DIABETES MELLITUS

- **SACCHARIDS**
 - Utilization of gl. + glycogenolysis \rightarrow hyperglycemia \rightarrow glycosuria \rightarrow osmotic diuresis.
 - Na, K \rightarrow hemococoncentration (polydipsia)
 - Hypotension \rightarrow anurie

- **Glykosylation of proteins**
 - Microangiopathy
 - Neuropathy, retinopathy, dg glycosylated Hb

- **Lipids**
 - Lipogenesis \rightarrow lipolysis \rightarrow lipemia \rightarrow ketogenesis \rightarrow acidosis (Kussmaul respiration)
 - \rightarrow Na \rightarrow dehydration

- **PROTEINS**
 - Catabolism \rightarrow gluconeogenesis \rightarrow loss of N in urine...
 - Cell dehydration

Glucose transporters

- Glut T1 – steady state – cerebral vessels
- Glut T2 – concentration dependent on glucose – intestine, β cells of pancreas
- Glut T3 – steady state – neurons
- Glut T4 – internalisation – migration – muscle + fett tissue

Diabetes mellitus type I

IDDM (insulin dependent)...
- Insulinopenia, juvenile
- Damage of β cells, genetic disposition, autoimmune, th. insulin

Diabetes mellitus type II

NIDDM (non insulindependent)...
- Insulinopeniathor, resistant to ln. – no response of cells (1 Glut T4)...
- Change in receptors for l...
- Disturbance of fusion of Glut T4 with membrane, β cells ? secretion till exhaustion

Disposition of 26% of population
DIRECT ↑ OF THERMOGENESIS

- **BROWN FAT** (some rodents, newborns; color by big amount of mitochondria with cytochrome enzymes) - expresses a mitochondrial **THERMOGENIN** (UCG uncoupling protein, that dissociates oxidative phosphorylation from ATP generation); ↑ β3 receptors take part in it;
- UCG is H+ channel, protons generated by electron transport system enter the mitochondria through thermogenin instead of taking part in ATP-synthesis → ↑ circulation of H+ → ↑ energy is not incorporated in ATP; free fatty acids open UCG channels because of activated lipolysis of triacylglycerol by adrenalin (also consuming energy for phosphorylation of protein kinase)

CIRCULATORY AND RESPIRATORY RESPONSE TO ↑ METABOLISM

- ↑ VENTILATION
- ↑ CARDIAC OUTPUT - TACHYCARDIA AND ↑ CONTRACTILITY (↑ pulse pressure),
- CUTANEOUS VASODILATION (thermoregulation) → ↓ PR
- → hypercirculation and hypotension

VITAMINS

- ↑ Formation of vit. A from carotene in liver
- ↑ consumption of vit., ↓ resorption of B 12

GROWTH, DEVELOPMENT

- CNS development of synapses, myelinisation → I thyroidal hormones - mental retardation, replacement therapy till 6 M (later irreversible changes)
- Bones - permissive effect for STH, hypothyreosis - dwarf
- Metamorphosis in amphibian tadpole-frog (axolotl, Laufberger)

GOITER

- Chronic treatment by TSH - hypertrophy - an enlargement
- ENDEMIC - decreased iodine intake in food
- EU...HYP... - HYPOTHYREOIDISM
- Low thyroid h. → I TSH
- Antithyroid substances
- Inhibition of accumulation of iodine as perchlorate, nitrate, thiocyanate
- Inhibition of iodination of thyrosin - thiouracil, excessive I I

HYPOTHYREOIDISM

- Etiology: congenital, iodine in water, autoimmune thyreoiditis - Hashimoto's goiter
- In children cretinism, bone growth delayed - dwarf
- In adults: ↑ BMR, cold intolerance - hypothermia, ↑ neuromuscular excitability, voice is husky and slow, sleepy, loss of memory, depression, weight increase, hyperlipidemia, hypercholesterolemia, ↓ CO and BP, deposit of mucopolysaccharides in skin - myxedema

HYPERTHYREOIDISM

- Etiology: thyroid-stimulating immunoglobulins (TSig thyreotoxicosis - Graves' disease
- Symptoms: ↑ BMR, hyperreflexia, tremor, muscular weakness, insomnia, anxiety, hyperphagia and weight loss, heat intolerance, ↑ HR and BP, ↓ and ↓ PR (cutaneous vasodilation), ↑ reaction time, exophthalmos - swelling of the eye muscle, accumulation of mucopolysaccharides
- High-output failure tachycardia and ↓ BP - ↑ CO
PLASMATIC TRANSPORT of T3 and T4

- *Bound to proteins <-> free*

 Dynamic balance

 Tyrosin binding globulin (TBG) (2/3)

 - prealbumin (TBPA)

 Serum albumin HSA (capacity, affinity)

T4 in cells deionized to T3 - higher activity

(Transformation 1 during starvation - 1 x T3 with low activity)

Excretion -> liver conjugated with sulfates, glucuronides

EFFECT OF T3 a T4

- Activation of thyroid hormone receptors in nucleus regulates transcription of genes

 - T3 is more effective than T4 (80% of effect): 50x more T4, but more bound to plasma proteins, deiodinated in cells, THR in nucleus have 10x 1 affinity to T3. (conversion of T4 to T3 1 during starvation, illnesses -> spare of E at unchanged level of TSH)

 - 1 Basal metabolism

 - 1 Cu consumption

 - 1 Heat production

 - Growth and development

 - Differentiation, metamorphosis

 - ↓ of reaction time

SYNTHESIS OF Na-K PUMP

- Muscle, kidney, liver

 - Incorporation of Na-K pump in membrane

 - Consumption of O2 for activity of pump

 - Activity of pump compensated by leak Na a K

 - Cycle of cations whereby energy is consumed without useful work

SYNTHESIS OF ENZYMES

- **Carbohydrates**: ↑glukoneogenesis, ↑glykogenolysis, glycemia buffered by ↑insulin, ↑resorption of glucose - postprandial hyperglycemia

- **Proteins**: ↑proteolysis in muscles together with ↑proteosynthesis, during hyperthyroidism neg.

- **N** bilance, uraturia, kaliuria, calciuria, creatinuria, weakness

- **Lipids**: ↑lipolysis, ↑number of receptors for LDL in liver → ↓cholesterolemia

ADRENERGIC STIMULATION HEART

- **Beta receptors** - synthesis in heart, muscle, fat tissue - tachycardia

Therapy - Beta blockers

- **Expression of gene for Alfa myosin heavy chain in myocardium**: ↑contractility and rapid fiber shortening