
Platforma průmyslové spolupráce

CZ.1.07/2.4.00/17.0041

Název

Configuration Conversion JBoss AS5 to JBoss AS7

Popis a využití

• popis evoluce aplikačních serverů

• výuka: pokročilá Java

Jazyk textu

• anglický

Autor (autoři)

• Roman Jakubčo

Oficiální stránka projektu:

• http://lasaris.fi.muni.cz/pps

Dostupnost výukových materiálů a nástrojů online:

• http://lasaris.fi.muni.cz/pps/study-materials-and-tools

http://lasaris.fi.muni.cz/pps
http://lasaris.fi.muni.cz/pps/study-materials-and-tools

Contents

1 Introduction . 1

2 Description of JBoss Application Server 3
2.1 Java Enterprise Edition Servers . 3
2.2 Different Versions of the JBoss AS . 3
2.3 The JBoss AS5 and Earlier Versions . 4

2.3.1 JBoss AS 5 structure . 4
2.4 Changes in JBoss AS 7 . 6

2.4.1 JBoss AS 7 Structure . 6
2.4.2 Command Line Interface in JBoss AS 7 8

2.5 Configuration Files in Application Servers 9

3 Analysis of Migration . 11
3.1 Configuration of Datasource Service . 11
3.2 Configuration of Logging Service . 13
3.3 Configuration of Security Service . 14
3.4 Configuration of Resource Adapters . 15
3.5 Configuration of Web Engine . 16

4 Application for Automated Migration . 18
4.1 Lifecycle of Application . 18
4.2 Structure of Created Application . 19

4.2.1 IMigrator Interface . 20
4.2.2 Migrators Package . 21

4.3 JAXB and EclipseLink MOXy JAXB Implementation 22

5 Implementation of Migration . 25
5.1 Migration of Datasource Configuration . 25
5.2 Migration of Logging Configuration . 27
5.3 Migration of Security Configuration . 28
5.4 Migration of Resource Adapters Configuration 28
5.5 Migration of Web Engine Configuration 29

6 Conclusion and Use of Application . 31
6.1 Using the Created Application . 31
6.2 Conclusion and Future . 32

v

CONTENTS

Appendices . 35

A Attached files . 35

B Usage of Application . 36

C Configuration Examples . 37

D Examples of Created CLI Scripts . 48

vi

1 Introduction

JBoss Application server is a Java based application server developed by JBoss [15],
which is now a division of Red Hat, Inc. The origin of JBoss is in 1999, when Marc Fleury
started free software project EJB–OSS, which was primarily focused on implementing
Enterprise Java Beans (EJB) specification from Java Enterprise Edition [16]. The name
of the project had to be changed to JBoss because Sun Microsystems did not like use of
their EJB trademark in the name of the project. Then in 2006 JBoss was acquired by
Red Hat and became a division of the company, which specializes in development and
support of the open source middleware software and one of these software products is
JBoss AS. JBoss AS is licensed under GNU Lesser General Public License, which makes
it an open source software [17]. Generally JBoss AS is very popular among business
companies and has very strong community.

Almost all software products evolve and upgrade and JBoss AS is not different. Each
version has different characteristics and, at the moment, the newest version of JBoss AS
7 is focused on usability and speed.

Different characteristics and new features lead to major changes in the structure and
configuration of the application server. This creates a problem for companies with well-
configured servers and their deployed applications. If they want to upgrade their servers,
they must spend money and time on manual migration of the configuration to the newer
version because the way of configuring can be completely different and it is required
to understand and study the new version from the project’s documentation. Therefore,
companies rather use the older application servers, which are already running and still
providing all the necessary functions than risking and spending money or loosing time
on upgrade. This situation creates a problem for the JBoss customer support and also
depriving users of newer functions. At the moment, majority of companies are still
using very popular JBoss AS 5, which has a completely different structure and ways
of configuration than the newer version JBoss AS 7. Red Hat is trying to solve this
problem and has several projects and guides for migration from previous versions. One
of them is the migration guide to JBoss AS 6 for applications, which covers migration
of the server configuration only slightly and still requires manual work. Some JBoss’s
projects like Iron Jamacar covers the automated migration of datasources, but not the
whole configuration of the server and all its important services.

The problem of migrating configuration of JBoss AS 5 to JBoss AS 7 and finding
solution for it is the first main goal of this thesis. The second goal is to create an
application capable of automated migration. This application must be able to parse

1

1 INTRODUCTION

configuration from JBoss AS 5, migrate AS5’s configuration and apply it intro fresh
installation of JBoss AS7 using CLI, which was added as new feature in JBoss AS
7 for management of the application server. The third and important goal is that the
application must be developed with the intention of a further development by community
and an easy expansion of its functionality and features. The automated migration will
be much more comfortable for users than changing several configuration files manually
as it must be done now.

An application server is a quite complicated software with many services and it is
a lot of work to migrate all services. Because of that, this thesis only covers migration
of five important and the most common services customized by users in the application
server with hopes for the future upgrades done by the community. Taking everything
into the consideration, the application has a lot of potential for customers and the JBoss
community.

This thesis contains six chapters. Chapter 2 introduces JBoss AS and its versions. It
also describes structures of JBoss AS 5 and JBoss AS 7 along with their main differences.
In chapter 3 we take a detailed look on ways of configuration of migrated services in both
versions. Chapter 4 describes created application and JAXB MOXy technology, which
is used for representation of configuration files as Java objects. Chapter 5 describes the
process of migration of these services. Chapter 6 provides a summary of results and
possible future of the project. Besides these chapters, there are also three appendixes.
Appendix A describes possible commands and usage of the application. Appendix B
provides examples of configuration files and their migrated representations created by
the application. And the last Appendix C contains examples of CLI scripts corresponding
to examples of services in Appendix B.

2

2 Description of JBoss Application Server

To understand what is the primary focus of this thesis and the developed application,
first it is required to understand what is JBoss Application Server along with its history
and different versions. Each version of an application server is usually configured differ-
ently than the others. For our purposes it is required to understand differences in the
configuration of JBoss AS 5 and JBoss AS 7. Everything mentioned will be detailed in
this chapter.

2.1 Java Enterprise Edition Servers

Before we describe a Java application server, we need to understand what exactly is an
application server. An application server can be described as a container for applications
or an environment where they should run. This container that provides required services
to applications deployed to it. This means applications do not need to implement services
like connecting to database, interacting with different clients, security and many more
things, the applications may need.

The Java application server standardizes the application architecture. Developers can
use defined component models to develop their components, which can be deployed to
the application server by a standard deployment model. The server provides services to
these running components. Since applications are working in a standardized framework,
the services are available to applications transparently. It is only required to provide
some sort of information to call services from applications, which is usually done by
XML annotations. This system can reduce the integration code and configuration of
deployed applications [3].

There are several other application servers besides JBoss AS. Other open source
servers are JOnAS by Object Web, Geronimo by Apache, TomEE by Apache, Resin
Java Application Server by Caucho Technology, and GlassFish by Oracle. Well known
are also commercial servers WebLogic Application Server by Oracle and WebSphere
Application Server by IBM [6].

2.2 Different Versions of the JBoss AS

All projects and programs evolve and are upgraded and JBoss AS is not different.
Though, there are earlier versions of JBoss AS like JBoss AS 1.0 and JBoss AS 2.0,
the first stable release was JBoss AS 3.0. Different versions of AS are based on different
versions of Java EE specification. Until AS 7, the version number of the application

3

2 DESCRIPTION OF JBOSS APPLICATION SERVER

server referenced the edition of Java EE specification that the server implements. There
are two implementations of Java EE 6, which are JBoss AS 6 and JBoss AS 7.

The focus of migration and this thesis is on JBoss AS 5 and JBoss AS 7. The
first reason of this choice is that the AS7 is completely different than the AS5 in many
ways, which will be more detailed further in this chapter. More importantly, the AS7
was released only few months after a major AS6 release, what is not very ordinary for
major releases. This also means that the AS6 did not have time to spread like the AS5,
which is still used by many users. Due to differences in mentioned versions, users have
difficulties when moving their applications and configuration of their application server
to the newest version. The solution to this problem can be an automatic migration.

2.3 The JBoss AS5 and Earlier Versions

Earlier versions of JBoss AS were based on Java Management Extension (JMX) micro–
kernel. All services of the application server were written as Managed Beans (MBeans),
which were plugged into the JMX kernel. This architecture enables easy adding and
removing services in the application server.

However in JBoss AS 4.0.3 release there were the first signs of migration on a micro-
container architecture, which enables to write application server services using Plain
Old Java Objects (POJOs). The AS5 has taken major steps on this path and the
microcontainer is the visible part of the server architecture. Although the AS5 is based
on a microcontainer kernel and it has a microcontainer architecture, the JMX still plays
important part in the server [3, 1].

2.3.1 JBoss AS 5 structure

To understand an application server, it is required to know the file structure of the
application server. The structure of the AS5 is shown in Figure 1 and will be described
in this section.

The bin directory contains scripts for starting and stopping the application server.
The directory also contains other scripts for various purposes like accessing a JMX
command line, discovering AS clusters and working with Web services. All scripts are
available in Windows and Linux alternatives. The client directory contains client libraries
required for running client’s applications and they are needed for a communication with
the application server.

These client libraries are loaded by the client application, which are called stan-
dalone clients or remote clients. Standalone clients use these libraries for remote calls of

4

2 DESCRIPTION OF JBOSS APPLICATION SERVER

the server-side part of the whole application.

Figure 1: JBoss AS 5 Structure

The docs folder does not contain a documentation for as it may seem. In fact, it
contains DTD files and XML schemas for configuration files of the server, configuration
examples and licenses of libraries included in the application server.

The lib directory contains libraries required to start the server. The Microcontainer
and JMX kernel are also stored here. This directory should not be changed. The common
directory also contains a folder lib. The lib folder is a repository for shared libraries
used by all application server configurations. Libraries, which should be used only by a
specific server configuration, can be stored in its lib folder.

The server folder is the most important for the migration. As shown in Figure 1,
it contains a configuration for different servers. Each one of them contains four folders
conf, deploy, deployers and lib. These folders are responsible for configuration of
all services of the application server and deployment of applications into the server.
Configurations for different services are stored in their specific XML files in one of these
folders. In addition, the server also creates few folders for temporary files and logs on
the first start. These folders are log, tmp, data and work. [3, 1]

5

2 DESCRIPTION OF JBOSS APPLICATION SERVER

2.4 Changes in JBoss AS 7

The JBoss AS 7 has several major changes from older releases and new features. The
first change is in the kernel of the application server, which is no longer based on Mi-
crocontainer. The AS7 has a completely new kernel, which is now based on two main
projects:

• JBoss Modules – a standalone implementation of modular class loading [7] in Java
and handles class loading in AS7

• Modular Services Container (MSC) – provides a way to install, uninstall and man-
age services used by the application server

These two projects create completely modular kernel and allow the server to have a
modular architecture having completely changed the means of configuration of the ap-
plication server – how and where can be server configured.

