Emergent Design in Agile Software
Development Practices

Bruno Rossi
CASE (Center for Applied Software Engineering)
Free University of Bolzano-Bozen

20130514, Brno Emergent Design in Agile Software Development Practices 1

* Agile Methodologies (AMs) for software development are
based on an incremental process that gives value to the
customer during each iteration

 There is less up-front planning compared to traditional
techniques

« With respect to the architecture of the system, agile
methodologies describe it as emerging design, that is the

architecture of the system will emerge from several iterations
over time

» During this presentation, | will address the following questions:
— How do we ensure that this will not lead to mere chaos?

— How do we know whether the approach could be
appropriate for our application/domain?

20130514, Brno Emergent Design in Agile Software Development Practices 2

| will start delving into architectural concerns in
traditional software development

| will then delve into the principles of the agile
methodologies, and how those can lead us towards
principles for architecture in AMs

| will then provide evidence from a “real project” about the
emerging design process, as well about how the
principles work in practice

20130514, Brno Emergent Design in Agile Software Development Practices 3

* |n early computing days, algorithms and data structures
constituted the major design focus

» As size of software systems started growing in the 70's and
80's, it appeared evident that the organization of a software
system - the software architecture — deserved more attention

« Composition of design elements, scaling & performance, and
the selection among design alternatives all became relevant

20130514, Brno Emergent Design in Agile Software Development Practices 4

* The architecture of a software system

- is about the structure of a system in parts (components,
modules, files, objects, classes)

— deals with the parts, their properties, and their mutual
relations

- facilitates the comprehension of the system

- supports the communication among the different
stakeholders of the development process

20130514, Brno Emergent Design in Agile Software Development Practices S

* An architecture is formed by several structures (Bass,
Clemens, Katzman, 1998) that we call “projections”

* |t can be useful to analyze architectures at different levels of

abstraction, from different points of view: package, class, and
object, physical

* For each of these “points of view” (we call them “projections”)
it is possible to find so called “architectural styles”

 This is similar to the view in IEEE1471 Standard

20130514, Brno Emergent Design in Agile Software Development Practices 6

 An Instance of IEEE1471 Standard is Kruchten 4+1
model

End-user Programmers
Functionality Software management

Development

Logical View [—# View

—

(Scenarios)
Y Y
_""""-l-...

Process View [—#| Physical View

Integrators System engineers
Performance Topology
Scalability Communications

20130514, Brno Emergent Design in Agile Software Development Practices 7

The software architecture

e Logical View

Requirement
-TaguiTEneAr
i *[=tielm
=darcoipticn 1 i
-pates T
i - Dl gue
-wspact
~patEnguizazant (|
=perTitlei|
=paclesoriprion (|
L
L
1
[RequirementList
— -reqaireneacliscil [
DHscussion P e L T P e el i i
-a_kegiz - +gerHamei| roatk LA()
- i srnasionl® 1. ~3_and L =addiaqu sumart (| gwrDaszwiprian | pTHTTRE ()
i pemaicabegin - L# [=perdeqm reneraliag i) -
L . = sgqutSamadenIO |} S Ene 7
-dirrmanicaFad et coBeE) =perAnmt remenT adyFroteos of
Lol njeTSesaionEndi| sreneribamai et 1)
s patIdacumeianl0|) squtarticipa=eei]
patioten | sgqutDmcuemie= () .
+qeTBricricizarion i 1.
squriynchrozdawricn |)|
Counliy
[Ee——————
-pouzary TR M
-oicy
[+ pammenesyiazai)
i praCmntsyTode) iqueTaantouzacy ||
1 sguzTmazLin: |1
R |}
L
User
-Zane ME
~umermene |1.° L |22
-punrvned paLs
-ammail -pevTE sak ans
-apdresas -gacrain|)
-Fhars spzuPoomeasion |1
sgutiama ||

20130514, Brno Emergent Design in Agile Software Development Practices

 Development View open

The software architecture

Usar

/7
User managemaeant Datafcoss
LT - Rale
h‘i
\N

\I \ DataAcess
\

Parsistence DB

Reg. management \
LAl Datafcess
~ 1'\ Project
|\

|\

DataAcess
Prioritization
i EEdI L '1.

