Biomechanická analýza stability techniky přeběhu překážky u vrcholového atleta

Diplomová práce

Vedoucí diplomové práce: PhDr. Jan Cacek
Vypracovala: Petra Borovičková

Brno 2008
Prohlášení:

Prohlašuji, že jsem tuto práci zpracovala samostatně pod vedením vedoucího diplomové práce a použila jen literaturu a prameny uvedené v seznamu literatury.

Souhlasím, aby práce byla uveřejněna v knihovně FSpS MU a zpřístupněna ke studijním účelům.

………………………… podpis

V Brně 24. dubna 2008
Poděkování:

Děkuji vedoucím diplomové práce PhDr. Janu Cackovi za cenné rady, konzultace, připomínky a kritiky při tvorbě diplomové práce a Mgr. Martinu Seberovi a Petru Hutovi za pomoc s technickým zpracováním diplomové práce.
Obsah

Úvod ... 6
1. Běh na 110 metrů překážek .. 7
 1. 1 Charakteristika disciplíny běh na 110 metrů překážek ... 7
 1. 2 Pravidla atletiky – překážkový běh na 110 metrů překážek ... 7
 1. 3 Popis přeběhu překážky z biomechanického hlediska ... 9
 1. 4 Rozbor pohybových schopností determinujících disciplínu 110 metrů překážek 10
2. Cíl, vědecké otázky a úkoly práce ... 20
 2. 1 Cíl práce .. 20
 2. 2 Varianta výzkumu ... 20
 2. 3 Vědecké otázky .. 20
 2. 4 Úkoly práce .. 22
 2. 5 Použité metody .. 22
3. Použité metody .. 23
 3. 1 Charakteristika souboru ... 23
 3. 2 Metody zjišťování sledovaných ukazatelů .. 23
 3. 2. 1 Kinematická analýza ... 23
 3. 2. 2 Zpracování obrazu biomechanické 3D analýzy .. 23
 3. 2. 3 Souřadnicový systém .. 23
 3. 2. 4 Časové údaje ... 24
 3. 2. 5 Dvou a třírozměrné nahrávky .. 25
 3. 2. 6 Problémy související s analýzou obrazu ... 25
 3. 2. 7 Chyby a tolerance chyb ... 26
 3. 2. 8 Zobrazení dat ... 26
 3. 2. 9 Použití ... 27
4. Výsledky a jejich analýza .. 29
 4.1 Rozbor literatury .. 29
 4.2 Porovnání technicky správného přeběhu překážky s technikou přeběhu překážky námi
 sledovaného probanda .. 29
 4.3 Porovnání stability technického provedení přeběhu druhé překážky mezi třemi
 měrenými pokusy ... 40
5. Závěr ... 65
5. 1 Závěr pro teorii .. 65
5. 2 Závěr pro praxi ... 65
Shrnutí .. 68
Literatura .. 69
Příloha
Úvod

Tělesná kultura byla a vždy bude podstatnou složkou výchovy člověka. Její vznik můžeme zařadit k prvopočátkům existence lidské společnosti. Sport jako nedílná součást tělesné kultury má tedy již dlouho své místo ve formování společnosti i lidské osobnosti. Je motivován úsilím o dosažení co nejlepšího výkonu a vede člověka k vysoké mobilizaci fyzických i psychických sil, k překonávání překážek a ke zdokonalování jeho zdatnosti.

Snaha o poznání objektivních zákonitostí pohybových možností člověka se těsně váže k tělesné výchově a její specifické části, sportu. Počátky úsilí vědců a lékařů o konstituování vědy o pohybu lidského těla sahají o dvě století zpět. Teprve ovšem poslední doba, kdy vrcholový sport klade na tělovýchovnou vědu konkrétní otázky, přinesla bouřlivý rozvoj všech jejích oborů. Jedním z nich je biomechanika, fyzikální základ pohybu živého organizmu.

Právě pomocí biomechanické analýzy pohybu se pokoušíme o porovnání techniky přeběhu sledovaného probanda s technikou doporučenou z prostudované literatury a o zhodnocení stability přeběhu překážky u tří měřených pokusů. K tomuto účelu používáme přístroj SIMI Motion.
1 Běh na 110 metrů překážek

1.1 Charakteristika disciplíny běh na 110 metrů překážek

Překážkový běh mužů na 110 m řadíme mezi krátké sprints. Jedná se o rychlostně silovou disciplínu prováděnou submaximální intenzitou. Z hlediska pohybové charakteristiky mluvíme o pohybu kombinovaném. Cyklický charakter pohybu je přerušován acyklickým pohybem při přeběhu každé překážky. V náběhu, běhu mezi překážkami i doběhu se od sebe běžecké kroky liší rozdílnou délkou, frekvencí i rychlostí, a proto se ani zde nejedná o čistě cyklický druh pohybu [13]. Překážkový běh na 110 m se skládá z jedenácti úseků, které by měly být běženy stupňovanou rychlostí. Cyklickost se projevuje při opakování pohybu v devíti rytmických jednotkách, kdy rytmická jednotka obsahuje tři kroky běhu mezi překážkami a přeběh následující překážky [22].

Krátké překážkové běhy kladou vysoké nároky na nervosvalový aparát. Rychlost běhu lze zlepšit pouze zvýšením frekvence běžeckých a překážkových kroků [20]. Frekvence kroků závisí na pohyblivosti procesů v centrální nervové soustavě, ta se projevuje ve schopnosti nervových buněk rychle střídat podráždění a útlum. Rychlost svalové kontrakce je závislá na morfologické a chemické struktuře svalových vláken [7].

Z psychologického hlediska klademe nároky na sebevládání při startu, na schopnost koncentrace maximálního volního úsilí a na odolnost proti rušivým vlivům prostředí.

1.2 Pravidla atletiky - překážkový běh na 110 metrů překážek

V této podkapitole se budeme zabývat pouze údaji, které přímo souvisí s technikou běhu přes 110 metrů překážek (v tabulkách a grafech dále uvádíme jako př.).

1. Vzdálenosti

Standardní délka krátkých překážkových závodů je pro muže 110 m (tab.1).

V každé dráze musí být sada 10 překážek následovně rozestavených:
tab.1: Vzdálenost mužů na trati 110 m překážek

<table>
<thead>
<tr>
<th></th>
<th>muži</th>
</tr>
</thead>
<tbody>
<tr>
<td>délka trati (m)</td>
<td>náběh (m)</td>
</tr>
<tr>
<td>110</td>
<td>13,72</td>
</tr>
</tbody>
</table>

2. Rozměry

Standardní výšky překážek jsou (tab. 2):

tab.2: Standardní výšky překážek na trati 110 m překážek

<table>
<thead>
<tr>
<th></th>
<th>muži</th>
</tr>
</thead>
<tbody>
<tr>
<td>délka trati (m)</td>
<td>výška př. (m)</td>
</tr>
<tr>
<td>110</td>
<td>1,067</td>
</tr>
</tbody>
</table>

Překážky musí mít šířku v rozmezí od 1,18 do 1,20 m, délku základny nejvýše 0,70 m a celková hmotnost překážky nesmí být menší než 10 kg. Pro předepsanou výšku překážek je tolerance 3 mm.

3. Všechny běhy musí být běženy v drahách a každý závodník musí po celý závod setrvat ve své dráze.

4. Jestliže závodník při překonávání překážky vede chodidlo nebo nohu pod úrovní horní hrany překážky, překoná překážku, která není v jeho dráze nebo podle názoru vrchního rozhodčího či vrchníka úmyslně porazí některou překážku rukou nebo nohou, musí být diskvalifikován.

5. Vyjma případu uvedeného výše, sražení překážky nesmí být důvodem k diskvalifikaci ani na závodu vytvoření rekordu.
6. Pro uznání světového rekordu musí všechny překážky odpovídat ustanoveným pravidlům [23].

1.3 Popis přeběhu překážky z biomechanického hlediska

Běh přes překážky je složitou kombinací běžecké a skokanské kinematiky. Vlastním účelem překážkového běhu je proběhnout celé trati v co nejkratším čase. Biomechanický výzkum ustanovil, že klíčem k dobrému výsledku v překážkovém běhu je udržení horizontální rychlosti během přeběhu překážky. V kinematice překážkového běhu a v udržení horizontální rychlosti při přeběhu překážky hrají hlavní roli čtyři faktory. Úhel vzletu při odraze na překážku, poloha těla během překážkového kroku, náběhová rychlost, rozmístění kroků (step placement) [25].

Úhel vzletu při odraze na překážku je takový úhel, který svírá těžiště těla s palcem na noze a podložkou, relativně horizontální. Menší úhel vzletu znamená větší horizontální rychlost při odraze na překážku, napomáhá ji udržovat a snižuje rychlost vertikální. Pozice trupu a nohou hrají klíčovou roli v udržení horizontální rychlosti. Výrazný předklon trupu s vedením nohy téměř paralelně s podložkou, dovolí překážkáři přeběh překážky s minimálním zvětšením těžiště. Překážkář se zároveň snaží o nejrychlejší zášlap za překážku, díky kterému sníží co nejvíce ztrátu horizontální rychlosti [14].

Kritériem správné techniky přeběhu překážky je plochost dráhy těžiště při jejím přeběhu. Horizontální a vertikální výkyvy těžiště by měly být při přeběhu překážky co nejmenší, rychlost pohybu vpřed při dokroku za překážkou co nejplnější a let přes překážku co nejkratší. Za nejúčinnější můžeme považovat takový přeběh překážky, při kterém se dráha těžiště co nejvíce přibliží dráze těžiště při hladkém běhu. Dráha těžiště má při přeběhu překážky tvar paraboly a vrcholu by měla dosahovat před rovinou překážky. Dráha těžiště je určena velikostí počáteční rychlosti letu a úhlu vzletu, bude tím plošší, čím větší bude rychlost pohybu těžiště, čím vyšší bude poloha těžiště v okamžiku odrazu a čím vzdálenější bude místo odrazu od překážky [10]. To znamená, že jsou zvýhodněni překážkáři vyšší postavy s výše položeným těžištěm.

Náběhová rychlost a rozmístění kroků mají významný účinek na kinematiku přeběhu překážky. Zvýšením náběhové rychlosti spolu se zvětšením vzdálenosti odrazu na překážku
úměrně zmenšíme vzdálenost dopadu za překážku, zároveň dosáhneme vrcholu zdvihu těžiště před překážkou a snížíme velikost volného prostoru mezi překážkou a překážkářem [18].

