R+

π′π

}
Q(z, z+) = 0.

Proof For the proof and the definition of terms see the Appendix.

Similarly, we derive the effects of the government policy on the shape of the distribution

function λ by specifying functional equations which implicitly determine the unknown

“sensitivity” functions λπ : Z × K −→ R
+, λπ′ : Z × K −→ R

+, λK : Z × K −→ R
+,

λπ′π′ : Z ×K −→ R
+ and λπ′π : Z ×K −→ R

+.

Lemma 2 (The Effects of π, π′, and K on the Stationary Distribution Function)

The total F-derivative of the operator stationary distribution function L with respect to

the government policy function π, to its derivative π′ and to the aggregate capital stock K

are, respectively,

Lπ = λπ(z+, k+) −
∑

z

{
λk

[
z, h−1(z, k+)

]
h−1

π (z, k+) + λπ

[
z, h−1(z, k+)

]}
Q(z, z+) = 0,

Lπ′ = λπ′(z+, k+) −
∑

z

{
λk

[
z, h−1(z, k+)

]
h−1

π′ (z, k+) + λπ′
[
z, h−1(z, k+)

]}
Q(z, z+) = 0,

LK = λK(z+, k+) −
∑

z

{
λk

[
z, h−1(z, k+)

]
h−1

K (z, k+) + λK

[
z, h−1(z, k+)

]}
Q(z, z+) = 0,

and further

Lπ′π′ = λπ′π′(z+, k+) −
∑

z

{
λπ′π′

[
z, h−1(z, k+)

]
+ λπ′k

[
z, h−1(z, k+)

]
h−1

π′ (z, k+)

+
[
λπ′k

[
z, h−1(z, k+)

]
+ λkk

[
z, h−1(z, k+)

]
h−1

π′ (z, k+)
]
h−1

π′ (z, k+)

+ λk

[
z, h−1(z, k+)

]
h−1

π′π′(z, k
+)
}
Q(z, z+) = 0, (31)

and

Lπ′π = λπ′π(z+, k+) −
∑

z

{
λπ′π

[
z, h−1(z, k+)

]
+ λπ′k

[
z, h−1(z, k+)

]
h−1

π (z, k+)

+
[
λπk

[
z, h−1(z, k+)

]
+ λkk

[
z, h−1(z, k+)

]
h−1

π (z, k+)
]
h−1

π′ (z, k+)

+ λk

[
z, h−1(z, k+)

]
h−1

π′π(z, k+)
}
Q(z, z+) = 0. (32)

17



Proof For the proof and the definition of terms see the Appendix.

In this way we obtain functional equations (11), (26)-(30), (12), and (31)-(32) in the

unknown functions h, hπ, hπ′ , hK , hπ′π′ , hπ′π, λ, λπ, λπ′ , λK , λπ′π′ , and λπ′π, respectively.

Finally, by adding the first-order conditions from Theorem 1, the problem of finding the op-

timal government policy π is a system of thirteen functional equations in thirteen unknown

functions with two side conditions and one condition on the Lagrange multiplier.

5.2 Analytical Results

Despite the complexity of the problem we are able to derive several analytical results. It

will be useful to compare the optimal government policy and its effects to those of a flat-tax

economy in which the government also consumes a fraction g of the total output. Note

that the term10 gy(z, x) in equation (19) captures the fraction of government expenditures

“related” to an agent (z, x). This fraction of government expenditures gy(z, x) is identical

to the amount of taxes hypothetically paid by the agent (z, x) under a flat tax g on total

income. We will further use this concept as a useful benchmark in the following analysis.

Since the first-order conditions in Theorem 1 specify the explicit transversality con-

ditions on agents with the lowest and the highest taxable activity, they can be used for

qualitative results on the behavior of the policy schedule at these boundary points.

In the following Proposition we relate the tax payment of the “poorest” agent under

the optimal tax policy to the tax payment in the economy with a flat tax g. This poorest

agent is constrained at the lowest value of capital k and is hit by the lowest shock z.

Proposition 1 (Optimal Tax at Lowest Taxable Activity) The transversality con-

dition in equation (24) in Theorem 1 implies that for an agent with the lowest taxable

activity level x(z), the optimal difference between taxes paid π(x(z))x(z) and the income

taxes paid under a flat tax regime, gy(z, x(z)), is proportional to the sum of the agent’s

utility and the marginal contribution of his savings to the aggregate welfare,

π(x(z))x(z) − g y(z, x(z)) = −W [u(c(z, x(z)))] + Ψk

μ
,

where c(z, x(z)) = y(z, x(z)) − π(x(z))x(z) − k is consumption, y(z, x(z)) = rk + wz is

before-tax income, μ < 0 is the shadow price of government expenditures, and Ψ is the

marginal effect of the aggregate capital stock on the aggregate welfare defined in Theorem

1.

Proof See the Appendix.

10To shorten the notation we write gy(z, x) = gy(z, k(z, x)).

18



The following corollary states the conditions for which the amount of taxes paid by the

poorest agent under the optimal tax policy is larger than that under a flat income tax, i.e.

π(x(z))x(z) > gy(z, x(z)).

Corollary 1 If the savings contribution of the poorest agent to aggregate welfare is non-

negative, Ψk ≥ 0, then at the lowest taxable activity level x(z) the amount of taxes paid

under the optimal tax policy π(x(z))x(z) is larger than that under a flat income tax,

gy(z, x(z)).

The poorest agent pays more taxes than in the flat-tax regime if one of these three

conditions are satisfied: Ψ = 0, or if k = 0, or if simultaneously Ψ > 0 and k > 0). The

Corollary illustrates the incentives to the agent to accumulate more assets.11 We discuss

these incentives in the following Section.

In a similar way, the Proposition below specifies the optimal tax payment of the “rich-

est” agent relative to his tax burden at the flat tax equal to g. The richest agent’s current

and future savings are at the endogenous upper bound k(z) = k and he receives the highest

shock z.

Proposition 2 (Optimal Tax at Highest Taxable Activity) Assuming π′(x(z)) 
=[
δx
δπ

(x(z))
]−1

, the transversality condition in equation (23) in Theorem 1 implies that for

an agent with the highest taxable activity x(z), the optimal difference between taxes paid

π(x(z))x(z) and the taxes paid under the flat tax regime g y(z, x(z)), is proportional to

the sum of the agent’s utility and the marginal contribution of his savings to the aggregate

welfare,

π(x(z))x(z) − g y(z, x(z)) = −W [u(c(z, x(z)))] + Ψk

μ
,

where c(z, x(z)) = y(z, x(z))−π(x(z))x(z)−k(z) is consumption, y(z) = rk+wz is before-

tax income, μ < 0 is the shadow price of government expenditures, and Ψ is the marginal

effect of the aggregate capital stock on the aggregate welfare defined in Theorem 1.

Proof See the Appendix.

Notice that as ωπ = hπ

1−hk
< 0,

[
δx
δπ

(x(z))
]−1

= 1
xk(z,k)ωπ(z,k)

< 0 implies that the assump-

tion on the slope of the tax schedule at x(z) is satisfied whenever it is non-decreasing, i.e.

π′(x(z)) ≥ 0, and that Ψ ≥ 0.

The following corollary states the conditions for which the amount of taxes paid by

the richest agent under the optimal tax schedule is larger than that under a flat tax, i.e.

π(x(z))x(z) > gy(z, x(z)).

11If a substantial debt can be accumulated, k < 0, the ability of the government to tax capital stock
becomes limited. Finally, it is easy to show that the equilibrium might not exist if Ψ < 0.
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Corollary 2 If the marginal contribution of the aggregate capital stock to the aggregate

welfare is nonnegative Ψ ≥ 0, and k ≤ 0 then at the highest taxable activity level the

optimal tax contribution π(x(z))x(z) is larger than that under a flat tax regime gy(z, x(z)),

π(x(z))x(z) − g y(z, x(z)) = −W (u(c(z, x(z))) + Ψk

μ
> 0.

Additionally,

π(x(z))x(z) − g y(z, x(z))

π(x(z))x(z) − g y(z, x(z))
≥ W (u(c(z, x(z)))

W (u(c(z, x(z)))

(
Ψk

W (u(c(z, x(z)))
+ 1

)
implies that the amount of taxes paid by the richest agent is greater than that of the poorest

agent, i.e.

π(x(z))x(z) > π(x(z))x(z).

These Corollaries show that the socially optimal amount of the tax revenues paid by

the ‘boundary’ agents depends only on these agents’ individual characteristics (on their

taxable activity, x, income, y, and consumption, c) and the two aggregate shadow prices:

the shadow price of government spending, μ, and the shadow price of the aggregate capital,

Ψ, both expressed in terms of social welfare.

Together, Corollaries 1 and 2 can say a lot about the shape of the optimal government

policy schedule. If k = 0, then both ends of the tax schedule are above the flat-tax level and

the implied tax schedule is a “U-shape” function. Its bottom lies under the flat-tax level

to clear the government budget constraint proportional to g. This is also the case if Ψ = 0

and if both Ψ > 0 and k > 0. Finally, if Ψ > 0 and k < 0, the optimal tax schedule could

either be “U-shaped” or an increasing function of income. These qualitative assessments

are confirmed by the numerical results in our example in the following Section.

6 An Example: The Optimal Income Tax Schedule

In this section we demonstrate our method by finding the optimal government policy π

defined as a tax schedule on total income from capital and labor. Therefore, the taxable

activity is

x(z, k;K) = y(z, k;K) = rk + wz,

and the individual budget constraint is

c ≤ (1 − π(x))x+ k − k+.
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We assume that the borrowing constraint is

k = 0,

and that there are only two levels of shock, Z = {z, z}. The total tax revenues are equal

to a fraction g of the total output.

Thus the Euler equation (10) for a (z, k)-agent’s optimal savings function k+(z, k) for

all (z, k) ∈ Z ×B is now

u′(c) ≥ β
∑
z+

u′(c+)
[
(1 − π(x+) − π′(x+)x+) r + 1

]
Q(z, z+),

where c+ = (1 − π(x+))x+ + k+ − k++, x+ = rk+ + wz+, and k++ = k+(k+(z, k), z+).