2.4.1 JBoss AS 7 Structure

The mentioned changes also affected the structure of the application server, but some
folders have remained the same as in AS5. The bin and doc folders have the same
functions as in AS5 structure with small differences. The bin folder contains new scripts
and the doc folder contains only XML schemas and examples. Some of the new folders
have identical function as other folders in the AS5, but, due to changes of the architecture
of the application server, they have different names and structure. There are also three
completely new folders with new functions for the AS7 and these folders are bundles,
domain and welcome-content. The AS7 structure with all folders is shown in Figure 2.

The welcome-content folder contains the default web page for the server, which is
served on root path by default. The bundles folder is used for storing OSGi (Open
Services Gateway initiative) bundles.

The modules folder is a new modular structure for the lib directory in the AS5. All
libraries of the application server are stored here, in a set of subfolders. The paths of
folders are derived from names of modules. For example, org.jboss.jboss–transaction-spi
module will be stored in modules/org/jboss/jboss-transaction-spi folder. Server’s
bootstrap library is stored in a root folder of the server in the jboss-modules.jar. This
file is all what is required to bootstrap the new application server modular kernel.

The AS7 introduced a concept of server domains. Server domains are used for man-
aging sets of instances of the application server organized in a domain. On the other

6

2 DESCRIPTION OF JBOSS APPLICATION SERVER

Figure 2: JBoss AS 7 Structure

hand, a standalone server is a single server, which is not part of a domain and it re-
sembles a single server in older versions [2]. The configuration of a domain server is
stored in the domain folder. The domain server is not part of the migration, so it is not
required to describe it any further. The main focus is on the standalone server and its
configuration.

The standalone folder is a configuration of the standalone server and it resembles
server folder in the AS5. It has almost identical folders to the server subfolders with
some changes. Configuration of services of the application server is now stored in the
configuration folder. This folder contains few XML configuration files:

• standalone.xml

• standalone-full.xml

• standalone-ha.xml

• standalone-full-ha.xml

• standalone-osgi.xml

7

2 DESCRIPTION OF JBOSS APPLICATION SERVER

Each file represents a different configuration of the server similar to server subfolders
in the AS5. These files are the most important for the migration because all migrated
services must be migrated to one of these files. [2]

2.4.2 Command Line Interface in JBoss AS 7

The Command Line Interface (CLI) is the new feature of AS7 for administration and
management of the application server. It is way how to manage the application server
using command line. The strong advantage of using command line and scripts is a certain
possibility to execute commands as part of batch or macros, which can be used for repet-
itive actions. The CLI shell is run by jboss-cli script located in ${JBOSS7_HOME}/bin

folder and it has many useful features. The CLI can be used for looking up settings for
different services, changing them or adding new. It has several commands for different
actions and it also provides auto completion for commands using the Tab key similar
to Linux command shell. Different commands and useful tips can be found in AS7
documentation1.

The main function of the migration application is applying the migrated configuration
of AS5 into standalone configuration in AS7. The problem is that it is only migration
of configuration and not its validation. That means that even configuration, which has
typo or other mistakes but still holds structure and syntax of the configuration file is
migrated and imported into configuration file. The user can then find out that some of
migrated services do not work only after start up of the application server. On the other
hand, adding a configuration of services via CLI provides basic validation of processed
data. That is one of the reasons for creating CLI scripts in the application.

There is also a possibility of using CLI management API in programs2. This way
can be running server modified directly from the application. This API also provides
batch functionality for commands, which means that if one commands fails the whole
migration will rollback and the configuration of AS7 will stay unchanged.

Another reason is that the configuration file in AS7 can be changed in some minor
way with the next version of the application server. This can destroy functionality
of importing migrated configurations right into configuration file but the CLI scripts
should remain compatible backwards in all new releases. This makes CLI a strong and
important feature of the created application for use in the future. Examples of CLI
scripts created by the application are shown in Appendix D.
1https://community.jboss.org/wiki/CommandLineInterface
2https://docs.jboss.org/author/display/AS71/The+native+management+API

8

https://community.jboss.org/wiki/CommandLineInterface
https://docs.jboss.org/author/display/AS71/The+native+management+API

2 DESCRIPTION OF JBOSS APPLICATION SERVER

2.5 Configuration Files in Application Servers

We mentioned in the section describing the structure of the AS5 that services configu-
rations in the AS5 are stored in separate files that, in their turn, are stored in four main
folders of the server. These files are all XML files with specific syntax and settings. At
the moment, the application handles migration of these files and corresponding services:

• –ds.xml files responsible for configuration of datasources or resource adapters in
the AS5. The server may have more than one of this file types.

• jboss–log4j.xml file responsible configuration of logging in the AS5. It is basi-
cally log4j configuration file commonly used in applications, which use the log4j
API.

• jboss–login.xml file responsible for configuration of Java Authentication and
Authorization Service (JAAS) or, in the other words, the security in the AS5.

• server.xml file responsible for the configuration of JBoss Web 2.1.x, which is
based on Tomcat 6.x. This basically means that the server.xml is a configuration
file for Tomcat server.

A detailed description and examples of all files will be shown in chapters describing
migration of each service(subsystem) in a greater detail. It is also important to point out
that the application at this moment does not support migration of cluster configuration
of the AS5 and cluster configuration files. This feature may be added in the future.

The configuration of the AS7 is stored in one XML file, as mentioned previously
in 2.4.1. The default file is standalone.xml. There are several others with different
settings but all files have the same structure and syntax. A configuration file in the AS7
is not static. It means all changes made to the server when it is running are automatically
reflected in it. A part of the automatic migration is importing migrated settings into
these files. The structure of the configuration file is described in XML schemas for
standalone file in ${JBOSS7_HOME}/docs/schema or in documentation for the AS7 [9] or
in book about AS7 [2].

The root element has seven main children elements. The most important for migra-
tion is <profile> element containing a collection of <subsystem> elements. The <sub-
system> elements are responsible for the configuration of all services provided by the
application server. There are several different subsystems defined in <profile> element.
Each one of them is responsible for configuration of a different service of the application
server and each has a xmlns attribute that defines the type and version of the subsystem.

9

2 DESCRIPTION OF JBOSS APPLICATION SERVER

For example, the logging subsystem is defined as <subsystem xmlns="urn:jboss:domain:-
logging:1.1"/>. A detailed description of each subsystem will be in chapters describing
migration of few chosen subsystems.

Another element is the <extensions> element containing extensions for the applica-
tion server. An extension is packed as module, which extends capabilities of the server
and it is also stored in module directory. Extensions that should be available to the
application server should be defined in this element.

Next element is <system-properties>, which is used for setting and adding system–
wide properties for the application server and its configuration.

The <paths> element is intended for setting paths in the application server. The
path defines logical names for file system paths, which then can be referenced by it.
Several paths are already defined in the application server and cannot be overridden.

Another is <management> element containing definitions of security realms and
management interfaces for the application server. These are used for adding users of the
application server.

The <interfaces> element contains declarations of logical names for a network in-
terface, an IP address or a host name to which sockets can be bound. These declared
interfaces can be then referenced in other sections of the configuration file.

Another one is the <socket–binding–group> element, which contains declaration of
socket–bindings. A <socket–binding> element defines the logical name for a socket (net-
work port) that can be then referenced by it.

The last element is <deployments> element that contains a list of deployed appli-
cations on the application server. This element is always updated after deployment of
application.

10

3 Analysis of Migration

Currently, the application migrates only five services of the application server that are
changed by users the most often. Each service or subsystem has different functions and
configuration options. These services and their configuration in both servers will be
detailed in this chapter.

3.1 Configuration of Datasource Service

Datasource subsystem is one of the subsystems in the application server and it is re-
sponsible for configuration of datasources that are very important for most enterprise
applications. Their function is to configure database connectivity and each datasource
contains a pool of database connections. They are used by applications deployed on the
server [2]. This makes the datasource subsystem the first choice for automated migration,
which will be detailed in this chapter.

The configuration of datasources in AS5 is stored in specific XML files in directory
${JBOSS5_Home}/server/<server-name>/deploy. These files are marked by -ds.xml
suffix in the name of the files and the prefix is usually the name of the database of
datasources declared in it. It is a common practice to store datasources for the same
database in the same file. An application server can have several configuration files for
datasources; AS5 supports several databases. Files with -ds.xml suffix can also contain
a configuration for connection–factories having <connection–factories> root element
that holds the configuration of resource adapters in AS5. For more information about
connection factories and their migration refer to 3.4.

The <datasources> root element holds configurations of three different datasources:

• <no-tx-datasource> uses the NoTxConnectionManager service and this connection
manager does not take part in JTA transactions [1]

• <local-tx-datasource> on the other hand uses the LocalTxConnectionManager

supporting JTA transactions

• <xa-datasource> uses XaTxConnectionManager, which also supports JTA trans-
action but in addition to LocalTxConnectionManager supports two-phase commit

All three datasources have several identical children elements being responsible for
their configuration and, of course, there are also specific elements for each type of data-
source. Important elements are <driver–class> and <xa–datasource–class>, which ref-
erence classes in the JDBC driver. This driver is a JAR file that can be stored in

11

3 ANALYSIS OF MIGRATION

${JBOSS5_Home}/common/lib or ${JBOSS5_Home}/server/<server-name>/lib direc-
tory. The driver’s library is crucial for successful migration of datasource.

More information about configuration elements in all datasources can be found in
a XML schema jboss-ds.xml stored in ${JBOSS5_Home}/docs/schema. There are
also many examples for configuration files for different types of databases stored in
${JBOSS5_Home}/docs/examples/jca.

In AS7, configuration of a datasource is done in one subsystem of the configuration
file. The datasource subsystem is provided by IronJamacar project3, which defines con-
figuration possibilities of the datasource subsystem [12]. An example of the datasource
subsystem is shown in Listing 9 in Appendix C.

The AS7 configuration has only two types of datasources. One of them is datasource,
which is the equivalent of local–tx–datasource in the AS5. The other one is xa–datasource
being exactly the same type of datasource as in the AS5. The configuration of these
datasources is similar to configuration in the AS5 with few changes. There are five
configuration groups responsible for different parts of datasource configuration and there
are:

• <pool> and <xa–pool> elements are responsible for JDBC connection pool prop-
erties where <xa–pool> contains few extra elements specific for the xa–datasource.

