MASARYK
UNTVERSITY

FACULTY OF INFORMATICS

RapCor Support

Master’s Thesis

MICHAL HALA

Brno, Spring 2022

MASARYK
UNTIVERSITY

FACULTY OF INFORMATICS

RapCor Support

Master’s Thesis

MICHAL HALA

Advisor: doc. Mgr. Pavel Rychly, Ph.D

Department of Machine Learning and Data Processing

Brno, Spring 2022

Declaration

Hereby I declare that this paper is my original authorial work, which
I have worked out on my own. All sources, references, and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Michal Hala

Advisor: doc. Mgr. Pavel Rychly, Ph.D

iii

Acknowledgements

I would like to thank my supervisors doc. Mgr. Pavel Rychly, Ph.D and

doc. PhDr. Alena Polickd, Ph.D. for guidance and help they provided
whenever it was needed.

iv

Abstract

RapCor is a specialized corpus for the French language comprising
entirely of rap songs. Over the past several years, many tools were
created for management and annotation of the songs.

This thesis has set four main goals: first, to examine available part
of speech taggers (TreeTagger, FreeLing, UDPipe2) and choose one
for the purposes of RapCor; second, to make the work of annotators
easier by implementing a new vertical format, which will shorten the
time needed for the annotation; third, to combine the new tagger and
new vertical into a new pipeline; fourth, to improve overall quality of
life of the RapCor annotators by updating existing tools or creating
new ones to solve the matters of the day.

All four goals set have been successfully achieved. UDPipe2 was
chosen as the new part of speech tagger and a model was trained
using the UD French GSD corpus. New vertical format was created,
including the new dictionaries. Finally, both have been combined into
the new French pipeline.

Keywords

NLP, corpora, morphological analysis, part of speech tagger, RapCor,
FreeLing, UDPipe

Contents

Introduction

1 Natural Language Processing

5.2.3 Assessment

2 Part of Speech Tagging
2.1 Challenges of POStagging
22 Typesof POStaggers
23 Training
23.1 Rule-Based Approach
232 Neural Approach
3 Corpora
3.1 Universal Dependencies (UD)
311 UDTagset
312 UDFrenchGSDCorpus
4 RapCor
41 RapCorSize
42 RapCorPipeline
421 Spreadsheets
422 Processingthetexts.
43 RapCorCodeSystem
44 RapCorDataFormats.
441 OIld Vertical Format.
442 New Vertical Format
5 Comparison of POS Taggers
51 TreeTagger
511 Example
512 frpipe o o
513 Assessment
52 FreeLing
521 Inner Structure
522 Exampleo 0oL

Vi

5.3

5.4

UDPipe
531 Model
532 CoNLL-Uformat
533 Example
534 Assessment
Comparison

6 New Developments

6.1
6.2

6.3

6.4

New Tagset.
New fr pipe o
621 NewTagger
6.2.2 Tagging Pipeline
6.2.3 Post-processing
New Vertical
6.31 Newformat
6.3.2 Automatic Filling of Columns
633 Summary
Other
6.4.1 Search for Substandard Tags
642 TablesofCodes
6.4.3 DictionaryUpdate
6.44 Updating the Website
6.4.5 Evaluating the New Tagger

7 Conclusion

Bibliography

Index

A An appendix

Al
A2
A3
A4
A5
A6

create_tsv_dictionary.py
compile_xIsx.py and parse_htmlpy.
fr pipe v2 L
generate_codes_tsvpy L
Utils o e
UDPipe2

44

47

48
48
48
49
49
49
50

vii

List of Tables

2.1

3.1
3.2

4.1
4.2
4.3
4.4
4.5

51
52
53
54
55
5.6

6.1
6.2
6.3
6.4
6.5

Tagged English sentence Dogs ran around in the rain.

UDtagset
GSD featureset

RapCor exploratory analysis
MS Word text coloring table
Old vertical textcontents
Old vertical text coloring
New vertical text coloring

TreeTagger tagged sentence Le vie est un vrai film d’action. .
FreeLing tagged sentence Le vie est un vrai film d’action. . .
CoNLL-Ulegend
UDPipe2 example, part1
UDPipe2 example, part2
UDPipe2 example, part3

New tags with their features
New tagset features
Accuracy of thenewmodel
Agreement of thetaggers
Ten most common tag disagreements

viii

List of Figures

2.1

4.1
4.2

51

52

53

54

Brill Tagger learning schema

RapCor song length frequency analysis
Example of the new vertical

Dependency tree of sentence Le vie est un vrai film d’action.
as reconstructed from table5.6
Comparison of the taggers on sentence Bienvenue dans le
zoo des hommes Paname City. showcasing the synchroniza-
tion of the vertical text.
Comparison of the taggers on sentence Qu’ on a du temps
dpredreetmerde.
Statistics of comparison for the song AAAO1

ix

Introduction

RapCor is a corpus of francophone rap songs, which is being created
by the staff and students of the Faculty of Arts, Masaryk University.
The project aims to collect, catalogue and analyse rap songs of mainly
French and Quebecois artists. Most of the manual work spent on
annotating the corpus is done by the students, providing them with
experience of linguistic work, while being significantly more intriguing
then annotating heaps of newspaper texts or Wikipedia articles.

This work has one clear goal, to ease the work of the annotators,
and improve the overall quality of their work by updating the tools
used in the process.

The first goal is to choose a new part of speech tagger to be used in
the RapCor pipeline. TreeTagger, which is being used, is an obsolescent
software, and there is a plenty of modern open source taggers waiting
to be used. In this work, FreeLing and UDPipe have been examined,
and a successor to the TreeTagger has been chosen. Choosing the new
tagger will provide more accurate pre-annotation for the users by
including a more descriptive morphological tagset.

The second goal is to ease the work of the annotators by imple-
menting a new vertical format used in the corpus. In the previous
version, the annotators were burdened by a dozen of tasks associated
with creating the vertical. The new version has most of the content
pre-filled, and user must only check the veracity of the data.

The third goal is to put the tagger and new vertical together, creat-
ing a new French pipeline for generating vertical text, while keeping
most of the existing functional programs similar in use to their prede-
cessors.

The fourth goal is to improve the overall quality of life of the
RapCor annotators by updating any existing software, or creating new
one to solve the matters of the day.

This thesis was written as a project of the NLP Centre of Faculty of
Informatics, Masaryk University, and the text of the work is published
under the Creative Commons Zero (CC0) license.

1 Natural Language Processing

Natural Language Processing (NLP) is a field of study utilizing com-
puter science to process the natural languages (such as English, French,
or Czech), in order to create software able to help humans (or other
software for that matter) with all sorts of linguistic tasks, such as
spell checking, translation, information retrieval, question answering,
automatic correction, and many others.[1] [2]

Natural languages are alien to the computers, because as opposed
to formal languages, which computers understand, are full of excep-
tions, hard to describe rules, and ambiguities in basically all layers of
language. Attempts to translate natural languages to formal languages,
for example using propositional, first order, or even intentional logic,
have never been truly successful. And so the processing of the lan-
guage by analysing each layer of language in detail is the way to make
computers work with human languages.

Analysis of the natural language can be typically split into several
phases, each corresponding to a layer of the language. Each layer is
processed differently because of the nature of the data, and wanted
results, utilizing a knowledge from a wide array of scientific fields.

This process is often split into five stages. First is the phonetic
analysis[3], which studies the sounds of a language, and the two
most prominent tasks are speech recognition and speech generation.
Then follows the morphological analysis[4], which studies individual
words, how they are created, from which parts they constitute, how
they flex, and how they can be categorized. On that follows the syntac-
tical analysis[5] which tries to capture the relationship between words
in a sentence. The goal of such analysis is the ability to tell whether a
sentence is correct with respect to a language’s grammar. A typical
output of semantic analysis is a syntactic tree depicting the dependen-
cies in a sentence. Then semantic analysis[6] can be performed, with
attempt to disambiguate the meaning of a sentence. And finally the
pragmatic analysis[7] tries to find the meaning of an utterance in a
wider context.

This work mostly concerns itself with the morphological analysis
of the natural languages. The unit of the morphological analysis is the
morpheme, defined as the smallest unit of a language able to carry any

1. NATURAL LANGUAGE PROCESSING

meaning. Morphemes are grouped together creating words. The most
typical tasks are morphological disambiguation, and lemmatization.