Note that for this specification xk = yk = r and kx = 1/xk = 1/r.

For this concrete example we first analyze the conditions for the existence of the sta-

tionary recursive competitive equilibrium.

6.1 The Existence of Stationary Recursive Competitive Equilib-

rium

Because the tax schedule is an arbitrary function, we must ensure that the first order

approach is valid.12 In order to characterize the admissible tax functions and to prove the

Schauder Theorem for economies with distortions, we follow the notation in Stokey, Lucas,

and Prescott (1989), Chapter 18. For each agent (z, k) ∈ B×Z, denote the after-tax gross

income as

ψ(z, k) ≡ (1 − π(x(z, k)))x(z, k) + k.

Using ψ(z, k), rewrite the Euler equation as

u′(ψ(z, k) − k+(z, k))=β
∑
z+

u′(ψ(k+(z, k), z+) − k+(k+(z, k), z+))ψ1(k
+(z, k), z+)Q(z, z+),

where

ψ1(k
+(z, k), z+) =

(
1 − π(x(k+(z, k), z+)) − π′(x(k+(z, k), z+))x(k+(z, k), z+)

)
r + 1

is the marginal after-tax return on an extra unit of investment. In the following Theorem

we establish the validity of the first order approach and the existence of the competitive

equilibrium.

12Again, we analyze the case of borrowing constrained agents in the Appendix.
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Theorem 2 For a given tax schedule π : R+ → R, if for each (z, k) ∈ B × Z

1. ψ1(z, k) > 0, and

2. ψ is quasi-concave,

then the solution to each agent’s maximization problem and the stationary recursive com-

petitive equilibrium exist.

Proof See the Appendix.

The following corollary characterizes the set of admissible tax schedules that satisfy

the conditions of Theorem 2. We have earlier introduced the notation for the endogenous

upper bound on capital for any agent, k. Let {w,w} and {r, r} denote some arbitrary,

non-binding lower and upper bounds for equilibrium wage and interest rate, respectively.

Finally, επ
x(x) ≡ π′(x)

π(x)
x is the elasticity of the tax rate to the taxable income.

Corollary 3 (Admissible Tax Schedule Functions) Let C2(R+) be a set of continu-

ously differentiable functions from R+ to R. If a tax schedule function π ∈ C2(R+) belongs

to the set of admissible tax schedules Υ,

Υ =

{
π ∈ C2(R+) : π(x) (1 + επ

x) < 1 +
1

r

}
for all x ∈ [rk + wz, rk + wz], then it satisfies the conditions of Theorem 2.

The above statement follows directly from the fact that ψ1(z, k) > 0 and that ψ is

quasi-concave. The corollary implies that there exists an upper bound on the marginal tax

rate, π(x) (1 + επ
x). This upper bound is not likely to bind for a very wide range of tax

schedules.13

6.2 The Shape of the Optimal Income Tax Schedule

To obtain the first order conditions for the optimal income schedule we plug the example-

specific terms into the general conditions in Theorem 1 and Lemmata 1 and 2. These terms

are listed in the Appendix C.

Adapting Propositions 1 and 2 and the related Corollaries 1 and 2 to our example

economy we obtain the following results.

13As an example, for a realistic equilibrium interest rate r = 0.05, the upper bound on the marginal
tax rate is equal 1/(1 + r) � 21. Therefore, for a high level of tax rate, say π(x) = 0.42, the elasticity
of the tax schedule at that level of income would have to be επ

x = 49 in order to violate the admissibility
condition. When numerically solving for the optimal tax schedule in the next Section we do not impose
any of these exogenous bounds but we check the admissibility of the optimal tax schedule ex post.
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Corollary 4 (Optimal Tax Rates at Lowest and Highest Income) If π is the opti-

mal tax schedule on the total income, then

1. the optimal tax rate at the lowest income level x(z) is strictly greater than a flat tax

g at that income level,

π(x(z)) > g;

2. and, provided that Ψ ≥ 0, the optimal tax rate at the highest income level x(z) is

strictly greater than the optimal tax rate at the lowest income level,

π(x(z)) > π(x(z)) > g.

Proof The results follow directly from Corollaries 1 and 2.

Thus both the poorest and richest agents pay higher taxes than in a corresponding

flat-tax economy. The government budget constraint and the continuity of the optimal

tax function imply that there must exist a measure of agents at intermediate income levels

who face lower tax rates than the flat tax rate. Thus the optimal tax schedule must be a

“U-shape” function.

We interpret these results from the point of view of the social planner who could use the

first best, lump sum taxes. To insure agents against idiosyncratic shocks, he would set such

a tax schedule on each pair of individual states (z, k) to arrive at a stationary equilibrium

in which all agents would accumulate the same amount of capital K and consume the same

amount of goods. In other words, the distribution would consist of a mass of agents at two

points, (z,K) and (z,K). A U-shape transfer (tax) system is the way to induce agents to

arrive at this optimal outcome.

Although our government is constrained from using the first best policy, it strives to

accomplish the same outcome. By imposing higher than average taxes on the poorest

and richest agents, the government tries to provide incentives for agents to save towards

the average capital stock. The poorest agents are motivated by high but decreasing tax

schedule,
(

d(π(x)x)
dx

)
x(z)

< 0. Thus, according to the Euler equation, their expected return

on capital increases. On the other hand, the richest agents are discouraged from further

savings by the increasing tax schedule at high levels of capital. Finally, agents with savings

around the average capital stock are motivated by lower than average taxes to keep their

savings at the current level. The U-shape tax function provides the incentives for agents

to eventually arrive and stay at the individual capital stock k = K.
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7 Numerical Solution

In this Section we solve for the optimal tax schedule and compare the associated steady

state allocations to those resulting from the existing progressive tax schedule in the U.S.

economy and from the usual flat-tax reform. In order to evaluate the welfare implications

of these tax reforms, we conduct the transition analysis.

The solution to the problem of finding the optimal policy in the sense of the Operator

Steady State Ramsey Problem in our example leads, as in the general case, to solving

the functional system of the first-order conditions given by Theorem 1 together with the

functional equations specifying the stationary equilibrium (expressed by h and λ) and the

sensitivity functions given by F-derivatives hπ, hπ′ , hK , hπ′π′ , hπ′π, λπ, λπ′ , λK , λπ′π′ , and

λπ′π. Thus we obtain the system of thirteen functional equations in thirteen unknown

functions with two side conditions and one condition on the Lagrange multiplier. We

solve this complex functional equation problem by the least squares projection method.

Its application to our problem and the approximation of the optimal tax schedule can be

found in Appendix D.14

7.1 Parameterization

The uninsurable idiosyncratic shock to labor productivity follows a two-state, first order

Markov chain. We use the results of Heaton and Lucas (1996) who, using the PSID labor

market data, estimate the household annual labor income process between 1969 and 1984

by a first-order autoregression of the form

log(ηt) = η̄ + ρ log(ηt−1) + εt,

with ε ∼ N(0, σ2
ε ). They find that ρ = 0.53 and σ2

ε = 0.063. Tauchen and Hussey (1991)

approximation procedure for a two-state Markov chain implies zL = 0.665, zH = 1.335

and Q(zL, zL) = Q(zH , zH) = 0.74. These values imply an aggregate effective labor supply

equal to one with agents evenly split over the two shocks.15 We set the discount factor at

β = 0.95. The rest of the parameters is taken from Prescott (1986), in particular α = 0.36,

δ = 0.1, and the preference parameter σ = 1.

14For a more detailed explanation of the use of the projection methods to stationary equilibria in
economies with a continuum of heterogenous agents see Bohacek and Kejak (2002).

15Similar parameterization is in Storesletten, Telmer, and Yaron (2007) with zL = 0.73, zH = 1.27 and
Q(zL, zL) = Q(zH , zH) = 0.82. Diaz-Jimenez, Quadrini, and Rios-Rull (1997) use zL = 0.5, zH = 3.0 and
Q(zL, zL) = 0.9811, Q(zH , zH) = 0.9261. In future research we plan to add life cycle features to the model
as in Ventura (1999).
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Finally, for all steady states we consider a Ramsey problem in which government is

required to raise tax revenues equal to 20% of the total output, i.e. g = 0.2.

7.2 The U.S. Progressive Tax Schedule

We model the progressive tax schedule as Ventura (1999), the closest model analyzing a

flat-tax reform in an economy with heterogeneous agents.16 An agent’s budget constraint

is

c+ k′ ≤ rk + zw + k − T,

where T represents the amount of tax paid by the agent according to the progressive

tax schedule. The amount of tax is determined according to which tax bracket the total

taxable income, I = rk + max{0, zw − I∗}, falls in, with a labor-income tax deductible

amount I∗ ≥ 0. There are M brackets with associated tax rates, τm,m = 1, . . . ,M ,

defined on intervals between brackets’ bounds I0, . . . , IM−1. For M = 5 the tax rates are

τm ∈ {0.15, 0.28, 0.31, 0.36, 0.396} and the tax brackets, expressed as a multiple of the

average income, Im−1 ∈ {0, 0.85, 2.06, 3.24, 5.79}. In addition, capital income, rk, is taxed

at a flat rate τk = 0.25.

For income I ∈ (Im−1 − Im], the total tax is then

T = τ1(I1 − I0) + τ2(I2 − I1) + · · · + τm(I − Im−1) + τkrk.

The government budget constraint is cleared by finding an equilibrium value of the tax

exemption level I∗. Aggregate statistics of the steady state are shown in the left column

of Table 1.

7.3 A Flat-Tax Reform

The flat-tax reform consists of replacing the progressive tax schedule with a single flat tax

τ on the total income from labor and capital. The budget constraint of each agent becomes

c+ k′ ≤ (1 − τ)(rk + zw) + k.

Note that the flat tax reform, like in Ventura (1999), does not eliminate taxation of capital

income. We find that the equilibrium flat tax rate is τ = 0.254.

