Muscle hypertrophy: theory, application and periodization

Something about me

Jan Cacek

- my sports career:
 - runner 800 a 1500 m, soccer player, ice hockey player
 - 3 children (17 14 11 years old)
- Vice dean for research and science FSpS MU
- Chairman of the National Association of Strength and Conditioning Trainers of the Czech Republic
- Head of division of Track and Field FSpS MU
- Study program guarantor "Personal and Strength and Conditioning Trainer"
- Chief editor of the Journal Studia Sportiva
- Member of the Methodological Committee of the Czech Athletic Federation and Rowing federation
- Track and Field and Strength and Conditioning trainer
 - Coach of many elite athletes from different sports disciplines

Determinants of strength and power

total amount and composition of muscle fibers
muscular architecture
hormonal profile
polymorphism
neuromuscular factors

Polymorphism

- Interleukin 6 (IL-6) gene -174 G / C
 - studies demonstrate a pivotal role in post-exercise hypertrophy processes (Ruiz, 2010)
 - power athletes had a higher incidence of G.
- Gene for hypoxia-induced factor 1a (HIF1A) Pro582Ser
 - detection of HIF1A variant Pro582Ser in Russian power athletes (weightlifters, wrestlers) at regional and national level vs control group

Gene for creatine kinase muscle isoform (CKM) - rs8111989 A / G

Alea G is associated with power output. Significant incidence was found in power-oriented athletes (Chen, 2017).

Angiotensinogen Gene (AGT) - Met235Thr

The AG2 polymorphism of the Met235Thr gene can be considered a genetic determinant of strength, as evidenced in several investigations, for example, in jumpers, sprinters, or weightlifters, where more significant Met235Thr was observed (Zarębska et al., 2016).

itric oxide synthase gene (NOS3) -786 T / C

- T allele is associated with power output (Drozdovska, 2013). Drozdovska (2013)
- significantly higher T allele frequencies in 53 Spanish elite power athletes (jumpers, sprinters)

Neuromuscular factors determining muscle strength (FRY a kol.1994)

- 1. Recruiting motor units
- 2. Rate coding
- 3./ Intramuscular activation
 - . Inter-muscle activation
- 5. Use elastic energy and reflexes
- 6. Neural inhibition
 - **Type of motor units**
 - Biomechanical and anthropometric factors
- 9. Hypertrophy

The relationship of force and velocity shortening

http://www.mcmillanspeed.com/2015/05/a-coaches-guide-to-strength-development.html

 Cooper, 2018 (https://www.12amlabs.com/blogs/news/shock-method-plyometric-trainingfor-elite-ath/eticism)

Neuromuscular activation training

Time (ms)

Explosive, ballistic strength training increases maximal strength but especially develops a quicker force development. Heavy resistance strength training develops especially a higher, maximal force (Häkkinen & Komi 1985; RFD rate of force development).

Henneman's principle of size

Poradie zapojenia motorických jednotiek v závislosti na intenzite

Hypertrophy

- Definition increasing the cross-section of muscle fibers
- Sarcoplasmic and Myofibrillary
- Zatsiorsky (5 60s)
- <u>https://andersnedergaard.dk/en/kropblog/sarcoplas</u> <u>mic-hypertrophy/</u>

Sarkoplas. hypertrophy

2

- Research shows TBW increase of about 3 I / 12 weeks (beginners)
- Intracelular = about 1 kg (in sarkoplasmø)
- muscles increase only 4% in 12 weeks
- But in the body up to 3 liters of fluid outside the extra muscles - **where are they?**

Ribeiro et al. 2014

Figure 1. Total body water, intracellular and extracellular water in men and women (Panels A, C and E), and whole sample (Panels B, D and F) at different moments of the study. *P < 0.05 vs. Pre-training. There was no significant sex by time interaction (P > 0.05). Data are expressed as mean \pm standard deviation.

Heavy loads: greater ↑ in strength and RFD than moderate loads?

How was this

measured?

