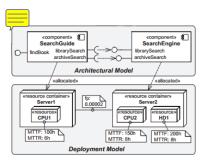
Software Architecture-Based Reliability Prediction Techniques: an Overview

Lucie Fabriková, Stanislav Chren

FI MU

13 November 2012


Outline

- Motivation for software architecture reliability prediction
- Overview of main techniques
- Example of real tool
- Current and future research

Software Architecture in General

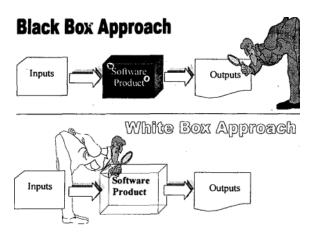
Software architecture

- Modules
- Connectors
- Deployment on hardware resources

Definition of Reliability

Dependability vs. reliability

Meanings of reliability:


- Probability of a failure-free operation (information systems)
- Failure intensity during specified time interval (embedded systems)

Motivation

- Residual failure rate
- Architectural design decisions
- Identification of critical components
- Resource allocation planning

Reliability Analysis Approaches

- Black-box
- White-box

Reliability Analysis Approaches – 1/2

Black-box approach

- Interactions with external environment
- Failures + downtimes
- Statistical testing → later stages
- SRGM

SRGM (Software Reliability Growth Models)

Get sample data

↓
Fit to curve
↓
Get function parameters
↓
Predict reliability in future

SRGM (Software Reliability Growth Models)

Real-world example

- Railway interlocking software system (Australia, 2011)
- Data set = 199 records

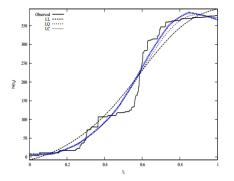


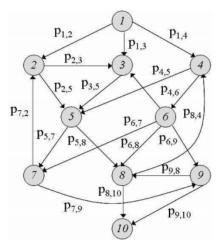
Figure 3. Data set 2: Curve fitting using LL, LQ, LC estimators with $h_n = 0.17$

Limitations of SRGM Approach

How to...

- ensure consistency of tests?
- get source of failures?
- determine reusability of system?

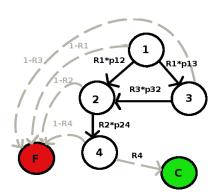
Reliability Analysis Approaches – 2/2


White-box approach

- Reliabilities of components, connectors
- Various information resources
- Early stages of lifecycle
- Identify critical components

White-Box Approaches

Path-based


- Execution paths
- No loops

White-Box Approaches

State-based

- Component, action, step of scenario
- Architectural model + failure behavior
- State explosion
- Cheung model

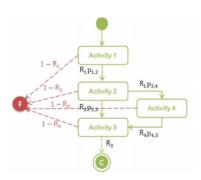
White-Box Reliability Prediction

Collect data from requirements

Transform data to model parameters

Create formal model

Analyse reliability


Input Parameters of Models

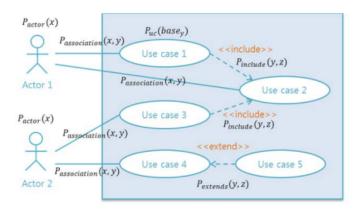
Architectural model:

- Component reliability
- Transition probability
- Operational profile
- Usage profile

Failure behavior model:

- Failure rate
- Time to recover

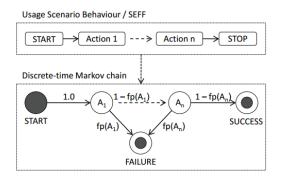
Data Collection


Resources

- Specification
- UML diagrams
- Similar/predecessor projects
- Expert knowledge
- ...

Data Collection – Example

Usage and operational profile

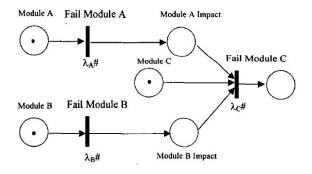

- Use case / activity diagram
- Requirements document

Data Collection – Example 2

Failure behavior


- Activity diagram, fault injection, testing
- Transformation to MC

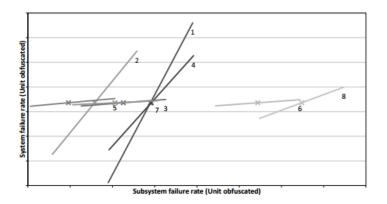
Data Collection – Example 3


Transition probability

- Profiling
- Requirements document
- Trace data from simulation
- Activity diagram

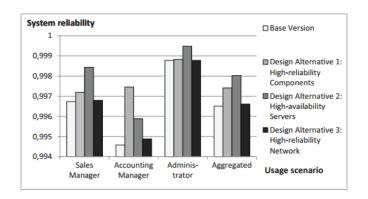
Formal models

- Markov chains
- Petri nets


Possible Outputs of Reliability Techniques

• Number $x \in R, x \in \langle 0, 1 \rangle$

Usage Scenario	Reliability Prediction	
	Analysis	Simulation
Sales Manager	0.99673711	0.99691003
Accounting Manager	0.99457976	0.99443006
Administrator	0.99877648	0.99878001

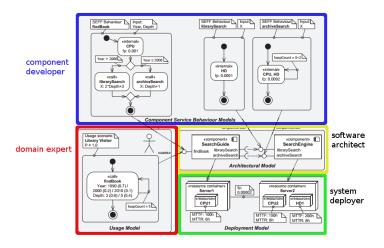

Possible Outputs of Reliability Techniques 2.1

Sensitivity of system reliability to component reliability

Possible Outputs of Reliability Techniques 3

- Usage profile graph
- Design alternatives

Tool Support for Reliability Prediction


Palladio Component Model

- Reliability prediction tool (Karlsruhe Institute of Technology, cca 2009)
- Extension of Eclipse IDE
- Support for critical business and industrial processes
- Reliability for 4 developer roles

Tool Support for Reliability Prediction 2

Palladio Component Model

Highly-parametrized UML

Our Ongoing Research

Reliability prediction in early stages of lifecycle

- Define categories: goal, model, artifacts,...
- Research questions based on categories
- Examine correlation

Possible Directions of Future Research

- Limitations of current techniques no concurrency, distributed processes, failure propagation
- Usability of current reliability prediction techniques in clouds
- Other types of lifecycle methodics (agile, iterative, ...)
- Exact evaluation of contribution of reliability prediction techniques

Related Research Areas at FI MU

LaSArIS (Bühnová)

Our research – Reliability in software architectures

ParaDiSe (Černá, Barnat)

- Checking sanity of software requirements
- Reliabillity analysis in component-based development via probabilistic model checking

Conclusion

- Motivation for software architecture reliability prediction
- Overview of main techniques
- Example of real tool
- Current and future research

Thank you for your attention.