1. 4 Rozbor pohybových dovedností determinujících disciplínu 110 metrů překážek

Pojmem technika označujeme dle Čelikovského (1976) způsob řešení pohybového úkolu v souladu s pravidly příslušného sportu, biomechanickými zákonitostmi a pohybovými možnostmi sportovce. S ohledem na individuální zvláštnosti sportovců vyjadřujeme osobité provedení pohybu pojmem styl [4].

Specifikujeme-li tuto definici na překážkový běh, tak již od startu můžeme vidět rychlost reakce překážkáře na startovní výstřel, zvládnutí náběhu na první překážku, techniku přeběhu překážek na celé trati, míru zrychlení a zvládnutí rytmu mezi překážkami a rychlost doběhu do cíle.

Vnitřní techniku tvoří neurofyzioologické základy sportovních činností. Mají podobu zpevněných a stabilizovaných pohybových vzorců a programů a jim odpovídají koordinovaných systémů kontrakcí a relaxací svalových skupin [12].

Technika je nedílnou součástí tréninku v průběhu celé sportovní kariéry. Ze začátku si atlet musí osvojit a zdokonalit základy techniky. U zkušených sportovců jde později o procesy diferenciace, integrace a stabilizace [21].

Dle Millerové a kol. (2005) chápeme diferenciaci jako speciální zaměření na různé součásti techniky, které se postupně sdružují v celek. Překážkář se nejprve učí techniku přetahové a švihové nohy na místě, později přechází na nižších překážkách do chůze. Zároveň s technikou nohou se překážkář věnuje technice rukou a jejich souhře. Po zvládnutí techniky
překážkového běhu v chůzi, přechází atlet na mírný klus a později běh v závodním tempu. Dalším krokem v nácviku techniky je zvládnout nábeh na první překážku. Největší obtíží bývá zvládnout rychlost, kterou sportovec vyvíne při náběhu a technicky správný přechod přes překážku. Pokud překážkář zvládá dokonale techniku v klusu a vypořádal se s náběhem na první překážku, může přistoupit k fázi integrace [13].

Fáze integrace směřuje k formování ucelené struktury dovedností. Dochází ke sjednocení všech součástí techniky a o začlenění dalších faktorů výkonu (např. kondičních, taktických schopností) [21]. V této fázi nacvičuje překážkář běh přes překážky ze startovních bloků se snahou o vyvinutí nejvyšší rychlosti, ze začátku přebíhá pouze pět překážek a s postupným rozvojem speciální překážkářské vytrvalosti doplní tráť na závodní počet překážek [22].

Pokud mluvíme o technice překážkového běhu, nemůžeme nikdy mluvit všeobecně o technice ideálního přeběhu překážky. Ideální přeběh překážky neexistuje. Každý překážkář má hranici ideálního přeběhu překážky posunutou jinde, a to z důvodů různých morfologických dispozic. Vynikající technika překážkového běhu by měla využívat individuální přednosti a předpoklady daného závodníka a měla by být především účelná.

Většina současných autorů dělí techniku překážkového běhu na jedenáct úseků. Mezi tyto úseky se řadí nábeh a přeběh první překážky, devět rytmických jednotek a doběh. Požadavky na techniku v jednotlivých úsecích závodní tráty jsou vysoce náročné [20].

Náběh začíná startem ze startovních bloků. Překážkář má za úkol dosáhnout co nejvyšší běžecké rychlosti. Optimálním odrazem na překážku si překážkář vytvoří vhodné předpoklady pro přeběh překážky s co nejmenší ztrátou horizontální rychlosti běhu. Náběh na první překážku zdolává dobrý překážkář osmi kroky. Výběh z bloků začíná odrazem obou nohou. Odrazová noha je při výběhu vepředu. První tři kroky náběhu jsou, stejně jako u hladkého sprintu, krátké a vysoce frekvenční. Překážkář vybíhá z bloků směrem vpřed a téměř se nenarovnává. V dalších krocích se trup napřímuje, aby v šestém kroku bylo dobře vidět na
překážku [8]. Celý náběh běží překážkář stupňovaně v náklonu po přední části chodidel, délka kroků se prodlužuje a s výjimkou posledního kroku by měla narůstat. Poslední krok je zkrácen, čímž běžec dosáhne rychlejšího a účinnějšího odrazu na překážku a znovu frekvenci a rychlost kroků. Jedná se o tzv. šlapavý způsob běhu [14].

Vzdálenost mezi překážkami zdolává překážkář třemi běžeckými kroky, které běží sprinterskou technikou běhu s předpětím svalů před dokrokom. Pro rychlý přeběh překážky je rozhodující stupňovaný rytmus běhu mezi překážkami a třetí krok, který by měl být nejrychlejší a proti druhému kroku zkrácený. Zkrácením třetího kroku překážkář zajistí dokročení nohy v oporové fázi před překážku co nejblíže k svislé těžnici, tím docílí, aby oporová fáze trvala krátce a odraz byl co nejúčinnější [22].

Překázkový krok se skládá z oporové a letové fáze. Podmínky pro přeběh překážky si překážkář připravuje již v běhu mezi překážkami. Dle Millerové a kol. (2005) se délka překázkového kroku mužů pohybuje mezi 340 – 370 cm a procentuálního poměr vzdálenosti odrazu od překážky ku vzdálenosti dokroku za překážkou je 57 – 62 % : 43 – 38 %.

Oporová fáze překázkového kroku začíná dokrokom, který by měl překážkář provést předpětím svalů na přední části chodidla. U nejlepších překážkářů svírá těžiště těla s místem dokroku a běžeckou dráhou úhel dokroku 90-100° [20]. Při dokroku tvoří chodidlo odrazové nohy vůči běžci otevřený úhel, v momentu vertikálně se úhel mírně zavírá a ve fázi odrazu je v hlezenním kloubu plantární flexa. Ve fázi dokroku dochází k mírnému ohnutí v koleni oporové končetiny, které se v momentu vertikálně zvětšuje a ve fázi odrazu se kolenom napne. Kolenou překážkářoví švihové nohy se ve fázi dokroku ohnet v ostrém úhlu a v momentu
vertikály by se mělo nacházet před kolenem nohy oporové. Čím je úhel ohnutí v koleně ostřejší, tím rychleji lze provést pohyb švihové nohy vpřed a vzhůru. Chodidlo švihové nohy svírá vůči běrci úhel větší než 90°. Při dokončení odrazu je švihová noha v koleně ohnuta v ostrém úhlu. Bérec švihové nohy by měl být rovnoběžný s odrazovou končetinou [2].

Osy ramen a kyčlí jsou kolmé na směr běhu a rovnoběžné s příčkou překážky. Při dokroku se paže sbíhají k rovině trupu, v momentu vertikály by měly být lokty na úrovni trupu. Ve fázi odrazu se vedoucí paže pohybuje s pokrčeným loktem vpřed, druhá paže se při střídnapožném způsobu (obr.1a,1b) blokuje u těla v rovině trupu nebo se pohybuje běžecky vzad, při soupažném způsobu práce paží (obr.2) se vedoucí paže pohybuje vpřed a druhá také vpřed [18].

Obr.1a Střídnapožný způsob práce paží [18]

Obr.1b Střídnapožný způsob práce paží [18]

Obr.2 Soupažný způsob práce paží [18]

Nejdůležitější fázi překážkového kroku je odraz (obr.3), na kterém závisí tvar dráhy letu těžiště a rychlost přeběhu překážky. Aby byl přeběh co nejrychlejší, musí být parabola, po které se těžiště těla překážkáře pohybuje, plochá a příměřeně dlouhá. Příliš dlouhá dráha
letu by pro překážkáře znamenala ztrátu rychlosti a velmi nevýhodný start k dalším krokům za překážkou. Dráhu letu těžiště překážkář vhodně upraví, když zmenší úhel vzletu. V praxi to znamená, že překážkář musí mít v okamžiku odrazu co největší sklon celého těla vpřed [20].

\[Obr. 3 Odraz na překážku [3]\]

Přílišná snaha o zvětšení předklonu může vést k vysazení v pánvi (obr.4a), to nedovoluje překážkářům provést dostatečný švih ostrým kolenem a způsobuje nežádoucí rotaci hlavou vpřed, která se projevuje přepadáním dopředu při letu nad překážkou. Při vysazení v pánvi působí odrazová síla mimo těžiště. Opačnou rotaci vyvolává přílišné prohnutí a záklon při odrazu, nebot’ působiště síly se dostává před těžiště (obr.4b). Obojí druh rotace je pro překážkáře nežádoucí [11].

\[Obr. 4a Vysazení pánve při odrazu na překážku [18]\]

\[Obr. 4b Záklon při odrazu na překážku [18]\]
Dalším důležitým faktorem, který překážkáři umožňuje plochou dráhu těžiště, je odraz z dostatečné vzdálenosti od překážky. Čím dále se odrážíme od překážky, tím dokonalejší je technické provedení přeběhu překážky. Daleko od překážky se můžeme odrážet pouze ve velké rychlosti, při pomalém běhu je odraz chybný, tzn. příliš blízko překážky [13]. Dle Vaculi a kol. (1983) se v praxi vzdálenost odrazu na vysokou překážku pohybuje v rozmezí 210-230 cm, přičemž úhel sklonu těla při vpředu při odrazu je 58-70°. Optimální vzdálenost odrazu na překážku má však každý překážkář individuální a záleží na mnoha faktorech, jakými jsou například tělesná výška, rychlost běhu, ohebnost, koordinace a odrazová síla a na aktuálním fyzikálním a psychickém stavu překážkáře.

![Obr. 2a Úhel letu nad překážkou [18]](image1)

![Obr. 2b Úhel letu nad překážkou [18]](image2)

Vlivem vertikální složky odrazu na překážku a amortizace dokroku za překážkou je snižována rychlost běhu na překážkách. Millerová a kol. (2005) uvádí, že minimální vertikální rychlost u mužů, by měla být 1,7 m/s. Rychlost běhu je na překážkách snižována jak při odrazu na překážku vlivem jeho vertikální složky, tak amortizací dokroku za překážkou [22].

Dokončení fáze odrazu na překážku probíhá postupnou extenzí kyčelního, kolenního a hlezenního kloubu až do špiček prstů [13].