• <security> element configures connection credentials

• <timeout> element is for configuration of different timeouts

• <statement> element is for configuration of settings on statements

• <validation> element is for checking and validating actions done by datasource

A detailed description of configuration properties for both types can be found in Iron-
Jacamar4 documentation and especially in its schema description.

The <drivers> element contains <driver> elements responsible for declaration of
JDBC drivers that are used by datasources. Each <driver> element has a defined name
by which it is referenced in datasources and each contains the element <xa–datasource–
class> or <driver–class>. Another attribute is module containing information about
location of driver library in modules directory.
3http://www.jboss.org/ironjacamar
4http://www.jboss.org/ironjacamar/docs

12

http://www.jboss.org/ironjacamar
http://www.jboss.org/ironjacamar/docs

3 ANALYSIS OF MIGRATION

3.2 Configuration of Logging Service

Logging is a crucial component for every application and this also applies to the appli-
cation server. Many administrators of application servers probably altered basic logging
configuration to their specific needs. This makes logging a sensitive subject of migration.
The application can help many users to migrate the logging configuration, because the
AS7 is using a different logging library than AS5. This problem and its solution will be
explained in this chapter.

The AS5 and earlier versions use log4j as default logging API. Log4j is very popular
open source logging library from Apache and it is very similar to logging API in Java
standard libraries. There are only small differences in some special features in log4j
[1]. The configuration of log4j in AS5 is stored in jboss-log4j.xml file on the path
${JBOSS5_HOME}/server/<server>/conf/ in server file structure [1]. The configuration
of log4j consists of three elements [4]:

• <appender> is representing output destinations for logging

• <category> or <logger> (in newer versions) is responsible for filtering logging
statements by assigned levels

• <root> or <root-logger> defines parent of all loggers in hierarchy and must be
always set, even if there are no other categories

A simplified configuration file from AS5 is shown in Listing 11.
JBoss AS 6, and more importantly the AS7, use JBoss’s own implementation of

logging, which is based on standard JDK logging with several upgrades [2]. However it
is still possible to use log4j in application [1], but the goal of migration is to use default
logging in AS7. That means it is needed to migrate configuration of log4j into AS7’s
logging implementation, which is described in this subsection.

Logging of AS7 can be configured in few different ways. The default way is using
logging subsystem in configuration file, which acts as logging for the entire server. The
AS7 configuration directory also contains the logging.properties file. This file is used
for logging until server boots up, and the logging subsystem is still inactive. This file
should not be modified and may not be in future releases of AS7 [5].

As mentioned before, both log4j and Java standard libraries logging APIs are very
similar. The AS7 logging has also there main elements:

• <handler> has identical purpose as appender in log4j and similar to appender,
there are different types handlers

13

3 ANALYSIS OF MIGRATION

• <logger> is equivalent of the category from log4j

• <root–logger> is just root–logger from log4j

The fresh installation of AS7 comes with basic logging configuration containing console–
handler, file–handler, few loggers and root–logger. The logging subsystem is shown
in Listing 12 in Appendix C.

3.3 Configuration of Security Service

Another important aspect of every Enterprise application is the security. The security
in JBoss AS is based on Java Authentication and Authorization Service (JAAS) [2, 1]
using different login modules for authentication. These modules are used by applica-
tions deployed on the server for authentication and authorization. Both versions of the
application server use different approach for security built atop JAAS. Configuration of
security on both versions and their migration will be described in this section.

The AS5 is using JBoss SX framework for security [1]. Main component of JBoss
SX is security domain handling authorization and authentication checks of requests
before they access the server. The JBoss SX is using mbean for configuration of security
like all services in AS5 and the main functionality of this mbean is to load security
policies. Security policies are the main configurations of security in the application server
and they are defined in jboss-login.xml in ${JBOSS5_HOME}/server/<server>/conf/

folder. This XML file contains different application policies. Each application policy is
stored in <application-policy> element with defined name that can be referenced by
applications. In addition, each policy contains <authentication> element which holds
<login–module> elements with their specific <module–options>. The <login–module>
element references login–module class that will be used by the domain and it also defines
different types of the authorization. The <module–option> element defines different
settings for selected login–module and therefore configures the security domain. Example
of security configuration is shown in Listing 13 in Appendix C.

In AS7, PicketBox framework is used for security, which is qualified as extension to
the application server [2]. The extension is defined in configuration file in <extensions>
element as <extension module="org.jboss.as.security"/>. Configuration itself is done
in security subsystem that contains different security domains in element <security–
domains>. The <security–domain> elements have attribute name for referencing and
can contain different <login–module> elements with their module–options, similar to
AS5 configuration. Example of security subsystem is shown in Listing 14 in Appendix C

14

3 ANALYSIS OF MIGRATION

and more information can be found in AS7’s documentation5 .

3.4 Configuration of Resource Adapters

The application server is based on Java EE, which means, it can work easy with three
main file types that are used in Java Enterprise applications. It is basic JAR package
used for applications, WAR archive used for web applications and EAR file representing
container for Enterprise applications. However there is a possibility to deploy a RAR file.
The RAR file can be deployed as resource adapter in the application server. Resource
adapters act as wrappers around services and they are defined by Java EE Connector
Architecture (JCA) API6.

Resource adapters are defined as connection factories in AS5 and stored in files with
–ds.xml suffix. The description of –ds.xml files is detailed in 3.1. The root element for
connection factories in these files can contain two types of elements:

• <tx–connection–factory>

• <no–tx–connection–factory>

Similar to types of datasources in AS5, tx–connection–factory supports transactions
and no–tx–connection–factory does not. Both resource adapters and datasources have
common elements for the configuration with few special settings for each. In case
of resource adapters, the most important elements are <rar–name> referencing de-
ployed RAR file into the server, <connection–definition> referencing class in RAR file,
<xa–transaction> only available in tx–connection–factory for declaring usage of xa–
transactions and <config–property> defining property of resource adapter. The configu-
ration and possible settings for resource adapter can be found in jboss–ds.xsd schema in
${JBOSS5_HOME}/docs/schema folder and example of resource adapter in AS5 is shown
in Listing 15 in Appendix C.

In AS7, the configuration of resource adapters is done in the subsystem for resource
adapters. The resource–adapter subsystem is also provided by IronJamacar project
as datasources subsystem and all the required information for configuration of resource
adapters can be found in IronJamacar’s documentation. The subsystem just contains the
<resource–adapters> element, which contain <resource–adapter> elements. Resource
adapters have also defined six configuration groups similar to datasources in the AS7,
where the sixth group is <xa–pool> and as always they have few special settings only
5https://docs.jboss.org/author/display/AS7/Security+subsystem+configuration
6http://en.wikipedia.org/wiki/Java_EE_Connector_Architecture

15

https://docs.jboss.org/author/display/AS7/Security+subsystem+configuration
http://en.wikipedia.org/wiki/Java_EE_Connector_Architecture

3 ANALYSIS OF MIGRATION

for resource adapters. Example is resource–adapter subsystem is shown in Listing 16
in Appendix C.

3.5 Configuration of Web Engine

The web subsystem is intended for configuring the web engine on which web parts of
enterprise applications can run. Both versions of the application server are using JBoss
Web project for this job based on the popular Apache Tomcat server. Servers use
different version of JBoss Web. The AS5 uses JBoss Web 2.1.x being based on Tomcat 6
and AS7 uses the newest version of JBoss Web 7 based on Tomcat 7 [2, 13]. Therefore,
the migration of web engine configuration is also migration of Tomcat 6 to Tomcat 7.
The configuration of web engine in both versions and its migration will be described in
this section.

The basic configuration file for Tomcat is server.xml and this applies also to AS5.
The server.xml file is stored in ${JBOSS5_HOME}/server/<server>/deploy/jboss-

web.sar/ folder. Information about configuration and possible settings can be found
in JBoss Web 2.1.x documentation7. The configuration file has root element <Server>
that can contain <Service> elements. Each <Service> element has a name attribute
and element’s function is to hold a group of Connectors associated with an Engine.

A <Connector> element has several configuration settings that can be all found
in mentioned documentations. Important attribute for configuration of a connector is
protocol. The protocol attribute defines protocol used by a connector. This attribute
can be set only to AJP/1.3 or HTTP/1.1. The third possible protocol is HTTPS being
defined by the protocol HTTP/1.1 and required SSL attributes.

Each <Engine> element has a name attribute and default–host attribute, which
must reference a name of <Host> element. The <Host> element represents virtual
server associated with network name. All the necessary information is in mentioned
documentations and an example of AS5’s web server configuration is shown in Listing 17
in Appendix C

The AS7 is using a centralized configuration file so there is no server.xml file.
Instead, the configuration of web engine is done in web subsystem in configuration
file. The structure is completely different and the configuration is simpler than in the
AS5. The subsystem can only hold two types of elements. One is a <connector>
element that is equivalent a connector in AS5 with the same functionality but with less
possible settings. Another change is new socket–binding attribute that must reference a
7http://docs.jboss.org/jbossweb/latest/config/index.html

16

http://docs.jboss.org/jbossweb/latest/config/index.html

3 ANALYSIS OF MIGRATION

<socket–binding> element defined in <socket–binding–group>. Each <socket–binding>
element has a name and port attribute. The name attribute is used for referencing
in configuration file and port attribute defines TCP port number of the socket. The
second element is <virtual–server> containing <alias> elements. More information on
a possible configuration can be found in AS7’s documentation8 and an example of web
subsystem is shown in Listing 18 in Appendix C.

8https://docs.jboss.org/author/display/AS71/Web+subsystem+configuration

17

https://docs.jboss.org/author/display/AS71/Web+subsystem+configuration

4 Application for Automated Migration

Now we understand the structure of both servers and their configuration files, which
is crucial for the migration. The purpose of the thesis is the automated migration of
configuration of the AS5 to AS7. This chapter deals with how these configurations can
be stored as objects and used in the created application for automated migration. In
addition, this chapter also describes the created application and its main components
and principle.

4.1 Lifecycle of Application

The basic idea behind an automatic migration in the application is unmarshalling the
XML configuration files from the AS5 into objects and then creating new objects from
them, representing a configuration in the AS7 and finally creating CLI commands for
adding these objects into AS7 configuration. The application uses JAXB classes (JAXB
beans) for this purpose. The process of migration and creation of new objects will be
detailed in chapters describing the migration of chosen subsystems. This section is about
the structure of the application and how the application works.

