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Abstract: 
We present a yield curve model based on principal component 
analysis and nonlinear stochastic differential equations. The model is 
applied everywhere where quantification of interest rate dynamics is 
needed, i.e. in the Monte Carlo risk management of interest rate 
instruments or in the evaluation of profitability and risk of interest rate 
derivatives and different business strategies. Applying presented 
model, we are also able to price the interest rate derivatives or predict 
the distribution of interest costs. 
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1. INTRODUCTION 
The yield curve modeling is very important area of financial risk 
management. Especially during the last few years, we could observe 
high volatility of interest rates. Lot of hedge funds, pension funds, 
investment banks, debt offices and other assets and debt managers 
were affected by this increasing volatility. The yield of corporate and 
government bonds have increased significantly during the financial 
crisis. Due to current debt crisis on the periphery of European 
monetary union, bond yields remain at high level. These high bond 
yields are in contrast with historically low money market rates and 
caused by increasing credit spread of issuers. Thus credit spread of 
issuer can be expressed by the difference between bond yield and 
appropriate money market rate. If we want to understand and to 
manage all interest cost we need to understand the dynamic of money 
market rates first. Money market rates are also used as reference rate 
which is further reason for understanding their dynamics. 

In this paper, we present a money market yield curve model based on 
principal component analysis and nonlinear stochastic differential 
equations. Thus we describe the dynamics of money market rates 
which can be applied everywhere where the interest rate risk needs to 
be manage. Applying presented model we are able to price the interest 
rate derivatives or predict the distribution of interest costs. 

We design the presented model for future simulation of yield curves, 
which can be used, for example, for prediction of yield curves. This 
paper is based on [1] but updated and more suitable for interest costs 
estimate. In the model, we add some more information in terms adding 
daily data. We also include high volatile data from period of financial 
crisis. Further, we decrease the time step for better description of 
interest rates dynamics. 

1.1. Previous research in the area of modeling 
the yield curve 

In the past we have tried to describe the money market yield curve 
through short rate models. These models are based on unobservable 
short rate. Among the famous models of short rate belong Vasicek, 
CIR (Cox-Ingersoll-Ross), (CKLS Chan-Karolyi-Longstaff-Sanders) etc. 
The short rate models are primarily designed for pricing of interest rate 
derivatives. The short rate models describe only the dynamics of short 
rate and the dynamics of the other observable rates needs to be 
determined from the short rate dynamics. We have found that these 
models are not suitable for interest cost estimates since they 
underestimate the volatility of longer tail of yield curve significantly.  

The presented model describes the dynamics of the whole yield curve 
at once which is desirable and removes the volatility underestimation 
problem.  
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2. STOCHASTIC DIFFERENTIAL 
EQUATIONS AND THEIR APPLICATION 
IN YIELD CURVE MODELING 
The application of stochastic processes in continuous time in financial 
modeling has become popular. The financial model is usually based on 

the diffusion process { }0, ≥tX t . The dynamics of this process is 
determined by following stochastic differential equation (SDE):  

,)()(= tttt dWXdtXdX σµ +  (1) 

where { }0, ≥tWt  is the standard Brownian motion. The functions )(⋅µ  

and )(⋅σ  are called drift and diffusion of the process, respectively. We 
assume the following parameterization of SDE:  

),,(=)(),(=)( 22 θσσθµµ xxaxx  (2) 

where θ  is the parameter vector of parametric space 
KR⊂Θ . In this 

paper we consider only Markov (i) and strictly stationary processes (ii). 
The Markov process is defined as a process, for which in time t  the 

conditional distribution function of future values sX , ts >  depends only 

on tX  (i.e. is independent of the historical values tuX u <, .). A 
process is strictly stationary when joint distribution holds for all m , for 

all time sequences ∞<<<<0 1 mtt L  and for all mxx ,,1 K  from state 
space following equation 

),,( 11 mmtt xXxXP ≤≤ K
=

),,( 11 mmtt xXxXP ≤≤
∆+∆+

K
. Drift and 

diffusion functions fully specify the model. A frequent choice of the drift 

for interest rate models is a linear function )(=),( xx −µαθµ , where the 
rate x  returns to its mean value µ  with the speed α . This property is 
called mean reversion and it is the fundamental postulate of interest 
rate models. Diffusion function differentiates then among the models. 

