
Platforma průmyslové spolupráce

CZ.1.07/2.4.00/17.0041

Název

New Generation Logging Mechanism

Popis a využití

• výuka: různých dialektů pro logování, pokročilá Java

Jazyk textu

• anglický

Autor (autoři)

• Andrea Vašeková

Oficiální stránka projektu:

• http://lasaris.fi.muni.cz/pps

Dostupnost výukových materiálů a nástrojů online:

• http://lasaris.fi.muni.cz/pps/study-materials-and-tools

http://lasaris.fi.muni.cz/pps
http://lasaris.fi.muni.cz/pps/study-materials-and-tools

Contents

1 Introduction . 1
2 Monitoring the Cloud . 3

2.1 Cloud Computing . 3
2.2 Cloud Monitoring . 4
2.3 Existing Solutions and Tools for Cloud Monitoring 5

3 Ngmon . 8
3.1 Unified Representation of Monitoring Information 9
3.2 Storage and Delivery Channel . 9
3.3 Access Control . 10

4 Logging and Log Management . 12
4.1 Log Production and Acquisition . 13
4.2 Log Processing . 14
4.3 Structured Logging . 16

5 Structured Logging Mechanism Proposal . 18
5.1 Event Types Tightly Coupled With Entities . 20

5.1.1 Entity Classes and JSON Schemas . 20
5.1.2 API and Logging Process . 24

5.2 Recommendation-Based Binding of Event Types to Entities 26
5.2.1 User-Declared Classes and JSON Schemas 27
5.2.2 API and Logging Process . 28

5.3 Event Types Arbitrarily Combined With Entities 30
6 Using the Proposed Structured Logging Mechanism 33

6.1 Namespace Classes . 33
6.2 JSON Schemas . 34
6.3 Logging . 35
6.4 Build Process . 35

7 Performance Evaluation . 37
7.1 Logging Performance . 37
7.2 Processing Performance . 39
7.3 Summary . 42

8 Conclusion . 43

vi

Chapter 1

Introduction

The gradual shift towards cloud computing experienced in the last years causes developers
and researchers alike to question the routine. Many existing tools and techniques can be
well adapted to cloud, yet the environment is special enough to benefit more from solutions
tailored to its needs.

Monitoring poses a particularly intricate problem due to the very nature of cloud it-
self. Using virtualization in such a large scale as cloud does, and providing the consumers
of cloud services with only a limited insight into the resources are probably the main rea-
sons cloud monitoring has to be treated differently, since common approaches to distributed
systems monitoring may not be sufficient. The Ngmon Project introduces a prototype im-
plementation of a monitoring daemon for distributed systems, cloud especially, based on
the requirements identified by Tovarňák and Pitner [40] as crucial for a new generation of
monitoring information producers. This thesis was developed as a part of design and im-
plementation works contributing to Ngmon.

In general, one of the most natural ways of gaining visibility into the state of monitored
resources is by observing the logs. Logs produced by applications or systems represent a
valuable source of monitoring information, therefore logging plays an important role in the
whole monitoring process. However, log formats vary greatly among the developers. The
majority of logs is produced in the form of natural language strings with no predefined
structure, which makes them very difficult to process, let alone extract useful information
from. This problem could be solved by bringing order into the way logs are produced and
promoting structured logging over the traditional approaches.

This thesis elaborates on the current situation in the sphere of application logging and
offers a possible solution to the problem of structured logs production. A logging component
ready to be integrated in the Ngmon monitoring daemon is presented, such that it is capable
of producing logs in a unified and extensible format and thus facilitates efficient subsequent
processing of such logs.

The thesis is structured as follows: Chapter 2 discusses fundamental prerequisites for
understanding the significance of our work, depicting the current state of cloud monitoring,
and existing tools in this field. In Chapter 3, Ngmon, a prototype of an event-based moni-
toring daemon is described. Chapter 4 moves on from monitoring in general to the domain
of log management as a more specific way of collecting and handling monitoring informa-
tion. Particularly, it deals with the production, analysis and processing of logs. The last part
of this chapter emphasizes the need for structured logging to fully exploit the potential of

1

1. INTRODUCTION

automated processing of logs. Chapter 5 then details the structured logging mechanism that
was designed and implemented as the main outcome of this thesis, followed by instruc-
tions and recommendations related to its usage and customization (Chapter 6). Chapter 7
is dedicated to performance experiments and their results, comparing the proposed logging
mechanism with unstructured logging; and finally, Chapter 8 summarizes the work.

2

Chapter 2

Monitoring the Cloud

2.1 Cloud Computing

Cloud computing has experienced a major breakthrough in the last decade. Although the
main concepts date back as far as 1990s, only recently has it started to receive special atten-
tion from both experts and media.

According to the National Institute of Standards and Technology (NIST), “Cloud com-
puting is a model for enabling ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources (e.g., networks, servers, storage, applica-
tions, and services) that can be rapidly provisioned and released with minimal management
effort or service provider interaction.” [27]. Five characteristics are identified as essential for
this model, namely: on-demand self-service, meaning the service provider does not need to
be contacted in person for the consumer to gain access to the computing resources; broad
network access, i.e. no special requirements are imposed on clients or network; resource pool-
ing to support multi-tenant access; rapid elasticity, in the sense that the environment accom-
modates to the current demand and scales rapidly; and finally, cloud systems provide a
measured service by monitoring and optimizing the resource usage. Naturally, other relevant
characterizations exist; see for example the work of Gong et al. [18].

Four deployment models are recognized in cloud computing systems. In public cloud, the
access to the cloud infrastructure is provided for general public. Private cloud is intended
to be used by a single organization, while in a so-called community cloud, multiple related
organizations share the infrastructure. It is also possible to arbitrarily combine all of the
above; this is referred to as a hybrid cloud.

Clouds offer various types of services, most of which fall into one of the three major
service models: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a
Service (SaaS). IaaS provides virtual storage, virtual machines, networks and other hardware
resources for the consumer to deploy arbitrary software to. PaaS gives consumers opportu-
nities to create applications using tools or libraries supplied by the provider, but the service
provider has control over the underlying infrastructure. In SaaS service model, the consumer
is provisioned with applications to use; in all other aspects, the provider is in charge.

In addition to IaaS, PaaS and SaaS (sometimes referred to as the SPI model), other service
models have been distinguished, consistently adopting the naming form of “X as a Service”.
These include for example Storage as a Service, Security as a Service, Compliance as a Ser-
vice, Identity as a Service, Monitoring as a Service, and very interesting in the context of this

3

2. MONITORING THE CLOUD

thesis, Logging as a Service.
While cloud computing undoubtedly has many advantages, such as pay-for-use billing

strategies or load balancing and backup features, it introduces various problems as well. Fox
et al. [16] state the following obstacles to and challenges for the growth of cloud computing:
availability of service, data lock-in, data confidentiality and auditability, data transfer bottle-
necks, performance unpredictability, scalable storage, quick scaling, reputation fate sharing,
software licensing. Barrie Sosinsky [36] adds some more, among them the problem of cus-
tomization (cloud versions of applications tend to have fewer features), the latency due to
sometimes non-trivial data transfers, questionable privacy and security, or regulatory com-
pliance issues, especially when collaborating across multiple countries. Last but not least,
cloud monitoring represents a significant challenge, and with respect to the topic of this
thesis will be given further attention in the next sections.

2.2 Cloud Monitoring

Monitoring, as defined by Mansouri-Samani and Sloman [24], is the dynamic collection,
interpretation and presentation of information about objects or software processes. Com-
mon uses for monitoring include debugging, testing, accounting, performance evaluation,
resource utilisation analysis, security, and fault detection [20].

In cloud, monitoring is essential for providers as well as for consumers. It gives the pro-
ducer a necessary insight into the state of the managed resources, thus facilitating the im-
provement of services and problems diagnosis. It also equips the consumer with means to
inspect the performance or workload imposed on the utilized resources, and enables them
to compare various cloud providers if they provide unified objective metrics. Examples of
areas that benefit greatly from monitoring include capacity and resource management (re-
source planning, performance and data centre management, etc.), where the unpredictable
and highly variable real state of the resources can only be obtained by monitoring; establish-
ing a provider’s billing criteria based on an observable metric, troubleshooting, or proving
compliance to security regulations [2]. Foster et al. [15] claim that monitoring of cloud is
more complicated than that of grid environments due to their different trust models and
different limits on the level of user’s access to the resources. On the other hand, they predict
that cloud monitoring will become a less important problem with the evolution of the cloud
and its progress towards self-maintenance, although it will certainly represent a significant
challenge in the near future.

Providing reliable and fine-grained monitoring for cloud requires non-trivial effort. Due
to the cloud making extensive use of virtualization, it is difficult to have full control over
the monitoring of resources. Moreover, the consumer’s access to monitoring information is
usually very limited and may not be sufficient for adequate estimates of resource status.
Hasselmeyer and d’Heureuse [19] identify several requirements for cloud monitoring sys-
tems:

• Multi-tenancy. It is important for the monitoring infrastructure to be able to deliver

4

2. MONITORING THE CLOUD

the same data to multiple consumers simultaneously, as well as ensure isolation in
the sense that no consumer has access to information not addressed to them.

• Scalability. Large numbers of monitoring nodes, tenants, event notifications or types of
monitoring information should not represent a significant problem for the monitoring
system.

• Dynamism. Dynamic modifications in the environment, such as addition and removal
of tenants or the information they are interested in, should be supported.

• Simplicity. The monitoring system should have an easy-to-use interface, and be well-
maintainable.

• Comprehensiveness. The same monitoring infrastructure should be suited for multiple
data types, notification sources and tenants regardless of their specific properties.

Monitoring systems can be attributed many other desirable properties, including: time-
liness, the prompt detection of and reaction to the events; autonomicity, or self-management
to a certain extent; extensibility; low intrusiveness as well as low impact on the performance
of the monitored resource; resilience, the ability to sustain dynamic changes or component
failures without affecting the operation; reliability and availability; and providing accurate
measures, i.e. reflecting the reality as closely as possible [2].

The monitoring process can be divided into four main phases [23]: generation of reports
on events detected in the system; processing of the monitoring information, e.g. conversion
to a specific format, validation, or filtering; dissemination to the intended destination; and
presentation and adaptation to a form interpretable by the consumer. Hoffner [20] adds two
more: collation, combining messages from different parts of the system; and logging the mon-
itoring data to enable later processing.

The next section deals with existing solutions to the problem of cloud monitoring as
described above. In addition to dedicated cloud monitoring products, recent works begin to
show interest in the Monitoring as a Service (MaaS) paradigm [3][28]; therefore both types of
tools are mentioned.

2.3 Existing Solutions and Tools for Cloud Monitoring

Since the cloud computing paradigm essentially evolved from grid computing and dis-
tributed systems as such, monitoring systems designed for these can generally be applied
to cloud monitoring as well. There has been a substantial amount of work related to grid
monitoring, including for instance Ganglia, a scalable distributed monitoring system pri-
marily intended for clusters, grids, and high-performance computing systems in general
[26]; and the MonALISA (Monitoring Agents in A Large Integrated Services Architecture)
system, which is an ensemble of autonomous agent-based subsystems cooperating to per-
form a wide range of monitoring tasks in large scale distributed applications [31]. Due to
this thesis being focused on cloud monitoring, monitoring systems originally developed for
grids will not be given any more attention at this point; for further information refer e.g. to
the work of Zanikolas and Sakellariou [43].

5

2. MONITORING THE CLOUD

As stated by Foster et al. [15], cloud has several specific characteristics that may require a
slightly different approach to monitoring than a general solution for distributed systems can
offer. The rest of this section therefore aims to provide a brief overview of several platforms
and tools tailored to the particular needs of cloud monitoring. For a comprehensive survey
of such tools see the work of Aceto et al. [2]; a less extensive listing can also be found in [33]
or [35].

Amazon CloudWatch

Amazon CloudWatch1 is a MaaS tool built on top of AWS (Amazon Web Services2) to moni-
tor AWS cloud resources, such as Amazon EC2 and Amazon RDS DB, and customer-specific
applications. It measures resource utilization and application performance, and provides
means to visualize the data collected in the process as well as to define custom metrics. It is
also capable of sending notifications or raising an alarm when a special event occurs.