Letovou fázi překážkového kroku začíná překážkář po posledním kontaktu odrazové nohy s podložkou. Úkolem letové fáze je co nejúčelnější překonání překážky, usměrňení rotačního momentu z odrazu na překážku a připravení vhodných podmínek pro dokrok za překážkou [13]. Jak úhel vzletu, tak vertikální zdvih těžiště by měl být co nejmenší (obr.5a,5b). Úhel vzletu je takový úhel, pod kterým se těžiště překážkáře dostává do letové fáze. U mužů je to 16-25° [20].

Obr. 5a Úhel letu nad překážkou [18]
Obr. 5b Úhel letu nad překážkou [18]

Odrazová-přetahová noha je vedena nejdříve běžecky a poté ohnutým kolenem stranou vzhůru k překážce. Běrec švihové nohy se pohybuje vpřed vzhůru k překážce téměř do výše stehna švihové nohy. Největší úhel v koleně má švihová noha v okamžiku, kdy se chodidlo dostane na úroveň překážkové příčky nebo těsně předtím. V největším bočním rozštěpu je překážkář v okamžiku, když vztyčené chodidlo dosáhne úrovně překážky [18].

Náklon trupu dosahuje v letové fázi přibližně 30-40°, pokud je překážkář nižší postavy, dochází někdy i k nalehnutí trupu na švihovou nohu (obr.6) [11].

Obr. 6 Nalehnutí trupu na švihovou nohu [19]

Osy kyčlí a ramen by měly být kolmě na směr běhu a rovnoběžné s příčkou překážky, to znamená, že by se překážkář neměl při přeběhu překážky přetáčet. Paže kompenzují pohyby nohou, ale pokud jejich pohyb není dostatečně sladěn, jsou nejčastější příčinnou nežádoucí rotace. Vedoucí paže se pohybuje vpřed rovnoběžně s přímočarým pohybem švihové nohy. Ruka dosahuje u mužů většinou úrovně mezi ramenem a temenem hlavy. Druhá paže pokračuje v pohybu podle zvoleného způsobu práce paží již na odrazu na překážku [12].

Při přeběhu překážky je výhodné, aby hlava byla ve stejné výši jako při běhu mezi překážkami. Je skloněna mírně dolů v přirozeném pokračování linie zad, pohled směřuje na další překážku (obr.7). Někteří překážkáři po odrazu hlavu sklánějí (obr.8). Sklon hlavy sice
napomáhá předklonu, ale zhoršuje pocit rovnováhy, zrakovou kontrolu vzdálenosti k další překážce a přehled o stavu závodu [19].

Těžiště těla se pohybuje při přeběhu překážky po dráze paraboly, kulminační bod by měl být určitě před překážkou. Stehno přetahové nohy svirá s trupem pravý úhel v okamžiku, kdy se dostane na úroveň kyčle. Při přeběhu překážky je bérec přitažen ke stehnu, chodidlo minimálně uprostřed mezi kolenem a kyčlí a špička přitažena k bérci. Pokud bychom špičku měli volně svěšenou dolů, hrozilo by nám, že při přeběhu překážky zahákneme za její příčku [2].

Let na překážku konči ve chvíli, kdy těžiště dosáhlo vrcholu před vertikální rovinou překážky. Jakmile to povolí poloha švihové nohy vzhledem k překážce, začíná aktivní pohyb obou nohou. Současnému aktivnímu pohybu obou dolních končetin proti sobě říkáme stríh. Švihová noha se pohybuje za překážku dolů a zpět k překážce a přetahová noha kolenní stranou přes překážku vpřed. K největšímu pokročení dochází, když je koleno nad příčkou překážky. Vytváříme si tak lepší předpoklady pro rychlý pohyb švihové nohy k dokroku. Koleno přetahové nohy je pokrčeno a zvednuto tak, aby vedlo stehno vpřed těsně nad překážkovou příčkou. Od překážky se koleno pohybuje vpřed vzhůru do směru běhu [13].

Osy kyčlí a ramen jsou kolmé na směr běhu.

Obr.6 Nalehnutí trupu na švihovou nohu [19]

Obr.7 Správné držení hlavy při přeběhu překážky [18]
Dokrok za překážkou (obr.9) je vlastně již součástí oporové fáze prvního kroku běhu mezi překážkami a také uzavírá rytmickou jednotku. Hlavním požadavkem pro dokrok za překážkou je, aby překážkár nenarušil rytmus běhu, zbrzdil co nejméně postupnou rychlost, udržel si rovnovážnou běžeckou polohu, co nejdříve pokračoval v pohybu vpřed a měl první krok za překážkou dostatečně dlouhý. Aby překážkár předešel nežádoucímu záklonu a poklesu těžiště, provádí dokrok na špičku chodidla a po celou dobu oporové fáze se jeho chodidlo nedostane na patu. Čím menší je vzdálenost místa dokroku za překážkou, tím lepší je technika přeběhu [13]. Zásadní význam pro dokrok má místo došlapu chodidla za překážkou vzhledem ke svislé těžnici. Dokrok musí být pod těžištěm, aby nedocházelo ke zbrzdění setrvačnosti. Optimální úhel dokroku je 90-100° [11]. Odchylka trupu od horizontály (náklon trupu) je větší a těžiště těla je výše než při odrazu. Ramena má překážkár v okamžiku dokroku nad dokračující špičkou [22].

Úhel mezi chodidlem a běrcem je při dokroku co nejvíce otevřen. Koleno přetahové nohy má při dokroku nejvyšší polohu a nemělo by být v krajní poloze dříve, než dojde ke kontaktu s podložkou. Úhel v koleně přetahové nohy je při dokroku ostrý. Koleno se pohybuje plynule a aktivně vpřed. Dokrokom překážkár neměl narušit rytmus běhu ani zbrzdit rychlost pohybu. Běžec by měl plynule navázat běh mezi překážkami [2].

Vedoucí paže je ohnuta v lokti do pravého úhlu a její loket se za tělem dostane do výše ramene, loket druhé paže po pohybu vpřed dostihne úroveň kolena švihové nohy [12].
Úsek od dokroku za poslední překážkou do cíle nazýváme doběh. Je to jediný úsek tratě, ve kterém mohou překážkáři a překážkářky uplatnit jak frekvenci, tak délku kroku. Při dokroku za poslední překážkou stupňují rychlost do maxima a na cílové čáře nakloní trup výrazně vpřed. Chybou bývá předčasný a velký náklon trupu, při kterém nemohou vyvinout požadovanou maximální rychlost.

Obr.9 Dokrok za překážkou [6]

Obr.10 Správná technika přeběhu překážky [3]
2 CÍL, VĚDECKÉ OTÁZKY A ÚKOLY PRÁCE

2. 1 Cíl práce

Cílem je vytvořit, popsat a analyzovat 3D model atletické disciplíny běh na 110 m překážek – přeběh druhé překážky a potvrdit stabilitu technického provedení přeběhu překážky. Druhým z cílů je porovnání technického provedení přeběhu překážky s doporučenou technikou a naměřenými hodnotami z dostupné literatury.

S drtivým nástupem a rozvojem videotechniky a dostupnosti výpočetní techniky spolu se stříhovými programy je zřejmý i posun ve sportu a využití techniky při tréninkovém procesu. Na FSpS je k dispozici nástroj SIMI pro 3D modelování pohybu. Pro své přednosti je vybrán k atletickým disciplínám. Na základě měření provedeme individuální popis techniky závodníka české špičky a jeho třech tréninkových pokusů, porovnáme jeden z pokusů s doporučenými údaji z prostudované literatury a upozorníme na chyby při provádění přeběhu překážky.

2. 2 Varianta výzkumu

Použili jsme případovou studii, kterou charakterizujeme jako rozbor stavu, vývoje a interakcí s prostředím jednoho nebo více jedinců, skupin, komunit a institucí, operačních jednotek, ale i programů, které se pozorují, dokumentují a analyzují, aby se popsaly a vysvětlily jejich stavy a vztahy k interním a externím ovlivňujícím faktorům. Případová studie tedy zahrnuje zaměřené pozorování v přirozených podmínkách, interview, kvalitativní analýzu a narativní styl podávání zprávy (Hendl, 1999). Předmětem navržené případové studie je hodnocení vybraných kinematických parametrů v atletické disciplíně běh na 110 m překážek.

2. 3 Vědecké otázky (dále VO)

- VO1 – Na kolik se technické provedení přeběhu překážky námí sledovaného probanda bude shodovat s doporučenou technikou a naměřenými hodnotami z dostupné literatury?
VO2 - Do jaké míry se bude lišit stabilita technického provedení přechodu překážky u vrcholového atleta?

2. 4 Úkoly práce

- Zaznamenat v systému SIMI vybraného závodníka a jeho pokusy v přeběhu překážky
- Provést 3D analýzu videozáznamu
- Analyzovat jednotlivé technické aspekty
- Vyhođnotit sledované parametry a poskytnout závodníkovi a trenérovi zpětnou vazbu
- Vyhođnotit závěry a převést je v doporučení pro teorii a praxi

2. 5 Použité metody

Zpracování problematiky práce a použité metody plynou z okolností, že člověka považujeme za bytost jedinečnou – bytost bio-psycho-sociální nadanou schopností regulovat sebe i své okolí, učit se určitému řešení pohybového úkolu a jeho výsledek interpretovat ve sportovních činnostech. V práci používáme metody (obecně), jejich techniky a procedury vymezené jako: analýza a syntéza, modelování, pozorování, měření.

Předmětem modelování jsou vybrané činnosti v atletické disciplíně běh na 110 m překážek. Modelové řešení činností je východiskem pro nalezení pohybových prostředků

Rozhodující pro definování modelu je vymezení obsahu příslušných subsystémů technického základu pohybu. Nalezení a zdůvodnění příčinných pohybových aktů a operací, jenž vedou k realizaci konkrétní pohybové činnosti.

3 METODIKA SLEDOVÁNÍ

3. 1 Charakteristika souboru

V srpnu roku 2007 jsme provedli analýzu tří přeběhů druhé překážky atlety Martina Pokorného, který trénuje ve skupině Stanislava Joukala v Brně. Martin má osobní rekord v běhu na 110 metrů překážek 13,82 s a nejlepší výkon v sezóně 2007 14,28 s.