The application is based on the one lifecycle that migrates the configuration of AS5.
The first phase of lifecycle is loading configuration files from AS5 and unmarshalling
them into objects being afterwards stored in the migration context. The application then
prepares actions created in each migrator and stores them in the migration context. This
stage is the basic process of the migration of configuration because it creates actions that
represent migrated configurations. Once all actions are created, the migrators are no
longer needed because the application works only with actions after this point. Actions
have implemented methods used by MigratorEngine, which controls the lifecycle of the
migration.

The second phase is the pre-validation of information stored in each action. It consists
of checking for example if created CLI scripts are not null or if files that should be
copied into AS7 exist. If something is wrong then the action throws exception and the
application stops the migration.

After a successful validation of actions each action backups necessary things. This
part is mostly for actions that are responsible for copying of files because CLI commands
do not need to backup anything.

Once backup is done, all actions are executed, which means different things for each
type of action. Actions responsible for file transfers copy files in their destinations and, in
case of modules, additional required files are also created. Actions storing CLI commands

18

4 APPLICATION FOR AUTOMATED MIGRATION

just add their commands into the batch in migration context.
Then the application validates each action whether they fulfilled their purpose, which

primary apply to actions responsible for file transfers and checking whether files are really
in their place in the AS7 structure.

If everything went as it should then the last step is to clean created backups and to
execute the batch with CLI commands. The execution will be done with CLI manage-
ment API, which connects to the running AS7 server and executes the batch. If there is
no problem then the migration is successful and completed, but if even one command
fails then the batch is rolled back and the configuration of AS7 remains unchanged. The
rollback is also done to other actions, which already copied files into AS7 and they are
deleted or changed to their previous state.

At the moment, there are three different types of actions in the application and they
are:

• CliCommandAction represents one CLI command and script, which will be exe-
cuted on the running AS7

• CopyAction stores information about file that should be copied into AS7 structure
to a specific destination

• ModuleCreationAction stores information about file that should be deployed as
module in AS7

These actions are responsible for migration and each has a specific purpose. There is a
possibility that new types of actions will be added for different approaches to applying
the migration.

4.2 Structure of Created Application

The structure of the application can be seen in Figure 3. The Ex package contains all
exceptions used in the application. The root exception is MigratorException extending
others exceptions. This is done for better handling of exceptions if the application is
used in other projects.

Another one is Migrators package containing five packages representing migrated
subsystems by the application. More detailed description of these packages is in 4.2.2.

19

4 APPLICATION FOR AUTOMATED MIGRATION

Figure 3: Structure of the Application

The Spi package contains all interfaces used in the application. IConfigFragment

interface is marker that has no methods and is implemented by all AS5 JAXB beans for
code readability and type safety. The IMigrator interface contains three methods that
represent the main function of the application. Each class responsible for migration of
services must implement this interface. The IMigrator interface is described in 4.2.1.

Another package is utils containing utility classes with various static methods used
in other classes. These methods are usually helper methods for various purposes.

The package conf contains classes responsible for storing and working with given
inputs and parameters for the created application.

The last package is actions holding classes of different actions. These actions are
used in the migration.

There are several classes with different functions in the main package of the appli-
cation. One of these classes is MigrationContext class representing context of migra-
tion keeping all the necessary information for process of migration. Another class is
MigratorEngine responsible for process of migration of all implemented services.

4.2.1 IMigrator Interface

The IMigrator interface is the backbone of the whole application. This interface is
implemented by AbstractMigrator that is extended by all migrator classes in migrated
subsystems. Its main functionality is to load the configuration from AS5 (unmarshalling)
and creation of actions. This section describes main methods and what is their contract
but first starts with IMigrator interface, which is shown in Listing 1.

20

4 APPLICATION FOR AUTOMATED MIGRATION

public interface IMigrator {

public GlobalConfiguration getGlobalConfig ();

public void setGlobalConfig(GlobalConfiguration conf);

public void loadAS5Data(MigrationContext ctx) throws LoadMigrationException;

public void createActions(MigrationContext ctx) throws MigrationException;

public int examineConfigProperty(Configuration.ModuleSpecificProperty
moduleOption);

}

Listing 1: IMigrator Interface

The methods getGlobalConfig and setGlobalConfig are implemented by Abstract-

Migrator and are used for setting and getting GlobalConfiguration for the migration.
This configuration stores all the necessary information for the application and migration
itself like directories of both servers and names of the migrated profiles.

The method loadAS5data is used for unmarshalling configuration files from AS5 into
objects. This method unmarshalls necessary files into their object representation and
then stores these object into given MigrationContext. All migrators must override
this method for their subsystem because, as it was mention before, there are different
configuration files for each subsystem.

The method createActions represents the whole migration process. It takes objects
from given MigrationContext, which categorizes these objects into their specific sub-
system. It means, each migrator overriding this method will take only objects of its
subsystem. These objects are migrated into their equivalents in AS7 configuration and
method creates required actions for a successful migration.

The last method examineConfigProperty is a simple method for checking if given
module prefix belongs to the implementation. User, for configuring the migration, defines
these module options. At the moment, these options do not have any effect on migration,
but they may be implemented in the future.

4.2.2 Migrators Package

Migrators package contains five packages that represent chosen migrated subsystems in
this thesis. It is possible that new subsystems for migration will be added in the future.
For now, it is only web, security, logging, datasources and connection factories (resource
adapters in AS7). Each one of them contains class or classes and another subpackage.

21

4 APPLICATION FOR AUTOMATED MIGRATION

The subpackage is called jaxb and contains JAXB beans of both versions of server
for specific subsystem represented by package. All classes are similar to the class shown
in Listing 3 and they are required for a migration of each subsystem will be mentioned
in chapters for that subsystem.

Each package contains at least one class responsible for manipulating with JAXB
beans and the migration itself. Some packages can also contain some additional classes
for additional functions needed in migration of specific services. Classes responsible
for migration, corresponding to their package, are ServerMigrator, LoggingMigrator,
DatasourceMigrator, SecurityMigrator, and ResAdapterMigrator. Each class ex-
tends AbstractMigrator and implements its abstract methods and unimplemented
methods from IMigrator interface. In addition, each class has its own public meth-
ods for working with unmarshalled data and their migration.

4.3 JAXB and EclipseLink MOXy JAXB Implementation

We know from the previous chapter that all configuration files in the AS5 and AS7 are
XML files. It is required to get all the necessary information from them that must be
then migrated to their representation in the AS7. The solution for an easy manipulation
with XML content is Java object oriented approach using JAXB.

Java Architecture for XML Binding (JAXB) is a specification that allows mapping
between XML documents and Java objects. The JAXB framework provides two main
functionalities:

• Unmarshalling – retrieving XML content into Java object representation

• Marshalling – putting Java object representation into XML document

All information in this section about JAXB can be found on the JAXB project docu-
mentation site [10].

It is first required to define Java classes to represent XML documents. These classes
are regular classes with JAXB annotations that will represent the content of XML docu-
ment as objects. JAXB annotations define which attribute represents which information
from XML. There are three basic JAXB annotations, which are used frequently in almost
every JAXB class:

• @XmlRootElement defines the root element of the object and it is also required
for classes representing children elements of the root element, not only on classes
representing the root element of the XML document

22

4 APPLICATION FOR AUTOMATED MIGRATION

• @XmlAttribute defines which attributes of the class are representing attributes of
the root element

• @XmlElement also defines, which attributes of a class are representing children
elements

• @XmlElements has similar functionality as @XmlElement for multiple elements

Using these annotations can be useful in XML documents of a simple structure.
XML documents with many nested elements require more than one class. This problem
can be avoided using XPath. Unfortunately, this option is not available in basic JAXB
specification so it is required to use some extension.

EclipseLink MOXy is a JAXB implementation with additional features that can help
with mapping of complex XML structures [11]. The most important new feature for us
is the @XmlPath annotation allowing XPath expression. This helps to reduce the number
of required Java classes for XML documents and is very useful in many situations.

All Java classes in the application used for marshalling and unmarshalling were
created manually. JAXB also gives options to generate classes from given XML schema,
but this process was not used because it produces a lot of classes, which makes working
with them difficult. Manually created classes are better for maintaining or possible
upgrades.

Example of an XML document with a created JAXB class from the migration appli-
cation can be seen in Listing 2 and Listing 3.
<?xml version="1.0" encoding="UTF -8"?>
<appender name="FILE" class="DailyRollingFileAppender">

<errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
<param name="File" value="${jboss.server.log.dir}/ server.log"/>
<param name="Append" value="true"/>
<param name="DatePattern" value="’.’yyyy -MM -dd"/>
<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="%d␣%-5p␣[%c]␣(%t)␣%m%n"/>
</layout >

</appender >

Listing 2: Log4j Appender Example

The attribute parameters in Listing 3 has a special annotation for multiple occur-
rences of one element and the type of the attribute is class ParameterBean. This is
an example of a problem when working with JAXB. It has a problem with multiple
occurrences of element with two or more attributes. The only solution is to define an-
other class for that element. ParameterBean is exactly this type of class with only two
attributes with JAXB annotations shown in Listing 4.

23

4 APPLICATION FOR AUTOMATED MIGRATION

@XmlRootElement(name = "appender")
public class AppenderBean{

@XmlAttribute(name = "name")
private String appenderName;

@XmlAttribute(name = "class")
private String appenderClass;

@XmlElements(@XmlElement(name = "param", type = ParameterBean.class))
private Set <ParameterBean > parameters;

@XmlPath("appender -ref/@ref")
private Set <String > appenderRefs;

@XmlPath("layout/param/@name")
private String layoutParamName;

@XmlPath("layout/param/@value")
private String layoutParamValue;

// Setters and getters methods are omitted in this example !
}

Listing 3: Class with JAXB Annotations

@XmlRootElement(name = "parameter")
public class ParameterBean {

@XmlAttribute(name = "name")
private String paramName;

@XmlAttribute(name = "value")
private String paramValue;

// Setters and getters methods are omitted in this example !
}

Listing 4: ParamaterBean Class

24

5 Implementation of Migration

Using all information about style and possible options of configuration of each service
from Chapter 3, there is a way to migrate and implement this migration of configuration
from AS5 to AS7. This implementation for each service is detailed in this chapter along
with solutions to various problems arising from the changed configuration.

The migration in general starts with unmarshalling all configuration files from AS5
to objects and storing them into the migration context. Objects are stored in a map that
sorts them by subsystems. Then each migrator tries to migrate these objects to their
equivalents in AS7 configuration and creates from these migrated objects actions that
are stored into the migration context. These actions are then executed from migration
context and the migration is done.

5.1 Migration of Datasource Configuration

The migration of datasources is really straightforward with only few small problems but
the full migration of datasource is more difficult because it is required to migrate JDBC
driver into the AS7 as module.