Nagios

An open source monitoring platform for cloud infrastructures, Nagios3 offers comprehen-
sive monitoring of applications, services, operating systems, and networks. Multiple APIs
are available to facilitate the development of extensions, and hundreds of them already exist.
Nagios also supports multi-tenant access to monitoring data.

QoS-MonAAS

A MaaS facility designed for Quality of Service (QoS) monitoring on top of a generic cloud
platform, QoS-MONaaS (QoS MONitoring as a Service [3]) allows to describe the perfor-
mance aspects of interest (so-called Key Performance Indicators) in a Service-Level Agree-
ment. When a discrepancy is detected, an appropriate notification is triggered. The authors
claim that the importance of QoS monitoring will only rise, due to the consumers’ constant
desire to evaluate the actual state of the resources they are paying for.

Lattice

Cloud monitoring tools that were primarily developed for monitoring distributed systems
usually count on a relatively slowly changing state of the underlying infrastructure. Con-
trary to these approaches, Lattice4 addresses the problem of elasticity introduced by cloud
monitoring and provides reliable monitoring services even in a dynamically changing envi-
ronment [11].

1. http://aws.amazon.com/cloudwatch/
2. http://aws.amazon.com/
3. http://www.nagios.org/
4. http://clayfour.ee.ucl.ac.uk/lattice/

6

2. MONITORING THE CLOUD

PCMONS

An extensible modular framework PCMONS5 is specifically designed for monitoring pri-
vate clouds. One of the objectives of PCMONS was to ensure its seamless integration into
the organizations’ existing management infrastructure. The first release (2011) is compatible
with Eucalyptus6 at the infrastructure layer and Nagios at the view layer, and it also allows
extensions that support other cloud solutions [12].

5. http://code.google.com/p/pcmons/
6. http://www.eucalyptus.com/

7

Chapter 3

Ngmon

Tovarňák and Pitner [40] discuss current approaches to cloud monitoring along with the
problems it faces, and introduce their own solution that focuses on the producers of monitor-
ing information instead of observing the monitoring architecture as a whole. Stemming from
the requirements for cloud monitoring systems identified by Hasselmeyer and d’Heureuse
[19], but extending them, they propose a set of general criteria for the producers of monitor-
ing information, namely:

• Multi-tenancy. To provide multi-tenant services, several requirements need to be met:
concurrency, i.e. the use of the same resources by multiple consumers at the same time;
isolation in the sense that none of the consumers can access monitoring information
not destined for them; integrity, meaning the monitoring data cannot be modified
once it is generated; and proof of origin of the monitoring information to ensure non-
repudiation.

• Unified representation of the monitoring information. In order to facilitate distribution and
collection, and even more significantly, processing and consumption of the monitor-
ing information, the introduction of a standard, universally recognized representation
could bring substantial benefits. Not only does the monitoring data exist in various
forms, the systems also tend to deliver and store it differently based on the nature
of the information that is carried. For example, logs are mostly stored as natural lan-
guage entries in text files or databases, notifications and alerts are usually pushed di-
rectly to the consumer to draw their attention, measurements can be requested on an
individual basis, etc. Therefore unifying the format of monitoring information among
the producers helps reduce the complexity of subsequent processing and correlation
of data from multiple sources.

• Extensible data format. Related to the problem of uniform representation mentioned
above, the extensibility of the monitoring data format cannot be accomplished in a
satisfactory manner as long as the information has no specific form. In such case to
adequately process the data and obtain the information of interest means to employ
some kind of a pattern-mining technique or even review the data manually. Utilizing
data formats that are standardized, self-describing, based on an extensible schema,
structured, and compact, renders the extensibility perfectly feasible and facilitates
efficient processing.

• Delivery channel. The channel for the delivery of monitoring information should sup-

8

3. NGMON

port all types of interaction identified in [39], i.e. publish-subscribe, query-response,
and notification. It should also be capable of both synchronous and asynchronous
data transfers.

Tovarňák and Pitner [40] also claim that there is a need to completely redesign monitor-
ing, as opposed to creating yet another complex monitoring tool. To prove satisfiability of
the abovementioned requirements, Ngmon1 (New Generation MONitoring), a prototype of
an event-based monitoring daemon, was designed and implemented.

The work of Spring [37][38] defines, based on the guidance issued by the Cloud Security
Alliance [6], a layered cloud model, where the nature of each layer dictates a slightly dif-
ferent approach to monitoring. The model consists of seven layers: facility (i.e. the physical
location of the hardware resources), network, hardware, operating system (OS), middle-
ware, application, and user. Ngmon focuses on monitoring virtual machines spanning the
top five layers, i.e. hardware, OS, middleware, application, and user. In the following, we
describe the main characteristics of the monitoring daemon.

This thesis aims to contribute to the implementation of Ngmon, and although the solu-
tion detailed in subsequent chapters can be used autonomously, its primary objective was
to be incorporated as a component in the daemon.

3.1 Unified Representation of Monitoring Information

To ensure a unified format as per the requirements set above, all kinds of monitoring in-
formation are produced in the form of events (event objects). Etzion and Niblett [13] define
an event as “an occurrence within a particular system or domain; it is something that has
happened, or is contemplated as having happened in that domain”. They note that the term
is also used to refer to a programming entity that represents such occurrence.

Each event is represented as a JSON object, which has a uniquely determined type. An
event type is “a specification for a set of event objects that have the same semantic intent and
same structure” [13]. In other words, all events having the same type, i.e. belonging to the
same class, are characterized by the same set of attributes and carry the same meaning. The
structure of an event is properly defined by a JSON Schema. Such format is easily extensible
with a custom JSON Schema, and it will be elaborated on later in this thesis.

3.2 Storage and Delivery Channel

Having the monitoring data in a unified format, the storage no longer depends on where
the information originates; so all events can be collected in a single point (a UNIX domain
socket) and processed the same way. The sensors publishing events into the UNIX domain
socket are further authenticated in order to provide a proof of origin. The event objects are
kept in a so-called event store, which is an encrypted, lightweight key-value database based

1. http://github.com/ngmon

9

3. NGMON

on Berkeley DB2. They are encoded in a JSON-compatible binary format SMILE [14] and
cannot be modified once they enter the event store, thus ensuring integrity.

To comply with the requirements set for the delivery channel, Ngmon contains both a
query evaluator component and a publish-subscribe component. The query processor ac-
cepts a simple query language enabling batch requests for information from the event store.
In case of periodically querying the event store, it can also be regarded as an implemen-
tation of the notification paradigm. The publish-subscribe component is used to distribute
the events of interest, specified by consumers in the form of subscriptions, as soon as they
are issued by the producers. For the communication between producers and consumers, a
custom lightweight frame-based protocol over TCP layer is used.

3.3 Access Control

Not all consumers are authorized to view everything, therefore a specific mechanism was
implemented to control access to monitoring information. To be more precise, it is possible to
define rules that restrict subscriptions at the time of their creation, and a new subscription
will not be added if it is not in accordance with all constraints. Prior to working on this
thesis, we focused on the implementation of the access control component, therefore this
section tries to provide a gist of our results in this field.

The rules (also called constraints) are specified on a per-consumer basis and control access
at the level of event attributes, for example “it is forbidden for user A to access events with
type equal to B and values of attribute C greater than D”. The access control component
follows a liberal strategy, i.e. everything is allowed unless explicitly forbidden; therefore
there are deny rules only.

A simple declarative language was designed to enable the formulation of these con-
straints. Given the user the particular constraint belongs to, and the event attribute it re-
stricts, the requirements on the forbidden value are expressed using the language in the
form of #<operator> <arguments>. Currently, seven operators are recognized: less than
(#lt), less than or equal to (#le), greater than (#gt), greater than or equal to (#ge), equal to
(#eq), prefix (#pref), and range operator (#rng). All operators require numeric values only,
except for prefix and equals, which accept arbitrary string literals as well. Space is regarded
as a delimiter, so in case it appears in an input, the whole string needs to be enclosed in
apostrophes. Consider the following as examples of valid expressions:

#lt 0
#pref string
#eq ’quoted string’
#rng -10 10

When checking a subscription against all deny rules, the intervals denoted by the par-
ticular operators must be handled properly. For example, in case a constraint forbidding

2. http://www.oracle.com/technetwork/products/berkeleydb/overview/index.html

10

3. NGMON

A > 10 exists, a subscription for A > 0 will be rejected due to its non-empty overlap with
the mentioned constraint. Allowing to add the subscription and subsequently filtering just
values greater than 10 could lead to confusion, since the consumer may be under the im-
pression that no other values ever occur in the system, unaware of the fact that there may
be a constraint causing the component to leave out some of them.

A custom parser for this language was implemented as well, for we believed that it
would be more efficient than using regular expressions for parsing. The performance tests
we conducted indeed showed that our parser processed the input 5 to 50 times as fast as the
equivalent regular expression, depending on the length and type of the constraint.

11

Chapter 4

Logging and Log Management

Logs, often collected for system monitoring, debugging, and fault diagnosis purposes, pro-
vide a valuable source of monitoring information [30]. Reflecting important events (that
happen in or have influence over the system) in log records helps maintain constant situa-
tional and informational awareness of the state of the system [7].

NIST defines log as “a record of the events occurring within an organization’s systems
and networks. Logs are composed of log entries; each entry contains information related to
a specific event that has occurred within a system or network.” [21]. Chuvakin [10] states
that a log is what a device or a piece of software generates in response to a certain stimulus;
while the stimuli vary depending on the producer of the log message.

Log entries typically consist of a timestamp, indicating the date and time of the occur-
rence of the event or its detection; the source of the event, such as an application that pro-
duced the event; and the actual message carrying detailed information. Some producers
specify the importance (sometimes referred to as severity, priority, rank, level, category, etc.)
of the event as well, together with other fields the consumer might find relevant.

Common uses for logging include resource management (hardware and software tuning
and diagnosis), debugging and troubleshooting, intrusion and attack detection, forensics,
and audit. In some cases, there are even special laws and regulations that enforce keeping
logs for security reasons.

There are several challenges when it comes to logging. First, and probably the most sig-
nificant, is that to date no standard representation for log messages has been established
[10][7], and almost every producer of logging information uses a slightly different custom
format. This results in problems with interoperability and correlation of logs from multiple
sources.

Moreover, as the amount of logging data increases, an efficient storage and processing
comes into question. In addition, cloud-based logging, which has been gaining attention
over the past few years, has its own set of issues that are yet to be satisfactorily solved.
These are related, among other things, to the decentralization and volatility of logs, their
acquisition over multiple layers, retention policies, availability and accessibility, an appro-
priate level of details [25], and also to privacy protection and the overall security.

This chapter is dedicated to the concepts concerning log analysis and processing in gen-
eral, as well as with respect to the particular nature of cloud computing and cloud moni-
toring. It also aims to provide a summary of existing approaches and comment on known
issues, leading to the presentation of our own solution.

12

4. LOGGING AND LOG MANAGEMENT

4.1 Log Production and Acquisition

According to Chuvakin [10], the ideal logs should contain at least information about what
happened, when it happened, where it happened, who was involved, and where they came
from. In addition, it would be useful to know where more information can be obtained,
how certain it is that the event is reported correctly, and what else is affected. In a perfect
scenario, advice on what should be done about the situation, what other events occurred
that might be of relevance to this one, and an estimate of what will happen next would be
very welcome, although it is not usually possible to include it.

The worst mistakes [8] found in logs can be summarized as follows: not logging what is
essential; lacking context and important details; format unsuitable for humans or machines;
inconsistent syntax even among the messages in the same application; and logging pieces
of source code or confidential data. On the other hand, besides containing the necessary
information, a useful log should be suitable for manual, semi-automated and automated
analysis, regardless of whether the application that produced it is available for inspection; it
should not represent a major performance obstacle; and it should be reliable in case it needs
to be used as an evidence.

As it was implied above, currently there is no widely used standard defining the exact
structure of log records. It is a common practice among developers to output the logs in the
form of natural language constructs with variable parts corresponding to the information
being recorded, such as “User<userId> logged on”. Not only do these differ from system
to system, from developer to developer; in case the logs are intended for machine processing
this also requires additional (and often expensive) analysis of the records in order to extract
the interesting piece of information. Normalization (i.e. conversion to a uniform, desired
format, usually to facilitate processing) and correlation of events from different systems is
very expensive if not impossible, and the processing often requires non-trivial data mining
techniques.