3. 2 Metody zjišťování sledovaných ukazatelů

3. 2. 1 Kinematická analýza

Pohyb je z fyzikálního hlediska chápán jako změna souřadnic v určitém časovém rozpětí. Tento souřadnicový systém může být nejprve libovolně zvolen a následně upraven. Jsou zde však dva základní požadavky:
• souřadnicový systém
• časové údaje

3. 2. 2 Zpracování obrazu biomechanické 3D analýzy

Ve srovnání s většinou ostatních metod měření má analýza obrazu tu výhodu, že nemá přímý negativní dopad. To znamená, že stanovení kvantitativních rozměrů prostřednictvím měřicího systému nemá žádný dopad na chování měřeného objektu, protože samotné měření není prováděno na konkrétním objektu, ale na jeho obrazu.

Při použití nejjednodušší měřicí techniky představuje tento fakt jednu nevýhodu: trojrozměrný objekt je zobrazen ve dvou dimenzích. Tato nevýhoda je akceptovatelná, jestliže máme zájem pouze o dvě dimenze (2D analýza), např. pro určení nejvyššího místa ve skoku, náběhové rychlosti při rozběhu na překážku nebo odrazového úhlu. Při nahrávání téhož pohybů je důležité, aby byly kompletně popsány v jedné rovině. Abychom se vyhnuli chybám plynoucím z toho, že se určité části těla pohybují mimo rovinu pohybu, kamera by měla být umístěna dostatečně daleko od této roviny. Fyzikální rozměry zaznamenané tímto měřením jsou v prvé řadě kinematografickými rozměry (vzdálenost, čas, rychlost, zrychlení, úhly)
3. 2. 3 Souřadnicový systém

Slouží ke stanovení vztahu mezi aktuálními (reálnými) řádovými hodnotami, přičemž záběr je vyhodnocen později. Pojem souřadnicový systém se stejně jako pojem kalibrační systém běžně vyskytuje v literatuře pojednávající o zpracování obrazu. Tyto dva pojmy spolu souvisejí. Kalibrační systém vymezuje prostor (ve tří-dimenzionální analýze) nebo plochu (ve dvoudimenzionální analýze), kde se odehrává pohyb. Souřadnicový systém je matematický prostředek, pomocí něhož je možné vypočítať skutečné prostorové rozměry.

Pro osobu provádějící měření není vztah mezi kalibračním a souřadnicovým systémem důležitý. Tento vztah je pevně stanoven softwarem, který zpracovává prvotní data. Jako kalibrační systém lze použít dvě měřicí tyče známé délky, které jsou navzájem kolmé a dobře viditelné na záběru. Měly by samozřejmě být na místě (nebo přinejmenším v bezprostřední blízkosti místa), kde se daná akce odehrává.

Je dostatečně, pokud je kalibrační systém viditelný pouze na jednom obrázku, jestliže je zajištěno, že po nastavení kamery (ohnisková vzdálenost, pozice, zaostření, ohnisková rovina) už toto nebude změněno (Sebera, 2006).

3. 2. 4 Časové údaje

Sděluji nám detaily o tom, kdy byl záběr pořízen. Tato informace může být uvedena buď jako absolutní hodnota (např. 3. ledna 2007 ve 4:27, 12 sekund a 312 milisekund) nebo jako relativní hodnota (0,01 s po předchozím záběru). Pro většinu otázek týkajících se kinematické analýzy je důležitější relativní časová hodnota. Je to dáno frekvencí snímků použitého nahrávacího systému. Pro běžné videonahrávání se jedná o 25 kompletních snímků za sekundu nebo 50 políček za sekundu (PAL) nebo 30/60 (NTSC). Pro nahrávání pohybu je možné použít vysokorychlostní kameru s frekvencí až 500 snímků za sekundu. Systém SIMI Motion nabízený Fakultou sportovních studií MU umožňuje snímání pohybu frekvencí až 500 snímků / s.
3. 2. 5 Dvou- a třírozměrné nahrávky

Jestliže je pohyb nahráván pouze jednou kamerou, může být uspokojivých výsledků dosaženo pouze ve dvourozměrné rovině. Úsilí spojené se získáním třírozměrných výsledků je značné a musí být splněny jisté předpoklady, což může vést k podstatnějším nepřesnostem. K řešení problémů ve 2D je nutné následující vybavení:

- jedna kamera
- kalibrační systém, který se skládá ze dvou měřicích tyčí známé délky, které jsou vzájemně v pravém úhlu

K řešení problémů ve 3D je nutné následující vybavení:

- nejméně dvě kamery, jejichž optické osy by měly být v úhlu mezi 60 a 120 stupni
- tyto dvě kamery by měly být schopny současněho snímání záběrů
- kalibrační systém, který je tvořen prostorovým 3D objektem (kvádr, jehlan, krychle atd.). Pozice rohů tohoto 3D objektu musí být známá (Sebera a kol., 2006).

3. 2. 6 Problémy související s analýzou obrazu

Poté co byl pohyb nahrán, můžeme záběr analyzovat. Abychom analýzu mohli provést, musí být určeny body na těle a nebo body, které jsou určitým způsobem důležité pro vykonání pohybu. Použitými body na těle jsou většinou průsečíky kloubních os nebo jejich středy. Při tomto určování můžeme narazit na tři hlavní zdroje chyb:

- osy kloubů nemohou být jasně definovány
- průsečíky os nelze na záběru jasně rozlišit
- průsečíky jsou skryty za ostatními částmi těla a na záběru nejsou viditelné

Řešení

- tuto chybu může minimalizovat pouze precizní znalost anatomie
- průsečíky lze označit jasně kontrastní barvou
- střed kloubů musí být interpolován, popřípadě odhadnut
3. 2. 7 Chyby a tolerance chyb

Při analýze rozeznáváme tyto chyby a nedostatky:

- chyby v určování časového rozpětí mezi jednotlivými snímký záznamu
- chyby v určování pozice měřených bodů
- kumulativní chyby, které nastanou, když k výpočtům použijeme nesprávné hodnoty, např. rychlost = vzdálenost / čas, přičemž naměřené hodnoty vzdálenosti i času jsou nepřesné.

Rozsah těchto chyb může být vyjádřen jako matematická funkce citlivosti použitého filmu, přesnosti snímací metody, přesnosti určení ohniskových bodů při měření, chyb vzniklých při zaznamenávání času atd. Různorodost těchto faktorů ukazuje, jak komplikované mohou výpočty být.

V praxi je dostačující, že tolerance chyb jsou zjištěny s odvoláním na známé vnější hodnoty. Jestliže je například známá hodnota vzdálenosti mezi vrchním hlezenním kloubem a kolenním kloubem, potom musíme dospět ke stejné hodnotě i po sejmutí obrazu a provedení výpočtů.

3. 2. 8 Zobrazení dat

Sledovat lze jednotlivý bod, spojnice bodů a těžiště. Je možné zvýraznit tyto spojnice a sledovat je během pohybu. Například spojnice mezi kyčlí a kolenem může být v průběhu určité fáze pohybu vyobrazena v jiné barvě.

Existují různé typy těžiště pro různé pohybové sekvence. Pro každý model je požadován určitý počet bodů. To znamená, že body specifikace musí být nejprve přiřazeny k bodům daného modelu. Určování těžiště je matematickým odhadem a je založeno na zkušenostech a naměřených hodnotách. Přesné parametry pro výpočet těžiště jsou pro každého člověka rozdílné, takže s použitím jednoho modelu pro různé typy lidí (muži/ženy, dospělí/děti, sprinteři/vytrvalci) by se mělo zacházet opatrně. Je možné chybu minimalizovat pomocí softwarového doplňku, umožňuje získání parametrů určité osoby na základě individuálních měření (váha, výška, velikost hrudního koše, šíře zad, délka nohy atd.).
Následné zobrazení modelovaných dat v libovolné ose x, y, z třírozměrného prostoru spolu se sledováním jednotlivých charakteristik – vzdáleností, rychlosti, zrychlení, úhly se sledováním vlastního provedení sportovního výkonu trenérovi dává do rukou velmi účinný nástroj na posouzení individuální technické vyspělosti atleta

3. 2. 9Použití

Identifikace bodů

3D biomechanickou analýzu lze provést v reálném závodě i na tréninku. Pro lepší identifikaci tzv. bifurkačních bodů jsou atletovi připevněny na vybrané části těla reflexní body, které budou sloužit jednak pro snazší rozpoznání pohybu jednotlivých segmentů z videozáznamu, jednak pro výpočet těžiště. Gubitzův model výpočtu těžiště vyžaduje informace o těchto bodech: hlava, levé a pravé rameno, levý a pravý loket, levé a pravé zápěstí, levý a pravý kyčel, levé a pravé koleno, levý a pravý kotník. V závodě není možné na atleta připevnit žádné reflexní body, vyhodnocení je posléze pracnější, není možné využít automatického trackování a automatického rozpoznání pomocí specializovaného softwaru (manuál SIMI Motion).

Vyhodnocení

Vyhodnocení provádíme s trenérem, kdy máme k dispozici velké množství informací:

- délkové, úhlové, časové a rychlostní charakteristiky jednotlivých segmentů těla, resp. těžiště
- jsme schopni sledovat úhly a postavení jednotlivých segmentů před, při a po odraze, úhly odrazu a vzletu, postavení a vzájemnou polohu segmentů
- dráhu těžiště, resp. jednotlivých segmentů v průběhu celého skoku
- poklesy rychlosti před odrazem a po odrazu
- dráhy, rychlosti a zrychlení v jednotlivých osách X, Y a Z
Součástí analýzy je systém 3 os X, Y a Z (obr.11). Osa X představuje horizontální směr, osa Y boční a osa Z vertikální.

Obr. 11 osy X, Y, Z
4 VÝSLEDKY A JEJICH ANALÝZA

4.1 Rozbor literatury

V začátku práce si stanovíme tolerované odchylky od doporučených hodnot. Ty by se mohly vyskytnout například díky špatnému osazení kontrolních bodů nebo chybou v měření. Co se úhlu týče, budeme tolerovat odchylku max. 5° a v délce 5 cm.