The goal of morphological disambiguation, also called part of
speech tagging, is the process of assigning a part of speech tag to
the given word, typically in the context of its sentence. The part of
speech tag can comprise simply of the morphological category (such
as noun, verb, adjective), or from the more descriptive features (such
as number, person, tense, gender) which can be used to provide further
information about flexible word forms.

Lemmatization is the process of finding the base form of a given
word. What the definition of base form, or lemma, is can differ from
language to language, but it typically depends on the features of
the particular part of speech. For example, the lemma of a noun is
commonly a singular number (dogs — dog) or nominative case if
the language has cases; the lemma of a verb is typically an infinitive
(bought — buy); and so on.

Both morphological disambiguation and lemmatization vary wildly
based on the language in question. For less inflectional languages, such
as English, the lemmatization can be immensely easier than for highly
inflectional languages like Czech. The part of speech tagging is in-
stead quite a similar task, at least for the Indo-European languages.
Assigning the features also depends heavily on a language, because
of the different feature sets.

2 Part of Speech Tagging

Part of speech (POS) tagging is the process of specifying a part of
speech, such as noun, verb, adjective, etc., of words in a text, which
is an important part of many NLP pipelines. POS taggers typically
operate on the sentence level of the document, and often utilize parsers
and tokenizers, which can provide further insight into the grammatical
and sometimes even semantic composition of the sentence.[8]

POS tagger assigns a POS tag (typically an abbreviation) chosen
from a tagset, which is specified by the language of the document. For
example, in English we distinct the following parts of speech: noun,
verb, adjective, adverb, pronoun, preposition, conjunction, interjec-
tion, and article; which we can describe using the following tagset:
NOUN, VERB, ADJ, ADV, PRON, PREP, CONJ, INT]J, DET, sometimes
including tags for numbers (NUM), punctuation (PUNCT), and oth-
ers.

POS taggers discussed in this work also assign each word a lemma,
or a base form of the word, for verbs typically infinitive, for nouns
singular (nominative if the language has noun cases), etc. In English
the lemmatization is a rather straightforward process, for French,
however, is the process a bit more complex, since its parts of speech
are more inflectional.

In table 2.1 is a typical output of a POS tagger on English sentence
"Dogs ran around in the rain.".

Table 2.1: Tagged English sentence Dogs ran around in the rain.

Word Lemma | Tag
Dogs dog NOUN
ran run VERB
around | around | ADV
in in PREP
the the DET
rain rain NOUN
PUNCT

2. PART OF SPEECH TAGGING

2.1 Challenges of POS tagging

Among the typical problems encountered, when tagging a text, the
following stand out:

e Unknown words which are not included in the POS tagger’s dic-
tionary can cause confusion. They are typically either named en-
tities (such as people, organizations, or locations), which should
be detected by the named entity recognition (NER) module; or
phrases uttered in different language than expected (in RapCor
is common to notice English or Arabic phrases in the middle of
French text).

e Polysemy is an omnipresent problem in NLP which does not
evade POS tagging as well. Polysemy can affect POS tagging
in the preprocessing of the input sentence, for example during
the syntactic analysis, and also during assignment of the lemma.
If no context is provided, the tagger usually chooses the more
frequent meaning of the word.

e Human error can affect tagging in many ways. Humans who man-
ually annotate the text sometimes make mistakes (often by mis-
spelling the tags) or don't follow the guidelines for ambiguous
situations.

2.2 Types of POS taggers

We can categorize POS taggers from several points of view, the two
main ones are (a) how the tagger determines which tag to use, (b)
how is it trained (if it is trained), and (c) on how long word phrases
it operates.

o Rule based taggers have a fixed ruleset, often hand made by hu-
mans, they use to assign tags to words. They typically have a
lexicon which is used to determine a set of tags for each word,
and then use the rules to pick out the best one. They are quite
inflexible and perform poorly on unknown words.

2. PART OF SPEECH TAGGING

e Stochastic taggers use statistics or machine learning methods,
such as neural networks, in order to find the most probable tags
using their internal probabilistic model obtained by learning
from the training data.

e Hybrid taggers utilize both rules and stochastic models retaining
the strengths of both and minimizing their weaknesses for the
cost of being more difficult to put together.

Supervised taggers are trained using data, in which each word
contains the exact correct tag, or at least a set of probabilities for each
plausible tag. Unsupervised taggers don’t have the luxury of having
labeled data so they often rely on clustering methods. Completely
unsupervised methods are much less common. The more common
unsupervised approach is to use a supervisedly trained model and
further improve it using the unlabeled data.

Taggers also differ based on word phrases, or n-grams, they use,
unigrams are the easiest to use, but bigrams or trigrams carry more
information about the context.

2.3 Training

As explained above, tagging is the process of morphological disam-
biguation, the mapping of a tag V; from tagset Cy, Cy, ..., C3 to each
token w in the input text. In order to do that, statistical models, trained
using both supervised and unsupervised approaches, are used.

2.3.1 Rule-Based Approach

Simple training process could be described as follows: take the anno-
tated data, remove the tags from them and let the tagger-in-training
assign tags to them. Then compare these interim tagged data with
the true annotations, and inspect whether the tagger guessed any
tagging rules consistent with reality. If yes, add the best of them to
the ruleset. Repeat the process as long as any new rules of quality are
being discovered.[9]

This raises the question of the initial interim annotation. It is pos-
sible to use either an arbitrary pretrained already working model,

6

2. PART OF SPEECH TAGGING
Annotated Testing data to
data annotate
Learner - Tagger

Learning

iterations
Partially Newly annotate
annotated data data

Figure 2.1: Brill Tagger learning schema

simple statistics such as assigning the most frequent tag relative to the
token, or even use a trained neural network.

When choosing the new rules during the training process, the
following criterion can be used: compute how adding each new rule
(ceteris paribus) affects the model’s error rate (or accuracy). Then
choose a rule which minimizes the error rate (or maximizes accuracy).
Repeat the process as long as the improvement to the model is good
enough. Picture 2.1 depicts the Brill tagger learning schema described
here.

2.3.2 Neural Approach

The current state-of-the-art approach of training models for part of
speech tagging is utilizing deep neural networks. Modern implemen-
tations of such models often use large language models or recurrent
networks for computing contextualized word embeddings of the in-
put text, and then using a simple feed forward neural network of few
layers to classify the tokens into part of speech categories.[10][11][12]

3 Corpora

Corpus (plur. corpora) is a collection of text documents nowadays
mostly in a digital form. Most of the currently widely used corpora
are a organized collection of documents sharing a common topic or
form. Corpora can be in plaintext form, such as Project Gutenberg!
which contains a plethora of books of the canonical western literature,
a collection of texts from varying sources or topics, such as Oxford Text
Archive?, or a database of vertical text made specifically for training
of models or statistical analysis.

The documents in the corpus show in a very varied forms. They
can contain metadata about the author, source of the text, data of
its creation; and may consist of unstructured plaintext, or be split
into chapters, paragraphs, sentences, headlines, or even verses. Some
corpora, typically in vertical form, contain morphological data about
the words, most commonly part of speech tags and lemmas.

Corpora also very much vary in terms of size. The most com-
monly used corpora usually contain from hundreds of thousands of
words to several million. However, some corpora obtained from web
crawling[13], contain hundreds of millions or even small billions of
words. A subtype of corpora especially useful for machine transla-
tion are parallel corpora, which contain aligned sentences uttered in
multiple languages.[14] Corpora are often gathered from newspa-
per, Wikipedia articles, blog posts, or official government documents,
but there also exist smaller yet no less useful corpora collected from
spoken language, which can differ significantly from the written texts.

Corpora are a immensely helpful tool for modern NLP, because
they can be used to train models used for the vast majority of the
NLP tasks. Aside from that, the linguists find a use in corpora as
well, because during the creation process or after statistical analysis
of the corpus can be performed, an insight is given into the examined
language and its evolution.

1. https://www.gutenberg.org/
2. https://ota.bodleian.ox.ac.uk/repository/xmlui/

3. COrRPORA

3.1 Universal Dependencies (UD)

UD? is a project which aims to create a framework for morphological
and syntactical annotation of natural languages. The project now sup-
ports more than 100 languages with over 200 treebanks (corpora).[15]

UD aims to create a corpora annotation standard useful across as
many natural languages as possible, both in the area of morphological
analysis with part of speech tags and advanced morphological features,
and in syntactical analysis with the dependency tree system of heads
and predicates describing the types of dependencies.