For these reasons, there has been a growing ambition to standardize the form of log
entries. MITRE’s Common Event Expression (CEE) [7], for instance, aims to become a stan-
dard for unifying the categorization, terminologies and representation formats of the events
being logged. The CEE architecture consists of CEE Profiles, defining the requirements for
the structure of CEE Events; CEE Log Syntax (CLS), which dictates how CEE Events are
represented and encoded; and CEE Log Transport, listing both mandatory and preferred
characteristics of a log transport protocol for sharing events. The CLS intends to define how
to encode a CEE Event into an event record, given a corresponding CEE Profile, to provide
maximum interoperability with existing standards [29]. Moreover, it defines various kinds
of event and event field encodings, emphasizing a straightforward translation between them
due to the fact that all of them represent the same event structure. CEE also offers recom-
mendations about the events and fields to be logged under various circumstances.

The Common Event Format (CEF) [5] is an older HP ArcSight1 standard that again pro-

1. http://www8.hp.com/us/en/software-solutions/software.html?compURI=1314386

13

4. LOGGING AND LOG MANAGEMENT

motes interoperability between different event- or log-generating devices from various ven-
dors. It defines a different syntax for log records, using the Syslog format as a basis and
constraining the actual message field. There are several mandatory fields, delimited by a
vertical bar; the last of them allows custom extensions. Other standardization efforts include
OpenXDAS 2 or IBM’s Common Base Event [32].

There are no definitive rules as to what should be logged, since it depends greatly on
the circumstances and the nature of the application or system. However, some recommen-
dations can be given. As per Chuvakin and Peterson [9], the following events should be
logged: authentication and authorization, both successful and failed; changes in data and its
attributes, especially privilege elevation; availability issues, startups and shutdowns, faults
and errors, connectivity problems; resource issues, such as resource exhaustion, exceeded
capacities, reached limits; invalid inputs and known potential security threats. Another
piece of advice by Chuvakin [8] states that one should: log everything, retain the majority
of the records, analyse enough of them, summarize and report on a subset, monitor some of
the logs, and act on just a few.

In any case, logging systems produce considerable amounts of monitoring data, and
the quantity will only grow in the future. Moreover, most of the logs produced need to be
available for a certain period of time, based on the particular policies and regulations. This
introduces challenges related to the storage and subsequent processing of such volumes of
data.

Log records are commonly stored in various formats, ranging from simple text files,
through binary and compressed files, to databases. To choose the most suitable option, many
factors must be considered for the particular scenario, such as whether the particular format
is both machine- and human-readable, whether it compresses well (mostly for archiving
purposes), the availability of tools for viewing and processing its contents, storage capaci-
ties at the disposal and their price, writing and reading speed, etc.

One of the possible ways to cope with the large quantities of data is to use cloud storage
or even cloud Logging as a Service (LaaS) tools. The choice again depends on the needs
of the particular logging system, since the providers have various log acquisition methods,
deployment models, log retention policies, searching and reviewing capabilities, custom
alert services, and last but not least, billing options.

4.2 Log Processing

In order to better understand the monitoring information collected in the form of log records,
various analysis tools and techniques are employed. Due to the great variability in log for-
mats, there is no general way to analyse and process logs; the approach depends on the
log syntax and form. Another complication is caused by the subjective nature of log mes-
sages; e.g. when filtering logs by severity, there is no guarantee as to the real importance
of a message the producer decided to tag with a certain severity type. Also, there might be

2. http://openxdas.sourceforge.net/

14

4. LOGGING AND LOG MANAGEMENT

log records that are meaningless by themselves and only make sense if set in a particular
context, or processed as a part of an event stream.

Overall, log analysis is not an easy task, but it needs to be performed for various reasons,
for example for maintaining situational awareness of the managed resources, ensuring se-
curity and detecting attacks, diagnosing faults, or to comply with audit regulations about
log reviews. Manual log analysis is usually not feasible, not only considering the quantity
of log records to process, but also due to it being unlikely to provide a bigger picture or to
correlate diverse logs from multiple sources. Manual analysis is not recommended unless
a quick look at the logs is all that is necessary in a particular situation and the analyst is
familiar with the format of the logs [10].

As the logs tend to be produced in the form of natural language strings, one of the most
used techniques for manual processing of log files is to parse them using regular expres-
sions. These can either be created manually in advance, based on the known form of the
log record, or they can be built using various log abstraction methods. Log abstraction is
a technique designed to isolate the static part from the dynamically changing parameter
fields contained in a log message [30], which results in a set of regular expressions to be
used for subsequent pattern matching. Some of log abstraction methods extract the regular
expressions from the logging statements found when examining the source code [42], others
use data clustering techniques [41][22][30] or other approaches. Not only do the results of
these techniques rely on several assumptions that may or may not hold in particular cases
(e.g. that the source code is available for inspection); they also involve the time-consuming
process of parsing the logs by regular expressions.

The abovementioned approaches, however, are only suitable for cases when one knows
what to look for in the log records. Unless there is a certain prior knowledge of the form
or content of the logs, they are not applicable; in such cases, data mining comes into play.
Peng et al. [34], for instance, present a log mining approach that takes advantage of the
intrinsic characteristics of log messages, such as the fact that they are relatively short and
they typically contain a timestamp, which assists in correlation of different messages. With
data mining methods, it is possible to extract patterns from the collected data and get a
bigger picture of what is happening in the system. For example, discovering several login
failures followed by a successful login may imply a brute-force attack.

Before any kind of log analysis or processing is applied, the security and privacy issues
must be considered. Log records often contain personal or confidential data, so measures
should be taken to prevent compromise. Accorsi [1] distinguishes two threat models for pri-
vacy: outer and inner privacy, aiming at the latter, which he defines as an attacker’s attempt
to access private log data instead of collecting data about an individual manually. He then
presents a tamper-evident secure remote logging approach for ensuring inner privacy.

Furthermore, cloud logging poses special problems and threats stemming from its na-
ture. The collection of logs itself is not always possible, and the consumer’s level of control
over logs also depends on the service model. Zawoad et al. [44] introduce SecLaaS (Secure-
Logging-as-a-Service) as a concept of providing access to logs while preserving the confi-
dentiality of users and integrity of logs. They also emphasize that it is necessary to prevent

15

4. LOGGING AND LOG MANAGEMENT

tampering with logs, both on the side of cloud service provider and cloud consumers.
There is a wide range of tools specially designed to facilitate working with logs, and

more of them still appear. The production of logs does not represent a particular problem,
since every programming language has its logging frameworks (Log4j3, Logback4, or Java
Logging API5 can be mentioned as examples of possible alternatives for Java, which this
thesis primarily focuses on), and it is not uncommon for a developer team to come up with
its own logging solution. In addition to application logging only, system-level solutions such
as Syslog or Windows Event Log provide a means for a centralized log collection.

Regarding log processing and analysis, however, the situation becomes more compli-
cated. There is certainly not a lack of tools providing this kind of services, but typically they
serve for filtering and searching free-form log records with natural language messages and
thus the outcome of the analysis depends on the analyst’s ability to pose the right questions.
To give an example, Splunk6, together with its cloud-service based version called Splunk
Storm7, is a log collection and search engine for unstructured, text-based logs. It makes use
of its own custom-designed query language SPL (Search Processing Language), specially
targeted at manipulation with large volumes of data. Splunk at first gathers the data, possi-
bly from multiple locations, to a central repository and indexes it to improve the processing
of subsequent queries. It can then perform a powerful analysis of the collected machine data
and generate comprehensive reports, graphs and charts to visualize the results. Competitors
and alternatives to Splunk Storm in the field of centralized cloud-based logging include e.g.
Loggly8, Logentries9, Papertrail10 or the open-source Logstash11.

4.3 Structured Logging

Logs in a free-form natural language are the easiest for the developers to produce, but they
represent a serious problem once they need to be processed. The most commonly used ap-
proach, i.e. parsing the logs by regular expressions, introduces a significant overhead; in
addition, the messages subject to processing by regular expressions are very sensitive to
changes, since even a small difference may result in the message not being matched.

The most interesting piece of information is usually the variable part of the message,
as opposed to the static text accompanying it. In order to extract it, one basically needs
to crawl through the unstructured text to find something the developer already had at their
disposal in the first place. Therefore, instead of burying the essential data in human-readable
padding, a different approach may be just what is needed to move towards a better logging.

3. http://logging.apache.org/log4j/2.x/
4. http://logback.qos.ch/
5. http://docs.oracle.com/javase/7/docs/technotes/guides/logging/overview.html
6. http://www.splunk.com/
7. https://www.splunkstorm.com/
8. http://www.loggly.com/
9. https://logentries.com/
10. https://papertrailapp.com/
11. http://logstash.net/

16

4. LOGGING AND LOG MANAGEMENT

Parallel to the log standardization efforts, although not so evident, there has been a dis-
cussion about structured logging. However, most of the recommendations revolve around
preparing and logging the structured output (be it JSON, XML, or other formats) manually
without any major changes to the existing logging tools. In other words, instead of repre-
senting the log message as a natural language string, the developer constructs the message
in the desired form and just outputs a differently formatted log record. While it would cer-
tainly make a difference when processing such logs, the additional work it requires on the
developer’s part is probably a major obstacle to the widespread adoption of this approach.
The rest of this section gives examples.

Founded in the beginning of 2012, the main objective of Project Lumberjack12 is to en-
hance traditional Syslog logging with CEE syntax. JSON data is sent in a traditional Syslog
message, preceded by a known prefix @cee: to indicate the message is CEE-encoded. When
processing the logs, the message is either treated as an ordinary natural language string, or
in case the CEE format is detected, the JSON part is parsed accordingly.

As a result of another initiative, Fluentd13, a log collecting daemon for semi-structured
JSON logs was created. It is designed for receiving, buffering and forwarding data to another
destination. Fluentd log entries consist of three parts: a UNIX timestamp, a tag used for
routing the message in the forwarding process, and the actual message in the form of JSON
object. An advantage of Fluentd over other logging solutions using JSON is that there is
no need for the developer to construct the JSON object; however, a map containing key-
value pairs for all attributes to be logged must be created and passed to the logger. In our
opinion, the obligatory construction of the map represents a significant inconvenience to the
developer since typically, several lines of code are necessary to accomplish that, and in case
of larger number of logs the code as a whole may appear polluted and disorganized.

Several other, mostly experimental, tools for structured or semi-structured logging are
already available, such as Bunyan14, a simple JSON logging library for Node.js; nevertheless,
to the best of our knowledge, all of them require a non-trivial participation of the developer
in order to obtain logs in JSON. Since we realize that a solution unpleasant to use will not
be generally adopted, this is exactly the issue our logging mechanism wants to address, as
it will be described in the next chapter.

12. https://fedorahosted.org/lumberjack/
13. http://fluentd.org/
14. https://github.com/trentm/node-bunyan

17

Chapter 5

Structured Logging Mechanism Proposal

The reasoning behind the need for a completely new approach to logging was already stated
in previous sections. Particularly, it should be noted that the manipulation of logs in natural
language, as it mostly is the case even in modern systems, is a complicated, inefficient and
difficult-to-maintain solution. A new approach refraining from the use of natural language
as the main medium for carrying logging information would be more than welcome. How-
ever, for an innovative approach to be accepted by the developer community, it needs to be
adequately straightforward to use compared to the currently existing ones, and it should
be evident that it facilitates rather than complicates the usual process; otherwise, there is
no reason to change. The aim of this thesis is to elaborate on the difficulties one must face
when designing such approach and suggest a logging mechanism that attempts to solve the
aforementioned problems.

From this chapter on, we use the term logging to denote application logging as opposed to
system or security logging. In application logging, the primary source of information is the
application code, and it is usually the developer who is in charge of deciding which events
to log and in which form. This often leads to inconsistency among the logging statements
due to multiple developers using different message formats and severity levels to represent
the same event. Even strict logging policies cannot guarantee that the format of the logs
will be uniform throughout the application. Our approach strives to address exactly these
issues; focused on application logging and implemented in Java, it is intended to serve as
an adapter for structured logging from Java applications.

As far as we know, currently developed tools and libraries do not provide structured
logging in the sense that we understand it. We would like to achieve a structured output
with minimal additional effort on the programmer’s part; preferably, with as much of the
configuration and the logging process automated as possible. We do not want to force the
developers to construct the structured logs themselves, but instead provide the logger with
the raw (i.e. not bundled in natural language string) data and let it take care of the adequate
structure. This way it is also possible to change the structured representation in the back-
ground with no effect whatsoever on the logging statements already present in the code.