4.2 Porovnání technicky správného přeběhu překážky s technikou přeběhu překážky námí sledovaného probanda

Pomocí sledování vybraných nezávislých proměnných (tab.3), jejichž doporučené hodnoty jsme si vyhledali v literatuře a porovnáním těchto hodnot s výsledekem měření sledovaného pokusu probanda, můžeme určit, zda se technika přeběhu překážky probanda shoduje s doporučovanou technikou z námí prostudované literatury.
<table>
<thead>
<tr>
<th>Nezávislé proměnné</th>
<th>Doporučené hodnoty P2-355</th>
</tr>
</thead>
<tbody>
<tr>
<td>Délka letové fáze (od okamžiku opuštění podložky po dopad) (s)</td>
<td>0,3-0,45</td>
</tr>
<tr>
<td>Délka překážkového kroku (od místa odrazu po místo dopadu) (cm)</td>
<td>340-370</td>
</tr>
<tr>
<td>Vertikální rychlost v okamžiku odrazu (m/s)</td>
<td>min 1,7</td>
</tr>
<tr>
<td>Úhel přetahová noha-trup (v okamžiku nad překážkou)</td>
<td>cca 90°</td>
</tr>
<tr>
<td>Velikost těžiště od odrazu po nejvyšší bod těžiště (cm)</td>
<td>127-109</td>
</tr>
<tr>
<td>Pokles těžiště od nejvyššího bodu po dokrok za překážku (cm)</td>
<td>127-115</td>
</tr>
<tr>
<td>Výška těžiště nad překážkou (cm)</td>
<td>126</td>
</tr>
<tr>
<td>Dráha, kterou těžiště projde od okamžiku odrazu do okamžiku dopadu (cm)</td>
<td>280-305</td>
</tr>
<tr>
<td>Výška těžiště v okamžiku odrazu (cm)</td>
<td>109</td>
</tr>
<tr>
<td>Výška těžiště v nejvyšším bodě (cm)</td>
<td>127</td>
</tr>
<tr>
<td>Výška těžiště v okamžiku dopadu (cm)</td>
<td>115</td>
</tr>
<tr>
<td>Vzdálenost odrazu na překážku (cm)</td>
<td>210-230</td>
</tr>
<tr>
<td>Vzdálenost dopadu za překážku (cm)</td>
<td>120-140</td>
</tr>
<tr>
<td>Úhel vzletu - 90° minus úhel odrazu</td>
<td>16°-25°</td>
</tr>
<tr>
<td>Nákлон trupu při odrazu v překážku-oporové fáze – tvoření 3 body – rameno, kyčel, vertikální (horizontální) osa</td>
<td>58°-70°</td>
</tr>
<tr>
<td>Náklon trupu v letové fázi - tvoření 3 body – rameno, kyčel, horizontální osa</td>
<td>30°-40°</td>
</tr>
<tr>
<td>Úhel dokroku před odrazem na překážku – tvoření 3 body – kyčel, palec, podložka</td>
<td>90°-100°</td>
</tr>
<tr>
<td>Úhel odrazu – tvoření 3 body – kyčel, palec, podložka</td>
<td>65°-75°</td>
</tr>
<tr>
<td>Úhel dokroku po přeběhu překážky - tvoření 3 body – kyčel, palec, podložka</td>
<td>90°-100°</td>
</tr>
<tr>
<td>Úhel složení švihové nohy při dokončení odrazu – úhel tvoření 3 body – kyčel, kolen, kotník</td>
<td>65°-85°</td>
</tr>
<tr>
<td>Úhel mezi stehnem švihové nohy s oporovou nohou</td>
<td>větší než 90°</td>
</tr>
<tr>
<td>Úhel těžiště-dokroková noha</td>
<td>14°</td>
</tr>
<tr>
<td>Délka oporové fáze při odrazu na překážku (s)</td>
<td>0,11-0,16</td>
</tr>
<tr>
<td>Délka oporové fáze po dopadu za překážku (s)</td>
<td>0,09-0,18</td>
</tr>
<tr>
<td>Procentuální poměr vzdálenosti odrazu od překážky ku vzdálenosti dokroku za překážku</td>
<td>57–62 :43–38 %</td>
</tr>
</tbody>
</table>
Oporová fáze překážkového kroku začíná dokroku, který by měl překážkář provést předpětím svalů na přední části chodidla. U nejlepších překážkářů svírá těžiště těla s místem dokroku a běžeckou dráhou úhel dokroku 90 - 100°. Námi sledovaný proband má úhel dokroku 70°. Příliš ostrý úhel dokroku značí, že je proband v okamžiku dokroku v záklonu, a bude prodloužena délka oporové fáze při odrazu na překážku. Dle dostupné literatury je délka oporové fáze při odrazu na překážku 0,11 – 0,16 s. I přes nepříznivý úhel dokroku splňuje proband tyto požadavky, délka jeho oporové fáze je 0,14 s (obr.12,13).

Obr. 12 Úhel dokroku

Obr. 13 Grafické znázornění úhlu dokroku

Při dokroku tvoří chodidlo odrazové nohy vůči běrci otevřený úhel, v momentu vertikály se úhel mírně zavírá a ve fázi odrazu je v hlezenním kloubu plantární flexe. Ve fázi dokroku dochází k mírnému ohnutí v kolenu oporové končetiny, které se v momentu vertikály zvětšuje a ve fázi odrazu se koleno napne. Koleno překážkářovi švihové nohy se ve fázi dokroku ohne v ostrém úhlu a v momentu vertikály se nachází před kolenem nohy oporové. Chodidlo švihové nohy svírá vůči běrci úhel větší než 90°. Při dokončení odrazu je švihová noha v koleně ohnuta v ostrém úhlu. Úhel mezi stehnem švihové nohy a oporovou končetinou by měl být větší než 90°. Úhel probanda je 119°, což značí, že má koleno dostatečně vysoko (obr. 14,15). Bérec švihové nohy je rovnoběžný s odrazovou končetinou.
Obr. 14 Úhel mezi stehnem švihové nohy a oporovou končetinou

Obr. 15 Grafické znázornění úhlu mezi stehnem švihové nohy a oporovou končetinou

Vlivem vertikální složky odrazu na překážku a amortizace dokroku za překážkou je snížována rychlost běhu na překážkách. Millerová a kol. (2005) uvádí, že minimální vertikální rychlost u mužů, by měla být 1,7 m/s. Proband má vertikální rychlost v okamžiku odrazu 1,8 m/s.

V dokončené fázi odrazu by mělo těžiště těla svírat s místem opory a běžeckou dráhou úhel odrazu asi 65-75°. Proband má úhel odrazu 62°, což je minimální odchylka od doporučené hodnoty (obr.18,19). Při odrazu na překážku není vysazena pánev ani prohnuta pateř v kříži. Koleno švihové nohy má překážkář v momentě vertikály zcela ohnuto a uvolněný bérec švihové nohy se téměř dotkne hýždě.
Obr. 18 Úhel odrazu

Obr. 19 Grafické znázornění úhlu odrazu

Úhel složení švihové nohy při dokončení odrazu by měl být 65-85°. Proband má úhel složení švihové nohy při dokončení odrazu 100°. To znamená, že úhel je přiliš otevřen a celkový útok na překážku bude pomalejší. Zároveň takto otevřený úhel zapříčiní pokles těžiště těla a následně jeho přilišný zdvih (obr.20,21).

Obr. 20 Úhel složení švihové nohy při dokončení odrazu
Letovou fázi překážkového kroku začíná překážkář po posledním kontaktu odrazové nohy s podložkou. Jak úhel vzletu, tak vertikální zdvih těžiště by měl být co nejmenší. Úhel vzletu je takový úhel, pod kterým se těžiště těla překážkáře dostává do letové fáze. U mužů je to 16-25°. Úhel vzletu probanda je 28°, odchylka od doporučené hodnoty je sice minimální, ale bude mit nepříznivý vliv na délku dráhy letu těžiště těla. Náklon trupu dosahuje v letové fázi přibližně 30-40°. Náklon trupu probanda je 34°. Proband je dostatečně vysoký a nepotřebuje přehnaně nalehnout na švihovou nohu, jeho náklon trupu se shoduje s doporučenými hodnotami (obr. 22,23).

Obr. 22 Náklon trupu v letové fázi

Obr. 23 Grafické znázornění náklonu trupu v letové fázi
Celková dráha, kterou projde těžiště těla od okamžiku odrazu do okamžiku dopadu by měla být 280 – 305 cm a při přeběhu překážky by mělo dojít k minimálnímu vertikálnímu zdvihu těžiště těla. Celková dráha těžiště těla probanda je 253 cm a vertikální zdvih těžiště těla 18 cm, to znamená, že dráha těžiště těla je příliš krátká a zdvih těžiště těla příliš velký. Tato skutečnost je zapříčiněna již zminěným větším úhlem vzletu a otevřeným úhlem švihové nohy při útoku na překážku. Délka letové fáze je uváděna v rozmezí 0,30 – 0,45 s. Délka letové fáze probanda je 0,34 s, čili se shoduje s doporučenou hodnotou.

Osy kyčlí a ramen by měly být kolmé na směr běhu a rovnoběžné s příčkou překážky, to znamená, že by se překážkář neměl při přeběhu překážky přetáčet. Při odrazu na překážku jsou ramena probanda kolmá na směr běhu, ale již při přeběhu překážky a hlavně při dokroku za překážku, se osa ramen přetáčí. Přetáčení je zapříčiněno přílišným zapažením levé paže při dokroku za překážku. Důsledkem je zpomalení odběhu za překážkou. Již při předposledním kroku jsou boky přetočeny na levou stranu. Toto přetočení je nejvíce patrné nad překážkou. (obr.24,25)

Obr. 24 Průběh dráhy ramen
Těžiště těla se pohybuje při přeběhu překážky po dráze paraboly, kulminační bod by měl být určit před překážkou (obr.27). Tento požadavek proband splňuje, výška těžiště těla v nejvyšším bodě je 127 cm (obr.28) a výška těžiště těla nad překážkou je 126 cm.
Stehno přetahové nohy by mělo s trupem svírat pravý úhel v okamžiku, kdy se dostane na úroveň kyčle, tzn. přibližně nad překážkou. Stehno přetahové nohy probanda svírá s jeho trupem úhel 86°, což je námi přijatelná odchylka od doporučené hodnoty (obr.29).