For instance a Vasicek model uses constant diffusion 
22 =),( σθσ x  the 

diffusion function of the CIR model is xx 22 =),( σθσ . 

The marginal (unconditional) density of a stationary process is 1 
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1Marginal density equation comes from Fokker-Planck equation, see [4] or more 
precisely see [2]. 
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where )(θξ  is the normalization constant. The lower bound 0x  of the 

integral is not unique. The choice of 0x  is neutralized by the 
normalization constant, which warrants that the integral through the 
domain of definition of the process is equal to one. 

Using the SDE for modeling financial processes, we first need to 
specify drift and diffusion functions of the SDE and to define the 
parametric space Θ . Secondly, we need to estimate the parameters of 
the specified model. 

The definition of the parametric space Θ  comes from the domain of 

definition of the process ),(= xxD , from the postulates (i) and (ii) and 
from specific claims on behavior of the process (e.g. mean reversion). 

In this paper we will consider the process of principal components of a 
yield curve. A process of principal component is defined for all real 

numbers: ).,(= ∞−∞D  The definition of the Principal Component 
Analysis implies that the expected value of each principal component 
is equal to zero. We demand mean reversion property of the given 
process, which is guaranteed if  

0.>),(lim0<),(lim θµθµ xandx
xx −∞→∞→

 (4) 

Following cubic drift and constant diffusion are used in our model:  

,=)(=)( 0
23

3
2

210 βσααααµ xandxxxx +++  (5) 

where ),,,,(= 03210 βααααθ . 

The solution (4) for cubic drift (5) can be found out that mean reversion 

is guaranteed, when 0<3α . 

Our choice of cubic drift for principal component of yield curve 
modeling support the time series of principal components of Czech and 
European yield curves. The choice of constant diffusion function 
makes practical application of the model easier due to analytical 
solution of the integral in the exponent of equation (3). 

3. ESTIMATION OF PARAMETERS OF 
SDE 
We based the parameter estimation of SDE on minimizing the distance 
between the parametric density of the SDE and its nonparametric 
estimation (empirical density). Kernel density (see [5]) is used for 
nonparametric density estimation. We estimate the nonparametric 

density from time series },,{ 1 nxx K , where observations are recorded in 
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time interval ∆  (i.g. ∆  = 1 month). We search for parameter vectorθ , 
which minimize the distance between parametric density of the SDE 
given by the equation (3) and the nonparametric density estimation. 
This idea was first introduced by Yacine Ait-Sahalia in [4]. Yacine Ait-
Sahalia estimated the so-called General Parametric Model of three 
months Eurodollar interest rate. General Parametric Model defines the 
dynamics of interest rate by the following SDE:  

ttttttt dWrrdtrrrdr )()/(= 3
2103

2
210

ββββαααα ++++++ . 

As we mentioned above, we estimate the parameters of SDE from 
observations without discretizing the SDE. The term discretisation 
refers to the approximation of a continuous process with a discrete 
process. It is clear that discretisation always brings bias, which 
increases with the length of the observation interval ∆ . If we have high 
frequency time series, where 0→∆ , the bias caused by discretisation 
is insignificant. For financial time series recorded on daily or even 
monthly basis, the discretisation can be a too inaccurate approximation 
of the original, time-continuous process. Under these conditions the 
bias could be no longer tolerable. 

3.1. Nonparametric estimation of marginal 
density 

The nonparametric estimation of marginal density is given by:  

,
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 (6) 

where )(⋅K  is the kernel function and nb  is the smoothing constant 
(bandwidth). The equation (6) can be interpreted as a "continuous 

histogram". The choice of nb  is crucially important for the smoothing 

level of the density - higher nb  causes higher level of smoothing. 

Setting the optimal value of nb  is difficult for real market data. Some 

methods for choosing optimal nb  were introduced but these assume 
independent, identically distributed (i.i.d.) data. The financial data are 
usually strongly auto correlated. Due to the abovementioned problems, 

we determine the value of nb  by following empirical rule:  

,= 5

1−
ncbn σ  (7) 

where σ  is the standard deviation of time series, n  is the number of 
observations and c  is a constant. For independent normal distributed 
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data, the recommended value of c  is 1,05. We use the normal kernel 

function π2/2)/(=)( 2uexpuK − . 