The logging mechanism presented in this chapter was designed and implemented pri-
marily in the context of Ngmon, but the concepts are universal. As Chapter chapter 3 says,
every type of monitoring information in Ngmon, logs included, is represented as an event;
therefore we use the terms event, event object, log and log record interchangeably. The general
form of an Ngmon event is shown in Figure 5.1. Note that it differs slightly from the event

18

5. STRUCTURED LOGGING MECHANISM PROPOSAL

presented in [40]; it is because since then we have identified that the structure needed minor
modifications in order to enable automated processing.

{ "Event":{
"id":16051986,
"occurrenceTime":"2012-04-11T08:25:13.129Z",
"hostname":"lykomedes.fi.muni.cz",
"type":"org.apache.httpd.request.GET",
"application":"Apache Server",
"process":"httpd",
"processId":"4219",
"severity":5,
"priority":4,
"payload":{
"schema":"http://httpd.apache.org/v2.4/events.json#/definitions/GET",
"schemaVersion":"2.4",
"properties":{
"resource":"/apache_pb.gif",
"protocol":"HTTP/1.0",
"response":200

}
}

} }

Figure 5.1: Sample JSON event object

Every JSON event object adheres to a general JSON Schema. Moreover, the object repre-
senting the payload part of an event object is described by another, specific JSON Schema,
determined by the particular event type. Since the names and types of attributes differ
among the event types, a description such as the JSON Schema is the only way to ensure
unambiguous interpretation of the payload. Event types and their properties are not given
nor restricted in any way; they can be tailored to the purposes of the particular application
and defined by the developer. The logging mechanism we introduce in this thesis is respon-
sible for producing the payload part of an event object, as it will be detailed later in this
chapter.

Among the main design goals of our logging mechanism is a simple API and a solid per-
formance. To facilitate its adoption, it is convenient for the API to resemble that of common
logging frameworks. Since the logging module is intended for Java, we based the API on the
well-known Log4j. As to the performance issues, not only should this approach lead to effi-
cient processing of the logged information; it is also desirable for it to introduce minimum
to no performance overhead in the actual logging process and so to provide performance
comparable to that of unstructured loggers.

Since the logging component is intended to be no less developer-friendly than other log-
ging frameworks in spite of its task to output the logs in JSON, it is desirable to achieve a
high level of automation in creating the necessary constructs for this kind of logging. There-
fore the one-to-one correspondence between logging methods and JSON Schemas describ-
ing them, implying the possibility to generate one if the other is given, is very welcome.

19

5. STRUCTURED LOGGING MECHANISM PROPOSAL

For the generation of resources, i.e. source files and JSON Schemas, a custom annota-
tion processor is used. Annotation processors are basically Java classes that implement the
javax.annotation.processing.Processor interface and as such can act as compiler plu-
gins. They were introduced in Java 6 as a part of the Pluggable Annotation Processing API
(JSR 269), replacing a standalone, non-standardized command line utility called apt (Anno-
tation Processing Tool1) needed for processing annotations and executing annotation pro-
cessors in Java 5. The API is called pluggable because the annotation processors can be
dynamically attached to the compiler to perform a source code analysis, and subsequently
carry out tasks such as code validation or generation of new resources. JSR 269 itself consists
of two parts: an API for handling annotation processors (javax.annotation.processing)
and an API providing a compile-time view of the sources (javax.lang.model) that plays a
similar role as Java Reflection API does during runtime.

Our annotation processor is responsible for creating JSON Schemas based on the content
of logging methods and vice versa. JSON Schema [17] is a specification defining the format
of JSON data, analogous to what XML Schema is for XML documents. It is intended for
description, validation and documentation of JSON data. The specification is still a work in
progress; draft04 was assumed as default for this thesis, being the latest available at the
time, and all JSON Schemas used for our purposes must comply with this version of the
specification.

The structure of the logging component, and as a result, its API, has undergone many
changes. Finally, three variants were settled upon, each with a slightly different perspective
on the relationship between entities and event types2.

5.1 Event Types Tightly Coupled With Entities

At first, we approached the problem entirely from the point of view of monitored entities. A
monitored entity (henceforth referred to as entity for short) is an object in the monitored do-
main disposing of certain qualities that render it interesting for monitoring; essentially any
resource that can be considered useful, unique, and having a considerable lifetime and gen-
eral use [43]. Zanikolas and Sakellariou [43] give processors, memories, storage mediums,
network links, applications, and processes as typical examples of entities.

Assuming not all actions are applicable to every entity, each entity is unified with a sep-
arate logger, which defines the set of event types the entity supports. Hence when logging
an event concerning a particular entity, only a subset of all event types in the system can be
used.

5.1.1 Entity Classes and JSON Schemas

Each entity is represented by a class consisting exclusively of logging methods. By conven-
tion, the name of the class is the same as the name of the entity, and similarly, names of

1. http://docs.oracle.com/javase/1.5.0/docs/guide/apt/GettingStarted.html
2. The full source code of all three variants is available from https://github.com/ngmon/ngmon-json-logger

20

5. STRUCTURED LOGGING MECHANISM PROPOSAL

logging methods and their parameters correspond to the names of supported event types
and event type attributes, respectively. Method overloading is forbidden because it does not
completely agree with the concept of categorizing events into disjoint types. If two meth-
ods with the same name differ only in the list of their parameters, they are very likely to
represent the same event type, just in different levels of detail.

Two different types of JSON structures are generated based on the information obtained
from the entity class: JSON objects describing entities and JSON Schemas for event types.
JSON objects describing entities conform to the schema in Figure 5.2, i.e. they contain an
array of objects named eventTypes, where all logging methods from the entity class are
listed.

{ "$schema":"http://json-schema.org/schema#",
"title":"Entity",
"type":"object",
"properties":{
"name":{
"type":"string"

},
"eventTypes":{
"type":"array",
"items":{

"type":"object",
"properties":{
"eventType":{
"type":"string"

},
"schema":{
"type":"string"

}
},
"required":["eventType", "schema"],
"additionalProperties":false

}
}

},
"required":["name", "eventTypes"],
"additionalProperties":false

}

Figure 5.2: JSON Schema for entity objects

The schema requires each entity object to have only two attributes: name, which is the
name or a certain identifier of the entity, not necessarily equal to the name of the entity
class; and eventTypes, an array of objects specifying the path to schema for each particular
event type (i.e. logging method).

All entity classes are located in package logger and its subpackages, while the gener-
ated JSON entity objects and JSON Schemas for logging methods can be found in subpack-
ages of entities and schemas, respectively. The structure of subpackages in entities and

21

5. STRUCTURED LOGGING MECHANISM PROPOSAL

schemas copies that of logger, i.e. if there is an entity class EntityX containing a method
named eventA in package logger.a.b.c, the JSON object associated with this class will
be placed to entities.a.b.c under the name of EntityX, and there will also be a JSON
Schema named eventA in schemas.a.b.c. For the sake of simplicity, all three base packages
lie at the root of their respective directories in line with the standard Maven3 project struc-
ture; i.e. package logger directly in src/main/java; and packages entities and schemas
in src/main/resources.

As Figure 5.3 shows, entity objects are essentially collections of references to event type
schemas that are needed for matching an existing log record against its schema. The items of
array eventTypes are characterized by two properties: eventType, the name of the method
as declared in the entity class, and schema, the location and name of its schema.

{ "name":"EntityX",
"eventTypes":[
{ "eventType":"eventA",
"schema":"schemas/a/b/c/eventA" },

{ "eventType":"eventB",
"schema":"schemas/a/b/c/eventB_2" },

{ "eventType":"eventC",
"schema":"schemas/x/y/eventC" }

]
}

Figure 5.3: Sample JSON object describing EntityX

At first glance, it might not be obvious why these objects are needed at all - exploit-
ing the convention over configuration paradigm and considering the absence of possibility
to overload methods, the schema for each log record should be uniquely identified given
the entity (or, to be more precise, the package it is defined in) and the name of the event
type. Even more simply, we might have only used JSON Schemas for entities, incorporating
subschemas for their supported event types such that a logged event for a particular entity
would match exactly one of the subschemas. The primary reason the event type schemas are
in separate files and not directly included in the entity schema is reusability. Multiple enti-
ties can, and often do, share the same event type, so linking all of them to the same event
type schema ensures consistency and does not require changes in schemas in multiple loca-
tions. Resulting from this, several entities in the same package can declare the same logging
method (i.e. having the same name, and the same parameter names and types) and only one
physical file containing the underlying JSON Schema for it will be generated. If, however,
another method with the same name but different parameters is created in the same pack-
age, the name of the method no longer serves as a unique identifier for the schema. In this
case a new JSON Schema is created, its name composed of the event type name and an iden-
tification number appended to it with an underscore. This is where the references come in
handy, since they provide an unambiguous mapping from method names to the equivalent

3. http://maven.apache.org/

22

5. STRUCTURED LOGGING MECHANISM PROPOSAL

event type schemas.
It was very convenient for the idea of reusing event type schemas from the same package

to be further generalized to any package. The conventions about package correspondence
between entity classes and JSON structures generated from them were not to be bent or bro-
ken, however; therefore we introduced a custom annotation @Namespace that enabled spec-
ifying the target package for a particular event type schema. Its function can be illustrated
using an example: Considering an entity class EntityX in package logger.a.b.c and its
method eventC annotated with @Namespace("x.y"), the target package for the event type
schema describing eventC will be schemas.x.y, as shown in Figure 5.3.

Finally it remains to define the structure of the event type schemas. These are very simple
due to the fact that any additional constraints imposed on the event type attributes in the
schema, such as the range of values or a string pattern, would be very difficult to reflect
in the logging methods in a way that would enable for unambiguous translation back to
the schema in case of changes. Figure 5.4 presents a schema corresponding to a method
named eventA with two parameters called param1 and param2 of type String and int,
respectively.

{ "$schema":"http://json-schema.org/schema#",
"title":"eventA",
"type":["object"],
"properties":{
"param1":{ "type":"string" },
"param2":{ "type":"integer" }

},
"required":["param1", "param2"],
"additionalProperties":false

}

Figure 5.4: Sample JSON Schema for method eventA

All the aforementioned resources are generated by a Java annotation processor. The pro-
cessor assumes the following:

• Entity classes (and these only) are located in package logger and its subpackages.
Classes from other packages will not be taken into account.

• JSON files are located in accordance with the standard Maven project structure in
src/main/resources; particularly: JSON objects corresponding to entity classes in
package entities and its subpackages, and JSON Schemas corresponding to logging
methods in package schemas and its subpackages.

• The structure of subpackages is synchronized across the three base packages the way
it was already stated above.

• Only classes changed since the last build are processed.
• In case a JSON object does not exist for a particular entity class, it is generated; and

vice versa.

23

5. STRUCTURED LOGGING MECHANISM PROPOSAL

• If both resources already exist, entity classes are granted higher priority so only the
changes from entity classes will be reflected in the corresponding JSON files. If an
entity class exists, it is guaranteed that no change in JSON resources will ever cause an
update in it. This implementation was chosen because it was expected for the classes
to be more conveniently changed than JSON structures.

Before the generation of files itself, the processor checks if all conditions imposed on
the sources are met, namely it forbids method overloading and it only accepts JSON in the
specified format. If a file does not satisfy these criteria, the execution of annotation processor
terminates with a compilation error.

For JSON manipulation, Jackson JSON Processor4, a high-performance JSON parser and
generator, is used. The actual handling of JSON is quite straightforward; nevertheless, one
thing should be noted. By design, JSON object is a set of key-value pairs that does not define
any ordering on its attributes - therefore, for example, the order of parameters in a logging
method does not necessarily match the one in its JSON Schema. In our case, however, it
represented no particular problem. The only time it might matter is when using logging
methods that were generated from JSON Schema, and even then if the order of parameters
in a method is undesirable, it is sufficient to rearrange them in the signature of the method.
Once the method exists, it will not be affected by its schema again.

5.1.2 API and Logging Process

Since there is no need to reinvent the wheel, the logging component has been designed from
the beginning to serve as an adapter for other logging tools, not to become a standalone
tool itself. In the version being discussed now, Log4j 2 is chosen as the underlying logging
framework, its integration hardcoded in the component. We chose Log4j 2 as a de facto
standard for Java logging. Although the original Log4j is no longer under development and
the framework has been in fact replaced by Logback5, Log4j 2 aims to revive its former glory
by providing functionality comparable to, or in some aspects even surpassing, Logback [4].