STUDY OBJECTIVE

To compare the effects of long-term strength training with the same number of sets of either heavy (3 – 5RM) or moderate loads (10 – 12RM) on changes in force and cate of force development (RFD), in strength-trained males

MEASUREMENTS

 Peak force and RFD in the isometric midthigh pull (IMTP) with a force plate; bar speed in pre-training 1RM squat and 1RM bench press, with a linear position transducer

Training: 4 workouts per week for 8 weeks. Each workout involved 4 sets of 6 exercises. Heavy group did 3-5 reps per set with 90% of 1RM, with a 3-minute rest between sets. Moderate group did 10-12 reps per set with 70 % of 1RM, with a 1-minute rest between sets.

WHAT DOES THIS MEAN?

RFD *tended* to \uparrow in the heavy load group (peak RFD \uparrow by 16%) but it *tended* to \downarrow in the moderate load group (peak RFD \downarrow by 7%)

Training with heavy loads *tended* to cause greater \uparrow in maximum strength and RFD compared to moderate loads; the difference was most marked for RFD. Bar speed \uparrow similarly in both groups.

Mangine, G. T., Hoffman, J. R., Wang, R., Gonzalez, A. M., Townsend, J. R., Wells, A. J., & LaMonica, M. B. (2016). Resistance training intensity and volume affect changes in rate of force development in resistance-trained men. *European Journal of Applied Physiology*, 1-8.

Effect of different forms of strength training on Fmax and RDF

https://www.strengthandcondi tioningresearch.com/perspect ives/strength-trainingsprinting/

> Hypertrophy or maximum strength

3RM vs 10RM

HYPERTROFICAL TRAINING

Manipulable Variables - Influence on Hypertrophic Processes

- the weight of resistence the load
- number of repetitions
- r/umber/of sets
 - rest/fime between sets
 - exercise velocity
 - type of rest

Functional hypertrophy Vanderka (2016)

Zväčšenie priečneho prierezu (hypertrofia)	Prevládajúci rozvoj	Intenzita z 1RM [%]	Počet [n] opakovaní	
		100	1	
	Maximálna sila	95	2	
		93	3	
Funkčná hypertrofia		90	4	
r unkena nyperti ona		87	5	
	Vytrvalosť v sile	85	6	
		83	7	
		80	8	
		77	9	
		75	10	
Nefunkčná hypertrofia		70	11	
	and the second second	67	12	
	Vytrvalosť [°]	65	15	
?		60	20	
		50	30	
		40	50	
		30	100	

Assessment of exercise intensity

- by calculating the training volume
- calculating training intensity
 - Intensity vs Effort
 - Background 1 RM

Intensity and velocity when exercise to failure

- Decrease in intensity
 - decrease in repetition rate in series
 - reducing the amount of resistance between sets at the same number of times
 - reducing the number of repetitions between sets with the same resistance

Reps left Average 60% 65% 70% 75% SD CV in the tank (m/s) 9 0.54 0.51 0.50 0.49 0.51 0.02 4% 8 0.52 0.51 0.47 0.49 0.49 0.02 4% 7 0.50 0.50 0.48 0.47 0.49 0.02 4% 6 0.47 0.01 0.48 0.48 0.46 0.45 3% 5 0.49 0.47 0.46 0.44 0.46 0.02 5% 4 0.47 0.46 0.45 0.42 0.45 0.02 5% 3 0.47 0.43 0.41 0.43 0.02 5% 0.43 2 0.44 0.44 0.43 0.39 0.42 0.02 6% 1 0.39 0.40 0.44 0.38 0.40 0.02 6% 0 0.32 0.34 0.32 0.33 0.31 0.01 3%

Table 4. Average concentric velocity (m/s) for the repetitions in reserve during the back squat.

This table is adapted from [24] and [5].

https://www.scienceforsport.com/velocity-basedtraining/?fbclid=IwAR2sIYHLNdDEQ4F2dqXS64BaMtN4Zbz1p U6RnONzBIkKt72xL0076I8XjlU

- Metabolic Fatigue (LA increases linearly)
- Neuromuscular fatigue (increases in the shape of a curve)
 - To increase muscle mass (not necessarily related to body fluid)
 - it is not necessary to practice to failure, on the contrary,
 - it is necessary to exercise in large volume.