3.2. Marginal density of SDE 
The easiest practically applicable SDE is the linear drift with constant 
diffusion (Vasicek model). Marginal density of the corresponding SDE 
is normally distributed. The marginal distribution for the combination of 
linear drift and diffusion directly proportional to the value of the process 
(CIR model) is gamma distribution. The cubic drift and constant 
diffusion given in (5) has marginal density defined in (3). The marginal 
density can be adjusted to the form:  
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 (8) 

 where )(θξ  is chosen so that the integral of marginal density (8) over 

the process domain of definition ),(= xxD  is equal to one (in the case 

of principal component ),(= +∞−∞D ). 

3.3. Objective function of estimation 
Estimation is based on the minimization of the distance between the 
marginal density of SDE (parametric density) given in equation (3) and 
its nonparametric estimation (empirical density) given in equation (6). 
We define the objective function of the estimation the same way as in 
[4] in terms of mean square error (MSE) defined by:  














− 2))(ˆ),((= XXEO πθπ

 

.)(ˆ))(ˆ),((= 2 duuuu
x

x
ππθπ −∫

 (9) 

 The parameters θ  are estimated on the basis of observations 
},,{ 1 nxx K  minimizing the sample objective function: 
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1

minarg=ˆ 2
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n

i

xx
n

πθπθ
θ

−∑
Θ∈

 (10) 

The estimate θ̂  is asymptotically normal:  
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),(0,)ˆ( Ω→− Nn
d

θθ  (11) 

where Ω  and its estimation are described on page 420 in [4]. 
Practically it is profitable to handle the logarithm of marginal densities, 
which is easier to optimize. Using the cubic drift and constant diffusion 
given in (8) we solve  
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 (12) 

The domain of integration of constant )(θξ  can be determined by 

extending sufficiently the range of the observations },,{ 1 nxx K . We 
have identified that adding 1.5times the length of the interval to the 
maximum and subtracting it from the minimum is mostly sufficient. 

 

4. PRACTICAL APPLICATION 
We apply the cubic drift and constant diffusion SDE on the Czech yield 
curve (YC). We don't model directly the YC process, but we apply the 
principal component analysis. We also look at the process behavior 
with a simulation experiment. 

4.1. The data 
The estimation of parameters is performed on the basis of daily 
observations. We used maturities of 3M, 6M, 9M, 12M, 3Y, 5Y, 10Y 
and 15Y Czech zero-coupon yield curve from August 29, 2000 until 
October 18, 2010. We drop the nontrading days, i.e. for each maturity 
we have 2554 observations. Maturities shorter than one year are rates 
of PRIBOR, maturities over one year are rates of swap market. All data 
are downloaded from Bloomberg. The yield curve is displayed in figure 
1.  

Figure 1: Czech yield curve since 29.08.2000 till 18.10.2010. 
Maturities are displayed in months, values 3, 6, 9 a 12 present 3M 
PRIBOR - 12M PRIBOR, values 36, 60 a 120 present 3Y, 5Y 10Y and 
15Y swap. Y - axis presents interest rate in percents. 



 

10 

The variability of the series tends to be dependent on its level, so we 
performed logarithmic transformation on the series. The relationship 
between variability and level of interest rates and effectiveness of the 
logarithmic transformation are shown in figure 2. It is obvious that the 
logarithmic transformation decreases dependence of the variability of 
the rates on their level and stabilizes them in term of variance. 