Obr. 29 Úhel mezi stehnem přetahové nohy a trupem v poloze nad překážkou

Dokrok za překážku je vlastně již součástí oporové fáze prvního kroku běhu mezi překážkami a také uzavírá rytmickou jednotku. Hlavním požadavkem pro dokrok za překážku je, aby překážkář nenarušil rytmus běhu, zbrzdil co nejméně postupnou rychlost, udržel si rovnovážnou běžecí polohu, co nejdříve pokračoval v pohybu vpřed a měl první krok za překážkou dostatečně dlouhý. Aby překážkář předešel nežádoucímu záklonu a poklesu těžiště, provádí dokrok na špicu chodidla a po celou dobu oporové fáze se jeho chodidlo nedostane na patu. Dle některých autorů je nejzdářilejším pokusem ten, při kterém překážkář dokročí co nejbližší za překážku, my se však přikládáme k hodnotám dle Kněnického a kol. (1977), ty se pohybují v rozmezí 120 – 140 cm. Vzdálenost probandova dokroku je 113 cm, to znamená, že dopadá příliš blízko za překážku. Tato vzdálenost dokroku je dána již uváděným přílišným úhlem vzletu. Dráha těžiště těla se pohybuje spíše vzhůru než dopředu, a proto je dopad za překážku příliš blízký. Procentuální poměr vzdáleností odrazu na překážku ku vzdálenosti dokroku za překážku je uváděn 57 – 62% : 43 – 38%, procentuální poměr probanda je 67% : 33%. Tento výsledek značí příliš vzdálený odraz na překážku a příliš blízký dokrok za překážkou. Dle tabulky je však odraz na překážku v pořádku.

Zásadní význam pro dokrok má místo došlapu chodidla za překážkou vzhledem ke svislé těžnici. Dokrok musí být pod těžištěm, aby nedocházelo ke zbrzdění setrvačnosti. Optimální úhel dokroku je 90-100°. Úhel dokroku probanda je 76° (obr.30,31).
Proband má ramena nad dokračující špičkou, ale při dokroku neprotlačil boky vpřed a dopustil se předklonu a vysazení pánve. Těžiště těla se po dokroku za překážku dostalo za vertikální osu o 14°, dojde tedy ke zbrzdění setrvačnosti a zpomalení (obr.32,33).
Délka oporové fáze po dokroku za překážkou by měla být 0,09 – 0,18s. I přes chybný úhel dokroku za překážkou a vysazení pánve má proband délku oporové fáze 0,12s, čili splňuje doporučené hodnoty.

Odchylka trupu od horizontální (náklon trupu) by měla při dokroku za překážkou být větší a těžiště těla výše než při odrazu. Výška těžiště těla probanda byla při odrazu na překážku 109 cm a při dokroku za překážku 115 cm, splňuje tedy požadavky z dostupné literatury. Ramena a těžiště by měl překážkář v okamžiku dokroku mít nad dokračující špičkou. Úhel mezi chodidlem a běrcem je při dokroku co nejvíce otevřen. Koleno přetahové nohy má při dokroku nejvyšší polohu a nemělo by být v krajní poloze dříve, než dojde ke kontaktu s podložkou. Úhel v koleně přetahové nohy má proband při dokroku ostrý, což je dle doporučené literatury správně, zároveň se jeho koleno pohybuje plynule a aktivně vpřed.

Dokrekem překážkář neměl narušit rytmus běhu ani zbrzdil rychlost pohybu a měl plynule navázat běh mezi překážkami. Následkem předklonu a přetočení ramen při dokroku za překážku se námi sledovaný proband zbrzdil a narušil tak plynulost běhu.

4. 3 Porovnání stability technického provedení přeběhu druhé překážky mezi třemi měřenými pokusy

V této části práce se zaměříme na porovnání a zhodnocení technického provedení přeběhu druhé překážky u tří zdokumentovaných pokusů. V popisu budeme postupovat systematicky od začátku provedení přeběhu překážky až po dokrok za překážku a budeme porovnávat naměřené hodnoty nezávislých proměnných (tab. 4).
Přeběh překážky začneme popisovat od dokoku odrazové nohy před odrazem na překážku. V prvním měřeném pokusu (dále P1) byl úhel dokoku probanda 69° (obr.34,35), v druhém pokusu (dále P2) 70° (obr.36,37) a ve třetím pokusu (dále P3) 72° (obr.38,39). Doporučené hodnoty se pohybují mezi 90°- 100°, to znamená, že ve všech třech pokusech byl proband v okamžiku dokoku v záklonu, při čemž tento je nejvíce viditelný v P1.
Obr. 34 Úhel dokroku P1

Obr. 35 Grafické znázornění úhlu dokroku P1

Obr. 36 Úhel dokroku P2
Dle prostudované literatury by se měla vzdálenost odrazu na překážku pohybovat mezi 210 – 230cm. Při P1 byla vzdálenost odrazu probanda na překážku 227cm, při P2 224cm a při P3 233cm. Nepatrné vybočení z doporučených hodnot u P3 se později negativně promítne ve vzdálenosti dopadu za překážku. Optimální vzdálenost odrazu na překážku má však každý překážkář individuální a záleží na mnoha faktorech, jakými jsou například tělesná výška,
rychlost běhu, ohebnost, koordinace a odrazová síla a na aktuálním fyzickém a psychickém stavu překážkáře.

Další nezávislou proměnnou na kterou se zaměříme, je délka oporové fáze při odrazu na překážku. I přes nepříznivý sklon těla při dokroku před odrazem na překážku, se naměřené hodnoty probanda neliší od doporučených hodnot. Při P1 a P2 byla délka oporové fáze dlouhá shodně 0,14s a při P3 0,12s. To značí, že nejúspěšnější byl proband v tomhle směru při P3. Tato skutečnost je zapříčiněna také faktem, že v P3 byl úhel dokroku probanda před odrazem 72°, čili z měřených pokusů největší, a proband byl tedy v nejpříznivější poloze pro odraz na překážku. Doporučené hodnoty délky oporové fáze při odrazu na překážku jsou 0,11 – 0,16s.

Náklon trupu při odrazu na překážku je jednou z dalších sledovaných proměnných. Dle Millerové a kol. (2005) by se měl pohybovat v rozmezí 58° - 70°. Při P1 byl náklon trupu probanda 62° (obr.40,41), při P2 65° (42,43) a při P3 71° (obr.44,45). Odchylky mezi jednotlivými měřenými pokusy jsou minimální a všechny hodnoty se shodují s dostupnými daty. Znamená to, že co se náklonu těla při odrazu na překážku týče, je proband v dobře výchozí poloze.

Obr. 40 Náklon trupu při odrazu P1
Obr. 41 Grafické znázornění náklonu trupu při odrazu P1

Obr. 42 Náklon trupu při odrazu P2

Obr. 43 Grafické znázornění náklonu trupu při odrazu P2
Obr. 44 Náklon trupu při odrazu P3

Obr. 45 Grafické znázornění náklonu trupu při odrazu P3
Při dokončení odrazu je důležitý úhel složení švihové nohy. Od tohoto úhlu se odvíjí razance útoku na překážku, úhel odrazu a vzletu, výška položení těžiště těla při odrazu na překážku a dráha paraboly těžiště těla při přechodu překážky. Úhel složení švihové nohy při dokončení odrazu by se měl pohybovat v rozmezí 65° - 85°, měl by být tedy ostrý. V této sledované proměnné se proband dopouští největší chyby, protože ani v jednom z měřených pokusů se nepřiblíží ostrému úhlu. Při P1 jsme naměřili úhel 101° (obr.46,47), při P2 100° (obr.48,49) a při P3 103° (obr.50,51). Úhel švihové nohy je tedy vždy otevřen, což je nejvíce patrné u P3.

Obr. 46 Úhel složení švihové nohy při dokončení odrazu P1

Obr. 47 Grafické znázornění úhlu složení švihové nohy při dokončení odrazu P1
Obr. 48 Úhel složení švihové nohy při dokončení odrazu P2

Obr. 49 Grafické znázornění úhlu složení švihové nohy při dokončení odrazu P2

Obr. 50 Úhel složení švihové nohy při dokončení odrazu P3
Při odrazu na překážku by koleno švihové nohy mělo být dostatečně vysoko. Při vysokém postavení kolena švihové nohy je rychlejší útok na překážku a zášlap za překážku. Snažíme se o co největší zkrácení doby letové fáze. Požadavek na úhel mezi stehnem švihové nohy a oporovou nohou je větší než 90°. Při P1 i P2 je úhel mezi stehnem švihové nohy a oporovou nohou probanda 119° (obr.52,53,54,55) a při P3 115° (obr.56,57). Proband má koleno švihové nohy dostatečně vysoko a z tohoto pohledu (z naměřených hodnot této nezávislé proměnné) může zahájit úspěšný útok na překážku.
Obr. 53 Grafické znázornění úhlu mezi stehnem švihové nohy a oporovou nohou P1

Obr. 54 Úhel mezi stehnem švihové nohy a oporovou nohou P2

Obr. 55 Grafické znázornění úhlu mezi stehnem švihové nohy a oporovou nohou P2
Obr. 56 Úhel mezi stehnem švihové nohy a oporovou nohou P3

Obr. 57 Grafické znázornění úhlu mezi stehnem švihové nohy a oporovou nohou P3

V dokončené fázi odrazu by mělo těžiště těla svírat s místem opory a běžeckou dráhou úhel odrazu asi 65-75°. Úhel odrazu probanda je při P1 60° (obr.58,59), při P2 62° (obr.60,61) a při P3 opět 60° (obr.62,63). Všechny naměřené hodnoty jsou velmi vyrovnané a od doporučených hodnot se liší minimálně. Příliš ostrý úhel odrazu ovšem vyvolá větší úhel vzletu a tím dojde k prodloužení doby letové fáze, změně dráhy paraboly těžiště těla, a také k blízkému dokroku za překážku.

Obr. 58 Úhel odrazu P1
Obr. 59 Grafické znázornění úhlu odrazu P1

Obr. 60 Úhel odrazu P2

Obr. 61 Grafické znázornění úhlu odrazu P2

Obr. 62 Úhel odrazu P3
Již zmíněný úhel vzletu by se měl pohybovat mezi 16° - 25°. Úhel vzletu je takový úhel, pod kterým se těžiště těla překážkáře dostává do letové fáze. Úhel vzletu probanda je při P1 i P3 30° a při P2 28°. Nejznepříznivější byl tedy druhý měřený pokus. Velký úhel vzletu bude mít nepříznivý vliv na délku a tvar dráhy těžiště těla probanda, ta se zkrátí a bude příliš strmá, což bude mít za následek blízký dokrok za překážku.