INSERT TABLE 1 ABOUT HERE

16Compared to his model, our agents are infinitely lived, so we omit the life-cycle variables, accidental
bequests, government transfers, and social security tax and benefits. Except for capital depreciation, we
do not consider tax deductions.
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The middle column in Table 1 describes the steady state results. Relative to the

progressive tax schedule steady state, the flat-tax reform increases the steady state levels

by similar magnitudes found in the literature: capital stock increases by 30%, output by

10.8%, consumption by 4.6%, and welfare by 3.9%. As in Ventura (1999), the flat-tax

reform increases inequality: Gini income coefficients rise from 0.22 to 0.31 before tax and

from 0.21 to 0.32 after tax.17

7.4 The Optimal Tax Schedule

We use our methodology described in the previous Sections to solve for the optimal tax

schedule that maximizes average steady state welfare18. The right column in Table 1

summarizes the optimal tax schedule steady state. The impact of the optimal tax schedule

is very large. Steady state average welfare increases by 4.4%. Aggregate capital stock rises

by 49%, output by 15.8%, and consumption by 5.8%. Inequality increases too but not as

much as in the flat-tax reform: Gini income coefficients are 0.28 before and 0.27 after tax,

respectively. General equilibrium effects cause the interest rate to drop by almost one half

and the wage to increase due to a higher productivity of labor used in production with

such a high capital stock. Compared to the flat-tax steady state, capital stock increases

by 15%, output by 4.5%, consumption by 1.1%, and welfare by 0.8%.

INSERT FIGURE 2 ABOUT HERE

Figure 2 shows the optimal tax schedule and the marginal tax rate function. The average

tax rate is is a U-shaped function taxing the lowest total income at a 45%, decreasing to

a minimum of 19% and rising to 62% at the highest level of total income. Although the

whole shape of the tax function is important for the resulting allocations, a majority of

agents face the decreasing or the flat part of the tax schedule. The marginal tax rate is also

U-shaped, almost flat and close to zero for low incomes, falling to negative levels around

the average total income and then rising at high income levels. Note that the maximal

marginal rate is 2.5 and that the optimal tax schedule easily satisfies the admissibility

condition from Corollary 3 (the interest rate implies an upper bound equal to 19.7).

The optimal tax function τ is strictly positive and very nonlinear. Both results are

different from Mirrlees (1971) static model with fixed distribution of skills, where a welfare

17Elimination of capital income tax in Lucas (1990) increases capital stock by 30-34% and consumption
by 6.7%. A flat-rate reform with heterogeneous agents in Ventura (1999) increases the total capital stock
by one third, output by 15%. Without a well calibrated life-cycle earnings process we are not able to
match well the inequality coefficients, especially that of wealth.

18The residual errors of the functional equations associated to the main approximated functions are
reported in Table ??.
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maximizing tax schedule is close to a linear, non-decreasing function. In his model, the

marginal tax rate is between zero and one, and zero at both ends of the distribution.

Compared to our model with insurance and savings incentives, Mirrlees (1971) results

follow from labor incentives related to the distribution of skills and consumption-leisure

preferences.19

We want to emphasize that our stationary distribution is endogenous and there are no

restrictions on the optimal tax schedule to be positive or to be of any particular shape.

Conesa and Krueger (2006), also in a general equilibrium framework but with added life

cycle features, searched for the optimal progressivity of a tax schedule, limiting their class

of tax schedules to monotone functions as in Gouveia and Strauss (1994).20 In this class of

functions, the optimal tax schedule is basically a flat tax with a fixed deduction, delivering

a welfare gain of 1.7% compared to the existing tax progressive tax in the United States.

The class of monotone functions seems rather restrictive for the optimal tax schedule. Our

class of admissible functions includes all progressive tax schedules but these were found

significantly inferior with respect to the welfare criterion.

7.5 The Tradeoff Between Efficiency and Distribution

Apart from the general equilibrium effects, the huge welfare impact of the optimal tax

schedule arises from the distributional effects. The stationary distributions of capital in

the three steady states are shown in Figure 3. Although both the flat and the optimal

tax schedules increase the aggregate levels, the difference between them is that the ad

hoc flat tax schedule does not take into account the distribution of agents. The flat tax

reform helps more the agents with high incomes: the mean wealth increases much more

than the median so that the median/mean ratio falls to 0.77. In the flat-tax steady state

the aggregate levels increase but from “the optimal distribution” point of view the mass

of agents moves too much to the left while wealthy agents emerge at the right tail of the

distribution. The progressive tax schedule has the lowest inequality measures because the

high taxes on rich agents narrows the distribution towards the mean. However, the low tax

19Building on the Mirrlees (1971) and Mirrlees (1976) seminal work, Kocherlakota (2005), Golosov,
Kocherlakota, and Tsyvinski (2003) or Albanesi and Sleet (2003) study optimal social planner policies
with asymmetric information. In such an environment, positive capital income taxes are optimal despite
the associated efficiency loss and informational frictions are necessary for a characterization of the optimal
policies.

20The simple search method cannot be used for computation of a stationary competitive equilibrium
which is the limit of the optimal dynamic tax schedule. We show in Bohacek and Kejak (2004) that under
some parameterization the first order conditions of the general dynamic Ramsey problem can simplify to
the first order conditions of the steady state Ramsey problem analyzed in this paper.
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rates on low incomes do not provide incentives for the poor households to save and move

to higher income levels. In other words, it provides too much short-run insurance at the

cost of the long-run average levels.

INSERT FIGURE 3 ABOUT HERE

This is exactly what the optimal income tax schedule improves. The main mechanism

behind the large increase in the aggregate levels is the incentive effect of the optimal tax

schedule. The U-shaped function in the top panel of Figure 2 effectively concentrates the

agents around the mean, something what a social planner with an access to lump-sum

transfers would do.21 The high tax rate at low income levels provides incentives for these

agents to save more and move to higher income levels. On the other hand, the even higher

tax rate on high income discourages further savings by the wealthiest agents. In the middle

of the total income levels, the tax rate is lower than that found for the flat-tax reform.

The optimal tax schedule preserves the median/mean wealth ratio of the progressive tax

schedule by increasing the median by 47% and the mean by 49%. The support of the

invariant distribution becomes wider but inequality measures do not increase as much as

in the flat-tax reform.22

To further analyze the tradeoff between efficiency and distribution, we adopt the ap-

proach in Domeij and Heathcote (2004) to distinguish the efficiency gain from distributional

gains. The efficiency gain for an individual agent is the percentage of the original consump-

tion that would allow the agent to consume the same fraction of the aggregate consumption

after the reform as he or she was consuming in the original steady state. In the case of

logarithmic utility, the gain is the same for all agents (see Domeij and Heathcote (2004)

for a simple proof and other details). The distributional gain is the difference between the

individual welfare gain and the efficiency gain.23

Table 1 displays the average efficiency and distributional gains of the optimal steady

state relative to the other two steady states. It is apparent that the steady state associated

with the optimal, U-shaped tax function is welfare and efficiency superior to the other

21In many countries, marginal taxes are favorable to middle income groups. In practice, high rates
on rich can break large fortunes while on poor they provide a floor for poverty. The result is a more
equal distribution. Saez (2002) studies the optimal progressivity of capital income tax in a partial equilib-
rium model with exogenous labor and distribution. He finds that a progressive tax is a powerful tool to
redistribute accumulated wealth.

22Table 1 also shows the fraction of agents constrained in their borrowing: only 1.16% of agents is
constrained in the progressive tax schedule steady state. The flat tax schedule increases this number to
1.88%, while the optimal tax steady state it is 1.42 (Domeij and Heathcote (2004) obtained similar results).

23The individual welfare gain is the percentage of the original consumption level that would make an
agent as well off as in the optimal tax steady state.
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two steady states: both average welfare and efficiency measures are positive, and naturally

greater for the comparison with the progressive steady state. As it was noted before, the

optimal tax schedule obtains an average distributional loss relative to the progressive tax

(–0.57%) but a gain relative to the flat tax steady state (2.86%).

INSERT FIGURE 4 ABOUT HERE

The individual gains, for agents with high and low labor productivity shocks, are shown

in Figure 4. They are monotonically decreasing functions for all agents at all asset and labor

income levels (with some exceptions). Most of the asset-poor agents have both welfare and

distributional gains while the rich have losses relative to the steady state with the flat tax

schedule. There are two forces present: first is the tax rate (especially for the rich agents in

the flat tax steady state) and general equilibrium effects. The huge welfare gains (5-20%)

for poor agents are mostly due to the higher wage in the optimal steady state. Note that

the big efficiency gain from the optimal tax schedule is not sufficient to compensate all

agents for the more unequal distribution (compared to the progressive tax steady state,

an agent with a low productivity shock has always a distributional loss in Figure 4, top

panel).

INSERT TABLE 2 ABOUT HERE

Table 2 shows the distribution of resources for quintiles of the wealth distribution.

Because of the high tax rate on incomes in the bottom quintile, these agents in the optimal

tax schedule steady state consume 6.5% less than those of the progressive tax schedule.

However, in all the other quintiles the optimal tax schedule steady state, agents consume

on average more than in the other two steady states. Dividing these levels by the average

consumption in each steady state, we can calculate average quintile consumption relative

to the steady state average. Under the optimal tax schedule, the bottom quintile consumes

73% of the average consumption, in the flat tax it is 77%, in the progressive it is 82%. This

shows that the savings incentives of the optimal tax schedule overweight the insurance

aspects (i.e., redistribution) in both the progressive and the flat tax schedules.

The distribution of capital reveals that the incentives contained in the optimal-tax

schedule move the distribution to higher capital levels. The poorest quintile owns on

average 17% more assets than in the progressive steady state. This increase is even larger

for the other quintiles (40% on the top). Again, the flat-rate steady state leads to lower

level of savings by the bottom two quintiles. These levels are reflected in the shares of the

total capital stock. For all steady states the bottom quintile owns only around 5% of the

total stock while the top quintile around one third (43% in the flat-tax steady state).
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The investment-to-income ratios reveal the agents in the bottom quintile of the optimal

schedule invest much more than similar agents in the other two steady states. Agents in

the optimal tax schedule steady state invest 30% of their income, more than those in the

flat-tax (27%) and progressive (22%) steady states. The investment is also more evenly

distributed over the quintiles. Note also that the flat-rate tax schedule favors capital

accumulation by the top quintile.