The developers programming against our API do not need to know that Log4j 2 is in the
background, nor do they have to configure it manually, for everything is preset. The implicit
behaviour for the component is to log to a file; if however, logging to a file is not suitable
in a certain context, the default settings can be overridden by creating a custom Log4j 2
configuration file log4j2.xml in the implementing project. For particulars on configuration
options see the User’s Guide [4], Chapter 6 - Configuration.

Each user-defined entity class as outlined above is a subclass of the abstract class Logger
where methods that directly interact with Log4j are situated. By default, they produce log
records in the form of [date] [time] [severity] - [message], where message is the JSON
object encapsulating given information about the entity and the particular event type. Figure
5.5 gives an example of a log message for an instance of event type eventA, logged from

4. http://wiki.fasterxml.com/JacksonHome
5. http://logback.qos.ch/

24

5. STRUCTURED LOGGING MECHANISM PROPOSAL

within entity EntityX. (Note that it is formatted for readability; in the log records, the JSON
object is always output on a single line.)

{ "entity":"EntityX",
"eventType":"eventA",
"schema":"schemas/a/b/c/eventA.json#",
"properties":{
"param1":"abc",
"param2":42

}
}

Figure 5.5: Sample log message

As demonstrated above, the log record consists of the entity that a particular event is
related to, its type, path to the JSON Schema that describes the event type, and finally an
object composed of values for all attributes of the event type. It is important to include the
path to the schema, so that the structure of the particular log record is determined instantly
and the payload can be efficiently processed. Considering the already mentioned naming
conventions for the location of schemas and their names, it is possible to parse the name of
the event type out of the path to its schema file. Despite the fact that this renders stating the
event type in the log record redundant, the event type is included to facilitate processing;
but it may be subject to removal in later versions.

The actual logging statement to produce the message in Figure 5.5 is then constructed as
follows:

LOG.eventA("abc", 42).error();

LOG is an instance of EntityX; method error represents one of the six severity indicators
imitating the logging levels used by Log4j (FATAL, ERROR, WARN, INFO, DEBUG, TRACE). All
logging methods in entity classes pass the values of their parameters to a generic logging
method in the superclass; the severity methods at the end of the statement then confirm the
operation and call the corresponding method of the underlying Log4j logger to perform the
actual logging.

It must be admitted that the production of the JSON representation of the logged event
was implemented in a relatively inefficient way due to the problem of correspondence be-
tween logging methods and their schemas. For the needs of future processing, it was nec-
essary for the JSON log record to contain a reference to the schema describing it. However,
since the name of the file containing the matching schema is not uniquely determined by the
name of the logging method, for each log request the entity JSON object had to be parsed
and searched in order to find the path to the event type schema in question.

The extreme overhead thus caused has been significantly reduced with the introduction
of caching. For each entity, a collection of mappings from method names to paths to their
schemas is now kept in memory, and so the entity JSON objects are only parsed the first time

25

5. STRUCTURED LOGGING MECHANISM PROPOSAL

an entity is used for logging. It is also possible to control the loading of selected sets of these
mappings manually by calling the static initLoggers method of the Logger class, giving it
the fully qualified names of entity classes as parameters; or even using initAll to cache the
method-schema pairs for all entities in the project.

In order to prevent mistakes and make the creation of logging methods more developer-
friendly, the name of the method (i.e. the event type) and names of its parameters, both of
which have to be recorded in the log message, are not sent to the superclass directly as pa-
rameters. It would force the developer to include multiple String constants in the method
call (in addition to the actual values of the particular event type attributes) and strongly
violate the DRY6 principle, since the Strings would only represent what is already stated in
the method declaration. Moreover, any typing error would cause discrepancies between the
schema (generated from the method declaration) and log records (created using the values
passed to the logging method), resulting in errors when processing the logs. To avoid such
problems, the logging process takes advantage of Aspect-Oriented Programming (AOP).
Using an AOP tool for Java, AspectJ7, we implemented a custom aspect that is attached to
logging method calls and extracts the necessary information from them. Each time a log-
ging method from an entity class is called, the aspect intercepts its execution, retrieves the
name of the entity class, its package, and the name of the method plus the names of method
parameters, sends them to the Logger, and then returns control to the intercepted method.

The greatest downside of this model is the direct connection between entities and event
types. Despite the reusability of schemas, tight coupling in this case clearly leads to flexi-
bility and maintainability issues. For example, if a developer wants to define a new type of
event applicable to all (or nearly all) entities, there are too many steps to perform: besides
defining the event type by its JSON Schema, they also have to create a reference to this event
type from each entity so that the entity could use it for logging; not to mention declaring the
method in each and every corresponding class. The more repetitions, the more error-prone
the process becomes.

5.2 Recommendation-Based Binding of Event Types to Entities

Mainly to eliminate the tedious task of updating a potentially great number of entities in
order to add a new event type, we proposed an alternative approach. Entities are no longer
equivalent to loggers; there is one central logger combining information about the entity
and a particular event type into one record. Event types are stored independent of entities,
logically aggregated into groups, and each group has its underlying JSON Schema. There are
no schemas for entities; it is, however, possible to enumerate the event types supported by
an entity. The logger then checks if the event type being logged is allowed to be in association
with a certain entity. Contrary to the first approach, this one provides no guarantee for an
entity to be used together with suitable event types only.

6. Don’t Repeat Yourself, as established by Andrew Hunt and David Thomas in The Pragmatic Programmer:
From Journeyman to Master. (Addison-Wesley, 1999)
7. http://www.eclipse.org/aspectj/

26

5. STRUCTURED LOGGING MECHANISM PROPOSAL

Note: when describing approaches that followed the entity-centred one found in Sec-
tion 5.1, only the changes in design or implementation with regard to the first variant are
mentioned. Concepts that are not explicitly stated are assumed not to differ from the first
variant.

5.2.1 User-Declared Classes and JSON Schemas

Unlike the previous version, this one aggregates event types into so-called namespaces rather
than binding them to a particular entity. A namespace is declared as a class annotated with
@Namespace that contains logging methods (each with a unique name; method overloading
is still prohibited) corresponding to the event types that belong to the namespace.

The @Namespace annotation is not to be confused with an annotation of the same name
used in the previous version. Here, it is a class-level annotation that serves as an indicator
for the annotation processor, meaning this class needs to be generated a schema for. This
way the classes are no longer required to be located in a specific package; the annotation is
sufficient for the processor to be able to recognize them. For each namespace, the annotation
processor generates a single JSON Schema containing all its event types, which an event
conforms to if and only if it matches exactly one of the event type subschemas defined in the
schema. If a namespace does not exist for a certain schema, it is generated as well.

{
"$schema":"http://json-schema.org/schema#",
"title":"NamespaceXY",
"type":"object",
"oneOf":[
{ "$ref":"#/definitions/eventA" },
{ "$ref":"#/definitions/eventB" }

],
"definitions":{
"eventA":{
"properties":{
"param1":{ "type":"string" },
"param2":{ "type":"integer" }

},
"required":["param1", "param2"],
"additionalProperties":false

},
"eventB":{
"properties":{
"a":{ "type":"boolean" }

},
"required":["a"],
"additionalProperties":false

}
}

}

Figure 5.6: Sample JSON Schema for NamespaceXY containing two methods

27

5. STRUCTURED LOGGING MECHANISM PROPOSAL

The rules for overwriting generated classes or schemas stay the same as before, i.e. the
classes are privileged and are never influenced by the schemas once they exist. The location
of schemas is not changed either - all of them can be found in package entities and its
subpackages, mirroring the location of namespaces they correspond to.

Another type of user-declared classes in this model are entity classes. An entity class
plays the role of a filter, restricting the usage of certain logging methods in combination
with the entity it represents. If not stated otherwise, all methods can be used. To override
the default behaviour, the entity class has to contain an enum for each namespace it wants
to limit, listing the names of all allowed logging methods from this namespace. The enum
must be annotated with @SourceNamespace, giving the path to the namespace it refers to
as a parameter of the annotation. In case the annotation is not present, or its value does not
denote any existing namespace, the enum is ignored. No JSON files are necessary to support
entity classes; the checks for compatibility between entities and event logging methods are
carried out at compile time by the annotation processor based on the information available
from the classes.

5.2.2 API and Logging Process

As a base for explanation on how the logging request is formed, consider the following
logging statement:

Logger.debug(EntityX.class, NamespaceXY.eventA("abc", 42));

It has already been briefly mentioned that in this version, there is a single Logger provid-
ing the necessary interaction with Log4j to ensure the data is logged. It contains just static
methods for all severity levels distinguished by Log4j (in the example, debug). A combina-
tion of an entity and an event type is passed on to the method, supplying all data for the
subsequent log record. In case the entity is not specified (i.e. the first parameter is null), a
warning is issued by the processor stating that no log will be produced. The code compiles
successfully nevertheless, and it is up to the developer to decide whether to fix the statement
that does not output anything.

The structure of logging statements and the format of entity classes enable for detection
of illegal entity-method pairs at compile time. The annotation processor itself is not capable
of performing such code inspection, because it only has access to method signatures and not
their bodies. However, with the assistance of the Compiler Tree API8, it is possible to anal-
yse code the way it is needed for our purposes. The Compiler Tree API provides access to
the abstract syntax tree (AST) of the source code, constructed by the compiler, where all Java
constructs such as classes, method declarations, method invocations, variable assignments
etc. are represented as a hierarchy of subtrees. The AST can be scanned and examined using
the visitor design pattern, particularly by extending TreeScanner, TreePathScanner, or

8. http://docs.oracle.com/javase/7/docs/jdk/api/javac/tree/

28

5. STRUCTURED LOGGING MECHANISM PROPOSAL

SimpleTreeVisitor, or directly implementing the com.sun.source.tree.TreeVisitor
interface.

We implemented a custom MethodInvocationScanner that inspected method invoca-
tions in the same form as our logging statements and gathered information about them for
the annotation processor to use in subsequent checks. To be more precise, every method in-
vocation with exactly two parameters, the second of them being a method invocation itself,
is broken down to components (the names of the objects, methods, parameters, etc.) and
sent to the annotation processor. The processor’s task is then to determine whether it deals
with a logging statement at all, and if it does, compare the logging method from the second
parameter to those enumerated in the entity given as the first parameter. The statement is
rejected if and only if the entity contains an enum annotated with @SourceNamespace of the
namespace in question, such that it does not list the logging method as one of its values.
In such case the processor reports an error specifying the combination in conflict and the
compilation fails.

Unfortunately, this technique is not completely reliable mostly due to the difficulties
in mining the AST. The annotation processor and AST scanners can not cover all possible
situations, and there is no way to strictly enforce the logging statements to be in the above-
mentioned form. Consider a log request with the same meaning as before, but created this
way:

String eventJson = NamespaceXY.eventA("abc", 42);
Logger.debug(EntityX.class, eventJson);

MethodInvocationScanner will simply ignore the statement, because its second param-
eter is not a method invocation. Even if the implementation of the scanner was changed to
allow this, it would require extensive and very costly manual processing of the AST to log-
ically connect the two lines and detect the logging method to look for in the entity class.
Furthermore, this is not the only means of bypassing the compatibility checks. Therefore
the restrictions placed on logging methods defined in entity classes act merely as a recom-
mendation and cannot be absolutely relied upon to be enforced by the processor. It must be
observed, however, that despite the known flaws this approach has, it is still applicable in
common scenarios if it can count on the structure of the logging statements.

The log records look almost exactly the same as Figure 5.5 presented in the previous
version, the only difference being the path to the JSON Schema. Since the schema represents
a whole namespace, i.e. it consists of subschemas for the individual logging methods, the
path to the file is not sufficient for identification. Therefore navigation inside the schema is
required, resulting in a/b/c/NamespaceXY.json#/definitions/eventA for the log record
produced by the log statement used above. Analogously to the previous version, an aspect
is responsible for sending method and parameter names to the Logger so only the values of
the parameters seem to be needed.

As the above implies, an advantage of this variant over the previous one lies in more
flexible manipulation with event types. On the other hand, since they are not strictly bound

29

5. STRUCTURED LOGGING MECHANISM PROPOSAL

to entities, virtually any combination of the two is possible, regardless of whether it is rea-
sonable or not. The design of the API also makes the logging statements rather complicated.