Figure 2: The relationship between the variability and the level of 
interest rates. The time series for all maturities are divided into 9 day 
periods. For each period we calculate the mean (horizontal axis) and 
the standard deviation (vertical axis). The upper chart: no 
transformation; the bottom chart: logarithmic transformation. The line 
represents the linear trend. 
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4.2. Principal component analysis 
Direct yield curve modeling would represent multivariate stochastic 
process modeling of highly correlated variables. We solve this problem 
by applying the principal component analysis. This method is a linear 
transformation of input variables to new variables - so called 
components. Input variables are linear combinations of components. 
The weights of the combination are called component loadings. The 
aim of the transformation is to reduce the size of the data, while 
preserving as much information contained in the data as possible. The 
first three components of the Czech YC logarithms explain over 99.7 % 
of its variability. The first component explains 93.6 % of the variability 
of the YC. Another advantage of the principal components analysis is 
that the components are (following from its definition) independent. 
That means that we can model the components separately with 

univariate processes. We denote the first three components with 1PC , 

2PC  and 3PC . 

The upper chart of figure 3 displays the component loadings for 
different maturities. The component loadings of the first principal 
component are approximately horizontal. We can interpret the first 
components as the level factor of the interest rates. Changes in the 
first component cause a parallel shift of the YC. Component loadings 
of the second component are increasing and changes in the second 
component cause rotation of the YC. We can interpret the second 
component as a slope factor. The component loadings of the third 
component are "hump" shaped and changes in this component cause 
change of the shape of the YC. We can interpret this component as a 
curvature factor. This interpretation of components was first presented 
in [3].  

Figure 3: Component loadings and time series of the first three 
components of the Czech YC.  

Top: The component loadings - maturities in months are on the 
horizontal axis.  

Bottom: Time series of the components from August 29, 2000, until 
October 18, 2010. 
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The bottom chart of figure 3 displays the time series of the components 
from August 29, 2000, until October 18, 2010. The components are 
calculated from the logarithms of the Czech YC (figure 1). It follows 
from the definition of the principal components that its expected value 
is zero. 
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4.3. The estimate of cubic drift of the principal 
components 

To quantify the dynamics of the first three principal components 1PC , 

2PC  and 3PC , we estimate parameters of the SDE with cubic drift and 
constant diffusion (formula (5)). The first step is the nonparametric 
estimate of the probability distribution function using the kernel density 
defined in (6). Then we estimate the parameters of the SDE, 
minimizing the difference between parametric marginal distribution (8) 
(corresponding to the SDE with cubic drift and constant diffusion) and 
the nonparametric estimate of the marginal distribution. The objective 
function is defined in the formula (12). We take the following constrains 

into consideration: 0<3α  and 0>0β . The parametric and 
nonparametric estimates of the marginal distribution function of the first 
component are displayed in bottom chart of figure 4. The upper left 
chart displays the cubic drift and the observed daily differences of the 

time series of 1PC . The upper right chart displays the volatility and the 

observed volatility of the time series of 1PC . The same figures 

concerning 2PC  and 3PC are in displayed in figures 5 and 6, 
respectively.  

Figure 4:  

Upper left chart: The cubic drift and the observed daily differences of 
PC1 (dots). 

Upper right chart: The constant volatility and the observed volatility of 
PC1 (dots).  

Bottom chart: The estimated optimal parametric and the nonparametric 
distribution function of PC1 of the Czech YC. Horizontal axis - the 
values of PC1, vertical axis - values of the marginal probability 
distribution function.  
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Figure 5: The same situation as in figure 4 but for the component PC2 
of the Czech YC.   
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Figure 6: The same situation as in figure 4 but for the component PC3 
of the Czech YC 

 

The parameter estimates, value of constant c  needed in formula (7) 
are displayed in table 1. The value of constant c  was set arbitrarily. 
The nonparametric density estimate has to be smooth enough, so that 
the optimization would be possible. On the other hand, if we are to 
preserve the appropriateness of the estimate, the density can not be 
too smooth. We calculate the expected value of the process by 
numerical integrating of the marginal density of the SDE. 
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Table 1: The estimate of the parameters of cubic drift and constant 
diffusion for the first three principal components of the Czech YC. In 
addition, the constant c from the formula (7). 