The income and after-tax income distribution show the differences between the three

tax schedules. The progressive tax helps the bottom quintile while the flat tax helps the

top quintile. The U-shape of the optimal tax provides the right incentives at the cost of

lowest after-tax income for the poor agents. Finally, the optimal tax actually equalizes

tax contribution share of total tax revenues across the quintiles. Both the flat-tax and

progressive-tax steady states put more relative burden on the higher income quintiles.

INSERT FIGURE 5 ABOUT HERE

Finally, Figure 5 shows the sensitivity functions hπ and λπ. The top panel shows the

effect of a change in the optimal tax schedule on the savings decision of agents. For the

low shock it is close to zero, for the high shock it is negative and monotonically decreasing.

The bottom panel displays the same effects on the probability density function of the

stationary distribution λ, again for each shock. We know from the stationarity condition

of the distribution that the integral of these functions must be zero.24

7.6 Transition to the Optimal Tax Schedule Steady State

Pure welfare steady-state comparisons could be misleading because tax changes imply

substantial redistribution in the short run. In Domeij and Heathcote (2004) model of

capital tax cuts, the expected discounted present value of welfare losses during transition

are so large that they overturn the steady state welfare improvement. The short-run cost in

the form of higher labor taxes is too heavy a price to pay for all except for the wealth-richest

households.25

INSERT TABLE 3 ABOUT HERE

24Our numerical solution is only very close to zero due to approximation errors.
25This is similar to Garcia-Mila, Marcet, and Ventura (1995) and Auerbach and Kotlikoff (1987) who

find that reducing capital income taxation shifts the tax burden away from households who receive a large
fraction of their income from capital and towards those who receive a disproportionate fraction from labor.
Transition costs in Lucas (1990) reduce the welfare gains from zero capital tax reform to 0.75-1.25 percent
of average consumption in the initial steady state.
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Table 3 shows the results for our tax reform experiment. It compares the expected

present discounted value from an unanticipated optimal tax reform of the progressive and

flat-tax steady state. In each case the optimal tax schedule is imposed on the stationary

distribution of the initial steady state.26 We guess a sufficiently large number of convergence

periods and iterate on paths of equilibrium interest rates and wages to clear markets in

each period of the transition, returning possible excess tax revenues to all agents in each

period. The convergence is relatively fast lasting around thirty periods.

INSERT FIGURE 6 ABOUT HERE

Contrary to Domeij and Heathcote (2004), we find that the reform makes both the

mean and the median agents in the progressive tax schedule economy better off. Their

welfare gains are positive but smaller than in the pure steady-state comparison (3.44% and

3.86%, respectively, measured as per period consumption transfers as a percentage of the

initial steady state average consumption). The top panel in Figure 6 shows the expected

present discounted values in the progressive-rate steady state and at the moment of the

unanticipated reform to the optimal tax schedule. While 73% of the population is better

off from the reform, it is not Pareto improving as the poorest 27% of all households are

worse off (they are hit by high tax rates from the optimal schedule).

On the other hand, a transition from the flat-tax steady state would not be supported

by the mean nor by the median agent (they loose 1.81% and 1.97%, respectively). The poor

and now also the wealthy, for whom the tax increases dramatically, are worse off during

the transition. The bottom panel in Figure 6 shows the expected present discounted values

of the flat-rate steady state and of the transition to the optimal tax schedule. Political

support is not sufficient, equal only to 33% of the population. We do not know whether

an optimal transition would be welfare improving from this steady state.

As usual, this transition exercise shows that a tax reform is not Pareto improving for

all agents. However, the gains from the optimal tax reform of the existing progressive tax

schedule are so large that they are supported by majority of agents despite their transitional

costs. Conesa and Krueger (2006) also find that a majority of the population would benefit

from their optimal tax reform. However, in their case the poor and rich benefit, while it is

the middle class (38%) who would be against the reform.

INSERT FIGURE 7 ABOUT HERE

26Of course, it is not the optimal transition to the optimal tax schedule steady state. An optimal reform
would implement a time-specific optimal tax schedule at each period of the transition
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Finally, Figure 7 shows the efficiency and distributional individual gains from transi-

tion.27 Relative to the steady state analysis, the averages for the progressive steady state

reform decline: while the average welfare and efficiency gains remain still positive the distri-

butional loss reaches negative 7%. A reform from the flat rate steady state delivers average

welfare and efficiency losses but improves the distribution. Note that due to sizeable gen-

eral equilibrium effects, the functions for poor agents are still positive and monotonically

declining.

8 Conclusions

Quah (2003) shows that average levels are of the first order importance for economic

growth and welfare, much more important than inequality. Government policies focusing

on aggregate levels, including obviously optimal fiscal policy and taxation, are essential.

However, it is the distribution of agents that delivers these aggregate levels. This paper

shows that it is crucial to think of policies that target the distribution of agents. Only in

this way the high aggregate levels and welfare improvements can be achieved.

To our knowledge, this paper is the first one that provides a solution method for such

optimal government policies in heterogeneous agent economies. We think of these policies

as optimal because they take into account their effects on the distribution of agents. As

an example, we find the optimal tax schedule for a steady state Ramsey problem in an

economy with heterogeneous agents. The optimal tax schedule is U-shaped, it increases

all aggregate levels by providing the right incentives for the agents to accumulate high

aggregate levels but not at the cost of increased inequality. Welfare gain in the steady

state is large: it is positive for both mean and median agent as well as in a transition

following an unanticipated optimal tax reform of the progressive tax schedule steady state.

The approach developed in this paper can be applied to any optimal government policy.

Within the field of optimal taxation, in our future research we plan to study the optimal tax

schedule with elastic labor supply and realistic life-cycle income profiles. An endogenous

labor-leisure decision might affect the shape of the optimal tax schedule, the aggregate

labor supply and the distribution of labor hours. We would also like to explore different

(Rawlsian) welfare functions. Another topic that has received a lot of attention is the

optimal capital taxation in models with heterogeneous agents (see Aiyagari (1995) for the

initial contribution). Finally, we plan to use this methodology to analyze optimal dynamic

taxation.

27These gains are defined in the same way as in the steady state. A gain from transition is a constant,
per-period percentage of consumption in the original steady state that equalizes its corresponding expected
present discounted value from the whole transition. For details, see in Domeij and Heathcote (2004).
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A Appendix: Analysis of the Borrowing Constrained

Agents

In general, for all z ∈ Z there exists a current minimal accumulated asset level k(z)
above which agents are not borrowing constrained. For these agents, i.e. for those with
(k, z) ∈ [k, k(z)) × Z and the next period savings k+ equal to k, the Euler equation is
satisfied in the form of inequality

u′(c) > β
∑
z+

u′(c+)
[
1 + y+

k
− (π(x+) + π′(x+)x+

)
x+

k

]
Q(z, z+),

where

c = (1 − π(x))x+ k − k,

c+ = (1 − π(x+) )x+ + k − h(z+, k;K,π, π′),

y+

k
= r (K) ,

x+ = x(z+, k;K)),

x+
k = xk(z

+, k;K))

implying h = k.
Taking this into account we can define the extended Euler equation operator,

F̃(h) ≡
{ F(h) for (z, k) ∈ Z × [k(z), k(z)],
h for (z, k) ∈ Z × [k, k(z)),

and thus the operator equation in the form F̃(h̃) = 0 determines the savings function with

the segment of constrained savings, h̃.
For the sake of brevity we present here only the effect of the borrowing constrained

agents at the lowest shock, z, with the next period capital k. The stationarity of the
distribution functions implies

λ(z+, k) =

∫ k(z)

k

λ(z, k)Q(z, z+) dk +
∑
z �=z

λ(z, h−1(z, k+;K,π, π′))Q(z, z+),

where λ(z+, k) is the mass of agents with the next period capital k and the next-period

shock z+. Let us note such amended distribution function by λ̃.
Clearly, it means that the amended distribution function has a discontinuity at λ̃(·, k)

in the sense that

λ̃(z, k) > lim
k↓k

λ̃(z, k),

for all z ∈ Z. However, since we assume here that functions are integrable in the Lebesgue
sense, it follows that ∫ k(z)

k

λ̃(z, k)dk =

∫ k(z)

k

λ(z, k)dk,

for any z ∈ Z and the distribution functions λ̃ and λ are equivalent. So we can simply
consider only the distribution function λ given by L in (12) and h given by (11).
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B Appendix: Proofs

B.1 Proof of Theorem 1

For the first order conditions for the Ramsey problem in (18)-(19) we define

J (ε) =

∫ x(z)

x(z)−εδx

{
W
[
z, x; K̃, π̃ (x) , π̃′ (x)

]
+ μG

[
z, x; K̃, π̃ (x) , π̃′ (x)

]}
dx

+
∑

z∈Z\{z,z}

∫ x(z)

x(z)

{
W
[
z, x; K̃, π̃ (x) , π̃′ (x)

]
+ μG

[
z, x; K̃, π̃ (x) , π̃′ (x)

]}
dx

+

∫ x(z)+εδx

x(z)

{
W
[
z, x; K̃, π̃ (x) , π̃′ (x)

]
+ μG

[
z, x; K̃, π̃ (x) , π̃′ (x)

]}
dx,

where

π̃ (x) ≡ π∗ (x) + εδπ (x) ,

π̃′ (x) ≡ π∗′ (x) + εδπ′ (x) ,

K̃ ≡ K∗ + εδK.

The dependence of the bounds on the value of shocks z ∈ Z makes our problem a little
harder than the standard calculus of variation problem. However, as Theorem 1 states we
construct the variations (the perturbation of functions from the optimum) being zero at
all (interior) bounds – see Figure 8. Therefore, only the values of the government policy
at the boundaries of the maximal interval, π(x(z)) and π(x(z)), are free while all other
interior bounds are fixed. Then the condition

J ′ (0) = lim
ε→0

dJ (ε)

dε
= 0

gives us the first-order conditions.