\ \h DataAcess
W

\\

CataMcess
Prionbzation

—{ O E;:I < <database>=

20130514, Brno

Emergent Design in Agile Software Development Practices

The software architecture

* Process View

PN

| User I ‘;REQuirementList‘ ‘ :Session I ‘ :Prioritization ” :Technigque
| ! '
| | | |
— _ 8 | | I
gelRequirementsByProject] | | |
getum requirements l Jl ‘l
slartSession]) -.— . A

starlPrioritzabon()

a list with techniques

setTechnigue() addTechnigual)
AHBE100

T
e

20130514, Brno Emergent Design in Agile Software Development Practices 10

* Deployment View

Client can u=e
every 05 or Browser
Client
{(Web Browser)
Mail Server
http/https
Internat
S5L

Application for Requirement Prioritization

LAN v

Apache Webserver DEME

20130514, Brno Emergent Design in Agile Software Development Practices 11

* Agile Development practices derived from the failure of
plan-based development processes and the idea to
apply lean practices from industry to software
development

* Lean software development is based on a set of principles

Eliminate waste

Amplify learning

Decide as late as possible
Deliver as fast as possible
Empower the team

Build integrity in

See the whole

20130514, Brno

Emergent Design in Agile Software Development Practices 12

« Eliminate waste : everything that does not add value to the customer is
discarded as waste (muda)

 Amplify learning: the development process is a learning process, short
iterations and learning are key factors

 Decide as late as possible: to counteract possible changes of
requirements

« Deliver as fast as possible: as in the just-in-time production system

« Empower the team: more bottom-up approach, developers are not mere
resources

« Build integrity in: the customer must perceive integrity of the system,
refactoring is a way to build simplicity into the process

« See the whole: in short, "Think big, act small, fail fast; learn rapidly"

20130514, Brno Emergent Design in Agile Software Development Practices 13

 The eXtreme Programming process description (just one
instance of AMs)

v _"1
2R [teration @zoomout
ut
Extrame Prﬂuf&ﬁ‘lh‘llh{‘l
New User Story,
Release Project Velocity
Plan |
User Storles Unfinished Tasks Learn and
Communicate
_ NEN
Project . lteration Functionality st
Next velocity hItera:tmn Plan Devel ; ——— —aLatest on
. . CVEelOpII e i .
Iteration Planning P 4~ B FHES w Yreraion
'."'-'. "‘h
Failed Acceptance l“”
Tests
Cay by Day
Bugs Copyright 2000), Doavan Wells

e \Where are the architectural concerns?

20130514, Brno Emergent Design in Agile Software Development Practices 14

Principles behind the Agile Manifesto

We follow these principles:

Our highest priority is to satisfy the customer
through early and continuous delivery
of valuable software.

Welcome changing requirements, even late in
development. Agile processes harness change for
the customer's competitive advantage.

Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

Business people and developers must work
together daily throughout the project.

Build projects around motivated individuals.
Give them the environment and support they need,
and trust them to get the job done.

The most efficient and effective method of
conveying information to and within a development
team is face-to-face conversation.

Working software is the primary measure of progress.

20130514, Brno

Emergent Design in Agile Software Development Practices

15

Agile processes promote sustainable development.
The sponsors, developers, and users should be able
to maintain a constant pace indefinitely.

Continuous attention to technical excellence
and good design enhances agility.

Simplicity--the art of maximizing the amount
of work not done--is essential.

The best architectures, requirements, and designs
merge from self-organizing teams.

to\become more effective, then tunes and adjusts
its behavior accordingly.

This is what we have from the Agile Manifesto underlying principles

20130514, Brno Emergent Design in Agile Software Development Practices 16

Emergent Design

 What is an emergent design?

 An emergent design is a proper program structure that derives
directly from the coding process

* The idea is that by focusing on the problem at hand, a proper
architecture will emerge naturally

» Leffingwell reported the 8 principles of the software architecture
in AMs

* D. Leffingwell, Agile Software Requirements: Lean Requirements Practices for Teams,
Programs, and the Enterprise, 1st ed. Addison-Wesley Professional, 2011.

20130514, Brno Emergent Design in Agile Software Development Practices 17

* Principle 1: the teams that code the system
also design the system

» Driven by the Agile Manifesto (the best architectures,
requirements, and designs emerge from self-organizing teams)

Teams must be considered accountable for the decisions
taken, not those taken by somebody else!

20130514, Brno Emergent Design in Agile Software Development Practices 18

* Accountablility and responsibility

Pre-Agile

Agile

Architect's

Analyze requirements

Analyze architectural epics

Responsibilit Design the system _ Collaborate with stakeholders and
P y Interface to key business stakeholders and development teams
customers Get implementation feedback and
Bid the work for teams development estimates from teams
Only one that understands how the whole Maintain system models ad model
works future state based on new epics
Team Inherits the plan and the work estimates Interface in business and customers
Responsibility Inherits the architecture via product owner role

Left “holding the bag” and executes on a “best
effort” basis

Tech leads participate in virtual,
extended system architecture team
Responsible for subsystem design
Estimates work for their area of
concern

Commits of behalf of themselves
Accountable for the results

Source: D. Leffingwell, Agile Software Requirements: Lean Requirements Practices for Teams, Programs, and the Enterprise, 1st ed.

Addison-Wesley Professional, 2011.