5.3 Event Types Arbitrarily Combined With Entities

Trying to refine the specification of the logging component beyond the second variant, we
identified that entities were not the ones being crucial in the logging process; it was pri-
marily the event type that mattered. The logging module has been redesigned accordingly,
focusing on the event type and treating entities just as an additional information.

Similarly to the second version, logging methods corresponding to event types are or-
ganized into namespaces, each of the namespaces backed up by a JSON Schema. The main
difference between the two approaches lies in the logging process. Instead of a centralized
logger, the namespaces themselves now act as loggers for a specific subset of event types.

Considering the fact that for each event type its context is determined by the names-
pace it belongs to, especially with conveniently designed namespaces it is often the case
that no additional information is absolutely essential apart from the values of the event type
attributes. Nevertheless, each event type can be assigned an arbitrary number of tags pro-
viding extra information, such as the entities it is related to. The question of compatibility
between event types and entities has been dropped entirely in belief that developers, for
their own sake, will not use unreasonable combinations; and in case an event type is abso-
lutely forbidden to be used in association with a certain entity, the default behaviour of the
logging methods can be extended with the necessary checks.

Abstracting from entities, this approach places namespaces at the core of the logging
process. Defined in the same way as in the previous variant, namespaces are @Namespace-
annotated classes that group logging methods together according to developer-defined prin-
ciples. It is highly recommended that the namespaces extend class AbstractNamespace to
ensure maximum reliability when applying components for automated processing, such as
the pointcut of the aspect for extracting names of parameters or an annotation processor.
Class AbstractNamespace encompasses data necessary for correct execution of the logging
process, among the most important a reference to the logger implementation specific for
the particular instance. A JSON Schema is maintained for each @Namespace-annotated class,
exactly in the form shown in Figure 5.6. All conventions and requirements for the correspon-
dence between JSON Schemas and namespaces stated in Section 5.2 hold for this version as
well.

It should be observed that the processor detects classes to generate JSON Schemas from
based on the @Namespace annotation rather than just working with all classes that extend
AbstractNamespace. This is because semantically, the two are not completely interchange-
able and can even be used separately to accomplish slightly different goals. For example, in
case a particular subclass of AbstractNamespace is not annotated, it can exploit all advan-
tages of structured logging, but no schema is generated for it. It might be useful in case a
more sophisticated custom schema is already present and it is not desirable to have it over-
written by the processor; or if the class in question is a base namespace class containing

30

5. STRUCTURED LOGGING MECHANISM PROPOSAL

NamespaceXY.java
public AbstractNamespace eventA(String first, int second) {
 return log(first, second);
}

AbstractNamespace.java
protected AbstractNamespace log(Object... paramValues) {
 setValues(paramValues);
 setNames(methodName, paramNames);
 return this;
}

AbstractNamespace.java
public void log() {
 //build JSON from methodName,
 // tags, paramNames, paramValues

 //let the underlying logger handle

}

LOG.eventA("abc", 42).log();Aspect

Figure 5.7: An illustration of the aspect’s role in the logging process

common features designed to be further extended by namespaces. On the other hand, if the
annotation alone is specified, it means the class will be generated an equivalent schema for,
but for arbitrary reasons the functionality provided by AbstractNamespace is not needed.

In this variant, Log4j is no longer used as the default and only possible background log-
ger. In projects using our logging component, at least one logging implementation (imple-
menting method log in interface Logger) must be defined and set up in order to carry out
the actual logging. It gives the developers adequate freedom to choose the logging technique
or the storage appropriate for their logs (even different settings for various logging state-
ments), and decouples the logging module from particular logging solutions and frame-
works. On the other hand, moving the responsibility of establishing a logger to the using
project we also lose the ability to explicitly define severity levels, since they differ among
various logging frameworks. However, this is of no major concern to us since the severity
methods were just an auxiliary and temporary solution. In our event-based representation
of logs, each event type is implicitly assigned a severity based on its real-world meaning,
e.g. event type outOfMemory is naturally more important than an informational message
such as userLoggedOn.

An example usage:

NamespaceXY LOG = LoggerFactory.getLogger(NamespaceXY.class, new Log4jLogger());
LOG.eventA("abc", 42).tag("EntityX").tag("EntityZ").log();

Log4jLogger used in the example is a custom implementation of the Logger interface
that delegates requests to Log4j. It can be seen that, in order to log, both the physical logger
and a set of methods enforcing the structure of events (assembled in a namespace) must
be present. It is further possible to add any number of tags (or none at all) to the logging
statement, specifying e.g. entities concerned by the event. This way if an event applies to
multiple entities, just one log record is created listing all of them, and no redundant copies

31

5. STRUCTURED LOGGING MECHANISM PROPOSAL

are necessary. To indicate that the number of tags is definitive, method log has to be called
last. Only this method actually initiates the logging; without it, the data is collected, but
never output to the specified destination.

In case developers do not find this straightforward, minor modifications in the API can
lead to logging statements where the confirmation method at the end is omitted for simplic-
ity. By moving the tags to the front it is ensured that the output is always produced, as the
logging logic can be incorporated directly in the logging methods:

LOG.tag("EntityX").tag("EntityZ").eventA("abc", 42);

Both approaches bring small benefits. In the first one, it is clarity; the logging method
clearly stands out being the first one in the statement, so when reading multiple log lines
with variable number of tags, the names of the logging methods are always aligned. In the
second one, however, it suffices to call methods that carry logging data and no additional
method calls need to be included, thus eliminating the possibility of misformulation of the
logging statement.

Log records produced in any of the two ways contain fields specified by the settings of
the particular underlying logger, and a message that looks analogous to:

{ "tags":["EntityX","EntityZ"],
"schema":"a/b/c/NamespaceXY.json#/definitions/eventA",
"properties":{
"param1":"abc",
"param2":42

}
}

Figure 5.8: Sample log message

The last proposed approach provides the greatest flexibility, while maintaining the nec-
essary requirements to perform structured logging. It is currently the preferred version. We
believe it serves our purposes with no obvious flaws, solving all of the problems indicated
before.

32

Chapter 6

Using the Proposed Structured Logging Mechanism

The main objective of this chapter is to provide instructions and guidelines for using the
logging mechanism presented above. It focuses on the last mentioned alternative, which
is believed to be readily usable with no significant disadvantages. To be able to log in a
structured way using this mechanism, several requirements must be met; together with the
conventions and assumptions, these are detailed in the following sections.

A fully configured sample project using the structured logging component can be found
in the Ngmon Github repository1.

6.1 Namespace Classes

As stated above, namespace classes play an indispensable role in the logging process. A
namespace class is defined by the using project and contains a set of related logging meth-
ods. There are no restrictions as to what exactly the relationship between them means; that
is left to the developer’s judgement. It is recommended for a namespace class to both extend
AbstractNamespace, which is a base namespace implementation provided by the logging
component, and be annotated with @Namespace to indicate that a JSON Schema correspond-
ing to the class should be generated.

The logging methods contained in a namespace class follow a general pattern that looks
as follows:

public AbstractNamespace eventA(String param1, int param2) {
return log(param1, param2);

}

Figure 6.1: Sample logging method

First, it should be noted that it is mandatory for the logging methods to return an object of
type AbstractNamespace so that the logging statement using the particular method could
be finished successfully. The API is designed in a way that requires the logging method
to be called first, and then allows chaining multiple tag methods (thus adding an arbi-
trary number of tags to the log record), finishing the statement with a log method indi-
cating that the log message is complete and no more tags will be added. Both these meth-
ods are declared in class AbstractNamespace. Since at some point, method log (also from

1. https://github.com/ngmon/ngmon-json-logger

33

6. USING THE PROPOSED STRUCTURED LOGGING MECHANISM

AbstractNamespace) is necessary to be called and passed the values of the attributes to be
logged, the easiest way to accomplish both is to directly return the return value of log. Al-
though the body of the logging method can be implemented differently, the default form
generated from a JSON Schema in case the class does not exist is the one shown in Figure
6.1.

By convention, the name of the logging method is incorporated into the resulting JSON
Schema for the enclosing namespace class. The method name is regarded as the name of the
event type, therefore a reasonably descriptive one should be chosen.

There are two ways to obtain the namespace class containing the logging methods: it
can either be directly implemented, or a JSON Schema with the corresponding name can
be included in the project to generate the namespace class from; the choice depends solely
on the developer’s preferences. However, as mentioned in Chapter 5, a class will only be
generated from a schema if it does not exist; no further changes to the schema are reflected
in the associated class after its creation. Also, in case the JSON Schemas are created first and
the namespace classes are left for the annotation processor to generate, it must be taken into
consideration that the annotation processor is essentially a compiler plugin and works with
a given set of source files; so unless there is at least one existing Java class in the project to
be compiled, the annotation processor will not be launched and the namespace classes will
not be generated.

6.2 JSON Schemas

Regarding the correspondence between the namespace class and its JSON Schema, it should
be remarked that due to differences in the expression mechanism there are only a few items
that can be unambiguously translated from one to the other, including the name of the event
type (i.e., the name of the logging method) and the names and types of its attributes. These,
and these only, are translated into the logging methods, regardless of the additional charac-
teristics that may be included in the schema.

Moreover, as soon as the namespace class containing the logging methods exists, the
schema has no longer any effect on it and is itself overwritten in case of changes in the
class. Therefore, if it is desirable for additional constraints contained in the schema to be
preserved, the only workaround involves removing the @Namespace annotation from the
namespace class, and thus preventing the annotation processor from recognizing the class
and overwriting the contents of the schema based on it. However, this may lead to inconsis-
tencies and is not recommended unless it is certain that the events produced by the logging
methods will conform to the customized schema. So far, JSON Schemas consisting just of
event types and the names and types of their attributes have been identified as sufficient for
our purposes; in case a need for other characteristics arises, a means of translating them to
the corresponding logging method will have to be devised.

When generating schemas, the annotation processor adheres to the draft04 of JSON
Schema [17], and all schemas created manually should also be compatible with this ver-
sion of the specification. Due to their simple contents, there is little evidence that the gen-

34

6. USING THE PROPOSED STRUCTURED LOGGING MECHANISM

erated schemas encompass new features introduced in draft04; nevertheless, they contain
the newly supported keyword oneOf, so their draft04-compliance should be taken into
account in case of validating against them.

All schemas are expected to be located in package events and its subpackages in the
standard Maven resources directory (src/main/resources). As it was already stated, the
package hierarchy and the exact location of a schema within the events package depends
on the location of its corresponding class. Since no specific file extension for a JSON Schema
file has been established, it is assumed for the files to use the .json extension.

6.3 Logging

In order to perform the actual logging, an instance of a structured logger must be requested
from the LoggerFactory. Since the namespace classes serve directly as an alternative to
loggers, a sample instantiation may look as follows:

NamespaceXY LOG = LoggerFactory.getLogger(NamespaceXY.class, new Log4jLogger());

The LoggerFactory must be provided with both the namespace, representing the struc-
tured part of the logging process, and a logger implementation (in the example above it is
the Log4jLogger) that takes care of outputting the log records to a destined storage.

Although in the early versions of our logging component Log4j was used as a fixed
background logger (see Section 5.1 and Section 5.2), the last proposed variant described in
Section 5.3 only serves as an adapter for producing structured logging data and leaves the
recording of the logs itself to a custom-defined logger.

There are no restrictions concerning the logger; it is possible to use an arbitrary log-
ging framework. The custom logger (Log4jLogger) is only responsible for delegating the
structured output to the underlying logging framework (i.e. Log4j in this case). It needs to
implement interface Logger, which entails overriding method log having one String pa-
rameter so as to be able to receive the structured logged event from the namespace logger.
After performing the necessary steps to obtain the JSON representation of a log record, the
structured logger (an instance of NamespaceXY in the example above) calls log on the par-
ticular instance of custom logger associated with it, expecting that it in turn takes care of
forwarding the log record to the underlying logging framework.

6.4 Build Process

A standard Maven project structure is assumed; to be more precise, all sources are expected
to be located under src/main/java, and only resources collected in src/main/resources
will be taken into consideration. A dependency on the particular version of the structured
logging component should be declared in pom.xml.