J ′ (0) =
∑
z∈Z

∫ x(z)

x(z)

{{Wπ [z, x;K∗, π∗ (x) , π∗′ (x)] + μGπ [z, x;K∗, π∗ (x) , π∗′ (x)]} δπ (x)

+ {Wπ′ [z, x;K∗, π∗ (x) , π∗′ (x)] + μGπ′ [z, x;K∗, π∗ (x) , π∗′ (x)]} δπ′ (x)

+ {WK [z, x;K∗, π∗ (x) , π∗′ (x)] + μGK [z, x;K∗, π∗ (x) , π∗′ (x)]} δK} dx
− {W [z, x;K∗, π∗ (x) , π∗′ (x)] |x(z) + μG [z, x;K∗, π∗ (x) , π∗′ (x)] |x(z)

}
(−δx)

+
{W [z, x;K∗, π∗ (x) , π∗′ (x)] |x(z) + μG [z, x;K∗, π∗ (x) , π∗′ (x)] |x(z)

}
δx,

where the last two lines come from the fact that the lower and upper bounds are free.

INSERT FIGURE 8 ABOUT HERE

Using the following notation

W (z, x) ≡ W [z, x;K∗, π∗ (x) , π∗′ (x)]
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and
L (z, x) ≡ W (z, x) + μG (z, x) ,

integration by parts delivers∫ x(z)

x(z)

Lπ′ (z, x) δπ′ (x) dx = [Lπ′ (z, x) δπ (x)]
x(z)
x(z) −

∫ x(z)

x(z)

d

dx
Lπ′ (z, x) δπ (x) dx.

Thus we can rewrite the formula above in a more compact form as

J ′ (0) =
∑
z∈Z

∫ x(z)

x(z)

{[
Lπ (z, x) − d

dx
Lπ′ (z, x)

]
δπ (x) + LK (z, x) δK

}
dx (33)

+ [Lπ′ (z, x) δπ (x)]
x(z)
x(z) − L (z, x) |x(z) (−δx) + L (z, x) |x(z)δx.

At the free upper bound, the variation at the end-value of the policy function, δπ, can be
expressed as

δπ ≡ π (x+ δx) − π∗ (x) = π (x) + π∗′ (x) δx− π∗ (x) ,

and
δπ (x) = π (x) − π∗′ (x) δx.

This implies that
δπ (x) = δπ − π∗′ (x) δx, (34)

i.e. the variance of the policy function at the upper bound can be expressed as a function
of the variance at the end-value of policy function, δπ, and the variance at the end-value
of the taxable activity value, δx.

We can similarly specify the variation of the start-value of the policy function,

δπ (x) = −δπ + π∗′ (x) δx. (35)

The situation is more complicated at the equality constrained endpoint x (z), because
the upper bound for capital, k, is implicitly given by the saving function, k = h

(
z, k;K,π

)
.

The total variance differential is

δk
[
hk

(
z, k;K,π

)− 1
]
+ hK

(
z, k;K,π

)
δK + hπ

(
z, k;K,π

)
δπ = 0

and thus

δk =
[
1 − hk

(
z, k;K,π

)]−1 [
hK

(
z, k;K,π

)
δK + hπ

(
z, k;K, π

)
δπ
]
. (36)

As x = x
[
z, k (z;K,π) ;K

]
, we determine the variation

δx = xk

[
z, k (z;K,π) ;K

]
δk + xK

[
z, k (z;K,π) ;K

]
δK,

where we can further substitute for δk from (36)

δx =
{
xk

(
z, k;K

)
ωK + xK

(
z, k;K

)}
δK + xk

(
z, k;K

)
ωπδπ, (37)
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where

ωK ≡ δk

δK
=

hK

(
z, k;K,π

)
1 − hk

(
z, k;K,π

) ,
ωπ ≡ δk

δπ
=

hπ

(
z, k;K,π

)
1 − hk

(
z, k;K,π

) .
Going back to (33) and using (34) and (35) we obtain

J ′ (0) =
∑
z∈Z

∫ x(z)

x(z)

{[
Lπ (z, x) − d

dx
Lπ′ (z, x)

]
δπ (x) + LK (z, x) δK

}
dx (38)

+ Lπ′ (z, x) |x(z)δπ − [π′ (x)Lπ′ (z, x) − L (z, x)]x(z) δx

+ Lπ′ (z, x) |x(z)δπ − [π′ (x)Lπ′ (z, x) − L (z, x)]x(z) δx.

Since the upper bound is equality constrained, δx is not independent and we need to
use (37) to obtain

J ′ (0) =
∑
z∈Z

∫ x(z)

x(z)

{[
Lπ (z, x) − d

dx
Lπ′ (z, x)

]
δπ (x) + LK (z, x) δK

}
dx (39)

+ Lπ′ (z, x) |x(z)δπ + [L (z, x) − π′ (x)Lπ′ (z, x)]x(z) xKδK

+ Lπ′ (z, x) |x(z)δπ + [L (z, x) − π′ (x)Lπ′ (z, x)]x(z) {(xK + xkωK) δK + xkωπδπ} .
For the variation of the aggregate capital δK we use equation (17)

δK =
∑
z∈Z

∫ x(z)

x(z)

{Kπ (z, x) δπ (x) + Kπ′ (z, x) δπ′ (x) + KK (z, x) δK} dx

− K (z, x) |x(z) (−δx) + K (z, x) |x(z)δx,

again using integration by parts and the conditions for the free boundary points,

δK =
∑
z∈Z

∫ x(z)

x(z)

{[
Kπ (z, x) − d

dx
Kπ′ (z, x)

]
δπ (x) + KK (z, x) δK

}
dx

+ Kπ′ (z, x) |x(z)δπ + [K (z, x) − π′ (x)Kπ′ (z, x)]x(z) xKδK

+ Kπ′ (z, x) |x(z)δπ + [K (z, x) − π′ (x)Kπ′ (z, x)]x(z) {(xK + xkωK) δK + xkωπδπ} .
The variation of the aggregate capital is

δK = ΨK

{∑
z∈Z

∫ x(z)

x(z)

{[
Kπ (z, x) − d

dx
Kπ′ (z, x)

]
δπ (x)

}
dx

+ Kπ′ (z, x) |x(z)δπ +
{
Kπ′ (z, x) |x(z) + [K (z, x) − π′ (x)Kπ′ (z, x)]x(z) xkωπ

}
δπ
}
,

where

Ψ−1
K ≡ 1 −

∑
z∈Z

∫ x(z)

x(z)

KK (z, x) dx− [K (z, x) − π′ (x)Kπ′ (z, x)]x(z) xK

− [K (z, x) − π′ (x)Kπ′ (z, x)]x(z) (xK + xkωK) .
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Substituting the formula for δK into (39) we get

δJ =
∑
z∈Z

∫ x(z)

x(z)

[
Lπ (z, x) + ΨKπ (z, x) − d

dx
(Lπ′ (z, x) + ΨKπ′ (z, x))

]
δπ (x) dx

+ [Lπ′ (z, x) + ΨKπ′ (z, x)] |x(z)δπ +
{
[Lπ′ (z, x) + ΨKπ′ (z, x)] |x(z)

+ [L (z, x) + ΨK (z, x) − π′ (x) (Lπ′ (z, x) + ΨKπ′ (z, x))]x(z) xkωπ

}
δπ,

with

Ψ ≡ δL

δK
= ΨK

{∑
z∈Z

∫ x(z)

x(z)

LK (z, x) dx+ [L (z, x) − π′ (x)Lπ′ (z, x)]x(z) xK

+ [L (z, x) − π′ (x)Lπ′ (z, x)]x(z) (xK + xkωK)
}
.

Now, in order to get FOCs we assign δJ = 0. Since the first term is zero for any δπ (x)
for all x, the following terms must be zero∑

z∈Z

[
Lπ (z, x) + ΨKπ (z, x) − d

dx
(Lπ′ (z, x) + ΨKπ′ (z, x))

]
= 0,

[Lπ′ (z, x) + ΨKπ′ (z, x)] |x(z) = 0,

[L (z, x) + ΨK (z, x)] |x(z) +

[
1

xkωπ

− π′ (x)
]

[Lπ′ (z, x) + ΨKπ′ (z, x)]x(z) = 0.

Note that [
δx

δπ

]−1

=
1

xkωK

.

If we denote the modified Lagrange function by L̃(z, x) ≡ L (z, x) + ΨK (z, x) , then
clearly the derived FOCs are those in (22)-(25). Q.E.D.

B.1.1 Definition of Terms in Theorem 1

Recall that according to (16)

W [z, x;K,π (x) , π′ (x)] = W [u (c (z, k(z, x;K);K,π, π′))] λ [z, k(z, x;K);K, π, π′] kx (z, x;K) ,

then

Wπ (z, x) δπ (x) = lim
ε→0

dW [z, x;K, π̃ (x) , π′ (x)]
dε

,

with

c(z, k(z, x;K);K, π̃, π′) = y(z, k(z, x;K);K) − π̃(x)x+ k(z, x;K) − h(z, k(z, x;K);K, π̃, π′),

y(z, k(z, x;K);K) = r (K) k(z, x;K) + w (K) z,

and π̃ (x) ≡ π (x) + εδπ (x) .
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To simplify notation we will omit the obvious arguments, writing c =
c (z, k(z, x;K)) , cπ = cπ (z, k(z, x;K)) , λ = λ (z, k(z, x;K)) and so on. Thus,

Wπ = {W ′ [u (c)]u′ (c) cπλ+W [u (c)]λπ} kx,

where cπ = −x− hπ, and the Frechet derivatives of the savings policy and the distribution
function, hπ and λπ, are given by Lemmas 1 and 2, respectively.