  
 1PC    2PC    3PC   

 0α   6.69E-05 0.000257 2.99E-05 

1α   -0.00028 -0.00081 -0.00306 

2α   -0.00016 -0.00412 0.001473 

3α   -0.00039 -0.0045 -0.11237 

0β   0.001914 0.000129 3.02E-05 
c   1.82 1.82 1.06 

 

From the bottom chart in figure 4, we can observe strong non-normality 

and multimodality of the marginal density of 1PC . The upper left chart 

displays the cubic drift. It is obvious, that the component 1PC  
(interpreted as the parallel shift of the YC) has the drift very close to 
zero in interval ( 4− , 4 ). That means that the process behaves 
similarly as random walk in this interval. This can be seen from the 

chart of daily differences of the time series of 1PC . The values are 
more or less symmetrical around zero. Outside this interval, the 
influence of the drift starts to increase very fast and it "pulls" the 
process back strongly into the "non stationary interval". This behavior 

of the process guaranties global stationarity of 1PC . Similar results 
were presented in the article [4] by Yacine-Ait Sahalia for American 
one month Eurodollar rate. 

The bottom charts of figures 5 and 6 show that the marginal densities 

for the components 2PC  and 3PC  seem to be unimodal with a very 
high kurtosis. The drift of both of these processes is again mean 
reverting, and again the mean reverting property is relatively weak 
around the value zero (i.e. around the expected value of the 
processes) and its influence increases with the distance from zero. So 

the processes of 2PC  and 3PC  are globally stationary as well. 

The shape of the drifts of 1PC , 2PC  and 3PC  implies the mean 
reverting property for the interest rates. Global stationarity of these 
processes supports the opinion that on a long period the process of the 
YC is stationary as well. That means the rejection of the unit roots and 
stability of the solution of the difference equations of the processes in 
the methodology of linear discrete models. 
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5. SIMULATION 
5.1. Simulation of the yield curve 
The main purpose of our model is to quantify the dynamics of all 
considered maturities of the yield curve (YC). We use simulations to 
get possible realizations of the process of the YC. Simulations are 
widely used, e.g. in the Monte Carlo methods of interest rate risk 
management. Simulations can form the inputs for VaR calculation or 
for portfolio optimization with respect to its future expected revenues, 
costs and risk. Simulations can be used for profitability and risk 
evaluations of derivative instruments and market strategies. 

We simulate the yield curve process simulating the process for the first 
three principal components of the YC. We use the Euler discretization 
for the processes of the principal components. The Euler discretization 
of SDE with cubic drift and constant diffusion (formula (5)) is  

 

,)(= 0
3

3
2

210 ttttttt ttxxxxx εβαααα ∆+∆++++∆+  (13) 

where (0,1)Nt :ε . It is desirable to set t∆  as small as possible. The 

results presented in this article are calculated with 1/100=t∆ . 

Parameters of the model are estimated using daily observations of the 
first three principal components of logarithms of the YC. Setting 

1/100=t∆  means that there are 99 values generated between today 
(time t ) and tomorrow (time 1+t ). Because of technical difficulties we 
saved daily simulations only till the end of 2011. The beginning of the 
simulation is set to be 19.10.2010. Each of the 295 saved values will 
be referred to as a simulation step. We perform 10 000 simulations for 
each of the three principal components. 

For each simulation, we calculate the values of the YC "composing" 
the principal components back in to the original process. The 
generated values for a particular maturity then present one possible 
path of its process. Altogether we get 10 000 paths for each maturity 
for the next year.  

5.2. Simulation evaluation 
For practical purposes, we need to check whether the model is 
appropriate. We verify the appropriateness of the model by comparing 
the statistics of the historical YC (used for the model estimation) with 
the statistics of the simulations. We presume that the similarity of the 
statistics of the historical data and the simulations verifies correct 
parametrization of the model. 
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To investigate the real properties of processes, the horizon of thirty 
years would be appropriately long. The mean reverting property can 
sometimes be observable only in a very long period. If we want to 
explore the properties of the simulated processes, such a long horizon 
is required. In some cases (state debt portfolio analysis, pension funds 
portfolio analysis etc.), this horizon can have practical usage as well. 

Unfortunately, the thirty-year horizon is too demanding 
computationally. We use only the 14-months horizon of simulations in 
our evaluation.  

5.2.1. Longitudinal statistics 
First we consider statistics that characterize the development of an YC 
in a particular time period. We will refer to these statistics as to 
longitudinal statistics. The time series of interest rates that were used 
to estimate the parameters will be referred to as historical interest 
rates. 