UD prefers to view the word as the smallest unit of a text, seeing it
as a most general approach across the human languages, as opposed
to morpheme based approaches (or even phrasal approaches).

3.1.1 UD Tagset

UD utilizes its own set of part of speech tags split into 16 categories
depictedin talbe 3.1.

Table 3.1: UD tagset

Open Class Closed Class and Others
Tag Description | Tag Description
ADJ Adjective ADP Adposition
ADV Adverb AUX Auxiliary
INT]J Interjection CCON]J | Coordinating Conjunction
NOUN | Noun DET Determiner
PROPN | Proper Noun || NUM Numeral
VERB | Verb PART Participle
PRON | Pronoun
SCON]J | Subordinating Conjunction
PUNCT | Punctuation Symbol
SYM Symbol
X Other

3. https://universaldependencies.org/

3. COrRPORA

3.1.2 UD French GSD Corpus

GSD is a French treebank which has been a part of UD since its v1.0
release.* The corpus consists of 400,399 words in 16,341 sentences split
into a train (14,449 sentences), test (416 sentences), and dev (1,476
sentences) files. It consists mostly of blog, news, reviews, and wiki
texts.

GSD utilizes the UD tagset along with the morphological features
depicted in table 3.2.

Table 3.2: GSD feature set

Nominal features

Gender Fem, Masc
Number Plur, Sing

Definite Def, Ind

Verbal features

Mood Cnd, Imp, Ind, Sub
Tense Fut, Imp, Past, Pres
Pronouns, Determiners, Quantifiers
PronType Art, Dem, Exc, Ind, Int, Neg, Prs, Rel
NumType Ord

Reflex Yes

Person 1,2,3
Number|psor] | Plur, Sing

Other Features

Foreign Yes

Person[psor]| | Yes

Typo Yes

Degree and Polarity

Polarity | Neg

4. https://universaldependencies.org/treebanks/fr_gsd/index.html

10

4 RapCor

RapCor! is a corpus of francophone rap song texts created at the
Faculty of Arts Masaryk University? under the leadership of doc.
PhDr. Alena Policka, Ph.D.[16]

The corpus is comprised entirely of spoken French texts, and aims
to progress the social-lexical research. Texts in the corpus contain
plenty of substandard vocabulary and phrases, and allows for the
deeper study of the evolution of the francophone rap culture, its word
formation, various neologisms, and the modern poetry.

The collection of data for the corpus is done in large part by the
students of the Faculty of Arts, who decide to enroll in the RapCor
courses. The secondary aim of the project is to provide the students
with the experience of applied linguistics work, which would be more
interesting and engaging for the average student, than for example
processing the newspaper texts, or European Union Parliament pro-
ceedings transcriptions.

4.1 RapCor Size

RapCor is a sizeable corpus with nearly 1300 fully finished songs. An
exploratory analysis of lengths of 1411 texts of songs is depicted in
table 4.1 and figure 4.1.

Table 4.1: RapCor exploratory analysis

Number of songs 1411
Number of words 668706
Average length of song | 473.9
Shortest song 32
Longest song 2318

1. https://is.muni.cz/do/phil/Pracoviste/URJL/rapcor/index.html
2. https://www.phil. muni.cz/en

11

4. RarCor

400
300
= 200
=
S 100
0
] £ £ & A S 5] £ & *
P S P T A R &

Number of words

Figure 4.1: RapCor song length frequency analysis

4.2 RapCor Pipeline

Most of the work on RapCor could be divided into three distinct
actions:

e Organization, which is done via Google Spreadsheets tables. There
are several rather large spreadsheets, which hold information
about songs, albums, interprets, dictionaries, and more.

e Acquisition of albums and texts necessary for the linguistic work
itself. Currently, gathering the texts from the albums covers is
the preferred way, but in case of albums not being available, or
songs simply not being released on the albums, texts are usually
gathered from online sources.

e Work with the texts, and processing them into annotated formats
stored in the information system.

4.2.1 Spreadsheets

Most of the project organizational data is stored in Google Spread-
sheets. This section will attempt to describe the spreadsheets currently
used. For the future, a transition towards a more sophisticated relation
database model would be preferred.

RAPCOR is a spreadsheet comprised of three main lists:

e Library, which contains information about songs. In the table
are stored mainly: ID of the song, interpret, featuring interprets,

12

4. RarCor

name of the song, year of release, album, country of origin, and
others. From the Library spreadsheet is generated the file Rap-
cor_data.js, which is used by the song search engine on the project
website.

e Used albums with data about albums, interprets, year of release,
IDs associated with the album, work progress, and others.

e Metadata holding the known information about the interprets.

RapCor - albums is a spreadsheet dedicated to the albums. Most im-
portant is the list ALBUMS-LISTE vérifiés et a vérifier, which holds most
of the information about the albums, such as interpret, title, year of
release, whether there are texts on a booklet, number of processed
songs, cover picture, ID of the album, and among others, whether the
albums is already in possession of the project.

From the ALBUMS-LISTE vérifiés et a vérifier spreadsheet is gen-
erated the file Rapcor_albums.js, which is used by the album search
engine on the project website. This is also the source for generating
the Wanted Albums website, which lists all the albums which have not
yet been acquired for the purposes of the project.

Dictionnaire RapCor VALIDE is a many-listed spreadsheet which serves
as a dictionary for the substandard words appearing in the rap songs.
It is divided into lists based on the part of speech, and also contains
various types of phrases. Entries in the dictionary contain the part of
speech tag, lemma, additional linguistic tags (marking for example
foreign terms), sense, and pronunciation in the IPA® (in French known
as API) alphabet.

4.2.2 Processing the texts

The arguably slowest part of the whole RapCor project, is processing
and annotating the texts. One student can typically finish around 5
songs during one semester. This section will describe everything a
student needs to do in order to finish one annotation of a song.

3. https://en.wikipedia.org/wiki/International Phonetic_Alphabet

13

4. RarCor

1. Student scans the texts from the album booklets into high reso-
lution images. Over 700 albums had already been scanned.

2. Student cuts and vertically pastes the text using a image ma-
nipulation program, typically GIMP*. Some booklets are rather
straightforward to cut, some have the texts set into complex
shapes or wrapped around pictures, making them a bit more
difficult to process.

3. Student uses an automation optical text recognition software
(OCR) to create a .pdf with the song lyrics.

4. If the booklet is not available, student searches for the text online.
For that purpose is used an online tool which searches for song
texts on several websites. Usually, the most viable source is the

webpage Genius.com”.

5. Student uses MS Word to create P (pochet), the text from booklet,
and S (sung), text transcribed from listening to the song, versions
of the song. Metadata are added into the files. These include
the song name, interpret, separation the song into verses and
refrains, and which singer raps each section of the song. Student
then marks the differences between these two texts by coloring
the text. coloring is depicted in table 4.2.

6. Student creates a plaintext version of the song from the S version
(P version if S is unavailable), strips it of any metadata, and saves
it in a .txt format.

7. Student copies the content of the plaintext version of the song,
opens up the website with the fr_pipe interface, pastes the text
into a field, and clicks a button to generate the vertical data in
.0ds format.

8. Student opens up the automatically annotated song in .ods for-
mat and performs the following actions:
(a) Check the veracity of the part of speech tag and the lemma.

(b) Fill column F with structural metadata (intro, refrain, first
verse, etc.).

4. https://www.gimp.org/
5. https://genius.com/

14

4. RarCor

(c) Fill column H with interpret metadata (who sings this par-
ticular line).

(d) If the token was marked in step 4, add what kind of edit has
been performed into column I (correction, addition, etc.).

(e) If column I was filled, write down the difference between P
and S tokens into column]J.

(f) If the token is a phrase, mark it into the column K.
(g) Student resolves any marked ambiguities in tags and lem-

mas.

9. Upload the P version (.docx), S version (.docx), plaintext version
(.txt), annotated vertical (.ods) into the university information

system.
Table 4.2: MS Word text coloring table
’ Type H P Style \ S Style \ Description ‘

Correction || Gray Saffron Grammatical or typographi-
cal error in booklet.

Intention Lime Green Error found in booklet tran-
scription.

Change Pink Red Booklet inconsistent with
what is sung.