Similarly,

Wπ′ = {W ′ [u (c)]u′ (c) cπ′λ+W [u (c)]λπ′} kx, (40)

where cπ′ = −hπ′ , for the Frechet derivatives hπ′ and λπ′ . Finally, for hK and λK ,

WK = {W ′ [u (c)]u′ (c) cKλ+W [u (c)] [λK + λkkK ]} kx +W [u (c)]λkxK ,

where

rK = F11

(
K,L

)
,

wK = F21

(
K,L

)
,

cK = rKk + wKz + [1 + r − hk] kK − hK .

For the equation

d

dx
Wπ′ (z, x) = Wπ′π′ (z, x) π′′ (x) + Wπ′π (z, x) π′ (x) + Wπ′x (z, x) ,

we obtain, using W = W [u (c)], W ′ = W ′ [u (c)]u′ (c), and W ′′ = W ′′ [u (c)] [u′ (c)]2 +
W ′ [u (c)]u′′ (c),

Wπ′π′ (z, x) =
{
W ′′ [cπ′ ]2 λ+W ′ (cπ′π′λ+ 2cπ′λπ′) +Wλπ′π′

}
kx,

Wπ′π (z, x) = {W ′′cπ′cπλ+W ′ [cπ′πλ+ cπ′λπ + cπλπ′ ] +Wλπ′π} kx,

Wπ′x (z, x) = {W ′′cπ′cxλ+W ′ [cπ′xλ+ cπ′λx + cxλπ′ ] +Wλπ′x} kx + {W ′cπ′λ+Wλπ′} kxx,

with cπ′π′ = −hπ′π′ , cπ′π = −hπ′π, cπ′x = −hπ′kkx(z, x), and λπ′x = λπ′kkx(z, x).
According to (17),

G [z, x;K,π (x) , π′ (x)] = [π(x)x− g y(z, k(z, x;K);K)] λ [z, k(z, x;K);K,π, π′] kx (z, x;K) ,

and therefore,

Gπ (z, x) = {xλ+ [π(x)x− g y]λπ} kx,

Gπ′ (z, x) = [π(x)x− g y]λπ′kx, (41)

GK (z, x) = {−g [rKk + rkK + wKz]λ+ [π(x)x− g y] [λK + λkkK ]} kx + [π(x)x− g y] λ kxK ,

and

d

dx
Gπ′ (z, x) = Gπ′π′ (z, x) π′′ (x) + Gπ′π (z, x) π′ (x) + Gπ′x (z, x) ,

Gπ′π′ (z, x) = {[π (x)x− gy]λπ′π′} kx,

Gπ′π (z, x) = {xλπ + [π (x) x− g]λπ′π} kx,

Gπ′x (z, x) = {[π (x)x− grkx]λπ′ + [π (x) x− gy]λπ′x} kx + [π (x) x− gy]λπ′kxx.
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Lastly, according to (17)

K [z, x;K,π (x) , π′ (x)] = k(z, x;K)λ [z, k(z, x;K);K,π, π′] kx (z, x;K) ,

and thus

Kπ (z, x) = kλπkx,

Kπ′ (z, x) = kλπ′kx, (42)

KK (z, x) = {kKλ+ k [λkkK + λK ]} kx + k λ kxK ,

and

d

dx
Kπ′ (z, x) = Kπ′π′ (z, x) π′′ (x) + Kπ′π (z, x) π′ (x) + Kπ′x (z, x) ,

Kπ′π′ (z, x) = kλπ′π′kx,

Kπ′π (z, x) = kλπ′πkx,

Kπ′x (z, x) =
{
k2

x + kkxx

}
λπ′ + kλπ′xkx.

B.2 Proof of Lemma 1

From equation (16) the Euler equation operator with the variation π̃ ≡ π + εδπ is

F(h, π) (z, k;K, π̃(x), π′(x)) ≡ u′(c (z, k;K, π̃, π′))

− β
∑
z+

u′
(
c+
(
z+, h (z, k;K, π̃, π′) ;K, π̃, π′))R+

(
z+, h (z, k;K, π̃, π′) ;K, π̃, π′)Q(z, z+),

and

Fπ (z, k) δπ = lim
ε→0

dF [z, k;K, π̃ (x) , π′ (x)]
dε

,

Using abbreviated notation x = x(z, k), c = c(z, k), h = h(z, k), h+ = h(z+, h), x+ =
x(z+, h), y+ = y(z+, h), π+ = π(z+, h), c+ = c+ (z, z+, k), and R+ = R+ (z, z+, k),

Fπ (z, k) = u′′ (c) cπ − β
∑
z+

{
u′′
(
c+
)
c+πR

+ + u′(c+)R+
π

}
Q(z, z+) = 0,

where

c = y − π̃(x)x+ k − h,

y = rk + wz,

c+ = y+ − π̃(x+)x+ + h− h+,

R+ = 1 + y+
k − [π̃ (x+

)
+ π′ (x+

)
x+
]
x+

k .

Terms for Fπ above and in equation (26) are

cπ = −x− hπ,

c+π =
[
1 + r − h+

k − [π′+x+ + π+
]
x+

k

]
hπ − h+

π − x+,

R+
π = rhkπ − [1 +

[
2π′ (x+

)
+ π′′ (x+

)
x+
]
x+

k hπ

]
x+

k − [π′+x+ + π+
]
x+

kkhπ.
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For

Fπ′ (z, k) = u′′ (c) cπ′ − β
∑
z+

{
u′′
(
c+
)
c+π′R

+ + u′
(
c+
)
R+

π′
}
Q(z, z+) = 0,

we use terms

cπ′ = −hπ′ ,

c+π′ =
{
1 + r − h+

k − [π′+x+ π+
]
x+

k

}
hπ′ − h+

π′ ,

R+
π′ = rhkπ′ − {x+ +

[
2π′ (x+

)
+ π′′ (x+

)
x+
]
x+

k hπ′
}
x+

k − [π′+x+ + π+
]
x+

kkhπ′ .

For

FK (z, k) = u′′(c)cK − β
∑
z+

{
u′′
(
c+
)
c+KR

+ + u′
(
c+
)
R+

K

}
Q(z, z+) = 0,

the terms are, as well as for equation (28),

cK = rKk + wKz − [π′(x)x+ π (x)]xK − hK ,

c+K = rKh+ wKz
+ − [π′+x+ + π+

] [
x+

K + x+
k hK

]− h+
K ,

R+
K = rKhk + rhkK − [2π′ (x+

)
+ π′′ (x+

)
x+
]
x+

k

[
x+

K + x+
k hK

]− [π′+x+ + π+
] [
x+

kK + x+
kkhK

]
.

For

Fπ′π′ (z, k) = u′′′ (c) c2π′ + u′′ (c) cπ′π′

−β
∑
z+

{[
u′′′
(
c+
) [
c+π′
]2

+ u′′
(
c+
)
c+π′π′

]
R+ + 2u′′

(
c+
)
c+π′R

+
π′ + u′

(
c+
)
R+

π′π′

}
Q(z, z+) = 0,

we use, as well in equation (27), the terms

cπ′π′ = −hπ′π′ ,

c+π′π′ =
[
1 + r − (h+

kπ′ + h+
kkhπ′

)]
hπ′ +

(
1 + r − h+

k

)
hπ′π′ − (h+

π′khπ′ + h+
π′π′
)

− [
x+ +

(
π′′ (x+

)
x+ + 2π′ (x+

))
x+

k hπ′
]
x+

k hπ′

− [
π′ (x+

)
x+ + π

(
x+
)] (

x+
kk (hπ′)2 + x+

k hπ′π′
)
,

R+
π′π′ = rhkπ′π′ −

[
3
(
x+

k

)2
+ x+x+

kk

]
hπ′ − [3π′′ (x+

)
+ π′′′ (x+

)
x+
] (
x+

k

)3
(hπ′)2

− [
2π′ (x+

)
+ π′′ (x+

)
x+
] [

3x+
k x

+
kk (hπ′)2 +

(
x+

k

)2
hπ′π′

]
− [

π′ (x+
)
x+ + π

(
x+
)] [

x+
kkk (hπ′)2 + x+

kkhπ′π′
]
.

Finally,

Fπ′π (z, k) = u′′′ (c) cπ′cπ + u′′ (c) cπ′π − β
∑
z+

{[
u′′′
(
c+
)
c+π′c

+
π + u′′

(
c+
)
c+π′π

]
R+

+ u′′
(
c+
) [
c+π′R

+
π + c+πR

+
π′
]
+ u′

(
c+
)
R+

π′π

}
Q(z, z+) = 0.
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Terms for Fπ′π′ above and in equation (27) are

cπ′π = −hπ′π,

c+π′π′ = − (h+
kπ + h+

kkhπ

)
hπ′ +

(
1 + r − h+

k

)
hπ′π − (h+

π′khπ + h+
π′π

)
− [

1 +
(
π′′ (x+

)
x+ + 2π′ (x+

))
x+

k hπ

]
x+

k hπ′

− [
π′ (x+

)
x+ + π

(
x+
)] (

x+
kkhπ′hπ + x+

k hπ′π
)
,

R+
π′π′ = rhkπ′π −

[(
x+

k

)2
+ x+x+

kk

]
hπ − [3π′′ (x+

)
+ π′′′ (x+

)
x+
] (
x+

k

)3
hπ′hπ

− [
2π′ (x+

)
+ π′′ (x+

)
x+
] [

3x+
k x

+
kkhπ′hπ +

(
x+

k

)2
hπ′π

]
− [

π′ (x+
)
x+ + π

(
x+
)] [

x+
kkkhπ′hπ + x+

kkhπ′π
]
.

Q.E.D.

B.3 Proof of Lemma 2

Using equation (16), the stationary distribution operator is

L(h, λ, π) ≡ λ(z+, k+;K,π, π′) −
∑

z

λ[z, h−1(z, k+;K,π, π′);K,π, π′]Q(z, z+),

and so

Lπ

(
z+, k+

)
δπ = lim

ε→0

dL [z+, k+;K, π̃ (x) , π′ (x)]
dε

,

with π̃ ≡ π + εδπ. Therefore, abbreviating for (K,π, π′),

Lπ

(
z+, k+

)
= λπ

(
z+, k+

)−∑
z

[
λπ

(
z, h−1

(
z, k+

))
+ λk

(
z, h−1

(
z, k+

))
h−1

π

(
z, k+

)]
= 0

with h−1
π (z, k+) = hπ (z, h−1(z, k+)) /hk (z, h−1(z, k+)) .