??? Is this also true for bodybuilders ???? = "Sarcoplasmic hypertrophy" https://www.scienceforsport.com/velocity-basedtraining/2fbclid=hyAP2sIXHI NdDEO/E2dgXS64BgAA

https://www.sciencetorsport.com/velocity-basedtraining/?fbclid=IwAR2sIYHLNdDEQ4F2dqXS64BaMtN4Zbz1p U6RnONzBlkKt72xL0O76I8XjIU

Concentric and eccentric strength

- Do we develop both components?
- Do/we know how to develop this types of strength?

Absence of research!

Concentric versus accentric training

https://www.strengthandconditioningresearch.com/perspectives/strength-training-sprinting/

Eccentric training preferentially increases eccentric strength?

STUDY OBJECTIVE

To compare the effects of long-term strength training programs involving either eccentric (ECC) or concentric (CONC) muscle actions on changes in muscular strength and size, in strength-trained males How was this measured?

Training: 2 - 3 workouts per week for 12 weeks, using 3 - 5 sets of 4 - 8 reps of a pulley-based biceps curl. The CONC group moved the weight with maximal speed, while the ECC group used a 3 - 4 second duration.

MEASUREMENTS

CONC biceps curl 1RM, in the pulley machine
ECC biceps curl 1RM, in the same pulley machine (duration of ≥3.5 seconds)
Ratio of ECC to CONC 1RM strength
Maximum elbow flexion angular velocity at 30, 50, 70, and 90% of pre-training concentric 1RM
Anatomical cross-sectional area of the elbow flexors with computed tomography, and changes in fiber type by muscle biopsy and subsequent ATPase histochemistry (data not shown)

Eccentric training increase **eccentric strength** where than concentric training, and concentric training *tended* to increase concentric strength by more than eccentric training. This caused an \uparrow in the ratio of ECC to CONC 1RM after eccentric training but a \downarrow after concentric training.

Vikne, H., Refsnes, P. E., Ekmark, M., Medbø, J. I., Gundersen, V., & Gundersen, K. (2006). Muscular performance after concentric and eccentric exercise in trained men. *Medicine & Science in Sports & Exercise*, 38(10), 1770-1781.

Structural adaptation

Eccentric training increases the amount of muscle mass

- causes an increase in the cross-section of muscle fibers associated with the growth of the number and cross-section of myofibrils - the role of satellite cells
- It is not yet known what volume of work, exercise intensity and rest intervals are optimal for hypertrophy
 - Wernbom et al., In. Brady 2012

Phases Completed	Hypertrophy per Day
Concentric	0.06%
Eccentric	0.03%
Concentric & Eccentric (Quality Reps)	0.12%

 Baroni, B. M. et al (2014)