Dle Millerové a kol. (2005) je uváděn požadavek na minimální vertikální rychlost při odrazu na překážku 1,7 m/s. Proband má při všech třech měřených pokusech vertikální rychlost při odrazu 1,8 m/s, což znamená, že je dostatečně rychlý.

Délka letové fáze je uváděna v rozmezí 0,30 – 0,45 s. Proband měl při P1 i P3 dobu trvání letové fáze 0,35 s a při P2 0,34 s. Nejrychlejší byl tedy druhý měřený pokus, ovšem rozdíly mezi jednotlivými přeběhy jsou minimální.

Délka překážkového kroku je považována za ideální při hodnotách 340 – 370 cm. Proband má při P1 délku překážkového kroku 343 cm, při P2 337 cm a při P3 342 cm. Pokusy P1 a P3 se shodují s doporučenými hodnotami, ale pokus P2 byl nejkratší a do limitu se nevešel. Přišikou krátkosti překážkového kroku u P2, je příliš krátká dráha, kterou urazí těžiště těla probanda. Doporučené hodnoty jsou v rozmezí 280 – 305 cm a proband má při P2 celkovou dráhu těžiště těla pouhých 253 cm (obr.65), což je o 27 cm méně, než je minimální uváděná hranice. Při P1 (obr.64) i P3 (obr.66) byla naměřena celková délka dráhy těžiště těla probanda 264 cm. Ani tyto hodnoty se neshodují s hodnotami z dostupné literatury, ale jsou mezi nimi menší rozdíly. Jak jsme se již zmínili, na celkovou dráhu těžiště těla probanda má nepříznivý vliv příliš ostrý úhel odrazu, velký úhel vzletu a otevřený úhel švihové nohy při odrazu na překážku.
Při správně přeběhnuté překážce, je výška těžiště těla v okamžiku odrazu níže než při dokroku za překážku a dosáhne svého nejvyššího bodu před překážkou. To znamená, že výška těžiště těla probanda nad překážkou bude níže než nejvyšší bod těžiště těla probanda. Při P1 byla výška těžiště těla probanda v okamžiku odrazu 119 cm, při P2 109 cm a při P3 107 cm, v okamžiku dokroku za překážku byla výška těžiště těla probanda při P1 119 cm, při P2 115 cm a při P3 také 115 cm. Krom P1, kde se hodnoty výšky těžiště těla rovnají, odpovídají naměřené hodnoty poznatkům z prostudované literatury. Zdvih těžiště těla by měl být co nejmenší. Zdvih těžiště těla probanda je při P1 8 cm, při P2 18 cm a při P3 20 cm. Z tohoto pohledu je nejvíce zdařilý měřený první pokus přeběhu překážky. Při velkém zdvihu těžiště těla dochází k časovému prodloužení letové fáze, dráha paraboly těžiště těla se stává příliš strmou a vzdálenost dokroku za překážku se snižuje. Tuto skutečnost můžeme nejlépe sledovat u P3, kdy zdvih těžiště je 20 cm a vzdálenost dokroku za překážku 109 cm. Dle některých autorů je nejzdařilejším pokusem ten, při kterém překážkář dokročí co nejbliže za překážku, my se však přikládáme k hodnotám dle Kněnického a kol. (1977), ty se pohybují v rozmezí 120 – 140 cm. Při P1 je vzdálenost dokroku probanda za překážku dlouhý 116 cm a při P2 113 cm. V tomto směru považujeme za nejúspěšnější měřený pokus P1. Pro lepší orientaci uvádíme hodnoty těžiště těla probanda v tabulce (tab.5).

tab. 5: Naměřené hodnoty těžiště těla probanda

<table>
<thead>
<tr>
<th>Nezávislé proměnné</th>
<th>P1-368</th>
<th>P2-355</th>
<th>P3-362</th>
</tr>
</thead>
<tbody>
<tr>
<td>Výška těžiště těla v okamžiku odrazu (cm)</td>
<td>119</td>
<td>109</td>
<td>107</td>
</tr>
<tr>
<td>Výška těžiště těla v nejvyšším bodě (cm)</td>
<td>127</td>
<td>127</td>
<td>127</td>
</tr>
<tr>
<td>Výška těžiště těla v okamžiku dopadu (cm)</td>
<td>119</td>
<td>115</td>
<td>115</td>
</tr>
<tr>
<td>Výška těžiště těla nad překážkou (cm)</td>
<td>124</td>
<td>126</td>
<td>125</td>
</tr>
<tr>
<td>Zdvih těžiště těla od odrazu po nejvyšši bod těžiště (cm)</td>
<td>127-119 8</td>
<td>127-109 18</td>
<td>127-107 20</td>
</tr>
<tr>
<td>Vzdálenost dokroku za překážku (cm)</td>
<td>116</td>
<td>113</td>
<td>109</td>
</tr>
</tbody>
</table>
U náklonu trupu jsou v letové fázi doporučené hodnoty 30° - 40°. Proband má při P1 náklon trupu 45° (obr.67), při P2 34° (obr.68)a při P3 36° (obr.69). Proband je dostatečně vysoký a nepotřebuje při přeběhu překážky přehnaně naléhat na švihovou nohu. Při P1 je úhel náklonu trupu velký, znamená to, že proband byl napřímen, což ho může při přeběhu překážky zbrzdit (větší odpor vzduchu), případně zapříčinit záklon trupu při dokroku za překážku. Zbylé dva pokusy odpovídají doporučeným hodnotám.
Stehno přetahové nohy by mělo s trupem svírat pravý úhel v okamžiku, kdy se dostane na úroveň kyče, tzn. přibližně nad překážkou. Při P1 svírá stechno přetahové nohy probanda s trupem úhel 93° (obr.70) a při P2 (obr.71) i P3 86° (obr.72). Odchylky od doporučených hodnot jsou u všech tří pokusů v normě. Pokud by úhel mezi stehnem přetahové nohy a trupem byl příliš velký, znamenalo by to, že se přetahová noha opožďuje a v okamžiku dokroku, kdy koleno přetahové nohy má být již před tělem, by toto bylo ještě mimo osu

Obr. 67 Grafické znázornění úhlu sklonu trupu v letové fázi ku vertikále P1

Obr. 68 Grafické znázornění úhlu sklonu trupu v letové fázi ku vertikále P2

Obr. 69 Grafické znázornění úhlu sklonu trupu v letové fázi ku vertikále P3
běhu. Naproti tomu, kdyby byl úhel příliš ostrý, hrozilo by buď vysazení pánve nebo záklon trupu při dokroku za překážku.

\[\text{Obr. 70 Úhel mezi stehnem přetahové nohy a trupem v okamžiku nad překážkou P1}\]

\[\text{Obr. 71 Úhel mezi stehnem přetahové nohy a trupem v okamžiku nad překážkou P2}\]

\[\text{Obr. 72 Úhel mezi stehnem přetahové nohy a trupem v okamžiku nad překážkou P3}\]
Dokrok za překážku je vlastně již součástí oporové fáze prvního kroku běhu mezi překážkami a také uzavírá rytmickou jednotku. Hlavním požadavkem pro dokrok za překážku je, aby překážkář nenarušil rytmus běhu, zbrzdil co nejméně postupnou rychlost, udržel si rovnovážnou běžeckou polohu, co nejdříve pokračoval v pohybu vpřed a měl první krok za překážkou dostatečně dlouhý. Aby překážkář předešel nežádoucímu záklonu a poklesu těžiště, provádí dokrok na špičku chodidla a po celou dobu oporové fáze se jeho chodidlo nedostane na patu. Zásadní význam pro dokrok má místo došlapu chodidla za překážkou vzhledem ke svislé těžnici. Dokrok musí být pod těžištěm, aby nedocházelo ke zbrzdění setrvačnosti. Optimální úhel dokroku je 90-100°. Při P1 je úhel dokroku probanda 79° (obr.73,74), při P2 76° (obr.75,76) a při P3 80° (obr.77,78). Proband má ramena nad dokračující špičkou, ale při dokru neprotlačil boky vpřed a dopustil se předklonu a vysazení pánve. Těžiště těla se po dokroku za překážku dostalo za vertikální osu. Při P1 (obr.79,80) a P3 (obr.83,84) se těžiště dostalo za horizontální osu o 10° a při P2 (obr.81,82) o 14°. Tato skutečnost zpomali horizontální rychlost běhu a prodlouží oporovou fázi po přeběhu překážky.

Obr. 73 Úhel dokroku P1

Obr. 74 Grafické znázornění úhlu dokroku P1
Obr. 75 Úhel dokroku P2

Obr. 76 Grafické znázornění úhlu dokroku P2

Obr. 77 Úhel dokroku P3

Obr. 78 Grafické znázornění úhlu dokroku P3
Obr. 79 Poloha těžiště těla při dokroku za překážku P1

Obr. 80 Grafické znázornění polohy těžiště těla při dokroku za překážku P1

Obr. 81 Poloha těžiště těla při dokroku za překážku P2
Jak již bylo zmíněno, úhel dokroku i poloha těžiště při dokroku za překážku mají vliv na délku oporové fáze po přeběhu překážky. Délka oporové fáze je uváděna v rozmezí 0,09 – 0,18 s. Při P1 byla délka oporové fáze probanda 0,10 s, při P2 0,12 s a při P3 0,11 s. I přes chybný úhel dokroku a nesprávnou polohu těžiště splňuje proband doporučené hodnoty. Můžeme ovšem sledovat, že chybná poloha těžiště, která byla nejpatrnější u P2 se promítla do délky oporové fáze, jenž byla právě u tohoto pokusu nejdelší.
Procentuální poměr vzdálenosti odrazu od překážky ku vzdálenosti dokroku za překážku se pohybuje mezi hodnotami 57 – 62% : 43 – 38%. Při P1 byl procentuální poměr vzdálenosti kroků 66% : 34%, při P2 67% : 33% při P3 68% : 32%.

Obr. 85 Průběh dráhy ramen P1
Obr. 86 Průběh dráhy ramen P2

Obr. 87 Průběh dráhy ramen P3

Obr. 88 Průběh dráhy kyčlí P1
Obr. 89 Průběh dráhy kyčlí P2

Obr. 90 Průběh dráhy kyčlí P3
5 ZÁVĚR

5.1 Závěr pro teorii

V první části naší diplomové práce charakterizujeme disciplínu běh na 110 metrů překážek. Sledujeme tuto disciplínu z biomechanického hlediska a provádíme rozbory pohybových dovedností, které ji determinují.