Addition | Underline | Blue Added passage to P version.

Omission Brown Underline | Text in P version is not sung.

Position Purple Purple Text in P version is misposi-
tioned.

Pronuncia- || Cyan Cyan Nonstandard pronunciation.

tion

Incompre- || - Pink Song is incomprehensible.

hension

15

4. RarCor

4.3 RapCor Code System

In RapCor, each album and song have their own identifying unique
code. For albums the code format XXX_N, where X stands for a capital
letter, and N for a number, albums might look like ACB_6, HOR_1, etc.
The song format is similiar: XXXNN, for example AEK01, VKBO07, etc.

Codes are assigned manually to each newly acquired album or
processed song. The capital letter prefix typically represents the inter-
pret (Akhenaton = AKH, Manau = MNU), the numbers are assigned
in order of the songs/albums being processed.

The codes are being organized in tables RAPCOR and RapCor -
albums and their management grows ever more cumbersome with the
expanding number of songs and albums. For the purposes of easier
creation of new codes, a script was made to create a spreadsheet with
all possible code combinations and their usage.

4.4 RapCor Data Formats

As briefly described in the RapCor Pipeline section, song texts are
being kept in several different formats. There are the album scans in
the image formats, and the OCR texts in .pdf. The text formats are
threefold and all of them are using the UTF-8 encoding;:

e P (pochet) and S (song) versions of the songs are in MS Word
.docx format.

e Plaintext song made from the S version is in .txt format.

e Vertical text pre-annotated by TreeTagger and then manually
annotated by the students is in Open Office .ods spreadsheet
format.

4.4.1 Old Vertical Format

The .ods vertical is a spreadsheet of 11 columns, which hold the data
depicted in table 4.3.

If tagger didn’t recognize a token, it would assign tag NOUN and
lemma <unknown>. Then the token would be searched for in the

16

4. RarCor

Table 4.3: Old vertical text contents

Column | Content Annotation
A Token Automatic
B Tag Automatic
C Lemma Automatic
D Advanced tags Automatic
E Sense Automatic
F Song structure Manual

G Pronunciation Skipped
H Current singer Manual

I P and S version difference Manual

J P version of token (if different) | Manual

K Phrase tokenization Manual

dictionary, and if found, tag, lemma, advanced tags, and sense would
be filled.

The vertical would also contain coloring which marked certain
phenomena for the annotators to correct, the coloring is described in
table 4.4.

Table 4.4: Old vertical text coloring

Color | Phenomenon

Yellow | For <unknown> tokens.

Red For ambiguous lemmas.

Cyan | For tokens tagged from dictionary.

4.4.2 New Vertical Format

As a part of new RapCor pipeline, a new vertical format has been
implemented, with the goal of making the work of the annotators a
bit easier. As the new format was chosen the MS Excel .xIsx format, as
there have been occasional problems with opening the .ods files on
Windows computers, and .xslx doesn’t seem to exhibit this behaviour.
The structure of the vertical is the very same as before, but now all
columns aside from] (the P version of token) are automatically filled
and just need to be checked by the annotator.

17

4. RarCor

tombe
bien

]

ai

pris

le
soixante

Les
jaloux
croient
que

j

suis
blindé

est

pas

I

avis

de

ma
banque

PROMN:yD
WERB:nSp3vFmItR
ADV

PUNCT
PRON:nSplyP
AUX:nSplvFmItR
VERB:gMvPtP
DET:gMnSyAkD
NUM:gMn5S
PUNCT
DET:nPyAkD
NOUN:gMnP
VERB:nPp3vFmItR
SCONJ
PROMN:nSplyP
AUX:nSplvFmItR
VERB:gMnSvPtP
PUNCT
PROM:gMnSp3yD
AUX:nSp3vFmItR
ADV:eN
DET:nSyAkD
NOUN:gMnS
ADP
DET:gFnSoSqlyP
NOUN:gFnS
PUNCT

ca FAM SYN

tombe

bien

j' ELIS
ai

pris

le

soixante

Les

jaloux

croient

gue

j' ELIS
suis

blindé FAM

est

pas

I' ELIS
avis

de

ma

bangque

D

cela, ceci

ivre ; plein, complet

c2
c2
c2
c2
c2
c2
c2
c2
c2
c2
c2
c2
c2
c2
c2
c2
c2
c2
c2
c2
c2
c2
c2
c2
c2
c2
c2

[sa]

H
Orelsan
Orelsan
Orelsan
Orelsan
Orelsan
Orelsan
QOrelsan
QOrelsan
QOrelsan
QOrelsan
QOrelsan
QOrelsan
Orelsan
Orelsan
Orelsan
QOrelsan
QOrelsan
Orelsan
Orelsan
Orelsan
Orelsan
Orelsan
Orelsan
Orelsan
Orelsan
Orelsan
Orelsan

|
correction

addition

addition

addition

addition

Example of the new vertical

Figure 4.2

18

4. RarCor

Also, new coloring format has been introduced. The new xlsxwriter®
python library allows for more advanced formatting, so multiple vi-
sual hints have been added to the vertical. The text formatting from
the S version is transferred into the vertical, so if a token is colored
in a S version (.docx), the A column of the token will be colored the
same. Also the coloring of the cells has been expanded, as described
in table 4.5. An example of the new vertical is shown in figure 4.2.

Table 4.5: New vertical text coloring

Color Phenomenon

Yellow For <unknown> tokens.

Green For foreign phrases.

Light red | For ambiguous lemmas.

Cyan For tokens tagged from the old dictionary.

Pink For tokens tagged from the verified new dictionary.
Purple For tokens tagged from the unverified new dictionary.

6. https://xlsxwriter.readthedocs.io/

19

5 Comparison of POS Taggers

RapCor has used TreeTagger for several years as the main part of
speech tagger. However, with the advent of neural taggers, the new
competitors claim to perform better than the older system using hid-
den Markov models. New systems are also designed to use more
descriptive tagsets, which might provide the annotator with addi-
tional information useful for their work. This chapter will examine
three part of speech taggers: the currently used TreeTagger, FreeLing,
and UDPipe.

5.1 TreeTagger

TreeTagger was created by Helmut Schmid as an alternative approach
to POS tagging which was at the time mostly done using hidden
Markov models on trigrams, which had problems accurately assigning
tags to the infrequent trigrams.[17]

Schmid improved the HMM'’s sparse data problem by training
a decision tree paying attention to the context of the tokens, which
helps estimate the transition of probabilities of the model. The decision
tree is recursively constructed using the ID3 algorithm[18] which in
each step (each newly created node) searches for a way to divide the
trigram training set into two as distinct as possible sets, with regard
to the tag probability distribution of the third token in a trigram by
considering either both, one, or neither of its preceeding tokens. When
the algorithm finds a good enough way to split the set (meaning the
splitting rule yield enough information gain), the algorithm is yet
again recursively called on the original set.

The decision tree obtained from the algorithm is then pruned
by merging leaves if their weighted information gain is below a set
threshold.

And finally in order to obtain the optimal tag sequence for an input
sentence, the TreeTagger uses an implementation of the Viterbi algo-
rithm[19] with HMM. TreeTagger utilizes a set of lexicons, specifically
a full-form and suffix lexicons, and a default entry setting for unrecog-
nized tokens. Each word in a lexicon has a corresponding probability
vector of all possible tags. TreeTagger first searches in the full-form

20

5. CompPaRrISON OF POS TAGGERs

lexicon, if it fails, it turns the token to lowercase and tries again, if it
is unsuccessful still, it searches through the suffix lexicon, and if the
search fails it returns the default entry.

5.1.1 Example

Table 5.1 shows an example of the fr_pipe output for a French sentence
Le vie est un vrai film d’action.

TasLE 5.1: TreeTagger tagged sentence Le vie est un vrai film d’action.

Token | Tag Lemma
<s8>

La DET :ART | le

vie NOM vie

est VER :pres | étre
un DET :ART | un

vrai ADJ vrai
film NOM film
d’ PRP de
<g/>

action | NOM action
<g/>

. SENT

</s>

Fr_pipe adds tags <s>, </s> to mark beggining/ending of an
sentence, and <g/> glues to mark where the tokenizer has split the
text in a place where previously hasn’t been a white space. These tags,
however, are eliminated in the postprocessing and are not present in
the final .ods file.