To ensure that the annotation processor will put the generated namespace classes in
the correct directory, a <generatedSourcesDirectory> of the maven-compiler-plugin

35

6. USING THE PROPOSED STRUCTURED LOGGING MECHANISM

(or an alternative, such as specifying the corresponding option in an IDE) must be set to
src/main/java. This is because by default, annotation processors only put generated sources
to the project output directory and so they are not readily accessible from the code. No out-
put directory for generated JSON Schemas needs to be set, since in this case the process of
determining the output location is controlled by the annotation processor.

It must also be made sure that the aspect taking care of retrieving additional param-
eters of the logging record is properly weaved into the code. Since the implementation
of the aspect is located outside the using project, when building it, it should be explic-
itly stated that an external library of aspects is to be used. This can be achieved for ex-
ample using the aspectj-maven-plugin and including the structured logging component
in <aspectLibraries> in addition to declaring a dependency on it. For the aspect to be
able to find the name of the logging method and the names of its parameters (see Section
5.1.2 for details), the compiler must be invoked with the option for generating debugging
information enabled.

36

Chapter 7

Performance Evaluation

In this chapter, we evaluate the performance of our logging component based on the tests
that were run, and compare it with the performance of traditional approaches to logging.
The objective of the evaluation is twofold: to prove that the proposed logging mechanism
does not impose any significant overhead in terms of performance during the production of
structured logs, and to demonstrate the benefits it brings when it comes to processing the
logs. To carry out the actual measurements, Google’s micro-benchmarking framework called
Caliper1 was used, as it seemed well-suited for our purposes and very straightforward to
use. The tests were run on a PC with Intel Core i5-2140M @ 2.30 GHz dual-core processor
and 4 GB RAM, running the 64-bit version of Windows 7 and Java SDK 1.7.0.

The hypotheses we approached the measurements with were formulated as follows:
(1) the cost necessary for constructing the JSON representation of an event does not have
a considerable effect on the time it takes to execute a single logging statement; (2) contrary
to parsing the logs in natural language using regular expressions, processing events in the
form of JSON objects does not depend on the variability in event types present in the set of
logs; so for a sufficient number of different event types, the former is much more costly.

7.1 Logging Performance

First, we wanted to measure the time it took to log a single structured event. Each of the
three variants mentioned in Chapter 5 was tested, as well as an ordinary Log4j logger that
served as a baseline for the comparison. In each case we had the logger output semantically
the same structure, only represented in the means characteristic for the particular variant
(see Figure 7.1). An underlying Log4j logger was used to perform the actual logging; and
for testing purposes, it was configured to output the logs to a text file.

To be more specific, all loggers were set to log a JSON event similar to the one in Figure
5.5, i.e. having two parameters and being related to one entity; in case of a pure Log4j log-
ging without any intervention from our component, the resulting JSON event was simply
included as a string in the place of a log message. Since the cost of the logging statement
might depend on the number of tags present in the third variant, two alternatives were
measured, namely containing one tag and ten tags. Ten tags were estimated as a reasonable
maximum one would use for a single statement.

1. http://code.google.com/p/caliper/

37

7. PERFORMANCE EVALUATION

(1) Logger LOG = LogManager.getLogger(this);
LOG.debug({"tags":["EntityX"],

"schema":"a/b/c/NamespaceXY.json#/definitions/eventA",
"properties":{
"param1":"abc",
"param2":42

}});
(2) EntityX entityX = new EntityX();

entityX.eventA("abc", 42).error();
(3) Logger.error(EntityX.class, NamespaceXY.eventA("abc", 42));
(4) NamespaceXY LOG = LoggerFactory.getLogger(NamespaceXY.class, new Log4jLogger());

LOG.eventA("abc", 42).tag("EntityX").error();

Figure 7.1: Testing log statements

Caliper itself takes care of an adequate warming up before the tests to stabilize the influ-
ence of Java garbage collector and Just-In-Time compiler. It also runs each test several times,
deciding on the exact number of repetitions online, and only outputs the average over the
particular number of repetitions. These average run times were further averaged over 10 in-
vocations of Caliper for each of the variants to provide more reliable results. Table 7.1 shows
the running times of the measurements aiming to support the first hypothesis. It lists the
shortest and the longest time out of the 10 invocations of each benchmark, as well as the
average over these 10 runs.

Five different scenarios for producing the logs were observed, namely: (1) executing a
common Log4j logging statement; (2) using an entity class as the logger, as explained in
Section 5.1; (3) specifying an entity together with the logged event in accordance with the
variant described in Section 5.2; (4) logging by means of a so-called namespace logger (see
Section 5.3) and tagging the logged event with the entity in question; and (5) the same, but
tagging the logged event with ten entities. Figure 7.1 shows the pieces of code corresponding
to scenarios (1) to (4); (5) is omitted for brevity, as it can be easily obtained from (4) adding
the appropriate number of tags. The columns in Table 7.1 are also numbered according to
this list.

Scenario 1 2 3 4 5
Best time 3.87 6.40 10.10 5.780 7.21
Worst time 5.32 11.10 11.10 6.200 11.20
Average time 4.26 7.88 10.72 6.057 7.79

Table 7.1: Log production time [µs]

As it can be seen in Table 7.1, unstructured logging using Log4j was the fastest of the
scenarios measured. However, the difference between scenario (4), i.e. the last and most
relevant variant proposed in this thesis, and logging using Log4j only amounts to around
2 µs per logging statement; so it can be stated that the logging performance overhead of this

38

7. PERFORMANCE EVALUATION

variant is reasonably small and the overall performance of the application will not suffer
unless the number of logs produced per time unit is very large. Nevertheless, even then the
inconvenience caused by a slightly more time-consuming production of structured logs is
compensated by the advantages of processing and querying them.

Table 7.1 further shows that scenario (3) was the worst performing one, with times nec-
essary to log a single statement slightly more than twice as long as Log4j. It also proves that
the number of tags a logging statement is labelled with (see scenarios (4) and (5) for one and
ten tags, respectively) indeed has an effect on the performance, although even as many as
ten tags do not pose a major obstacle.

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10
11

run

ti
m
e
[µ
s]

(1)
(2)
(3)
(4)
(5)

Figure 7.2: Logging performance

7.2 Processing Performance

In the second experiment we observed how the variability present in logs influenced the
time necessary to process them. Two approaches were compared: parsing natural language
log messages using regular expressions, and querying structured log messages.

The experiment was set up as follows: two sets of testing log records were generated;
one of them contained logs in natural language with each log record similar to Figure 7.3,
while the other imitated the output of a structured logger carrying the same meaning, such
as the one shown in Figure 7.4.

2013-04-01 10:00:00,000 ERROR cz.muni.fi.sampleproject.Log4jLogger - Unable to connect
to host HostX1 as user UserX1. 1 attempt(s) left#1

Figure 7.3: Natural language log record

Both log record patterns described a simple event with three attributes (i.e. three variable

39

7. PERFORMANCE EVALUATION

parts contained within the fixed part of the natural language log message). To mimic a real
logging output, one of the most common layouts for a log record was used, listing the date
and time of the event occurrence, its severity level, and the name of the class that produced
the event in addition to the log message itself.

2013-04-01 10:00:00,000 ERROR cz.muni.fi.sampleproject.Log4jLogger -
{ "pathToSchema":"a/b/c/NamespaceXY.json#/definitions/UNABLE_TO_CONNECT_HOST_AS_USER_1",
"tags":["org.apache.hadoop"],
"properties": {
"host":"HostX1",
"user":"UserX1",
"attemptsLeft":1

} }

Figure 7.4: Structured log record

In order to simulate diverse event types, each log message was made unique by append-
ing a number to its end (this is highlighted in blue in Figure 7.3 and Figure 7.4). In other
words, we wanted to observe the worst-case scenario where no two log records belonged
to the same event type. For each event type, i.e. for each natural language log message in
our case, a regular expression was generated such that it only matched log records of that
particular type. Figure 7.5 lists the regular expression that was generated to correspond to
the natural language log record stated above (see Figure 7.3).

^.*? - Unable to connect to host (.*?) as user (.*?)\. ([0-9]++) attempt\(s\) left#1$

Figure 7.5: Regular expression matching the log in Figure 7.3

The three testing sets of mutually distinct natural language logs, regular expressions
corresponding to them, and structured logs, were used in subsequent benchmarks. Two
testing scenarios were designed:

1. Processing structured log messages in the form of JSON objects. For testing purposes,
the value of attribute attemptsLeft was extracted, thus demonstrating the possibil-
ity to process structured logs in the proposed format efficiently. Each log message
was passed to Jackson’s2 ObjectMapper, which returned a Java object representation
of the JSON structure that could be simply queried using a get method.

2. Parsing natural language log messages using regular expressions. Since each log mes-
sage in the set of natural language logs was unique by design, finding the one regular
expression that matched it required a search through all available regular expressions
(in the worst case). Processing all the logs in a particular set therefore had a time com-
plexity ofO(n2), where nwas the number of regular expressions. When the applicable
regular expression was identified, it was used to parse the desired value, which was
again the number of attempts left, out of the log message.

2. Jackson JSON Processor, http://wiki.fasterxml.com/JacksonHome

40

7. PERFORMANCE EVALUATION

Since the time necessary to process the natural language logs was expected to depend on
their number, several sets of testing logs were generated, comprising of 100 to 1500 unique
log records. Table 7.2 indicates the processing times for selected sets of logs. Again, Caliper
was run 10 times and the table only shows the average of the 10 measured values (the values
are in milliseconds).

Number of event types 100 200 300 500 1000 1500
JSON event object 0.353 0.658 0.959 1.596 3.216 4.580
Natural language log 34.90 138.00 305.00 836.20 3271.00 7499.00

Table 7.2: Log processing time [ms]

It can be observed that the time required for processing the whole set of log messages
using regular expressions grows rapidly with the number of different event types it contains.
For more than 500 of them, the processing time already gets to seconds. The growth rate can
be seen more clearly in Figure 7.6.

100 300 500 700 900 1100 1300 1500

0

1

2

3

4

5

6

7

8
·106

number of event types

ti
m
e
to
p
ro
ce
ss

th
e
w
h
ol
e
se
t
[µ
s]

JSON event object
Natural language log

Figure 7.6: Log processing performance

The measurements confirm that with the increasing number of different log records, the
processing time grows linearly for our approach, while the scenario utilizing regular expres-
sions exhibits a quadratic growth. This was an expected behaviour. Due to the fact that the
structured logs are processed uniformly regardless of their type, the time to process one of
them can be considered constant. On the other hand, to be able to parse a natural language
log using a regular expression, the latter has to be found first; and the time necessary to re-
trieve the right regular expression depends on how many of them are there to be searched.
Figure 7.7 shows average times for processing a single log record in both scenarios.

41

7. PERFORMANCE EVALUATION

100 300 500 700 900 1100 1300 1500

0

1

2

3

4

5

·103

number of event types

ti
m
e
to
p
ro
ce
ss

a
si
n
g
le
lo
g
[µ
s]

JSON event object
Natural language log

Figure 7.7: Log processing performance

7.3 Summary

From the two experiments described above, it stems that although producing structured
logs using the proposed logging mechanism introduces a minor overhead, the disadvan-
tage is outweighed by the advantages it brings when processing the logs. To search and
parse the logs using regular expressions is expensive in terms of time, and in addition, it
requires for the right regular expressions to be collected first for each type of log to be pro-
cessed. Contrary to this, handling structured logs in the form of JSON event objects does not
depend on the variability in the set of logs, for all of them can be queried in a uniform way
independently of their event type.

42

Chapter 8

Conclusion

The main objective of this thesis was to devise a novel approach to logging, which would
avoid using a natural language representation of the logged event. The necessity to pro-
vide such mechanism was motivated by the challenges logging (and monitoring in general)
faces, particularly the need for a unified representation of monitoring information in order
to allow an efficient automated processing, correlation and querying.

A logging component facilitating structured logging from Java applications was de-
signed and implemented. It produces the logs in the form of JSON objects that can be ef-
ficiently parsed to obtain the information of interest. Each event type the application pro-
duces is unambiguously described by a JSON Schema, and every log record the logging
component outputs conforms to exactly one such schema, uniquely identified in the log
message itself. Thus the logs in JSON satisfy all the requirements for structured monitoring
information; not only are they straightforward to produce, they are also easy to process.