As we know, there are three types of datasources in the AS5 and only two in the AS7,
so this is the first problem of the migration. From the description of the configuration on
both application servers, it is clear that there is no no–tx–datasource type of datasource
in the AS7. The solution of this problem is to create a basic datasource with a special
attribute jta set to false, which will disable JTA transactions.

Datasources in the AS7 have almost all possible settings from the AS5 with few
changes in names and few new ones added in the AS7 configuration. Configuration
groups are one of them, which means, most elements have just changed their position
in XML structure. There is also added one new required attribute pool–name. This
attribute is equivalent of <jndi–name> element in AS5 but AS7’s configuration has
also attribute jndi–name. The jndi–name attribute in AS7 must have special prefix
java:jboss/datasource/, that usually ends by pool–name. The whole migration is very
clear just from example of AS5’s datasource and its AS7 equivalent shown in Appendix C
in Listing 8 and Listing 9.

The more important and more difficult part of the datasource migration is the mi-
gration of driver and driver’s library into AS7. Two of the elements not appearing
in datasource configuration in the AS7 are <driver–class> and <xa–datasource–class>.
As mentioned in 3.1, they must be declared in separate element <driver> in element
<drivers>. Each <driver> element must have a defined name by which it can be ref-

25

5 IMPLEMENTATION OF MIGRATION

erenced in datasources. The name of the driver is set to createdDriverX where X is the
number of migrated driver.

This process of migration is successful but it is still incomplete because the driver also
needs a driver’s library containing the mentioned class. Without this library deployed
in the AS7, the driver is unusable and likewise datasources that are using it. The
deployment of the library is done by the application that will add driver’s library into
the AS7 instead of the user.

The application tries first to find the declared driver’s class in JAR archives in
${JBOSS5_HOME}/commons/lib or ${JBOSS5_HOME}/server/<server-name>/lib direc-
tories. Then it must create module for this file, starting with creation of folder struc-
ture ${JBOSS7_HOME}/modules/migration/drivers. For each migrated driver from the
AS5, it creates subfolder createdDriverX where X is the number of migrated driver,
and it must contain subfolder main. The application then copies found library into the
main folder and then creates module.xml file in it.

The module.xml file is necessary for importing modules into the AS7. It defines
name of the module, which can be then used in the configuration file. It also defines
which libraries in folder are used when the module is called and module’s dependencies
on other modules. In our situation, there are required three main dependencies for driver
and there are javax.api, javax.transaction.api and javax.servlet.api. Last thing to do is
to reference the created module in <driver> element. An example of created driver is
shown in Listing 6 and an example of module.xml is shown in Listing 5.
<module xmlns="urn:jboss:module:1 .1" name="jdbc.drivers.mssql">

<resources >
<resource -root path="mysql -connector -java -5.1.22 - bin.jar"/>
<!-- Insert resources here -->

</resources >
<dependencies >

<module name="javax.api"/>
<module name="javax.transaction.api"/>
<module name="javax.servlet.api" optional="true"/>

</dependencies >
</module >

Listing 5: Example of module.xml

<driver name="mssql" module="jdbc.drivers.mssql">
<driver -class >com.microsoft.sqlserver.jdbc.SQLServerDriver </driver -class>

</driver >

Listing 6: Example of Driver Element

26

5 IMPLEMENTATION OF MIGRATION

5.2 Migration of Logging Configuration

It is clear from previous examples of configurations on both versions of AS that migration
itself is not so difficult. Migration itself is break down to migrating appenders to handlers,
categories to loggers and changing syntax of the root–logger from AS5 to AS7.

Start with the migration of category and root–logger is really straightforward. The
main change is of course the name of elements. Changes are also made to two children
elements in both. The first element is <priority> that changes name to <level>. The
last element <appender–ref> needs to be changed to element <handler> and declared
in parent element <handlers>. There can be more than one element of this type in both
elements. An example of category migration is shown in Listing 7.
<category name="org.jboss.ha">

<priority value="DEBUG" />
<appender -ref ref="CLUSTER"/>

</category >

<logger category="org.jboss.ha">
<level name="WARN"/>
<handlers >

<handler name="CLUSTER"/>
</handlers >

</logger >

Listing 7: Example of Category Migration

As it was mentioned before, log4j has only one element for all appenders in configu-
ration. The type of appender is stored in attribute class. There are few common types
in log4 itself, but there is also an option to define and use your own class for logging.
On the other hand, logging in AS7 has unique elements and attributes for all supported
handlers. That means, the first step is to parse value stored in appender’s attribute class
and finding the right type of handler in AS7. This value is in Java naming convention, so
that means, it contains full package path ending with name of the class and possibilities
are:

• DailyRollingFileAppender will be migrated to <periodic–rotating–file–handler>

• RollingFileAppender will be migrated to <size–rotating–file–handler>

• ConsoleAppender will be migrated to <console–handler>

• AsyncAppender will be migrated to <async–handler>

• Special types of appenders will be migrated to <custom–handler>.

27

5 IMPLEMENTATION OF MIGRATION

The next step is to migrate all settings of appenders. These settings are represented
by element <param>, which has attributes name and value. This step is basically iden-
tical to the first one. The application parses attribute name and finds the corresponding
setting in AS7’s configuration and stores in it the attribute value. The right syntax of
settings for all handlers can be found in AS7’s documentation [5].

However, special appenders migration is more complicated. Appenders not hav-
ing representation in specific handler must be migrated to custom–handlers. These
special appenders either use special log4j classes or classes created by users for their
specific logging. Classes created by users must be first found in deployed JAR files
in AS5 file structure. These files can be found in ${JBOSS5_HOME}/common/lib or
${JBOSS5_HOME}/server/<server-name>/lib folders. They are then copied to created
module in modules directory in AS7 in subfolder migration/logging/customHandlerX.
Similar to creation of driver module, module.xml must be created for new modules with
different dependencies than in drivers. The log4j module already exists in AS7, so no
copying is required. A custom–handler then references migrated class along with created
module or log4j module in AS7.

5.3 Migration of Security Configuration

The migration itself is not difficult because each <application–policy> is just changed
to <security–domain> but there is change required in <login–module> and <module–
options> elements. The <login–module> element references the login–module class with
full package name but AS7 configuration is using only the name of the class, in other
words, only type of login–module. The application parses the class in AS5 configuration
and chooses the adequate type for AS7 configuration. All possible types of login–modules
are listed in the documentation of the security subsystem mentioned in 3.3.

The last change is in the <module–option> element where text content in AS5 must
be moved to attribute value. Themodule–options can also contain reference on properties
files used for security that must be copied to AS7. The application copies these files
in ${JBOSS7_HOME}/standalone/configuration folder and changes their relative path
in AS7 configuration to their new location. An example of the migration is shown
in Appendix C in Listing 13 and Listing 14.

5.4 Migration of Resource Adapters Configuration

The migration of resource adapters is relatively easy and very similar to migration of
datasources. As in datasources many elements just have slightly changed name and

28

5 IMPLEMENTATION OF MIGRATION

position in XML but, once again, it is necessary to deploy referenced RAR file into
AS7. The basic migration can be understood just from example of AS5 configuration
with its migrated equivalent. Both examples are shown in Listing 15 and Listing 16
in Appendix C. Problematic parts and their solution will be described in this section.

The first problem arises from the two types of adapters in AS5 and only one avail-
able type in AS7. At first glance it seems that AS7 no longer supports adapters with
different transaction support but it is not true. The resource adapter in AS7 has spe-
cial configuration element <transaction–support> with settings NoTransaction used for
adapter without transaction support, LocalTransaction for adapter with transaction sup-
port and XaTransaction for adapter with xa–transaction support. The xa–transaction
support is defined by children element <xa–transaction> in <tx–connection–factory> in
AS5. Another problem is with attributes pool–name and jndi–name. It is exactly the
same problem as in the migration of datasources but the prefix for jndi–name must be
java:jboss/ in this situation.

Last thing is a deployment of the RAR file into AS7 that is easier than the de-
ployment of driver because it does not need to be deployed as module. The applica-
tion must first find referenced file in AS5 structure and then it must by copied into
${JBOSS5_HOME}/standalone/deployments folder. After that the file is successfully
deployed into server but there is a possibility that the deployed RAR file will need some
alternation by user for non–problematic deployment.

5.5 Migration of Web Engine Configuration

Migration of previous subsystems was relatively easy because there were similarities
in configurations but a web engine configuration is completely different. One of the
key features of the new configuration is simplicity and, because of that, it has less
configuration possibilities than AS5 configuration and the completely different structure.
The first thing to consider is that it no more associates group of connectors with engines
or virtual servers, in other words to say. The AS7 configuration also has no <Realm>
element, so this element is completely ignored in process of migration. The <Valve>
element is added to the configuration of web subsystem in JBoss AS 7.2.x but the final
version released does not support this element at the moment. It can instead be defined
and configured in deployed applications. Currently, the application ignores this element
in process of migration and only Connectors and Engine is migrated in each Service.

Connectors in AS7 have many similar attributes as in AS5 configuration but few
settings were deleted and there are few changes in structure. The first one is that

29

5 IMPLEMENTATION OF MIGRATION

configuration of SSL is now done in <ssl> children element and settings associated with
SSL are attributes of this element. The SSL configuration also lost few settings and
some of them where merged to one. The list of all possible settings of connector in
both versions is very long and describing migration or change of each attribute would
take long. Lot of information can be found in mentioned documentations or in code in
ServerMigrator.

Another change is declaration of port number in <connector> element that must be
done as <socket–binding> element. The AS7 come with some default socket–bindings
like default ports for AJP, HTTP and HTTPS protocols. The application parses socket–
bindings in given configuration file and set socket–binding attribute of migrated connector
to one of them if it is already defined. If connector is using port that is not defined as
<socket–binding>, the application creates new <socket–binding> for the port number.
This creates problem because one <socket–binding> can be used only by one connector.
In the situation when this problem occurs, it is up to the user to solve it manually after
the migration.

The <Engine> element is migrated to a <virtual–server> element with the name of
Engine and each <Host> element is changed to <Alias> element. Each <Host> element
can hold number of <Alias> elements. These elements are also migrated to <alias>
elements in <virtual-server>. Only name attributes are migrated because other settings
in both elements are no longer used in AS7 configuration. An example of migration to
web subsystem in AS7 is shown in Listing 17 and Listing 18 in Appendix C.

30

6 Conclusion and Use of Application

6.1 Using the Created Application

To use the application, we need to start the JBoss AS7 in admin–only mode. This mode
is ideal for configuring the application server because it starts the server without addi-
tional services, which means, the application can add problematic parts of the migration
into the configuration. Starting the application server in admin–only mode is shown
in Figure 4.