5.1.2 fr_pipe

Fr_pipe (abbreviated from French pipeline) is an in-house developed
pipeline used for text processing for the purposes of RapCor. The
tools used in the pipeline were created at the FI MUNI in cooperation
with Lexical Computing. The pipeline itself consists of the following
programs:

21

5. CompPaRrISON OF POS TAGGERs

e Uninorm, a tool for normalization of non-alphanumeric symbols,
such as quotation marks, apostrophes, hyphens, and others. Func-
tionality of Uninorm tool is mostly handled by the Unitok tool.

e Unitok[20], a tool for tokenization of a text. Nowadays performs
the normalization of symbols as well.

e TreeTagger trained on French data.

e Postprocess for creating the tagged output in a form of an .ods file.
Postprocess also attempts to tag tokens marked by the TreeTagger
as <unknown>, by searching in a lexicon.

5.1.3 Assessment

TreeTagger has served successfully for several year for the purposes of
RapCor. However, the tagger’s tagset is limited, and more descriptive
morphological annotation is desired. The model’s age also begins to
show and more current, more accurate models have been examined.

22

5. CompPaRrISON OF POS TAGGERs

5.2 FreeLing

FreeLing is an open source library developed by TALP research center!
providing a wide array of tools for NLP. FreeLing was constructed
with the idea of extensibility and customizability in mind, and the
current 4.2 version supports 15 languages by default. This work aims
at using the FreeLing tools for morphological analysis on French, thus
utilizing the tokenizer, splitter, morphological analyser, NER analyser,
tagger, parser, dependence parser, and coreference solver.[21]

FreeLing was constructed as a two layer library, the first layer
providing the linguistic functionality being run as a server, and the
second an API on the client side.

5.2.1 Inner Structure

From the internal point of view, FreeLing utilizes two main data types,
the linguistic and processing objects.

Linguistic objects are the results of the analysis itself. They contain
the following objects: Analysis, containing POS tag, lemma, proba-
bilites, and a sense list. Word, being a word form with an assigned list
of possible analyses. Sentence, a list of word objects, which can contain
parse, or dependency trees. Paragraph, a list of sentences. Document, a
list of paragraphs.

Processing objects contain the functionality for the analysis. The
early analysis tools are the language identifier, tokenizer (parses the
document into a sequence of words), and splitter (parses the docu-
ment into a sequence of sentences).

After the initial analysis, the objects inheriting the processor func-
tionality come into action.

e Morfo annotates words in a sentence, is able to recognise for
example dates, numbers, proper nouns, or multiword locutions.

o Tuagger (for disambiguation of POS tags for each word in a sen-
tence) implemented either by HMM][22], or relaxation label-
ing[23], which is using the hybrid approach.

1. https://www.talp.upc.edu/
23

5. CompPaRrISON OF POS TAGGERs

o NE Classifier used for named entity recognition based on CoNLL-
2002 system[24].

e Sense annotator adds synset information to the selected analysis
of each word in a given sentence.

o Word sense disambiguator for the given sentence ranks all possible
word sense for each word and its analyses in the provided context
using the pagerank system[25].

o Chunk parser for enriching of sentences with a parse tree, reim-
plementing the system Atserias and Rodriguez[26].

e Dependency parser for enriching of sentences with a dependency
tree. The algorithm is based on a paper by Atserias et al.[27]

o Co-reference solver which searches for co-references in a given

document, which is based on a system descrbied by Soon et
al.[28]

5.2.2 Example

Table 5.2 shows an example of the FreeLing output for a French sen-
tence Le vie est un vrai film d’action.

TaBLE 5.2: FreeLing tagged sentence Le vie est un vrai film d’action.

Token | Lemma | Tag Prob

La le DAOFSO0 0.955121
vie vie NCFS000 |1

est étre VMIP3S0 | 0.752751
un un DIOMSO0 0.956036

vrai vrai AQOMSO00 | 0.823065
film film NCMS000 | 1

d d AQOMSO | 0.238508
! ! Frc 1
action | action | NCFS000 |1

Fp 1

24

5. CompPaRrISON OF POS TAGGERs

FreeLing in its default version uses EAGLES tagset?, and shows
the probability of the tags.

5.2.3 Assessment

The FreeLing was tested by annotating large quantities of texts from
the corpus. By comparing the result with the human annotated data,
FreeLing results were at best underwhelming.

FreeLing’s tokenizer and sentence splitter were often at odds with
varying punctuation symbols and usually weren't interpreting the
triple dot, or triple exclamation mark symbols as the end of the sen-
tence.

FreeLing was also unable to work with the French apostrophe
symbols, kept splitting them away from pronouns and determiners
(which were subsequently misinterpreted as nouns or verbs), and
interpreting them as quoting punctuation.

Problems with named entity recognition were also noticed. FreeL-
ing has shown overall troubles with NER, and if the proper noun was
recognized, the lemma was for some reason lowercased.

As a plus side, FreeLing was the only examined tagger which was
able to recognize multiword proper nouns and dates.

The most thwarting downside were the excessive amounts of time
needed to load the application. FreeLing is supposed to be running
in the server regime in the background and serving the requests, and
if it is run this way, the serving times are admissible. However, it is
preferred to not have the server running at all times, and launch the
application just for the tagging of one song when needed. The loading
times of the software, spanning several minutes, were simply too long
to even consider using it in the offline mode.

The combination of poor performance compared to the adversaries,
slow loading time, and the fact that the competitor UDPipe is being
developed at a faculty in contact with the RapCor supervisors, led to
the decision to not use FreeLing for any further testing or even training
of the RapCor’s own model.

2. https://freeling-user-manual.readthedocs.io/en/latest/tagsets/tagset-fr/

25

5. CompPaRrISON OF POS TAGGERs

5.3 UDPipe

UDPipe is an open source trainable pipeline for morphological and
syntactical analysis developed at UFAL®. First version of the software
UDPipe 1 was written mainly in C++, and comprised of several small
and fast models. Performance of models was, however, lower com-
pared to the contemporary neural models, thus the creators opted
to create the UDPipe 2, the current version, which is available as a
prototype written in Python. The size of the models was increased,
and artificial neural models were used to improve performance by 40-
50 %.[29]

UDPipe 2 was tested on CoNLL 2018 UD Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies and performed best of
all models. The pipeline itself allows for tokenizing, splitting multi-
word tokens, part of speech tagging, lemmatization, and dependency
parsing. Tokenizer and multi-word token splitter was reused from
UDPipe 1.

5.3.1 Model

Tokenizing and multi-word token splitting is done by first embed-
ding the input characters, and batching them by 50 (batches of size
200 can be used during the training to improve performance). These
batches are then fed into a bidirectional GRU[30] which classifies each
character into one of three categories:

e Sentence break, a token which ends a sentence.
e Token break, a multi-word token to be split.

e Or the token isn’t a break of any kind.

Word embeddings are used in three ways:

e Pretrained word embeddings are constant during the training, and
have been computed from large plaintext data. These can be
either CONLL 2017 UD Shared Task or Wikipedia fastText embed-

dings.

3. https://ufal. mff.cuni.cz/

26

5. CompPaRrISON OF POS TAGGERs

e Trained word embeddings which are initialized randomly at the
beginning, are trained for each individual word.

e Character level word embeddings trained using a bidirectional
GRU[31].

POS tagging first processes the word embedding through a multi-
layer bidirectional LSTM [11] to compute the contextual embeddings.
Then a dictionary of part of speech tags is constructed from the training
data. A softmax classifier, enhanced by a tanh dense layer, is used to
determine the final tag. UDPipe assigns the following types of part of
speech tags:

e UPOS, the universal part of speech tags.*

e XPOS, the language specific part of speech tags.

e UFeats, the universal morphological features.

Lemmatization process is done by classifying input word into lemma
generation rules. Generation rules are created from pairs of word
forms and lemmas. The algorithm first find the longest common sub-
string of the word form and the lemma, if no such substring is found,
the lemma is used instead. If the common substring is found, com-
putes the shortest edit script to turn the word form prefix into the
lemma prefix, and analogously the word form suffix into the lemma
suffix. The script allows the following operations: deletion of a char-
acter, insertion of a character, and optionally copying of a character.
And because the aforementioned process is wholly case insensitive,
finally the algorithm determines the correct casing of the lemma.