V druhé části se seznámitme s metodami zjišťování sledovaných ukazatelů. Sledujeme hlavní ukazatele úrovní techniky přeběhu překážky a dle nich se pokoušíme o zhodnocení zvládnutí techniky přeběhu překážky probanda a o vyvrácení nebo potvrzení stability technického provedení přeběhu překážky.

Pro splnění cílů naší práce je důležité sledovat tyto parametry: úhel dokroku před odrazem na překážku, vzdálenost odrazu na překážku, délka oporové fáze před odrazem na překážku, těžiště před odrazem na překážku, úhel náklonu trupu před odrazem na překážku, úhel mezi stehnem švihové nohy před odrazem na překážku, úhel vzletu, vertikální rychlost v okamžiku odrazu, délka letové fáze, délka překážkového kroku, dráha, kterou těžiště těla projde od okamžiku odrazu do okamžiku dopadu, výška těžiště těla v okamžiku odrazu, výška těžiště těla nad překážkou, zdvih těžiště těla nad odrazem na nejvyšší bod těžiště, pokles těžiště těla nad nejvyšší bod po došlap za překážkou, vzdálenost nejvyššího bodu těžiště těla nad překážkou, náklon trupu v letové fázi, úhel přetahové nohy-trupu (v okamžiku nad překážkou), vzdálenost dokroku za překážku, úhel dokroku po přeběhu překážky, úhel těžiště těla-dokrokové nohy při dokroku za překážku, délka oporové fáze po dopadu za překážku, procentuální poměr vzdálenost odrazu od překážky ku vzdálenosti dokroku za překážku.

Hlavní náplní naší práce je sledovat odchylky mezi doporučenými a námi naměřenými hodnotami a zjistit a vysvětlit, proč k nim dochází.

5.2 Závěr pro praxi

Cílem naší diplomové práce je vytvořit, popsat a analyzovat 3D model atletické disciplíny běh na 110 m překážek – přeběh druhé překážky a potvrdit stabilitu technického provedení přeběhu překážky. Druhým z cílů je porovnání technického provedení přeběhu
překážky s doporučenou technikou a naměřenými hodnotami z dostupné literatury. Zároveň si pokládáme otázku, do jaké míry se bude stabilita lišit a na kolik se technické provedení přeběhu překážky námi sledovaného probandu bude shodovat s doporučenou technikou a naměřenými hodnotami z dostupné literatury.

Největší odchylky mezi doporučenou technikou přeběhu překážky s námi sledovaným přeběhem se vyskytly v úhlu složení švihové nohy při dokončení odrazu. Doporučené hodnoty se pohybují v rozmezí 65°- 85° a proband dosahuje v námi sledovaném pokusu úhlu 100°. Další nesrovnalost nalezeme v úhlu dokončení odrazu, kde si můžeme všimnout vychýlení o 20°. Doporučené hodnoty jsou mezi 90°- 100° a úhel probanda je pouhých 70°. Velká odchylka je rovněž v celkové dráze, kterou projde těžiště těla v okamžiku odrazu do okamžiku dopadu. Doporučené hodnoty jsou 280 – 3054 cm a v námi sledovaném pokusu má proband celkovou dráhu těžiště těla pouze 253 cm. Odchylka je zapříčiněna malým složením švihové nohy při odrazu a zároveň chybým úhlem úhlem odrazu i vzletu, tyto hodnoty zde ovšem neuvádíme, protože jsou v námi tolerované odchylce od doporučených hodnot. V prostudované literatuře se uvádí, že zdvih těžiště probanda je 18 cm, čili i v tomto parametru došlo ke značné odchylce. Jak jsme již zmínili, celková dráha těžiště těla probanda je příliš krátká a od této skutečnosti se mimo jiné odvíjí i vzdálenost dokroku za překážku. Doporučené hodnoty jsou 120 – 140 cm, dokrok probanda je dlouhý 113 cm, je tedy příliš blízko za překážkou. Předposlední avšak velmi značnou, je odchylka od doporučených hodnot úhlu dokroku za překážku. Hodnoty by se měly pohybovat v rozmezí 90°- 100°, úhel dokroku probanda je pouhých 76°. Proband má při dokroku za překážku ramena nad dokračující špičkou, ale pánev zůstala vzadu a těžiště těla se dostalo o 14° za vertikální osu, což by se nemělo stát.

Z 26 sledovaných nezávislých proměnných se naměřené hodnoty námi sledovaného probandu, lišily v 7 případech. Znamená to, že technika přeběhu překážky námi sledovaného probanda se v 73 % shoduje s doporučenou technikou přeběhu překážky. Cíl práce byl splněn.

Stabilita provedení přeběhu překážky u jednotlivých měřených pokusů byla značná. Lišily se například ve vzdálenosti odrazu na překážku, při P1 227 cm, při P2 224 cm a při P3 233 cm. Od této skutečnosti se dále odvíjí rozdílná celková dráha letu těžiště těla (P1 264 cm, P2 253 cm, P3 264 cm), délka dokroku za překážku (P1 116 cm, P2 113 cm, P3 109 cm) a
délka překážkového kroku (P1 343 cm, P2 337 cm, P3 342 cm). Náklon trupu při odrazu na překážku se lišil nejvíce mezi P1 62° a P3 71°, P2 byl 65°. Těžiště těla v okamžiku odrazu bylo nejvýše u P1 119 cm, u P2 potom 109 cm a u P3 107 cm. Největší rozdíl mezi pokusy se objevil u zdvihu těžiště těla. Zatímco P2 18 cm a P3 20 cm byly celkem vyrovnané, zdvih těžiště u P1 byl pouhých 8 cm, pokus byl tedy z tohoto hlediska nejzdařilejší. Náklon trupu v letové fázi. Při P1 byl proband příliš napřímen, úhel byl 45°, při P2 34° a při P3 36°. Úhel přetahová noha - trup - v okamžiku nad překážkou – při P1 93° a při P2 i P3 shodně 86°. Stabilita technického provedení přeběhu překážky se v měřených pokusech nijak zvášť nelišila, ze tří měřených přeběhů, vždy dva téměř totožně korespondovaly.

Z 26 sledovaných nezávislých proměnných se měřené pokusy lišily v 9 případech, což znamená, že míra stability mezi jednotlivými měřenými pokusy je 65 %. Cíl práce byl splněn.

Při běhu by se měl proband snažit více protlačit boky vpřed, ovšem vyvarovat se současného záklonu trupu. V tréninku by se měl proband zaměřit především na zlepšení složení švihové nohy při útoku na překážku. Vhodná jsou cvičení v chůzi, kdy je důraz kladen na ostrý zdvih kolene švihové nohy, náklon trupu a protlačení boků vpřed a prudké zašlápnutí za překážku směrem dolů a vzad, bez následného záklonu trupu. Dalším z vhodných cviků, je nácvik útoku švihové nohy na překážku proti zdí. Překážkář má před zdí ve vzdálenosti cca 0,5 m umístěnou překážku, ze stoje provádí útok na překážku (snaha o co největší složení švihové nohy) a útok zakončí zapřením švihové nohy o zeď. Samozřejmě by mělo být zařazení kolesa do každého provádění atletické abecedy.

67
Shrnutí

Práce je zaměřena na biomechanickou analýzu stability techniky přeběhu překážky u vrcholového atleta a na porovnání techniky přeběhu překážky vrcholového atleta s doporučenou technikou z dostupné literatury. Je určena pro trenéry, kteří mají zájem rozšířit své poznatky o možnosti využití moderní techniky při analýze technického provedení pohybu, a především pro sledovaného probanda a jeho trenéra, které by mohla upozornit na nedostatky v technice provedení přeběhu překážky. Důraz klademe na použití nástroje SIMI pro 3D modelování pohybu.

Resumé

This work is focused on biomechanic stability analysis of professional top athlete in overrun hurdle and on comparasion technique of this athlete with recommended pure technique on available literature source. It is recommended for trainers and persons who want to familiarize their knowledges about possibility used modern technology for analyse sport technique. We accentuates to use SIMI Motion for 3D analysis of motion. It is apparatus, which can find a shortcoming in sport technique.
Literatura

69

25. A biomechanical analysis of male and female intermediate hurdlers and steeplechasers by Laurence Bollschweiler

26. www.athleticscoaching.ca

27. www.texastrack.com/coaching_article

28. www.trackandfieldnews.com
Příloha

Příloha č. 1 Klíčová slova v textu

Těžiště - střed hmotnosti těla (těžiště) je bod, o kterém předpokládáme, že je v něm soustředěna hmotnost celého těla. Těžiště lidského těla není pevný bod umístěný v určité části těla a nemusí vždy nutně ležet uvnitř těla. Jak se mění poloha těla, mění se i umístění těžiště těla.

Úhel dokroku před odrazem na překážku - úhel, který svírá těžiště těla s místem dokroku a běžeckou dráhou.

Úhel odrazu – úhel, který svírá v dokončené fázi odrazu těžiště těla s místem opory a běžeckou dráhou.

Úhel dokroku za překážkou - úhel, který svírá těžiště těla s místem dokroku a běžeckou dráhou.

Úhel vzletu – úhel pod kterým se těžiště těla překážkáře dostává do letové fáze. Úhel vzletu vypočítáme, když od 90° odečteme úhel odrazu.

Náklon trupu I. – měřena odchylka trupu od horizontálu v oporové fázi

Náklon trupu II. – měřena odchylka trupu od horizontálu v letové fázi

Horizontální rychlost – rychlost, kterou se překážkář (jeho těžiště) pohybuje směrem vpřed

Vertikální rychlost – rychlost, kterou se překážkář (jeho těžiště) pohybuje směrem vzhůru

Letová fáze překážkového kroku – začíná po posledním kontaktu odrazové nohy s podložkou a končí při prvním kontaktu švihové nohy s podložkou po přeběhnutí překážky. Úkolem letové fáze je účelně přeběhnout překážku, připravit vhodné podmínky pro dokrok za překážkou a usměrnit rotační moment z odrazu na překážku.

Oporová fáze překážkového kroku – začíná dokrokem a končí posledním kontaktem odrazové nohy s běžeckou dráhou.