Figure 4: Starting the Application Server in admin–only Mode

With the application server running in admin–only mode we can use the created
application. The application is packed in JAR archive, which can be executed from the
command line with parameters. There are two required parameters for setting directories
of running JBoss AS 7 and to be migrated JBoss AS 5, there are also other optional
settings. All possible settings for the application are shown in Appendix B. Starting
the application with only required parameters results in default settings for profiles used
in the migration for both versions of the application server. Use of the application and
successful run is shown in Figure 5.

From Figure 5, we can see which actions were created by the application, it has also
connected to the application server and executed actions representing CLI command
as batch on it. By checking the configuration file of the AS7, default file is set to
standalone.xml in this case; we will see that the configuration file is altered and the
configuration of AS5 was migrated along with required files found in the AS7 structure.
The last step is to shutdown and start the application server without admin–only mode
and check whether all services are running as they should and if the application server

31

6 CONCLUSION AND USE OF APPLICATION

does not show any errors, which can be seen in Figure 6.

Figure 5: Using the Application

Figure 6: Starting the Application Server after Migration

6.2 Conclusion and Future

The first and main goal of this thesis was to find a way to migrate configuration from
JBoss AS 5 to JBoss AS 7. In conclusion, such a migration can be very difficult because
there are many possibilities. It means, it is very hard to verify every possibility in
migration. The described principles of migration can be seen in Appendix C in all
listings. Each services covered in this thesis has an example of AS5 configuration and its
representation in AS7 created by the application, which is implementation of described

32

6 CONCLUSION AND USE OF APPLICATION

process. All problems mentioned in the Chapter 5 are also shown in the examples
with exceptions to examples of created modules. These examples provide the basic
assumption that migration is successful but the only way how to assure that migration
is working is starting AS7 and check whether all services are working as they should
on the installed application server. Without using the application, it is also required to
deploy files referenced in the examples or otherwise migrated services would not work.
Taking everything into consideration, we can say that thesis is describing migration of
few chosen services and sets basics for migration of other services. That means that the
first goal of this thesis set in the beginning has been fulfilled.

The application attached to the thesis is the result and the implementation of the
theory behind the migration. It is also capable of automated migration along with de-
ploying referenced files in migrated configurations in they right place in AS7 structure.
That means the application fulfills the second goal of this thesis. There is only one prob-
lem with automated migration at the moment. This problem is that each service has few
specific settings that required user manipulation. This problem mainly consists of inte-
gration of created configuration with the default configuration set in fresh install of AS7.
The application generates CLI commands and scripts that provide validation of settings
declared in scripts and can help users to solve problems if they arise. All CLI scripts
created by the application for all examples in Appendix C are show in Appendix D.

Given these problems, it is really hard and almost impossible to create application
capable of fully automated migration of JBoss AS5 without user interaction. These
problems can be also solved by giving users a certain way to choose and manipulate
what should be migrated and what should not be. These settings can be set in the
application as its parameters when user executes application JAR file. At the moment,
the application saves these settings but they do not have affect of migration. I hope,
this feature will be implemented in the future because there is already prepared ground
for this feature. That means the application also meets the third goal of this thesis
because it was developed with intention for easy expansion of functionality and further
development in the open–source community.

Red Hat is interested in this idea and especially in the application created for this
thesis and its further development in the open source community. This will provide
significant upgrades and new features for the application like new migration of other
services and more importantly migration of cluster configuration, which is used the
most by customers. Also there is a possibility for a better support of user input or even
GUI for user’s interaction. In addition, there is also a possibility for integration with
other projects focusing on migration of application like JBoss Cake, which can become

33

6 CONCLUSION AND USE OF APPLICATION

the universal tool for migration in all fields. The version of the created application that
is packed with this thesis is covering all services covered in this thesis and API for it is
displayed in Appendix B.

34

Appendices

A Attached files

There are three files attached in the electronical submission of this thesis:

• AsMigration-1.0.jar is created application for this thesis that is already build into
JAR archive and can be executed from command line

• AsMigrationSource.zip contains source code snapshot of the created application
that is buildable by Maven

• Examples.zip contains XML files shown in Appendix C along with default config-
uration file for JBoss AS 7. It also contains configuration file of JBoss AS 7 with
applied migration of configuration and created CLI scripts shown in Appendix D.

35

B USAGE OF APPLICATION

B Usage of Application
Usage:

• java -jar AsMigration-1.0.jar –as5.dir=<AS5path> –as7.dir=<AS7.path> [<op-
tion>, ...]

Options:

• –as5.profile=<name>
Path to AS 5 profile. Default: "default"

• –as7.confPath=<path>
Path to AS 7 config file. Default: "standalone/configuration/standalone.xml"

• –conf.<module>.<property>=<value> := Module-specific options.

<module> := Name of one of modules. E.g. datasource, security, ...
<property> := Name of the property to set. Specific per module. May occur
multiple times.
-> *This option doesn’t have any effect at this moment. May be implemented in
the future*

36

C Configuration Examples

<datasources >
<no-tx -datasource >

<jndi -name>MediaWikiDBImporterRoleDS </jndi -name>
<connection -url>jdbc:mysql: // localhost:3306/MediaWikiDB </connection -url>
<driver -class >com.mysql.jdbc.Driver </driver -class>
<user -name>username </user -name>
<password >password </password >

</no-tx -datasource >
<local -tx-datasource >

<connection -property name="char.encoding">UTF -8</connection -property >
<connection -property name="test">testing </connection -property >
<jndi -name>DefaultDS5 </jndi -name>
<connection -url>jdbc:mysql: // localhost:3307/localDB </connection -url>
<driver -class >com.mysql.jdbc.Driver </driver -class>
<user -name>sa</user -name>
<min -pool -size>5</min -pool -size>
<max -pool -size>20</max -pool -size>
<idle -timeout -minutes >1</idle -timeout -minutes >
<security -domain >HsqlDbRealm </security -domain >
<prepared -statement -cache -size>32</prepared -statement -cache -size>

</local -tx-datasource >
<xa-datasource >

<jndi -name>jos</jndi -name>
<xa-datasource -class>

com.mysql.jdbc.jdbc2.optional.MysqlXADataSource
</xa-datasource -class>
<xa-datasource -property name="URL">http: // testURL.com</xa-datasource -property >
<user -name>testUser </user -name>
<password >password </password >
<transaction -isolation >TRANSACTION_READ_COMMITTED </transaction -isolation >
<min -pool -size>5</min -pool -size>
<max -pool -size>100</max -pool -size>
<blocking -timeout -millis >2000</blocking -timeout -millis >
<idle -timeout -minutes >2</idle -timeout -minutes >
<track -connection -by-tx />
<valid -connection -checker -class -name>

org.jboss.resource.adapter.jdbc.vendor.MySQLValidConnectionChecker
</valid -connection -checker -class -name>
<exception -sorter -class -name>

org.jboss.resource.adapter.jdbc.vendor.MySQLExceptionSorter
</exception -sorter -class -name>
<metadata >

<type -mapping >mySQL</type -mapping >
</metadata >

</xa-datasource >
</datasources >

Listing 8: Example of Datasource Configuration in JBoss AS 5

37

C CONFIGURATION EXAMPLES

<subsystem xmlns="urn:jboss:domain:datasources:1 .0">
<datasources >

<datasource jndi -name="java:jboss/datasources/DefaultDS5" pool -name="DefaultDS5">
<connection -url>jdbc:mysql: // localhost:3307/localDB </connection -url>
<driver >createdDriver1 </driver >
<pool>

<min -pool -size>5</min -pool -size>
<max -pool -size>20</max -pool -size>

</pool>
<security >

<user -name>sa</user -name>
<security -domain >HsqlDbRealm </security -domain >

</security >
<timeout >

<idle -timeout -minutes >1</idle -timeout -minutes >
</timeout >

</datasource >
<datasource jta="false" jndi -name="java:jboss/datasources/MediaWikiDBImporterRoleDS"

pool -name="MediaWikiDBImporterRoleDS">
<connection -url>jdbc:mysql: // localhost:3306/MediaWikiDB </connection -url>
<driver >createdDriver1 </driver >
<security >

<user -name>username </user -name>
<password >password </password >

</security >
</datasource >
<xa-datasource jndi -name="java:jboss/datasources/jos" pool -name="jos">

<xa-datasource -property name="URL">http: // testURL.com</xa-datasource -property >
<driver >createdDriver2 </driver >
<transaction -isolation >TRANSACTION_READ_COMMITTED </transaction -isolation >
<xa-pool>

<min -pool -size>5</min -pool -size>
<max -pool -size>100</max -pool -size>

</xa-pool>
<security >

<user -name>testUser </user -name>
<password >password </password >

</security >
<validation >

<exception -sorter
class -name="org.jboss.resource.adapter.jdbc.vendor.MySQLExceptionSorter"/>

</validation >
<timeout >

<idle -timeout -minutes >2</idle -timeout -minutes >
</timeout >
<drivers/>

</xa-datasource >
</datasources >

</subsystem >

Listing 9: Migrated Configuration of Datasources

38

C CONFIGURATION EXAMPLES

<drivers >
<driver name="createdDriver2" module="migration.drivers.createdDriver2">

<xa-datasource -class>c
com.mysql.jdbc.jdbc2.optional.MysqlXADataSource

</xa-datasource -class>
</driver >

<driver name="createdDriver1" module="migration.drivers.createdDriver2">
<driver -class >com.mysql.jdbc.Driver </driver -class>

</driver >
</drivers >

Listing 10: Drivers Element from Datasource Subsystem

39

C CONFIGURATION EXAMPLES

<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">
<log4j:configuration xmlns:log4j="http:// jakarta.apache.org/log4j/" debug="false">

<appender name="FileAppender"
class="org.jboss.logging.appender.DailyRollingFileAppender">
<errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
<param name="File" value="${jboss.server.log.dir}/ server.log"/>
<param name="Append" value="true"/>
<param name="DatePattern" value="’.’yyyy -MM -dd"/>
<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="%d␣%-5p␣[%c]␣(%t)␣%m%n"/>
</layout >

</appender >
<appender name="ConsoleAppender" class="org.apache.log4j.ConsoleAppender">

<errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
<param name="Target" value="System.out"/>
<param name="Threshold" value="INFO"/>
<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="%d{ABSOLUTE}␣%-5p␣[%c{1}]␣%m%n"/>
</layout >

</appender >
<category name="org.apache">

<priority value="INFO"/>
</category >
<category name="org.jgroups">

<priority value="WARN"/>
</category >
<category name="org.quartz">

<priority value="INFO"/>
<priority appender -ref="FileAppender"/>
<priority appender -ref="ConsoleAppender"/>