Dependency parser is a reimplementation of a biaffine attention par-
ser[32], which uses the contextualized embeddings and an attention
mechanism enhancing the classifier. As the parser is used alongside the
tagger, they can either share only the embeddings, or both embeddings
and their contexts.

4. https://universaldependencies.org/u/pos/
5. https://universaldependencies.org/u/feat/index.html

27

5. CompPaRrISON OF POS TAGGERs

5.3.2 CoNLL-U format

UDPipe? is set to use the CONLL-U format® of vertical text which
holds additional data about each token. If any CoNLL-U attribute
couldn't be filled by the tagger or parser, an underscore sign _ is filled
instead. Tabke 5.3 describes the CoONLL-U format.

Table 5.3: CoNLL-U legend

Column | Description

ID Index of each word.

FORM | The token.

LEMMA | The lemma.

uros Part of speech tag from UPOS tagset.
XPOS Part of speech tag, language specific.
FEATS | List of morphological features.
HEAD | Head of the current word.

DEPREL | Universal dependency relation.
DEPS Dependency graph data.

MISC Holds any other information.

For the purposes of this work, the UD French GSD corpus was
used, which lacks the XPOS and DEPS attributes entirely. Thus, in all
the following examples and results, these attributes are always blank.

5.3.3 Example

An example of the UDPipe output for a French sentence Le vie est un
vrai film d’action. Since the CoONLL-U format is more descriptive than
the TreeTagger or FreeLing formats, the example will be split into
three tables. See tables 5.4, 5.5, and 5.6.

6. https://universaldependencies.org/format.html

28

5. CompPaRrISON OF POS TAGGERs

TasLE 5.4: UDPipe2 example, part 1

ID | FORM | LEMMA | UPOS XPOS
1 La le DET _
2 | vie vie NOUN | _
3 est étre AUX _
4 un un DET _
5 | vrai vrai ADJ _
6 | film film NOUN | _
7 | d d’ ADP _
8 action | action NOUN | _
9 PUNCT | _

Note that XPOS property of each token is blank. Universal Depen-
dencies do not support any French specific tagset. Thus the XPOS
column is always empty.

TaBLE 5.5: UDPipe2 example, part 2

FORM | FEATS

La Definite=Def | Gender=Fem | Number=Sing |
PronType=Art

vie Gender=Fem | Number=Sing

est Mood=Ind | Number=Sing | Person=3 | Tense=Pres |
VerbForm=Fin

un Definite=Ind | Gender=Masc | Number=Sing |
PronType=Art

vrai Gender=Masc | Number=Sing

film Gender=Masc | Number=Sing

J

action | Gender=Fem | Number=Sing

FEATS contains valuable morphological data about the tokens. The
set of additional categories is described by the Universal Dependencies

standard’.

7. https ://universaldependencies.org/fr/feat/index.html

29

5. CompPaRrISON OF POS TAGGERs

TaeLE 5.6: UDPipe2 example, part 3

ID | FORM | HEAD | DEPREL | DEPS | MISC

1 | La 2 det _ _

2 | vie 6 nsubj _ _

3 | est 6 cop _ _

4 un 6 det _ _

5 | vrai 6 amod _ _

6 | film 0 root _ _

7 | d 8 case _ SpaceAfter=No

8 | action |6 nmod _ SpaceAfter=No

9 6 punct _ SpacesAfter=/r/n/r/n

UDPipe by default also runs a tree parser on the sentence and
attempts to create a dependency tree. Each token has its unique ID,
which also hints the original token order in the sentence. HEAD de-
fines the ID of a token on which the current token is dependent on,
and DEPREL defines the type of dependency, as depicted in figure
5.1.

6 film (root)

) 4:un (det) / 8: am
(

2: vie (nsubj
/ 3: est (cop) 5: vrai (amod) . (punct)

1: La (det) 7:d' (case

Figure 5.1: Dependency tree of sentence Le vie est un vrai film d’action.
as reconstructed from table 5.6

However, since the results of syntactical analysis are often dis-
putable, and the overall usefulness for the purposes of RapCor is quite
low, a decision was made to omit the syntactical data from the final
vertical data.

30

5. CompPaRrISON OF POS TAGGERs

5.3.4 Assessment

UDPipe was from the beginning the expected successor to the Tree-
Tagger. At first, the UDPipel full official release was tested, which
lacked accuracy and performed rather poorly.

Then, the UDPipe2 was tested using the online API to tag the data
with much more success. The 2.6 version available as LINDAT REST
API Service® performed very well, but still made a considerable num-
ber of errors mainly with contracted verb forms, the adposition du
almost always wrongly separated into two word forms de les, and fre-
quent erroneus handling of possesive pronouns. Using the 2.6 online
version was always meant as a temporary solution until the RapCor’s
own version of the software would be running on NLP Lab’s machines.

Further inquiry into UDPipe2 uncovered the python source code,
from which the new version could be trained on updated 2.9 version
of UD corpora (mainly GSD), which is free of many errors mentioned
about the 2.6 version. However, the UDPipe2 github’ is completely
void of any documentation about the use of the software, running
scripts, and mainly training the models and running the inference on
input data. Also, the trained models used for the 2.6 version have not
been publicly released and are not included in the github. The tok-
enizer model needed for preparing the input data is also not present.

Nevertheless, UDPipe?2 still seems like the most viable alternative
to the TreeTagger and will be used in the future.

8. https://lindat.mff.cuni.cz/services/udpipe/
9. https://github.com/ufal/udpipe/tree/udpipe-2

31

5. CompPaRrISON OF POS TAGGERs

5.4 Comparison

Two methods were used to compare the taggers with each other. Firstly
a test batch of plaintext was created from 100 RapCor songs. Then
each tagger was used on these data. Outputs of the taggers were
then processed by a script which created vertical comparison tables in
HTML with coloring for easier comparison. The comparison utilized
four vertical files, output of TreeTagger (fr_pipe), FreeLing, UDPipe2,
and human annotated data.

First each tagged vertical needed to be processed to the common
format so that comparison could be performed in a reasonable way.
First problem was assuring the same parsing of the text to sentences,
because some taggers don’t interpret the newline (or multiple newline)
symbol as the end of a sentence, and if a song was formatted without
the punctuation symbols, the tagger would interpret the songs as a
one long sentence. These songs were ultimately taken out because the
punctuation couldn’t be reliably put in the song text split into verses.

When aligning the vertical by sentences was accomplished, align-
ing by words needed to be performed. Different taggers tokenize
differently, and they mostly disagree when it comes to the contracted
word forms and named entities. Synchronization thus needed to be
computed. See figure 5.2 for an example.

fr_pipe | FreeLing UDPipe | Human
Token Lemma Tag | Token Lemma Tag Token Lemma Tag | Token Lemma Tag
Bienvenue bienvenir VERB | Bienvenue — bienvenue NOUN | Bienvenue bienvenus NOUN | Bienvenue bienvenir VERB
dans dans ADP | dans dans ADP |dans dans ADP |dans dans ADP
le le DET |le le DET |le le DET |le le DET
z00 zoo NOUN | zoo Z00 NOUN zoo Z00 NOUN | zoo Z0o NOUN
| de de ADP |
des du ADP |les le DET des de le ADP | des du ADP
hommes homme NOUN | hommes homme NOUN hommes homme NOUN |hommes homme NOUN
Paname NOUN | Paname_City paname_city NOUN | Paname Paname PRO | Paname NOUN
City NOUN | City City PRO | City NOUN

Figure 5.2: Comparison of the taggers on sentence Bienvenue dans le
zoo des hommes Paname City. showcasing the synchronization of the
vertical text

The comparison included for each tagger a token, tag, and a lemma.
For further inspection were added also FEATS from UDPipe. Each
entry’s tag and lemma was compared to the human annotated data

32

5. CompPaRrISON OF POS TAGGERs

and if they were in agreement, they would be colored in green, and
in red if they wouldn't. For easier reading, the punctuation symbols
were taken out of the comparison. See figure 5.3 for an example.

fr_pipe FreeLing UDPipe | Human
Token Lemma Tag Token Lemtna Tag Token Lemtna Tag | Token Lemma Tag
Qu' que CONJI | Qu qu NOUN | Qu’ qu’ CONI |Qu' que CONJ
on on PRON |on on PRON |on on PRON |on on PRON
a avoir VERB |a avoir VERB |a avoir VERB |a avoir VERB
de de ADP |
du du ADP |le le DET |du dele ADP |du du ADP
temps temps NOUN | temps temps NOUN| temps temps NOUN |temps temps NOUN
a a ADP |a a ADP |a a ADP |a a ADP
perdre perdre VERB | perdre perdre VERB | perdre perdre VERB | perdre perdre VERB
et et CONIJ |et et CONT |et et CONIJT |et et CONJ

merde merde NOUN | merde merde NOUN| merde merde VERB | merde merde NOUN

Figure 5.3: Comparison of the taggers on sentence Qu’ on a du temps d
predre et merde.