Similarly, we can derive the total F-derivative of the Euler equation operator with
respect to the derivative of government policy function,

Lπ′
(
z+, k+

)
= λπ′

(
z+, k+

)−∑
z

[
λπ′
(
z, h−1

(
z, k+

))
+ λk

(
z, h−1

(
z, k+

))
h−1

π′
(
z, k+

)]
= 0

with h−1
π′ (z, k+) = hπ′ (z, h−1(z, k+)) /hk (z, h−1(z, k+)) , and

LK

(
z+, k+

)
= λK

(
z+, k+

)−∑
z

[
λK

(
z, h−1

(
z, k+

))
+ λk

(
z, h−1

(
z, k+

))
h−1

K

(
z, k+

)]
= 0,

with h−1
K (z, k+) = hK (z, h−1(z, k+)) /hk (z, h−1(z, k+)) .

Further, we can derive the following total F-derivative of the Euler equation operator

Lπ′π′
(
z+, k+

)
= λπ′π′

(
z+, k+

)−∑
z

{
λπ′π′

(
z, h−1

(
z, k+

))
+ λπ′k

(
z, h−1

(
z, k+

))
h−1

π′
(
z, k+

)
+

[
λπ′k

(
z, h−1

(
z, k+

))
+ λkk

(
z, h−1

(
z, k+

))] [
h−1

π′
(
z, k+

)]2
+ λk

(
z, h−1

(
z, k+

))
h−1

π′π′
(
z, k+

)}
= 0
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where h−1
π′π′(z, k+) = hπ′π′ (z, h−1(z, k+)) /hkk (z, h−1(z, k+)) .

Finally,

Lπ′π
(
z+, k+

)
= λπ′π

(
z+, k+

)−∑
z

{
λπ′π

(
z, h−1

(
z, k+

))
+ λπ′k

(
z, h−1

(
z, k+

))
h−1

π

(
z, k+

)
+

[
λπk

(
z, h−1

(
z, k+

))
+ λkk

(
z, h−1

(
z, k+

))] [
h−1

π

(
z, k+

)]2
+ λk

(
z, h−1

(
z, k+

))
h−1

π′π

(
z, k+

)}
= 0

where h−1
π′π(z, k+) = hπ′π (z, h−1(z, k+))hkk (z, h−1(z, k+)) .

Q.E.D.

B.4 Proof of Proposition 1

Using the definition for L̃ in equation (21), the boundary first-order condition in (24) can
be expressed as

L̃π′ (z, x(z)) = Wπ′ (z, x(z)) + μGπ′ (z, x(z)) + ΨKπ′ (z, x(z)) = 0.

The term Wπ′ in (40) evaluated at (z, x(z)) gives

Wπ′ (z, x(z)) = {W ′ [u (c (z, k))]u′ (c (z, k)) cπ′ (z, k)λ (z, k) (43)

+ W [u (c (z, k))]λπ′ (z, k)} kx (z, x(z)) .

From cπ′ = −hπ′ it follows that

cπ′ (z, k) = −hπ′ (z, k) = 0,

since the ‘variation’ of the savings policy function related to the lowest shock, h (z, ·), with
respect to the slope of the government policy function, hπ′ , at (z, k) is clearly zero. Note
that the saving function of the borrowing-constrained agents is flat and equal to zero. It
implies that the first term in (43) is also equal to zero. Using Gπ′ , and Kπ′ from (41) and
(42), respectively, we get

W [u (c (z, k))] + μ [π(x(z))x(z) − g y (z, k)] + Ψk = 0,

where we used the fact that both λπ′ (z, k) and kx (z, x(z)) are non-zero. The result of the
Proposition follows. Q.E.D.

B.5 Proof of Proposition 2

We see that terms L̃ and L̃π′ appear in the boundary first-order condition in (23). Using

the definition of L̃ in (21), we get

L̃ (z, x(z)) =
{
W
[
u
(
c
(
z, k
))]

+ μ
[
π(x(z))x(z) − g y

(
z, k
)]

+ Ψk
}
λ
(
z, k
)

= 0,
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where we have used (20), (17), and (17) for W , G, and K, respectively, and also the fact that
at the upper endogenous limit on capital, k, λ

(
z, k
)

= 0. Thus the first-order boundary
condition (23) becomes (

π′(x(z)) − kx(z, x(z))

ωπ(z, x(z))

)
L̃π′(z, x(z)) = 0.

If we assume that π′(x(z)) − kx(z,x(z))
ωπ(z,x(z))

> 0, then the condition above is satisfied if the

second term L̃π′(z, x(z) is equal to zero. By the inspection of Wπ′ in (40) we see that since
λ
(
z, k
)

= 0 then again the first term in (40) is zero and

W
[
u
(
c
(
z, k
))]

+ μ
[
π(x(z))x(z) − g y

(
z, k
)]

+ Ψk = 0,

where we again used the fact that both λπ′
(
z, k
)

and kx (z, x(z)) are non-zero. This implies
the result of the Proposition. Q.E.D.

B.6 Proof of Theorem 2

We need to show that the first order approach to each agent’s maximization problem
is valid. First, agents maximize over a quasi-convex set: Ψ = {x ∈ B : 0 ≤ x ≤
ψ(k, z) for all (k, z) ∈ B × Z}. If the function ψ is increasing and quasi-concave, then
the set Ψ is quasi-convex. Further, we need to satisfy Assumptions 18.1 in Stokey, Lucas,
and Prescott (1989), particularly that (i) β ∈ (0, 1); (ii) utility function u : R+ → R is
twice continuously differentiable, strictly increasing and strictly concave function; (iii) for
some k̄(z) > 0, ψ(k, z)−k is strictly positive on [0, k̄(z)) and strictly negative for k > k̄(z),
where the value k̄, the maximum sustainable capital stock out of after-tax income for any
agent, is defined as k̄ = max{k̄(z1), . . . , k̄(zJ)}; and, (iv) given the tax-schedule function
the right-hand side of the Euler equation is strictly positive

β
∑
z+

u′(ψ(k+(k, z), z+) − k+(k+(k, z), z+))ψ1(k
+(k, z), z+)Q(z, z+) > 0,

where

ψ1(k
+(k, z), z+)Q(z, z+) =

(
1 − τ(y(k+(k, z), z+)) − τ ′(y(k+(k, z), z+)) y(k+(k, z), z+)

)
r+1.

It can be easily checked that the assumptions (i)-(iii) are satisfied from our previous
assumptions and the model. The assumption (iv) follows directly from the fact that ψ is
increasing in k, i.e. ψ1 > 0.

The other assumptions needed for proving the existence of a stationary recursive com-
petitive equilibrium (see Assumption 18.2 in Stokey, Lucas, and Prescott (1989)) are sat-
isfied : (i) the equilibrium marginal return on capital for any k ∈ B is finite (in our case
the interest rate r); and (ii) that limc→0 u

′(c) = ∞.
Then to prove the Schauder’s Theorem, let C(B,Z) be the set of continuous bounded

functions h : B × Z → B and define a subset F = {h ∈ C(B,Z)} where the function h
satisfies 0 ≤ h(k, z) ≤ ψ(k, z), all (k, z) ∈ B×Z, and h and ψ−h are nondecreasing. Note
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that B × Z is a bounded subset of R
2 and that the family of functions F is nonempty,

closed, bounded, and convex. Define an operator T on F

u′(ψ(k, z) − (Th)(k, z)) = β
∑
z+

u′(ψ((Th)(k, z), z+) − h[(Th)(k, z), z+])

· [(1 − τ(y(·)) − τ ′(y(·))y(·)) r + 1]Q(z, z+),

where y(·) = y((Th)(k, z), z+).
Then it is easy to prove that T is well defined, continuous and that T : F → F . From the

conditions on function h and finite return on capital, it follows that F is an equicontinuous
family. That the operator T has a fixed point in F follows from the Schauder’s Theorem
(see e.g. Theorem 17.4 in Stokey, Lucas, and Prescott (1989)).

The existence of the stationary recursive competitive equilibrium is standard from the
monotonicity, Feller and mixing property of Q and the non-decreasing policy functions (see
Chapter 12 in Stokey, Lucas, and Prescott (1989)). Q.E.D.

C Terms for the Example

The terms from Theorem 1 for Example are those in B.1.1 together with

y(z, k(z, x;K)) = x,

kx(z, x;K) =
1

r (K)
,

kK (z, x;K) = −wK (K) zr (K) + [x− w (K) z] rK (K)

[r (K)]2
,

and

kxK(z, x;K) = − rK

[r (K)]2
.

D Appendix: The Least Squares Projection Method

The optimal income tax policy, π, is a solution of the following system of operator equations:

1. FOC for π given by the Euler-Lagrange condition in (22);

2. the Euler equation (11) capturing the individual optimal behavior h;

3. five operator equations (26)-(30) for F-derivatives of h based on the Euler equation,
hπ, hπ′ , hK , hπ′π′ , and hπ′π;

4. the operator equation for distribution function, λ, in (12); and

5. five operator equations (31)-(32) for F-derivatives of λ based on the operator equation
for distribution function: λπ, λπ′ , λK , λπ′π′ , and λπ′π.
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In order to solve the problem numerically, we first approximate all the unknown func-
tions by combinations of polynomials from a polynomial base. Approximated solutions are
specified by unknown parameters transforming the original infinitely dimensional problem
into a finite dimensional one. After substituting the approximated functions into the orig-
inal operator equations we construct the residual equations. Ideally, the residual functions
should be uniformly equal to zero. In practical situations, however, this is not achiev-
able and we limit the problem to a finite number of conditions, the so called projections,
whose satisfaction guarantees a reasonably good approximation. There are many possibil-
ities how to define the projections.28 We have chosen the least squares projection method
for its good convergence properties and advantage in solving systems of nonlinear operator
equations. We search for parameters approximating the functional equations that minimize
the squared residual functions.