Since the beginning of the work on this thesis, the logging component has evolved
through two different stages to the current form, which represents the third, and in our
opinion the best variant. Each of the two former variants introduced valuable ideas and a
slightly different point of view at the logged events, but also had indisputable downsides; it
was the intention to eliminate the flaws that led to constant improvement of the component,
resulting in the final version. All three variants were described in detail in previous chapters
so that they could be adequately compared and the background for certain design decisions
argued more clearly.

It was also important to carry out measurements so as to prove that the introduced log-
ging mechanism did not have unacceptable requirements in terms of performance. The ex-
periments were targeted at observing the production of the logs, and also at the process
of retrieving information from them. All three variants were considered, as well as an ap-
proach using a standard Log4j logger to log a manually constructed JSON event. The results
showed that although the Log4j logger was the fastest of the four (which was only natural
because there was no need to perform the operations necessary for constructing the JSON
output), the last of our three versions got reasonably close in performance. Therefore, a con-
clusion was drawn that our logging component only had a negligible impact on the overall
logging performance. Moreover, another experiment showed that when querying the logs,
the structured variant was an outright winner. Contrary to parsing a set of free-form logs
using regular expressions, which depends on the length of log records and the number of
different types of them, obtaining the desired piece of information from our JSON logs re-

43

8. CONCLUSION

quired a simple method call, independent of the set of logs to process or the variability
present therein.

Overall, it can be concluded that the thesis has achieved its primary goal. It proposed a
logging component capable of producing structured logs represented by JSON objects, each
of them described by an automatically generated and updated JSON Schema. The perfor-
mance of logging in such way is comparable to that of standard logging frameworks, and as
for processing, our approach aims for handling the logs in a way that outperforms parsing
logs using manually created regular expressions significantly.

44

Bibliography

[1] ACCORSI, R. On the Relationship of Privacy and Secure Remote Logging in Dynamic
Systems. In Security and privacy in dynamic environments. Springer, 2006, pp. 329–
339.

[2] ACETO, G., BOTTA, A., DE DONATO, W., AND PESCAPÈ, A. Cloud Monitoring: a Sur-
vey. Computer Networks (2013).

[3] ADINOLFI, O., CRISTALDI, R., COPPOLINO, L., AND ROMANO, L. QoS-MONaaS: A
Portable Architecture for QoS Monitoring in the Cloud. In Signal Image Technology
and Internet Based Systems (SITIS), 2012 Eighth International Conference on (2012),
IEEE, pp. 527–532.

[4] THE APACHE SOFTWARE FOUNDATION. Apache Log4j 2 v. 2.0-beta4: User’s Guide,
2013-01-28. Retrieved March 3, 2013 from http://logging.apache.org/log4j/2.x/log4j-
users-guide.pdf.

[5] ARCSIGHT, I. Common Event Format, Revision 15, 2009-07-17. Retrieved March 5,
2013 from http://mita-tac.wikispaces.com/file/view/CEF+White+Paper+071709.pdf.

[6] BRUNETTE, G., MOGULL, R., ET AL. Security Guidance for Critical Areas of Focus in
Cloud Computing v3.0. Cloud Security Alliance (2009), pp. 1–76.

[7] THE CEE EDITORIAL BOARD. Common Event Expression: Architecture Overview, Ver-
sion 0.5, May 2010. Retrieved March 5, 2013 from http://cee.mitre.org/docs/CEE_
Architecture_Overview-v0.5.pdf.

[8] CHUVAKIN, A. Application Logging "Worst Practices", 2008-10-09. Retrieved March
5, 2013 from http://www.slideshare.net/anton_chuvakin/application-logging-good-
bad-ugly-beautiful-presentation.

[9] CHUVAKIN, A., AND PETERSON, G. How to Do Application Logging Right. Security
& Privacy, IEEE 8, 4 (2010), pp. 82–85.

[10] CHUVAKIN, A., SCHMIDT, K., AND PHILLIPS, C. Logging and Log Management: The
Authoritative Guide to Understanding the Concepts Surrounding Logging and Log
Management. Syngress, 2012.

45

http://logging.apache.org/log4j/2.x/log4j-users-guide.pdf
http://logging.apache.org/log4j/2.x/log4j-users-guide.pdf
http://mita-tac.wikispaces.com/file/view/CEF+White+Paper+071709.pdf
http://cee.mitre.org/docs/CEE_Architecture_Overview-v0.5.pdf
http://cee.mitre.org/docs/CEE_Architecture_Overview-v0.5.pdf
http://www.slideshare.net/anton_chuvakin/application-logging-good-bad-ugly-beautiful-presentation
http://www.slideshare.net/anton_chuvakin/application-logging-good-bad-ugly-beautiful-presentation

8. CONCLUSION

[11] CLAYMAN, S., GALIS, A., AND MAMATAS, L. Monitoring Virtual Networks with Lat-
tice. In Network Operations and Management Symposium Workshops (NOMS Wk-
sps), 2010 IEEE/IFIP (2010), IEEE, pp. 239–246.

[12] DE CHAVES, S. A., URIARTE, R. B., AND WESTPHALL, C. B. Toward an Architecture
for Monitoring Private Clouds. Communications Magazine, IEEE 49, 12 (2011), pp.
130–137.

[13] ETZION, O., AND NIBLETT, P. Event Processing in Action. Manning Publications Co.,
2010.

[14] FASTERXML, LLC. Efficient JSON-compatible binary format: "Smile", 2013-05-12. Re-
trieved May 15, 2013 from http://wiki.fasterxml.com/SmileFormatSpec.

[15] FOSTER, I., ZHAO, Y., RAICU, I., AND LU, S. Cloud Computing and Grid Computing
360-Degree Compared. In Grid Computing Environments Workshop, 2008. GCE’08
(2008), IEEE, pp. 1–10.

[16] FOX, A., GRIFFITH, R., JOSEPH, A., KATZ, R., KONWINSKI, A., LEE, G., PATTERSON,
D., RABKIN, A., AND STOICA, I. Above the Clouds: A Berkeley View of Cloud Com-
puting. Dept. Electrical Eng. and Comput. Sciences, University of California, Berkeley,
Rep. UCB/EECS 28 (2009).

[17] GALIEGUE, F., AND ZYP, K. JSON Schema: core definitions and terminology, 2013-01-
31. Retrieved May 01, 2013 from http://tools.ietf.org/html/draft-zyp-json-schema-04.

[18] GONG, C., LIU, J., ZHANG, Q., CHEN, H., AND GONG, Z. The Characteristics of
Cloud Computing. In Parallel Processing Workshops (ICPPW), 2010 39th International
Conference on (2010), IEEE, pp. 275–279.

[19] HASSELMEYER, P., AND D’HEUREUSE, N. Towards Holistic Multi-Tenant Monitoring
for Virtual Data Centers. In Network Operations and Management Symposium Work-
shops (NOMS Wksps), 2010 IEEE/IFIP (2010), IEEE, pp. 350–356.

[20] HOFFNER, Y. Monitoring in Distributed Systems. Citeseer, 1993.

[21] KENT, K., AND SOUPPAYA, M. Guide to Computer Security Log Management. NIST
special publication 800–92 (September 2006).

[22] MAKANJU, A. A., ZINCIR-HEYWOOD, A. N., AND MILIOS, E. E. Clustering Event
Logs Using Iterative Partitioning. In Proceedings of the 15th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining (2009), ACM, pp. 1255–
1264.

[23] MANSOURI-SAMANI, M. Monitoring of Distributed Systems. PhD thesis, University
of London, December 1995.

46

http://wiki.fasterxml.com/SmileFormatSpec
http://tools.ietf.org/html/draft-zyp-json-schema-04

8. CONCLUSION

[24] MANSOURI-SAMANI, M., AND SLOMAN, M. Monitoring Distributed Systems. Net-
work, IEEE 7, 6 (1993), pp. 20–30.

[25] MARTY, R. Cloud Application Logging for Forensics. In Proceedings of the 2011 ACM
Symposium on Applied Computing (2011), ACM, pp. 178–184.

[26] MASSIE, M. L., CHUN, B. N., AND CULLER, D. E. The Ganglia Distributed Monitoring
System: Design, Implementation, and Experience. Parallel Computing 30, 7 (2004), pp.
817–840.

[27] MELL, P., AND GRANCE, T. The NIST Definition of Cloud Computing. NIST special
publication (2011).

[28] MENG, S., AND LIU, L. Enhanced Monitoring-as-a-Service for Effective Cloud Man-
agement. IEEE Transactions on Computers (2012).

[29] THE MITRE CORPORATION. CEE Log Syntax (CLS) Specification 1.0-beta1, last up-
dated 2012-08-09. Retrieved March 5, 2013 from http://cee.mitre.org/language/1.0-
beta1/cls.html.

[30] NAGAPPAN, M., AND VOUK, M. A. Abstracting Log Lines to Log Event Types for
Mining Software System Logs. In Mining Software Repositories (MSR), 2010 7th IEEE
Working Conference on (2010), IEEE, pp. 114–117.

[31] NEWMAN, H. B., LEGRAND, I. C., GALVEZ, P., VOICU, R., AND CIRSTOIU, C. MonAL-
ISA: A Distributed Monitoring Service Architecture. arXiv preprint cs/0306096 (2003).

[32] OGLE, D., KREGER, H., SALAHSHOUR, A., CORNPROPST, J., LABADIE, E., CHES-
SELL, M., HORN, B., GERKEN, J., SCHOECH, J., AND WAMBOLDT, M. Canoni-
cal Situation Data Format: The Common Base Event V1.0.1, 2003-11-04. Retrieved
March 5, 2013 from http://www.eclipse.org/tptp/platform/documents/resources/
cbe101spec/CommonBaseEvent_SituationData_V1.0.1.pdf.

[33] OLIVEROS, E., CUCINOTTA, T., PHILLIPS, S. C., YANG, X., MIDDLETON, S., AND

VOITH, T. Monitoring and Metering in the Cloud. Achieving Real-Time in Distributed
Computing: From Grids to Clouds (2011).

[34] PENG, W., LI, T., AND MA, S. Mining Logs Files for Data-Driven System Management.
ACM SIGKDD Explorations Newsletter 7, 1 (2005), pp. 44–51.

[35] SMIT, M., SIMMONS, B., AND LITOIU, M. Distributed, Application-level Monitoring
for Heterogeneous Clouds using Stream Processing. Future Generation Computer Sys-
tems (2013).

[36] SOSINSKY, B. Cloud Computing Bible, vol. 762. Wiley, 2010.

47

http://cee.mitre.org/language/1.0-beta1/cls.html
http://cee.mitre.org/language/1.0-beta1/cls.html
http://www.eclipse.org/tptp/platform/documents/resources/cbe101spec/CommonBaseEvent_SituationData_V1.0.1.pdf
http://www.eclipse.org/tptp/platform/documents/resources/cbe101spec/CommonBaseEvent_SituationData_V1.0.1.pdf

8. CONCLUSION

[37] SPRING, J. Monitoring Cloud Computing by Layer, Part 1. Security & Privacy, IEEE 9,
2 (2011), pp. 66–68.

[38] SPRING, J. Monitoring Cloud Computing by Layer, Part 2. Security & Privacy, IEEE 9,
3 (2011), pp. 52–55.

[39] TIERNEY, B., AYDT, R., GUNTER, D., SMITH, W., SWANY, M., TAYLOR, V., AND WOL-
SKI, R. A Grid Monitoring Architecture, 2002.

[40] TOVARŇÁK, D., AND PITNER, T. Towards Multi-Tenant and Interoperable Monitoring
of Virtual Machines in Cloud. In Proceedings of 14th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (2012), pp. 436–442.

[41] VAARANDI, R. A Data Clustering Algorithm for Mining Patterns From Event Logs.
In IP Operations and Management, 2003.(IPOM 2003). 3rd IEEE Workshop on (2003),
IEEE, pp. 119–126.

[42] XU, W., HUANG, L., FOX, A., PATTERSON, D., AND JORDAN, M. I. Detecting Large-
Scale System Problems by Mining Console Logs. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles (2009), ACM, pp. 117–132.

[43] ZANIKOLAS, S., AND SAKELLARIOU, R. A taxonomy of grid monitoring systems. Fu-
ture Generation Computer Systems 21, 1 (2005), pp. 163–188.

[44] ZAWOAD, S., DUTTA, A. K., AND HASAN, R. SecLaaS: Secure Logging-as-a-Service
for Cloud Forensics. arXiv preprint arXiv:1302.6267 (2013).

48