Statistics showing the token, lemma, and tag agreement with the
human annotated data were computed, but the statistics were mostly
skewed by the frequent desynchronization of the sentences. TreeTag-
ger (fr_pipe) was usually around 100 % in agreement with the human
annotated data, UDPipe was second on average around 95 % token
agreement, 90 % tag agreement and 80 % lemma agreement, FreeLing
was always the third with around 80 % token agreement, 75 % tag
agreement, and 70 % lemma agreement. However, these numbers
carry little value since different tokenization causes some discord, and
assignment of part of speech tags is often unclear, and even human
annotators have trouble reaching over 95 % agreement in some cases.
As shown by a screenshot in figure 5.4.

Tagger Token accord (%) Lemma accord (%) Tag accord (%0)

fr pipe 100. 100. 100.
FreeLing 80.2 718 76.0
UDPipe 942 80.7 88.0

Token count: 192

Figure 5.4: Statistics of comparison for the song AAAO1

33

5. CompPaRrISON OF POS TAGGERs

Eventually, five recently created song texts were tagged and ran
through the comparison script. The comparison tables were then sent
to the RapCor linguists to examine them closely. This directly led to
abandonment of FreeLing as a viable TreeTagger successor, and choos-
ing the UDPipe2, whose 2.6 version’s mistakes (and their potential
remedy) were described. For more details about the FreeLing’s and
UDPipe2.6’s mistakes explore the Assessment chapters 5.2.3 and 5.3.4.

34

6 New Developments

During the past year, a lot of work has been made to improve RapCor.
This chapter documents all of the new or updated tools which have
been created to make the life of annotators easier.

6.1 New Tagset

Since the decision to use UDPipe2 was made, the question arose of
which tagset to use. On one hand, UD tags could be easily translated
into already used TreeTagger tags. However, one of the main motiva-
tions of choosing a new tagger was having a more descriptive tagset.
New tagset is demonstrated in table 6.1.

Table 6.1: New tags with their features

Tag Feats

ADJ Degree, Number, Gender, Poss

ADP -

ADV Degree, Number, Gender, Polarity, PronType

AUX Number, Gender, Tense, Person, VerbForm, Aspect,
Voice, Mood

CCONJ | -

DET Number|psor], Gender, Person, Person|psor |, Definite,
Poss, PronType

INT] -

NOUN | Number, Gender, Case, Animacy

NUM Number, Gender, PronType, NumType

PRON Number, Gender, Person, Reflex, Poss, PronType

PROPN | Number, Gender

PUNCT | -

SCON]J | -

SYM -

VERB Number, Gender, Tense, Person, VerbForm, Aspect,
Voice, Mood

X Foreign

35

6. New DEVELOPMENTS

Consequently, the decision was made to create a new tagset, utiliz-
ing the UD UPOS and FEATS tags. The goal was to produce a tagset
which would be descriptive, yet could fit into just one spreadsheet
cell and wouldn’t be overly verbose. The solution was inspired by the
Brno tagset for Czech, which uses an attribute system for the tag and
the features. New features are described in table 6.2.

Table 6.2: New tagset features

Feature Values

Polarity e | Neg = N

Gender g | Fem — F Masc — M

Animacy i | Anim — A, Inan — I, Hum — H, Nhum — N

Number n | Plur — B, Sing — S

Number[psor] o | Plur = P, Sing =S

Case ¢ | Nom — N, Acc - A, Dat - D

Person pl123

Person[psor] q |1,2,3

VerbForm v | Fin = FEInf - I,P — P

Aspect a | Imp — I, Perf — P, Prosp — R, Prog — G,
Hab — H, Iter —» T

Mood m | Cnd — C, Imp — 1, Ind — D,Sub — S

Tense t | Fut = F Imp — I, Past — P, Pres — R

Pronlype y | Art = A,Dem — D,Exc = E,Ind =1, Int = T,
Neg — N, Prs — P, Rel — R

Poss s | Yes—Y

NumType x | Ord — O

Definite k | Def - D,Ind — 1

Reflex r | Yes—Y

Foreign f | Yes—Y

The Brno attribute tagset system works in a following way: the tag
is a concatenation of pairs attribute-value, where attribute is described
by a lowercase letter (e.g. k for part of speech, g for gender, t for tense,
etc.), and a uppercase letter or a number for the value. For example a
pair gM would be interpreted as gender=Masculine. The attributes
in a tag follow a predefined order, which eases the reading. The first

36

6. New DEVELOPMENTS

attributes is always the part of speech, and if a value for an attribute
is unknown, the attribute is completely omitted.

The new tagset would comprise from two parts: the part of speech
tag equivalent to the UPOS tag (e.g. AD], VERB, AUX), and optional
feats part, in the Brno tagset style, separated from the UPOS tag
by a : sign. For example: est, a VERB with feats Mood=Ind | Num-
ber=Sing | Person=3 | Tense=Pres | VerbForm=Fin would translate into
VERB:nSp3vFtR.

6.2 New fr_pipe

The tagging pipeline has been reworked as well, implementing the
new, more informative, tagset, new dictionary, and improved vertical
which makes the work for annotators a bit easier.

6.2.1 New Tagger

Since the UDPipe2 was selected as the new part of speech tagger,
and it’s online 2.6 version has shown some deficiencies, a new model
based on UD French GSD v2.9 corpus was trained. The default training
parameters were used, and the model went through 60 training epochs,
reaching over 98 % accuracy on the development dataset, and over
97 % accuracy on the training dataset. Details are shown in table 6.3.

Table 6.3: Accuracy of the new model

Task | Dev data (Acc %) | Test data (Acc %)

UPrOos 98.13 97.84
Lemma | 98.74 98.55
UFeats | 98.31 97.92

6.2.2 Tagging Pipeline

The pipeline had to be modified to accommodate the new tagger,
since the UDPipe2 takes as input a tokenized vertical in the CoNLL-U
format, and outputs it as well. The UNITOK tokenizer used previously
with the TreeTagger was kept. A script for translating the traditional

37

6. New DEVELOPMENTS

.vert format into the .conllu, and vice versa .conllu into .vert, was
written.

6.2.3 Post-processing

The post-processing used previously was kept as it was. Any further
post-processing was added to the new vertical generating scripts, such
as search for tokens in the new dictionary, coloring the cells, and
automatic metadata filling.

6.3 New Vertical

As mentioned in section 4.4.2, the new vertical format offers an array
of improvements over the old format. It mainly aims to achieve two
goals: to make the annotation easier for the annotator, and making the
annotation faster. Both of the goals also yield a beneficial byproduct
of lowering the probability of the annotator making a mistake, since
the number of opportunities to do so was significantly lowered.

6.3.1 New format

In the past, the Open Office .0ods format was used mainly because
the Open Office tools are widely available to anyone, and that the
.0ds can be used by most spreadsheet processors. However, the .ods
was troubling at times, sometimes it couldn’t be opened in MS Excel.
Switching to .xlsx format seemed like a natural evolution, especially
since every student and employee of the Masaryk University has an
access to the license for the MS Excel, which so far didn't exhibit any
erroneous behaviour, and thanks to the xIsxwriter library the python
script can add more advanced formatting to the vertical.