We estimate the equilibrium of an interest rate with a simple average of 
the historical interest rate. We request the model to revert to this 
equilibrium (we request the mean reversion property). That means that 
the averages of simulations of an interest rate calculated in each 
simulation step over all simulations should converge to an average 
historical interest rate in long time horizon.  

Next we compare the equilibrium (historical average) with the average 
of longitudinal averages calculated on a period of 14 months of the 
simulation of the interest rates. We define the statistics with the 
following formulas:  

,
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 (16) 

where 
τ
hA  is the equilibrium of the interest rate (the mean of the 

historical interest rate), 
τ
jA
 is longitudinal average of a particular 

simulation, 
τ
sA  is average of longitudinal averages of all simulations, x  

is the interest rate, τ  is the maturity, n  is the number of observations 
of the historical interest rate, t  is the count of simulations and s  is the 

count of simulations. The values of 
τ
hA  and 

τ
sA  as well as 2,5% and 
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97,5% percentile for 
τ
jA
 for all considered maturities are displayed in 

table 2. 

Table 2: Comparison of longitudinal averages and longitudinal 
standard deviations. 

  
 

τ
hA    

τ
sA   

 2,5%   97,5%  

3M 2.95 1.52 1.13 2.10 
6M 3.04 1.72 1.32 2.32 
9M 3.12 1.84 1.43 2.46 
1Y 3.20 1.95 1.53 2.58 
3Y 3.62 2.28 1.84 2.91 
5Y 3.95 2.56 2.09 3.19 
10Y 4.43 2.97 2.48 3.62 
15Y 4.67 3.24 2.74 3.88 

 
Table 3: Comparison of longitudinal averages and longitudinal 
standard deviations. 

 
 

τ
hSD    

τ
sSD   

 2,5%   97,5%  

3M 1.19 0.22 0.08 0.54 
6M 1.17 0.21 0.08 0.52 
9M 1.16 0.21 0.09 0.51 
1Y 1.15 0.21 0.09 0.50 
3Y 1.14 0.22 0.09 0.52 
5Y 1.14 0.24 0.10 0.56 
10Y 1.10 0.26 0.10 0.59 
15Y 1.04 0.27 0.10 0.59 

 

Similarly, we compare the longitudinal standard deviations. We define 
longitudinal standard deviations analogically to longitudinal averages:  
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where 
τ
hSD  is the standard deviation of the historical interest rate and 

τ
sSD  is the average of standard deviations of all simulations. The 

values of 
τ
hSD  and 

τ
sSD  as well as 2,5% and 97,5% percentiles of 

longitudinal standard deviations of simulations are displayed in table 3. 

The last considered longitudinal statistic is the correlation matrix of the 
YC, i.e. the estimate of the correlations between the considered 
maturities. The historical correlation matrix is calculated from the time 
series of the interest rates. The correlation matrices of the simulations 
of YC are (as in the case of longitudinal averages and standard 
deviations) calculated from all simulations. The historical correlation 
matrix, the matrix of average correlations of the simulations as well as 

the matrix of 2,5% and 97,5% percentiles of correlations of the 
simulations are displayed in table 4, 5, 6, 7 respectively.  

Table 4: Comparison of longitudinal correlations.  

sim 3M 6M 9M 1Y 3Y 5Y 10Y 15Y 
3M 1.00 1.00 0.99 0.99 0.92 0.89 0.85 0.83 
6M 1.00 1.00 1.00 1.00 0.93 0.89 0.85 0.83 
9M 0.99 1.00 1.00 1.00 0.94 0.90 0.85 0.83 
1Y 0.99 1.00 1.00 1.00 0.94 0.90 0.85 0.83 
3Y 0.92 0.93 0.94 0.94 1.00 0.99 0.96 0.94 
5Y 0.89 0.89 0.90 0.90 0.99 1.00 0.99 0.98 
10Y 0.85 0.85 0.85 0.85 0.96 0.99 1.00 1.00 
15Y 0.83 0.83 0.83 0.83 0.94 0.98 1.00 1.00 
 