</category >
<root>

<priority value="DEBUG"/>
<appender -ref ref="ConsoleAppender"/>
<appender -ref ref="FileAppender"/>

</root>
</log4j:configuration >

Listing 11: Example of Logging Configuration in JBoss AS 5

40

C CONFIGURATION EXAMPLES

<subsystem xmlns="urn:jboss:domain:logging:1 .1">
<console -handler name="ConsoleAppender">

<level name="INFO"/>
<formatter >

<pattern -formatter pattern="%d{HH:mm:ss ,SSS}␣%-5p␣[%c{1}]␣%m%n"/>
</formatter >
<target name="System.out"/>

</console -handler >
<periodic -rotating -file -handler name="FileAppender">

<formatter >
<pattern -formatter pattern="%d␣%-5p␣[%c]␣(%t)␣%m%n"/>

</formatter >
<file relative -to="jboss.server.log.dir" path="server.log"/>
<suffix value=" ’.’yyyy -MM -dd"/>
<append value="true"/>

</periodic -rotating -file -handler >
<logger category="org.jgroups">

<level name="WARN"/>
</logger >
<logger category="org.apache">

<level name="INFO"/>
</logger >
<logger category="org.quartz">

<level name="INFO"/>
<handlers >

<handler name="FileAppender"/>
<handler name="ConsoleAppender"/>

</handlers >
</logger >
<root -logger >

<level name="DEBUG"/>
<handlers >

<handler name="FileAppender"/>
<handler name="ConsoleAppender"/>

</handlers >
</root -logger >

</subsystem >

Listing 12: Migrated Logging Configuration

41

C CONFIGURATION EXAMPLES

<policy >
<application -policy name="client -login">

<authentication >
<login -module code="org.jboss.security.ClientLoginModule"

flag="required">
<module -option name="restore -login -identity">true</module -option >

</login -module >
</authentication >

</application -policy >
<application -policy name="HsqlDbRealm">

<authentication >
<login -module code="org.jboss.resource.security.ConfiguredIdentityLoginModule"

flag="required">
<module -option name="principal">sa</module -option >
<module -option name="userName">sa</module -option >
<module -option name="password">sa</module -option >

</login -module >
</authentication >

</application -policy >
<application -policy name="JBossWS">

<authentication >
<login -module code="org.jboss.security.auth.spi.UsersRolesLoginModule"
flag="required">

<module -option name="usersProperties">
props/jbossws -users.properties

</module -option >
<module -option name="rolesProperties">

props/jbossws -roles.properties
</module -option >
<module -option name="unauthenticatedIdentity">anonymous </module -option >

</login -module >
</authentication >

</application -policy >
</policy >

Listing 13: Example of Security Configuration in JBoss AS 5

42

C CONFIGURATION EXAMPLES

<subsystem xmlns="urn:jboss:domain:security:1 .1">
<security -domains >

<security -domain name="client -login">
<authentication >

<login -module code="Client" flag="required">
<module -option name="restore -login -identity" value="true"/>

</login -module >
</authentication >

</security -domain >
<security -domain name="HsqlDbRealm">

<authentication >
<login -module code="ConfiguredIdentity" flag="required">

<module -option name="userName" value="sa"/>
<module -option name="password" value="sa"/>
<module -option name="principal" value="sa"/>

</login -module >
</authentication >

</security -domain >
<security -domain name="JBossWS">

<authentication >
<login -module code="UsersRoles" flag="required">

<module -option name="unauthenticatedIdentity" value="anonymous"/>
<module -option name="usersProperties"
value="${jboss.server.config.dir}/jbossws -users.properties"/>

<module -option name="rolesProperties"
value="${jboss.server.config.dir}/jbossws -roles.properties"/>

</login -module >
</authentication >

</security -domain >
</security -domains >

</subsystem >

Listing 14: Migrated Security Configuration

43

C CONFIGURATION EXAMPLES

<connection -factories >
<no-tx -connection -factory >

<jndi -name>XUConnectionFactory </jndi -name>
<rar -name>genericra.rar</rar -name>
<connection -definition >

com.sun.genericra.outbound.ManagedQueueConnectionFactory
</connection -definition >
<adapter -display -name>XU</adapter -display -name>
<max -pool -size>50</max -pool -size>
<blocking -timeout -millis >50000</blocking -timeout -millis >
<idle -timeout -minutes >15</idle -timeout -minutes >

</no-tx -connection -factory >
<tx-connection -factory >

<jndi -name>JBossTestCF2 </jndi -name>
<xa-transaction/>
<rar -name>genericra.rar</rar -name>
<connection -definition >

com.sun.genericra.outbound.ManagedJMSConnectionFactory
</connection -definition >
<config -property name="ConnectionValidationEnabled" type="java.lang.Boolean">

true
</config -property >
<min -pool -size>10</min -pool -size>
<max -pool -size>10</max -pool -size>

<username >testUser </username >
<password >pass</password >

<background -validation >false </background -validation >
<background -validation -millis >5000</background -validation -millis >
<blocking -timeout -millis >4000</blocking -timeout -millis >
<idle -timeout -minutes >2</idle -timeout -minutes >
<allocation -retry >5</allocation -retry >
<allocation -retry -wait -millis >4000</allocation -retry -wait -millis >

</tx-connection -factory >
</connection -factories >

Listing 15: Example of Resource Adapters Configuration in JBoss AS 5

44

C CONFIGURATION EXAMPLES

<subsystem xmlns="urn:jboss:domain:resource -adapters:1 .0">
<resource -adapters >

<resource -adapter >
<archive >genericra.rar</archive >
<transaction -support >XATransaction </transaction -support >
<connection -definitions >

<connection -definition
class -name="com.sun.genericra.outbound.ManagedJMSConnectionFactory"
jndi -name="java:jboss/JBossTestCF2" use -java -context="true"
pool -name="JBossTestCF2" enabled="true">

<config -property name="ConnectionValidationEnabled">
true

</config -property >
<xa-pool>

<min -pool -size>10</min -pool -size>
<max -pool -size>10</max -pool -size>

</xa-pool>
<timeout >

<idle -timeout -minutes >2</idle -timeout -minutes >
<allocation -retry >5</allocation -retry >
<allocation -retry -wait -millis >4000</allocation -retry -wait -millis >

</timeout >
<validation >

<background -validation >false </background -validation >
<background -validation -millis >5000</background -validation -millis >

</validation >
</connection -definition >

</connection -definitions >
</resource -adapter >
<resource -adapter >

<archive >genericra.rar</archive >
<transaction -support >NoTransaction </transaction -support >
<connection -definitions >

<connection -definition
class -name="com.sun.genericra.outbound.ManagedQueueConnectionFactory"
jndi -name="java:jboss/XUConnectionFactory" use -java -context="true"
pool -name="XUConnectionFactory" enabled="true">

<pool>
<max -pool -size>50</max -pool -size>

</pool>
<timeout >

<idle -timeout -minutes >15</idle -timeout -minutes >
</timeout >

</connection -definition >
</connection -definitions >

</resource -adapter >
</resource -adapters >

</subsystem >

Listing 16: Migrated Resource Adapters Configuration

45

C CONFIGURATION EXAMPLES

<Server >
<Listener className="org.apache.catalina.core.AprLifecycleListener"

SSLEngine="on"/>
<Listener className="org.apache.catalina.core.JasperListener"/>
<Service name="jboss.web">

<Connector protocol="HTTP /1.1" port="8000" address="${ jboss.bind.address}"
connectionTimeout="20000" redirectPort="8443" />

<Connector protocol="AJP /1.3" port="8009" address="${jboss.bind.address}"
redirectPort="8443" />

<Connector protocol="HTTP /1.1" SSLEnabled="true"
port="8449" address="${jboss.bind.address}"
scheme="https" secure="true" clientAuth="false"
keystoreFile="${ jboss.server.home.dir}/conf/chap8.keystore"
keystorePass="rmi+ssl" sslProtocol = "TLS" />

<Engine name="jboss.web" defaultHost="localhost">
<Realm className="org.jboss.web.tomcat.security.JBossWebRealm"

certificatePrincipal="org.jboss.security.auth.certs.SubjectDNMapping"
allRolesMode="authOnly"/>

<Host name="localhost">
<Alias name="company.com"/>
<Valve className="org.jboss.web.tomcat.service.jca.CachedConnectionValve"

transactionManagerObjectName="jboss:service=TransactionManager" />
</Host>
<Host name="example.com">

<Alias name="example.org"/>
</Host>

</Engine >
</Service >

</Server >

Listing 17: Example of Web Engine Configuration in JBoss AS 5

46

C CONFIGURATION EXAMPLES

<subsystem xmlns="urn:jboss:domain:web:1 .1" default -virtual -server="default -host"
native="false">

<connector name="http" protocol="HTTP /1.1" scheme="http" socket -binding="http"/>
<connector name="connector1" protocol="HTTP /1.1" scheme="http"

socket -binding="createdSocket" redirect -port="8447"/>
<connector name="connector2" protocol="AJP /1.3" socket -binding="ajp"

redirect -port="8445" scheme="http"/>
<connector name="connector3" protocol="HTTP /1.1" scheme="https" secure="true"

socket -binding="https">
<ssl name="ssl" password="changeit"

certificate -key -file="${ jboss.server.config.dir}/keys/chap8.keystore"
protocol="TLS" verify -client="false"/>

</connector >
<virtual -server name="default -host" enable -welcome -root="true">

<alias name="localhost"/>
<alias name="example.com"/>

</virtual -server >
<virtual -server name="jboss.web" enable -welcome -root="true">

<alias name="company.com"/>
<alias name="example.org"/>
<alias name="localhost"/>
<alias name="example.com"/>

</virtual -server >
</subsystem >

Listing 18: Migrated Web Engine Configuration

47

D Examples of Created CLI Scripts

/subsystem=datasources/jdbc -driver=createdDriver2:add(
driver -module -name=migration.drivers.createdDriver2 ,
driver -xa-datasource -class -name=com.mysql.jdbc.jdbc2.optional.MysqlXADataSource)

/subsystem=datasources/jdbc -driver=createdDriver1:add(
driver -module -name=migration.drivers.createdDriver2 ,
driver -class -name=com.mysql.jdbc.Driver)

data -source add name=DefaultDS5 jndi -name=java:jboss/datasources/DefaultDS5
driver -name=createdDriver1 connection -url=jdbc:mysql: // localhost:3307/localDB
min -pool -size=5 max -pool -size =20 user -name=sa security -domain=HsqlDbRealm
idle -timeout -minutes =1

xa-data -source add name=jos jndi -name=java:jboss/datasources/jos min -pool -size=5
driver -name=createdDriver2 transaction -isolation=TRANSACTION_READ_COMMITTED
max -pool -size =100 password=password user -name=testUser idle -timeout -minutes =2
exception -sorter -class -name=org.jboss.resource.adapter.jdbc.vendor.MySQLExceptionSorter
blocking -timeout -millis =2000