20130514, Brno

Emergent Design in Agile Software Development Practices 19

* Principle 2: Build the simplest architecture that
can possibly work

* Driven by the Agile Manifesto (Simplicity - the art of maximizing
the amount of work not done - is essential)

20130514, Brno Emergent Design in Agile Software Development Practices 20

* Principle 3: When in doubt, code it or model it
out

* Having a visible process by means of stories and prototypes
allows all the stakeholders to see the reasoning that is behind

the architectural building

* You can use the 4+1 views to model, but remember about
throw-away prototyping!

20130514, Brno Emergent Design in Agile Software Development Practices 21

* Principle 4: They Build It, They Test It

* |tis the responsibility of the development teams themselves
to develop, test, and maintain a system-testing framework
that continually assesses the system’s ability to meet its
functional and non-functional requirements.

 Evolving the architecture means to evolve also the testing
framework. A key principle of agile methodologies is that if the
team design one part and built it, then the team must also test it

20130514, Brno Emergent Design in Agile Software Development Practices 22

Principle 5: The bigger the system, the longer
the runway

 The assumption of a delivery commitment depends on how
much reliable the foundations are

* So there must be an architectural runway that constitutes a
baseline for solid iterations — without it missed deadlines are

going to happen

20130514, Brno Emergent Design in Agile Software Development Practices 23

The 8 Principles of the Agile Architecture '

Principle 6: System architecture is a role
collaboration

» system architects work with the team technical leaders to
define the design spikes they will be use to get the common
architectural view - if in doubt, coding or modeling (principle

3) can be used
= ’ :
Vision

stakeholders v/ Dev team

Value Stories
L l y

A

Architecture
Vision

Design Spikes
20130514, Brno Emergent Design in Agile Software Development Practices 24

Principle 7: There is no monopoly on
innovation.

 One way to foster innovation at the team level is by managing the
backlog to have iterations that include spikes to explore new
ideas

Release Release
Candidate

. Hardening Innovation
Iteration |iteration | iteration| iteration |Iteration

Source: D. Leffingwell, Agile Software Requirements: Lean Requirements Practices for Teams,
Programs, and the Enterprise, 1st ed. Addison-Wesley Professional, 2011.

20130514, Brno Emergent Design in Agile Software Development Practices 25

* Principle 8: Implement architectural flow

» Just as with the stories in the backlog, also for the

architectural part there must be an active management, that
Is the process must be visible and transparent, and all must
be continuously updated to maintain a flow for the architectural
decisions

This is a key part: how do we maintain the system
architecture if we need to perform changes? One of the key
aspects of AMs is to always have a running system

In agile, we do not branch and then merge later, we need to
apply continuous refactoring supported by unit tests... Still,
for some of the largest architectural stories, implementing them
in the context of refactoring sessions can be impossible

20130514, Brno Emergent Design in Agile Software Development Practices 26

e Three cases foreseen

 Case A, big but incremental, the system always
runs

» Case B: Big, but Not Entirely Incremental —
the System Takes an Occasional Break

« Case C: Really Big and Not Incremental; the
System Runs When Needed; Do No Harm

20130514, Brno Emergent Design in Agile Software Development Practices 27

| will provide some considerations from a large
development project to manage strategical
planning

 Medium-Large codebase ~7000 Java LOCs
plus JSP and Javascript code

 ~5 developers, 1 year time
 No software architect external to the team

 The approach is Action research-based, as the presenter was
one of the participants to the project

’ 20130514, Brno Emergent Design in Agile Software Development Practices 28

ILmnbz.gaps

Experience from the trenches -the Architectu

LevelEditor | | Uait

. |

[

- |&| Ml mm-u-q| Iullru-llllulll

wallirﬂilﬂ wnll:ﬂhlu Hilllli[nntr\llﬂ Eidlﬂl{llﬂmldirl HelsCantraeds @tﬂlmnllirl

||_ ckiveL:

bjsctiveStatekitets |

AulivAyCunby s Tesl

iy ||u|.-|.:,....|| |||.:

Levmitiam

Ty | [FleUp=asc ar |

.]

] [D%isctivaliabeOnlamend T
[

lLlinv-ll.Ilkl I!Wﬂﬂl!rﬂhﬂmmﬂl I

BusinessRulesContreler | | GeneraiCeatioller | | SesschCritesia | | AccountContreler | | IndexContrelies | | FinanceContrefies

W“lrﬂhn“ur
jectiveHisbory Masaged
Acitimanager | [UsiiMangger | [HelsManseer] x
[Financeanager] [TierManager] o i T Pyantaneser | w
] | -] (3 7
Fﬁ-niuﬁmitﬁ Mﬂmq
Cestemiuthenticationfrevider
. | leMI [= |

Ellllnmﬂgrlﬂmll!