Table 5: Average correlations 

sim 3M 6M 9M 1Y 3Y 5Y 10Y 15Y 
3M 1.00 0.98 0.95 0.92 0.85 0.82 0.80 0.78 
6M 0.98 1.00 0.99 0.97 0.88 0.83 0.77 0.74 
9M 0.95 0.99 1.00 0.99 0.89 0.82 0.74 0.71 
1Y 0.92 0.97 0.99 1.00 0.89 0.81 0.71 0.68 
3Y 0.85 0.88 0.89 0.89 1.00 0.98 0.91 0.88 
5Y 0.82 0.83 0.82 0.81 0.98 1.00 0.97 0.95 
10Y 0.80 0.77 0.74 0.71 0.91 0.97 1.00 1.00 
15Y 0.78 0.74 0.71 0.68 0.88 0.95 1.00 1.00 
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Table 6: Correlations of 2.5% percentile of simulations 

sim 3M 6M 9M 1Y 3Y 5Y 10Y 15Y 
3M 1.00 0.91 0.78 0.64 0.80 0.75 0.60 0.59 
6M 0.91 1.00 0.96 0.89 0.45 0.81 0.62 0.62 
9M 0.78 0.96 1.00 0.98 0.51 0.88 0.55 0.65 
1Y 0.64 0.89 0.98 1.00 0.51 0.90 0.50 0.62 
3Y 0.31 0.45 0.51 0.51 1.00 0.95 0.57 0.72 
5Y 0.22 0.26 0.26 0.23 0.90 1.00 0.84 0.76 
10Y 0.17 0.08 0.00 -0.06 0.57 0.84 1.00 0.99 
15Y 0.11 -0.01 -0.09 -0.15 0.46 0.76 0.99 1.00 
 

Table 7: Correlations of 97.5% percentile of simulations 

sim 3M 6M 9M 1Y 3Y 5Y 10Y 15Y 
3M 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.98 
6M 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.98 
9M 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.98 
1Y 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.98 
3Y 0.99 0.99 0.99 0.99 1.00 1.00 0.99 0.99 
5Y 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 
10Y 0.99 0.98 0.98 0.98 0.99 1.00 1.00 1.00 
15Y 0.98 0.98 0.98 0.98 0.99 1.00 1.00 1.00 
 

5.2.2. Unconditional (marginal) statistics 
The shape of the drift estimated above implies that the process is 
globally stationary. That means that the probability that the interest rate 
will be e.g. 5 % is the same now as in 50 or 100 years. Time series of 
a yield curve that is long enough is a sample from marginal distribution 
of the stochastic process of the YC. For an appropriate model the 
marginal statistics should be approximately equal to the historical ones 
in the long run. 

For the comparison of unconditional statistics, we will use analogical 
measures as in the case of longitudinal statistics. The historical interest 

rate average 
τ
hA  is defined with the formula (14). We estimate the 

unconditional average of simulations 
τ

TsA ,  as the average of the 
generated values in the very last simulation step:  
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where jTx
 is the value of j -th simulation in the last simulated time 

tickT , s  is the count of simulations and τ  is the maturity. The results 
are displayed in table 8. The table 8 contains also the 95 % confidence 
interval (calculated using the Student's t -distribution) for the mean of 
the simulations. The confidence interval should cover the historical 
average again in the long run.  

Table 8: Comparison of the marginal averages  

  
 

τ
hA    

τ
TsA ,   

 2,5% CI   97,5% CI  

 3M  2.95 1.74 1.65 1.89 
6M  3.04 1.90 1.70 2,02 
9M  3.12 2.01 1.85 2.08 
1Y  3.20 2.10 2.01 2.25 
3Y  3.62 2.47 2.38 2.62 
5Y  3.95 2.78 2.69 2.90 
10Y  4.43 3.25 3.05 3.42 
15Y 4.67 3.53 3.33 3.75 

 

Table 9: Comparison of the marginal standard deviations 

 
 

τ
hA    

τ
TsA ,   

 2,5% CI   97,5% CI  

 3M  1.19 0.47 0.40 0.52 
6M  1.17 0.47 0.40 0.52 
9M  1.16 0.48 0.42 0.53 
1Y  1.15 0.49 0.43 0.55 
3Y  1.14 0.49 0.49 0.56 
5Y  1.14 0.51 0.45 0.58 
10Y  1.10 0.53 0.44 0.59 
15Y 1.04 0.53 0.43 0.62 