	Strength $\Delta\%$ (pre- to post-training)			Strength	$\Delta\%$ (per train	ing session)
	ECC	ISO	CON	ECC	ISO	CON
Baroni et al. [107]	↑ 29%	↑ 24%	↑ 15%	↑ 1.38%	↑ 1.14%	↑0.71%
Baroni et al. [108]	_	_	_	_	_	_
Ben-Sira et al. [109] Stoup	_	_	† 16%	_	_	↑1.00%
 B group 			† 23%	_	_	↑ 1.44%
Blazevich et al. 100	† 39%	_	† 16%	† 1.30%	_	† 0.53%
Blazevich et al. [102]	-	↑ 10%	-	-	† 0.33%	_
Franchi et al. [119]	<u></u>	↑ 11%	_	↑ 1.47 <i>%</i>	† 0.37%	-
Guilhem et al. [120] – A group	↑15-47% ^{VD}	↑ 16%	ns-↑ 18% ^{V D}	† 2.35%	^ 0.80%	† 0.90%
 B group 	ns-↑ 23% ^{VD}	↑ 14%	ns-†8% ^{VD}	↑ 1.15%	10.70%	↑ 0.40%
Higbie et al. 93	† 36%	_	17%	† 1.20%	_	† 0.23%
Hortobagyi et al. 94	† 116%	<u></u>	ns	† 3.22%	↑ 1.25%	**
Hortobagyi et al. [95]	<u></u>	† 30%	ns	↑ 1.83%	↑ 1.30%	**
Housh et al. [113]	<u>†</u> 29%	-	-	↑ 1.61%	-	-
Mayhew et al. 92	-	† 8%	-	-	† 0.67%	-
Melo et al. 103	† 20%	-	-	† 0.83%	_	-
Miller et al. 99	<u>†</u> 27%	-	† 25%	↑ 0.45%	-	↑0.42%
Nickols-Richardson et al. [101]	<u>†</u> 29%	-	† 15%	↑ 0.48%	-	† 0.25%
Poletto et al. 108	<u></u>	-	-	↑ 3.42%	-	-
Raj et al. [118]	-	†7%	↑ 5–11% ^{V D}	-	† 0.22%	↑ 0.34%
Raue et al. 116	-	-	ns	-	-	**
Reeves et al. 117	↑9–17% ^{VD}	ns	ns-† 33%	↑ 1.41%	**	**
Rocha et al. 106	ns-↑ 59% ^{VD}	<u>†</u> 24%	ns	↑ 1.69%	† 0.69%	**
Santos et al. [105]	↑ 17-27% ^{VD}	† 16%	-	↑ 2.25%	↑ 1.33%	-
Schroeder et al. [115] – A group	-	-	† 19%	-	_	† 0.59%
 B group 	-	-	<u></u>	-	_	† 0.75%
Seger and Thorstensson [97]	ns-↑ 43% ^{VD}	-	ns	↑ 1.43%	-	**
Seger et al. 96	ns-↑ 34% ^{VD}	ns	ns-↑ 8% ^{VD}	† 1.13%	**	† 0.27%
Smith and Rutherford [110]	-	ns-† 31% ^{AD}	ns-† 21% ^{V D}	_	† 0.52%	† 0.35%
Sorichter et al. [112] – A group	_	ns	-	_	**	_
 B group 	_	† 9%	_	_	↑ 0.08%	_
Spurway et al. 114	↑18–34% ^{VD}	ns	ns-↑ 20% ^{V D}	† 1.90%	**	† 1.10%
Symons et al. [98]	<u>↑</u> 26%	<u>†</u> 25%	† 10%	† 0.72%	↑ 0.69%	† 0.28%
Tomberlin et al. 91	† 53%	-	ns	↑ 2 . 94%	-	**
Weir et al. [111]	<u>†</u> 29%	ns-† 15% ^{AD}	-	↑ 1.21%	↑ 0.63%	-

Eccentric, isometric and concentric strength gains of knee extensor muscles in eccentric training studies

ECC = eccentric tests; ISO = isometric tests; CON = concentric tests; ns = not significant; V^D velocity-dependence; A^D angle-dependence; M = male; F = female; ** not significant values or not informed values of strength increments in pre- to post-training were not considered for analysis in per training session changes; obs.: when more than one velocity was tested, the higher strength increments were used to calculate the strength increment per training.

Perodization of strength development

Specificity

- Structure of strength performance
- Velocity
- Type of contraction
- Force vector
- Muscle group
- Power peak in relation to range of motion (angle) and speed
- Stability (groud)
- Range of motion
- Metabolic coverage
 - One vs multi-joint exercise

https://www.strengthandconditioningresearch.com/pe rspectives/strength-training-sprinting/

Strength is specific in many different ways. This has important implications for sports-specific and functional training

PRACTICAL IMPLICATIONS

Strength is specific to the contraction mode, velocity, point on the strength-endurance continuum, range of motion, stability level, force vector, external load type, and muscle group used in training. This is key for preparing athletes for sport, as well as for ↑ function in injured or elderly people.

Derived from: Beardsley, C. Why are strength gains specific? (and why does it matter?). *Strength & Conditioning Research*. This version retrieved on 5 June 2017 from: <u>https://www.strengthandconditioningresearch.com/perspectives/just-get-strong-is-wrong/</u>

Strength & Conditioning Research

Fmax and speed

Type of periodization

Thank you for your attention