As we specified above, in the system of operator equations given by (11),
(12), (22), (26)-(30), and (31)-(32), there are thirteen unknown classes of func-
tions {π, h, hπ, hπ′ , hK , hπ′π′ , hπ′π, λ, λπ, λπ′ , λK , λπ′π′ , λπ′π}. Since we assume that
the shocks are discrete, z ∈ Z = {z1, z2, . . . , zJ} and J > 1, we define
the following family of policy and distribution functions, and their derivatives
{hi(k), λi(k), hi

π(k), hi
π′(k), hi

K(k), hi
π′π′(k), hi

π′π(k), λi
π(k), λi

π′(k), λi
K(k), λi

π′π′(k), λi
π′π(k)}J

i=1,
for each shock value z1, z2, . . . , zJ . We interpret the policy function hi as the next-period
capital function of an agent who was hit by a shock level zi. Analogously, the distribution
function λi is the distribution of agents with the shock zi, etc. Similarly, we assign the
Euler and distribution function operators to every shock level, F i and Li, respectively.
We approximate all unknown functions by the orthogonal Chebyshev polynomial base
{Ti(x)}∞i=0 defined for x ∈ [−1, 1].

As we have to define our approximation on a finite interval, we set the highest capital

level to a value k̂, greater than the endogenous upper bound on the stationary distribu-

tion. Let the interval of approximation be [k, k̂] and the degrees of approximation for
{hi(k), hi

π(k), hi
π′(k), hi

K(k), hi
π′π′(k), hi

π′π(k), λi(k), λi
π(k), λi

π′(k), λi
K(k), λi

π′π′(k), λi
π′π(k)}

be M,Mπ,Mπ′ ,MK ,Mπ′π′ ,Mπ′π, N,Nπ, Nπ′ , NK , Nπ′π′ , Nπ′π, P ≥ 2, respectively.29

Thus, we obtain

ĥi
m(k; ai

m) ≡
Mm∑
j=1

ai
m,jφj(k),

λ̂i
m(k; bim) ≡

Nm∑
j=1

bim,jφj(k),

28For an excellent survey and description of these methods see Chapter 11 in Judd (1998).
29The details on Chebyshev polynomials can be found in Judd (1992), Judd (1998) or in any book on

numerical mathematics. The linear transformation ξ : [k, k] → [−1, 1] is necessary if we want to use the
Chebyshev polynomials on the proper domain. It is straightforward to show that ξ(k) = 2(k−k)/(k−k)−1.
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with i ∈ {1, 2, ..., J} and m ∈ {∅, π, π′, K, π′π′, π′π}, and

π̂(x; c) ≡
P∑

j=1

cjφj(x),

for any k ∈ [k, k] and x ∈ [rk + wz, rk + wz], where φj(k) ≡ Tj−1(ξ(k)), and a’s, b’s, and
c’s are the unknown parameters.

Now we have to define residual functions as approximations to the original operator
functions (11), (12), (22), (26)-(30), and (31)-(32). Substituting the above approximations
for the unknown functions,

RL̃(x;p) =
∑
zj

[
L̃π

(
ĥ, Λ̂, π̂

)
+

d

dx
L̃′

π

(
ĥ, Λ̂, π̂

)]
, (44)

RF i

m (k;p) = F i
m(ĥ, π̂), (45)

RLi

m (k;p) = Li
m(ĥ, Λ̂, π̂), (46)

with i = 1, . . . , J and m ∈ {∅, π, π′, K, π′π′, π′π} where

p ≡ (a, aπ, aπ′ , aK , aπ′π′ , aπ′π,b,bπ,bπ′ ,bK ,bπ′π′ ,bπ′π, c),

am ≡ (a1
m, a

2
m, ..., a

J
m),

bm ≡ (b1m, b
2
m, ..., b

J
m),

and p is of a size S = J × (
∑

m(Mm +Nm)) + P ,

ĥ ≡ (ĥ, ĥπ, ĥπ′ , ĥK , ĥπ′π′ , ĥπ′π),

ĥm ≡ (ĥ1
m, ..., ĥ

J
m),

Λ̂ ≡ (λ̂, λ̂π, λ̂π′ , λ̂K , λ̂π′π′ , λ̂π′π),

λ̂m ≡ (λ̂1
m, ..., λ̂

J
m),

for any i = 1, . . . , J .
The least squares projection method searches for a vector of parameters p that mini-

mizes the sum of weighted residuals,

J∑
i=1

∫ k̂

k

{∑
m

(
[RF i

m (k;p)]2 + [RLi

m (k;p)]2
)}

w(k)dk +

∫ k̂

k

[RL̃(x(k);p)]2w(k)dk,

with the weighting function given by w(k) ≡
(

1 −
(

2k−k

k̂−k

)2
)−1/2

and i = 1, . . . , J . After

approximating the integrals by the Gauss-Chebyshev quadrature, we obtain a minimization
problem

min
p∈RS

∑
ǩ

{
J∑

i=1

∑
m

(
[RF i

m (k;p)]2 + [RLi

m (k;p)]2
)

+ [RL̃(x(k);p)]2

}
, (47)
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with ǩ’s being the zeros of the polynomial φ of a degree greater
than the biggest degree of the polynomial approximations, i.e.
max{M,Mπ,Mπ′ ,MK ,Mπ′π′ ,Mπ′π, N,Nπ, Nπ′ , NK , Nπ′π′ , Nπ′π, P}.

Since the least squares projection method sets up an optimization problem we can use
standard methods of numerical optimization, e.g. the Gauss-Newton or the Levenberg-
Marquardt methods. Again, the discussion of these methods is not the aim of our paper.
However, we found that these traditional methods did not work in our high-dimensional
problem mainly due to possible multiple local solutions. We tried several other methods
(simulated annealing or genetic algorithm with quantization, for example) and finally suc-
ceeded with a genetic algorithm with multiple populations and local search. The used
degrees of polynomial approximation for the optimal individual policy functions h, distri-
bution functions, λ, the related sensitivity functions hπ, λπ, and the optimal government
policy function, π, where 4, 12, 3, 3, and 4, respectively. The residuals of the related
functional equations were of the order 10−3 or 10−4 with the exception of hπ which was of
the order 10−2.
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Steady State Results

Tax Schedule

Average Progressive Flat Tax Optimal

Capital 2.54 3.29 3.80

Output 1.40 1.54 1.62

Consumption 0.86 0.90 0.91

Median Wealth 2.45 2.55 3.60

Median/Mean Wealth Ratio 0.97 0.77 0.95

Interest Rate (%) 9.87 6.77 5.33

Wage 0.894 0.983 1.035

Gini Total Income 0.22 0.31 0.27

Gini Total After Tax Income 0.21 0.32 0.28

Constrained agents (%) 1.16 1.88 1.42

Steady State Welfare Gains from the Optimal Tax Schedule

Welfare Gain (%) 4.39 0.84 —

Efficiency Gain (%) 5.67 1.27 —

Distributional Gain (%) –0.57 2.86 —

Notes: Wealth in terms of accumulated capital stock. Constrained
agents is a fraction of agents whose wealth equals the exogenous lower
bound on capital. Welfare measured as consumption level corresponding
to the average utility. Average Welfare Gain measured as percentage of
the average consumption each agent would have to receive in the pro-
gressive and the flat-rate tax steady state so that the average welfare
equals that in the optimal tax steady state. Average Efficiency and
Distributional Gains defined in the text.

Table 1: Steady State Results.



Steady State Distribution of Resources

Quintile

Tax Schedule 1st 2nd 3rd 4th 5th

Average Consumption Level

Optimal 0.6673 0.8272 0.9171 1.0076 1.1489

Flat 0.6990 0.8189 0.8904 0.9685 1.1213

Progressive 0.7120 0.8113 0.8642 0.9237 1.0148

Average Asset Level

Optimal 0.9166 2.4051 3.6545 4.9934 7.0381

Flat 0.6336 1.7708 2.8488 4.1933 6.9921

Progressive 0.7705 1.8195 2.5666 3.2509 4.2725

Average Investment/Income Ratio

Optimal 0.1222 0.2148 0.2935 0.3692 0.4643

Flat 0.0869 0.1630 0.2363 0.3197 0.4624

Progressive 0.1058 0.1774 0.2252 0.2592 0.2964

Average Income Level

Optimal 1.0141 1.1520 1.2353 1.3221 1.4620

Flat 0.9644 1.1009 1.1881 1.2883 1.4884

Progressive 0.9158 1.0565 1.1410 1.2337 1.3739

Average After-Tax Income Level

Optimal 0.6996 0.8341 0.9142 0.9964 1.1240

Flat 0.7194 0.8213 0.8863 0.9611 1.1103

Progressive 0.7319 0.8168 0.8644 0.9184 0.9948

Average Tax Contribution Share

Optimal 0.1944 0.1957 0.1995 0.2014 0.2090

Flat 0.1588 0.1824 0.1982 0.2133 0.2473

Progressive 0.1311 0.1702 0.1988 0.2258 0.2741

Table 2: Distribution of Resources in Steady States.



Tax Reform

Transition to the Optimal Tax Schedule Steady State

Transition From Steady State

Progressive Flat Tax

Average

Welfare Gain (%) 3.44 –1.81

Efficiency Gain (%) 4.14 –1.35

Distributional Gain (%) –7.29 3.25

Median

Welfare Gain (%) 3.86 –1.97

Political Support

% of Population 72.9 33.2

Notes: Average Welfare Gain from transition is a percentage of the av-
erage consumption each agent would have to receive in each period of
transition so that the average welfare from transition equals in expected
present discounted value that of the initial steady state. Average Effi-
ciency and Distributional Gains from transition defined in the text.

Table 3: Transition to the Optimal Tax Schedule Steady
State.
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Figure 1: Policy functions for the next period capital stock. An example with two pro-

ductivity shocks z > z. There is an exogenous lower bound kL and an endogenous upper

bound k∗ < kH . The stationary distribution has a unique ergodic set E = [kL, k
∗]. Agents

with shock z and capital stock k < k(z) are borrowing constrained.
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