  

Similarly to the case of the unconditional average, we compare the 
unconditional standard deviations and the unconditional correlation 
matrices. The unconditional standard deviations of the simulations as 

well as the confidence intervals (calculated from
2χ distribution) are 

displayed in table 9. The comparison of the correlation matrices is 
displayed tables 10 and 11.  
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Table 10: Comparison of the marginal correlation matrices - historical 
correlations  

  3M 6M 9M 1Y 3Y 5Y 10Y 15Y 
3M 1.00 0.99 0.98 0.97 0.85 0.79 0.72 0.69 
6M 0.99 1.00 1.00 0.99 0.87 0.79 0.71 0.67 
9M 0.96 0.95 0.95 0.94 0.88 0.79 0.85 0.67 
1Y 0.97 0.99 1.00 1.00 0.88 0.80 0.70 0.85 
3Y 0.90 0.87 0.88 0.88 1.00 0.99 0.94 0.92 
5Y 0.78 0.79 0.79 0.80 0.95 1.00 0.98 0.97 
10Y 0.72 0.71 0.71 0.70 1.00 0.98 1.00 1.00 

 

Table 11: Comparison of the marginal correlation matrices - 
correlations of the simulations in the time T (mean) 

sim 3M 6M 9M 1Y 3Y 5Y 10Y 15Y 
3M 1.00 0.99 0.98 0.97 0.85 0.79 0.72 0.69 
6M 0.99 1.00 1.00 0.99 0.87 0.79 0.71 0.67 
9M 0.98 1.00 1.00 1.00 0.88 0.79 0.71 0.67 
1Y 0.97 0.99 1.00 1.00 0.88 0.80 0.70 0.66 
3Y 0.85 0.87 0.88 0.88 1.00 0.99 0.94 0.92 
5Y 0.79 0.79 0.79 0.80 0.99 1.00 0.98 0.97 
10Y 0.72 0.71 0.71 0.70 0.94 0.98 0.92 0.99 
15Y 0.69 0.85 0.67 0.69 0.96 0.97 1.00 0.98 

 

6. CONCLUSIONS 
We proposed a model of the yield curve of the Czech interest rate 
market. We reduced the dimension of the process of the YC using the 
principal components analysis. That way we can quantify the dynamics 
of the process of the YC using models only for the first three principal 
components. We used stochastic differential equations. We estimate 
the parameters of the processes minimizing the difference between 
parametric and nonparametric estimate of its marginal densities. That 
way, we avoided the bias that occurs in common approaches based on 
discretization of the SDE. This model has practical application in 
interest rate risk management, such as debt management offices, 
pension funds, mutual funds, hedge funds, etc. 

This model is implemented and tested by the State Debt and Financial 
Assets Department at Ministry of Finance of the Czech Republic. This 
model should be used for prediction of interest cost of state debt. 

 



 

25 

7. REFERENCES  
 
[1] CICHA M., KLADIVKO K. and ZIMMERMANN P.: Yield Curve 
Modeling using Principal Component Analysis and Nonlinear 
Stochastic Differential Equations, in Mathematical Methods in 
Economics and Industry, Herlany, 2007. ISBN: 978-80-89089-58-1 

 

[2] KARLIN, S. and TAYLOR, H. M.: A second course in Stochastic 
Processes, Academic Press, 1981. ISBN-13: 978-0123986504 

 

[3] LITTERMAN, R. and SCHEINKMAN: Common Factors affecting 
bond returns, Journal of Fixed Income, 1, 54-61, 1991 ISSN: 1059-
8596 

 

[4] SAHALIA, Y. A.: Testing Continuous-Time Models of the Spot 
Interest Rate. The Review of Financial Studies, 1996, Vol. 9, No. 2, p. 
385-425, ISSN 0893-9454. 

  

[5] SILVERMAN, B. W.: Density Estimation for Statistics and Data 
Analysis. London: Chapman and Hall, 1986. ISBN-13: 978-
0412246203. 

 

 

 

 

  