/subsystem=datasources/xa-data -source=jos/xa-datasource -properties=URL:add(
value=http: // testURL.com)

data -source add name=MediaWikiDBImporterRoleDS
jndi -name=java:jboss/datasources/MediaWikiDBImporterRoleDS jta=false
driver -name=createdDriver1 password=password user -name=username
connection -url=jdbc:mysql: // localhost:3306/MediaWikiDB

Listing 19: CLI Scripts for Adding Migrated Datasources

48

D EXAMPLES OF CREATED CLI SCRIPTS

/subsystem=logging/logger=org.quartz:add(handlers =["FileAppender","ConsoleAppender"],
level=INFO)

/subsystem=logging/logger=org.jgroups:add(level=WARN)

/subsystem=logging/logger=org.apache:add(level=INFO)

/subsystem=logging/periodic -rotating -file -handler=FileAppender:add(append=true ,
file={"relative -to"=>"jboss.server.log.dir", "path"=>"server.log"},
suffix=’.’yyyy -MM -dd, formatter =%d %-5p [%c] (%t) %m%n)

/subsystem=logging/console -handler=ConsoleAppender:add(level=INFO , target=System.out ,
formatter =%d{HH:mm:ss ,SSS} %-5p [%c{1}] %m%n)

/subsystem=logging/root -logger=ROOT:write -attribute(name=level , value=DEBUG)

/subsystem=logging/root -logger=ROOT:write -attribute(name=handlers , handlers=
["FileAppender","ConsoleAppender"])

Listing 20: CLI Scripts for Adding the Migrated Logging Configuration

/subsystem=security/security -domain=JBossWS:add(cache -type=default)

/subsystem=security/security -domain=JBossWS/authentication=classic:add(
login -modules =[{"code"=>"UsersRoles", "flag"=>"required",
"module -option"=>[("unauthenticatedIdentity"=>"anonymous"),
("rolesProperties"=>"${jboss.server.config.dir}/jbossws -roles.properties"),
("usersProperties"=>"${jboss.server.config.dir}/jbossws -users.properties")]

/subsystem=security/security -domain=HsqlDbRealm:add(cache -type=default)

/subsystem=security/security -domain=HsqlDbRealm/authentication=classic:add(
login -modules =[{"code"=>"ConfiguredIdentity", "flag"=>"required",
"module -option"=>[("principal"=>"sa"), ("userName"=>"sa"), ("password"=>"sa")]

/subsystem=security/security -domain=client -login:add(cache -type=default)

/subsystem=security/security -domain=client -login/authentication=classic:add(
login -modules =[{"code"=>"Client", "flag"=>"required",
"module -option"=>[("restore -login -identity"=>"true")]

Listing 21: CLI Scripts for Adding the the Migrated Security Configuration

49

D EXAMPLES OF CREATED CLI SCRIPTS

/subsystem=resource -adapters/resource -adapter=JBossTestCF2:add(archive=genericra.rar ,
transaction -support=XATransaction)

/subsystem=resource -adapters/resource -adapter=JBossTestCF2/connection -definitions=
JBossTestCF2:add(jndi -name=java:jboss/JBossTestCF2 , enabled=true , allocation -retry=5,
use -java -context=true , security -domain=HsqlDbRealm , blocking -timeout -millis =4000,
class -name= com.sun.genericra.outbound.ManagedJMSConnectionFactory ,
background -validation=false , background -validation -millis =5000,
idle -timeout -minutes=2, allocation -retry -wait -millis =4000)

/subsystem=resource -adapters/resource -adapter=JBossTestCF2/connection -definitions=
JBossTestCF2/config -properties=ConnectionValidationEnabled:add(value=true)

/subsystem=resource -adapters/resource -adapter=XUConnectionFactory:add(
archive=genericra.rar , transaction -support=NoTransaction)

/subsystem=resource -adapters/resource -adapter=XUConnectionFactory/
connection -definitions=XUConnectionFactory:add(enabled=true , use -java -context=true ,
jndi -name=java:jboss/XUConnectionFactory , max -pool -size=50, idle -timeout -minutes =15
class -name=com.sun.genericra.outbound.ManagedQueueConnectionFactory ,
blocking -timeout -millis =50000)

Listing 22: CLI Scripts for Adding the Migrated Resource Adapters Configuration

/subsystem=web/virtual -server=jboss.web:add(enable -welcome -root=true ,
alias=["company.com", "example.org", "localhost", "example.com"])

/subsystem=web/connector=connector1:add(socket -binding=https , protocol=HTTP /1.1,
scheme=https , secure=true , enabled=true)

/subsystem=web/connector=connector1/ssl=configuration:add(name=ssl , protocol=TLS ,
certificate -key -file =${ jboss.server.config.dir}/keys/chap8.keystore ,
verify -client=false , password=changeit)

/subsystem=web/connector=connector2:add(socket -binding=ajp , protocol=AJP/1.3,
redirect -port =8445, scheme=http , enabled=true)

/subsystem=web/connector=connector3:add(socket -binding=createdSocket , enabled=true ,
protocol=HTTP /1.1, redirect -port =8447, scheme=http)

/socket -binding -group=standard -sockets/socket -binding=createdSocket:add(port =8000)

Listing 23: CLI Scripts for Adding the Migrated Web Engine Configuration

50

BIBLIOGRAPHY

Bibliography

[1] MARCHIONI, Francesco. JBoss AS5 Development: Develop, Deploy, and Secure
Java Applications on this Robust, Open Source Application Server. Birmingham:
PACKT PUBLISHING, 2009. 416 p. ISBN 978-1-84951-678-5.

[2] MARCHIONI, Francesco. JBoss AS 7 Configuration, Deployment and Administra-
tion. Birmingham: PACKT PUBLISHING, 2011. 380 p. ISBN 1-849-51678-2.

[3] JAMES, David – JOHNSON, Peter. JBoss in Action: Configuring the JBoss Ap-
plication Server. Greenwich: Manning Publication Co., 2009. 408 p. ISBN 978-1-
933988-02-3.

[4] GÜLCÜ, Ceki. Short introduction to log4j. [online] March 2002. <http://logging.
apache.org/log4j/1.2/manual.html>[accessed 22 February 2013]

[5] KHAN, Kabir – LAGROUW, Danny. Logging Configuration. [online] 02
February 2011. <https://docs.jboss.org/author/display/AS71/Logging+
Configuration>[accessed 22 February 2013]

[6] Wikipedia contributors. Application server. Wikipedia, The Free Encyclope-
dia.[online] 22 February 2013. <http://en.wikipedia.org/w/index.php?title=
Application_server&oldid=539638468> [accessed 27 February 2013]

[7] LLOYD, David. Introduction. [online] 13 July 2011. <https://docs.jboss.org/
author/display/MODULES/Introduction> [accessed 28 February 2013]

[8] JBoss Community. Administration And Configuration Guide. [online] Novem-
ber 2008. <http://docs.jboss.org/jbossas/docs/Administration_And_
Configuration_Guide/5/html/index.html> [accessed 1 March 2013]

[9] BRAUN, Heiko – KHAN, Kabir. Admin Guide. [online] 22 July
2011. <https://docs.jboss.org/author/display/AS7/Admin+Guide#
AdminGuide-ConfigurationFiles>[accessed 4 March 2013]

[10] Project JAXB. [online] 2013. <http://jaxb.java.net/2.2.6/docs/ch01.html#
documentation> [accessed 5 March 2013]

[11] EclipseLink MOXy. [online] 2013. <http://www.eclipse.org/eclipselink/
moxy.php> [accessed 5 March 2013]

51

http://logging.apache.org/log4j/1.2/manual.html
http://logging.apache.org/log4j/1.2/manual.html
https://docs.jboss.org/author/display/AS71/Logging+Configuration
https://docs.jboss.org/author/display/AS71/Logging+Configuration
http://en.wikipedia.org/w/index.php?title=Application_server&oldid=539638468
http://en.wikipedia.org/w/index.php?title=Application_server&oldid=539638468
https://docs.jboss.org/author/display/MODULES/Introduction
https://docs.jboss.org/author/display/MODULES/Introduction
http://docs.jboss.org/jbossas/docs/Administration_And_Configuration_Guide/5/html/index.html
http://docs.jboss.org/jbossas/docs/Administration_And_Configuration_Guide/5/html/index.html
https://docs.jboss.org/author/display/AS7/Admin+Guide#AdminGuide-ConfigurationFiles
https://docs.jboss.org/author/display/AS7/Admin+Guide#AdminGuide-ConfigurationFiles
http://jaxb.java.net/2.2.6/docs/ch01.html#documentation
http://jaxb.java.net/2.2.6/docs/ch01.html#documentation
http://www.eclipse.org/eclipselink/moxy.php
http://www.eclipse.org/eclipselink/moxy.php

BIBLIOGRAPHY

[12] MUCKENHUBER, Emanuel – FINK, Wolf-Dieter.DataSource configuration.
[online] 11 December 2012. <https://docs.jboss.org/author/display/AS71/
DataSource+configuration> [accessed 5 March 2013]

[13] TEXIER, Luc – CLERE, Jean-Frederic.VersionOfTomcatInJBossAS. [online] 2 Oc-
tober 2012. <https://community.jboss.org/wiki/VersionOfTomcatInJBossAS>
[accessed 19 March 2013]

[14] JBoss Web Configuration 2.1.x. [online] <http://docs.jboss.org/jbossweb/
latest/config/index.html> [accessed 20 March 2013]

[15] JBoss Application Server. [online] <http://www.jboss.org/jbossas.html> [ac-
cessed 29 March 2013]

[16] Jave Enterprise Edition. [online] <http://www.oracle.com/technetwork/java/
javaee/overview/index.html> [accessed 29 March]

[17] Wikipedia contributors. JBoss. Wikipedia, The Free Encyclopedia. 22 March 2013.
<http://en.wikipedia.org/w/index.php?title=JBoss&oldid=546382187> [ac-
cessed 29 March 2013]

52

https://docs.jboss.org/author/display/AS71/DataSource+configuration
https://docs.jboss.org/author/display/AS71/DataSource+configuration
https://community.jboss.org/wiki/VersionOfTomcatInJBossAS
http://docs.jboss.org/jbossweb/latest/config/index.html
http://docs.jboss.org/jbossweb/latest/config/index.html
http://www.jboss.org/jbossas.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://en.wikipedia.org/w/index.php?title=JBoss&oldid=546382187