Sioiere]

Cnb2deps @rack

ActibpCaatmllar | OibgasitiumtaasrhCrtara Ibnlr.—lmll ||hu-rh 1L I || Loritash hrl-dlliurr' rrrrrr ralles |
seandardcostContrelier | [mdicatssContraler | [UserCeatmiler lM' mheapaE M-S el lLEr lw'
[Lunibr siarvaldation | [E0NEZ siapsarmes |
rservaldater | [Measuremodelvalidaner | [Messagevalisater Iuw.m.unu.l ,i....,.r\-..:nu.l
IUM'NU’”"I I"i'lﬂ“ﬁm‘w‘ Iwiﬂ‘w\'ﬂld“ﬁfl - - I"ﬂhlr I I F ------- I
—

[Enbz saps hardler |

r
[T | [CsmAcan s |
Pretbyflowilfta dl|{--|lmlr|

Iluluul-!udllmml Unindervice [WetiviySenise | [Elementof
B N | |
L -3 = I

I Ulll'i;n"’.'! iui-lzawlu Berviceservice lw‘
= =

i

|
[Obfecsel
BusinesshulesService | ol | Faaaacedariica lw' M' HM| i..
l—;‘i | lJ = | “'. _'.|._ ran
Hibernatsbesvars g eifar o
|basnateo| B Sarveen i 1
= |
e ectiveristoryService s | [HE3ermet
, p| | [t | S
T M’“—'
HibernateSteaderd Codt Service
—— [

| seadch Typeknum | |hlml-nl-ﬂ | | MHMlMlﬂﬂlﬂl

[EuRET sEpEmanterng |

Lz weo s epsr i
JaspeiRepedts Maltif onmatVie wleilam ||
|

——
hllﬂ'lr.ll:l.nnm

| \ceCantraer |

20130514, Brno

Emergent Design in Agile Software Development Practices

29

 How did the design emerge? Two detailed ways

— Agreement within the team

— The frameworks and technologies used
imposed some architectural choices (e.g.
security layers)

Major lesson learnt: there must be a senior developer (in absence of an architect) that takes
into account the architectural integrity of the system — warning other team members about
parts of the system that violate the architectural view common to the team

20130514, Brno Emergent Design in Agile Software Development Practices 30

 How to maintain architectural integrity over
time? There are some key points:

« Stakeholders must be aware of the fact that some iterations
are for innovation,and refactoring — asking to do refactoring
and coding at the same time is not feasible

 Must convince the stakeholders about the importance of
those iterations

 Without a testing system in place mere architectural
reconstruction is not possible

 When you start losing the architectural runway, changes
will require more code duplication, more time, and as well
lead to more bugs (if we assume that more code leads to
more bugs)

’ 20130514, Brno Emergent Design in Agile Software Development Practices 31

e How to communicate the architecture to other
team members?

 The composition of the teams is very likely to change over
time — generation of architectural views from the code is a
key part in letting new team members understand the current

system's architecture

« Throw away modeling is not a problem in this case, and
typically initial models if not updated can lead to problems

20130514, Brno Emergent Design in Agile Software Development Practices 32

« Refactoring sessions

 If refactoring sessions are not allowed by the stakeholder, the
system architecture will start becoming a sort of compromise

* This is especially relevant if you have changing requirements
and quite large system

20130514, Brno Emergent Design in Agile Software Development Practices 33

e« Some research questions we derived from the
pilot study:

- How is the emerging design process distributed
among team members”?

- How much rework is implied in this kind of
process? That is how many changes are there in
the structural parts of the system?

- Do team members have an exact view of the
architecture, and how much such view is aligned
with the one implemented?

20130514, Brno Emergent Design in Agile Software Development Practices 34

* \We could also answer our initial questions

 How do we ensure that this will not lead to mere chaos? Many
practices of AMs are of paramount importance in this sense:
refactoring, continuous integration, collective code
ownership — without those practice it is impossible to build a
proper architectural runaway

« How do we know whether the approach could be appropriate
for our application/domain? Does the customer request
constantly for architectural information — do they want to
be part of the architecture building process? If this is the
case, you need to have an external software architect

20130514, Brno Emergent Design in Agile Software Development Practices 35

* Thank you!

Questions

| will be happy to answer your questions, for
additional enquires — bruno.rossi@unibz.it

.
- 4
8] THAT MEANS NO MORE [
TRY SOMETHING 5| PLANNING AND NOMORE 5] 14 g ap THAT
el e e Ei e R
2 S AINING.
PROGRAMMING. §| AND cOMPLAINING. || NAME ,
:
e 3
g i
£ -
E’ 5

© Scott Adams, Inc./Dist. by UFS, Inc.

20130514, Brno

Emergent Design in Agile Software Development Practices

— ;
20\ Go UP AND FiND ovr
Qi-me\’ HNeeb AnpTHe

REST oF Yoy S1ART cobinG !

mailto:bruno.rossi@unibz.it

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