6.3.2 Automatic Filling of Columns

Previously, only columns for token, tag, lemma, advanced tags (from
dictionary), and sense (from dictionary) were automatically filled. The
annotator still had to input all the other necessary columns manually,
aside from checking the veracity of the machine input data. The user
would annotate the data by opening the vertical, P and S versions of

38

6. New DEVELOPMENTS

the songs, and filling the required columns. The newly automated
process saves the annotator the following work, which previously had
to be done manually:

e User doesn’t have to fill the column F with metadata about the
song structure. This action could be done rather easily by copying
the values, and saves at most a few minutes.

e User doesn't have to fill the column H with metadata about the
current singer of the token. This is also a rather trivial task.

e User doesn’t have to fill the column I with the information of
the type of difference between the token in the P and S versions
of the song. This is also accompanied by coloring the token in
the same color as it was in the S version, making the orientation
in the vertical easier. Student now only needs to fill the column
J with the original version of the token in the P version. This
automation doesn’t necessarily save a lot of time, but makes the
search for the phenomena much more convenient.

e User doesn’t have to fill the column K with the phrasal tokeniza-
tion, if the token is recognized as a phrase, which is now also
done automatically. The amount of currently listed phrases in the
dictionary is quite low (in the low hundreds), so the detection
of phrases is still quite rare.

6.3.3 Summary

On account of saving the annotators’ time, automated filling of columns
will save the annotator roughly 10 to 60 minutes of their time based
on the complexity of the vertical. Some songs need just a few minus-
cule touches, such as filling out the singer and song part, but some
songs with heavy annotation, some extreme cases (typically songs
with many foreign or slang phrases) contain tens of tokens needed
to be annotated manually with filling out the additional columns.
Also, with the addition of automated filling and the inclusion of new
dictionaries, the risk of annotator making a mistake is significantly
diminished.

39

6. New DEVELOPMENTS

6.4 Other

Apart from creating the new pipeline and vertical generation, some
other work for RapCor has been done.

6.4.1 Search for Substandard Tags

Human error is a cause of a lot of noise in the corpus. In spite of both
students” and teachers’ diligence, some mistakes always slip through,
especially since automated mistake detection in MS Office software
hasn’t been implemented yet. A simple script was written to scan
through the entire corpus and look for any erroneous part of speech
tags. Hundreds of mistakes in over 100 documents were found and
manually corrected. Vast majority of them were typographic errors,
where a student misspelled the tag or used uppercase/lowercase in a
wrong way.

6.4.2 Tables of Codes

To help with keeping track of identification codes assigned for albums
and songs, a script was written to create a spreadsheet of all possible
codes with the additional data about which codes are already being
used to identify either albums and songs, and to which interprets they
relate.

6.4.3 Dictionary Update

RapCor used by now the Verlan dictionary. During the work on the
new pipeline, new dictionary was implemented during generation
of the vertical text along with scripts for automated updates of the
dictionaries which are being continually worked on in the Google
Spreadsheets.

6.4.4 Updating the Website

Some updates have been made also to the RapCor website. Mainly, the
search engine for albums has been improved, along with the findsong
web application students use to search for the song texts.

40

6. New DEVELOPMENTS

6.4.5 Evaluating the New Tagger

Since a new tagset was introduced with the new tagger, the idea of
automated retagging of the RapCor verticals came up. This can of
course be done manually, but such an endeavor would take exuberant
amount of work. Thus, 46 songs from the corpus were selected and
tagged using the UDPipe tagger. Results (see table 6.4.) were then
compared with the annotated TreeTagger pretagged data, if there is
high enough agreement of the taggers, so that the existing part of
speech tags would be enhanced by the UDPipe provided features.

Table 6.4: Agreement of the taggers

86.34 %
85.43 %

Part of speech
Lemma

However, since the agreement of the part of speech tags wasn't
high enough, detailed analysis of the agreement of the features wasn’t
performed. Table 6.5 shows the most common part of speech disagree-
ments between the taggers at 24108 examined tokens.

Table 6.5: Ten most common tag disagreements

TreeTagger | UDPipe | Count
ADP DET 222
PRON SCONJ | 115
NOUN ADJ 113
ADV PRON | 103
VERB NOUN | 101
CCON]J ADV 95
ADJ VERB | 90
CCON]J ADP 85
ADJ ADV 83
AD]J NOUN | 82

Note: from the comparison were excluded mistakes VERB:AUX
and CCONJ:SCON]J, because TreeTagger doesn’t differentiate between
those categories. Foreign token were also excluded.

41

7 Conclusion

As a result of the work done for RapCor in the past year, plenty of new
developments have been made. At the beginning the comparison of the
part of speech taggers was done. FreeLing unfortunately didn’t seem
like a viable alternative to TreeTagger because of frequent mistakes
and the need to run the software in the server mode. UDPipe was thus
selected as the new part of speech tagger in spite of it’s downsides.

Then new vertical format for RapCor was designed with the goal
of making the work of annotators easier. Firstly, the .xIsx format was
adopted instead of the .ods. Then, the vertical generating software
was made, which pre-fills most of the data in the vertical. This eases
the burden on the annotator’s time, and decreases the probability of
the human error. New dictionaries have been included as well, giving
the annotator hints on the meaning of the substandard language.

Finally, the pipeline for generating tagged vertical was updated to
use the new UDPipe?2 tagger, which has been successfully trained on
the UD French GSD Corpus.

Aside from the main part of the work, plenty of smaller updates
were made on the corpus, along with many quality of life enhance-
ments for the annotators. A search for substandard tags was made
to find out mistakes in the corpus, tables of codes for songs and al-
bums were created and posted online, new dictionaries were created
to help the annotation, and the RapCor websites have been continually
updated.

Looking towards the future, there is still a lot to improve on the
RapCor pipeline. Most of the administrative data, including the dic-
tionaries, is being managed using several Google Spreadsheets. Even
though this approach is relatively intuitive and easy to use for the
annotators, there is still much to be desired in terms of error detection,
efficiency and most importantly - scalability. If RapCor continues to
grow, a new, preferably database, solution is inevitable.

The new tagger itself isn’t flawless and will make mistakes. Plenty
of which are going to be mistakes of a kind previously not encoun-
tered with the TreeTagger. To remedy this, the annotators will have to
vigilantly inspect the tagged data and report its mistakes. Another way
to plausibly improve the tagger’s performance would be retraining

42

7. CONCLUSION

the model on different data. The UD French GSD corpus could still
be used, possibly joined with a spoken language corpus such as UD
French Sequoia, or preferably, if a way is found, RapCor itself.

And finally the whole corpus should be converted into the new
vertical form. If we suppose that each song is correctly annotated,
translating the old TreeTagger tags into the new RapCor tags is in
order. However, as shown in the previous chapter, this will probably
not be a trivial task. Automatic pre-filling of the tags can be done,
but they still must be manually checked to assure correctness. One
solution might entail tagging of the texts by UDPipe and taking the
UDPipe tags where they agree with TreeTagger at least on the part
of speech level, the disagreements would either have to be manually
settled by the annotator, or the original TreeTagger tag could be kept
in a minimal form without the features.

43

Bibliography

10.

11.

CHOWDHARY, KR1442. Natural language processing. Funda-
mentals of artificial intelligence. 2020, pp. 603—-649.

NADKARNI, Prakash M; OHNO-MACHADO, Lucila; CHAP-
MAN, Wendy W. Natural language processing: an introduction.
Journal of the American Medical Informatics Association. 2011, vol. 18,
no. 5, pp. 544-551.

HARRINGTON, Jonathan. Phonetic analysis of speech corpora. John
Wiley & Sons, 2010.

ALVAREZ, Asuncién; RITCHEY, Tom. Applications of general
morphological analysis. Acta Morphologica Generalis. 2015, vol. 4,
no. 1.

CHOMSKY, Noam. Systems of syntactic analysis. The Journal of
Symbolic Logic. 1953, vol. 18, no. 3, pp. 242-256.

GODDARD, Cliff. Semantic analysis: A practical introduction. Ox-
ford University Press, 2011.

KUMAR, Bhavesh; MARINGANTI, Hima Bindu; ASAWA, Kr-
ishna. Adaptive pragmatic analysis of natural language. In: Pro-
ceedings of the First International Conference on Intelligent Interactive
Technologies and Multimedia. 2010, pp. 236-240.

KUMAWAT, Deepika; JAIN, Vinesh. POS tagging approaches: A
comparison. International Journal of Computer Applications. 2015,
vol. 118, no. 6.

ACEDANSK], Szymon. A morphosyntactic Brill tagger for inflec-
tional languages. In: International Conference on Natural Language
Processing. 2010, pp. 3-14.

SCHMID, Helmut. Part-of-speech tagging with neural networks.
arXiv preprint cmp-lg/9410018. 1994.

HOCHREITER, Sepp; SCHMIDHUBER, Jiirgen. Long short-term
memory. Neural computation. 1997, vol. 9, no. 8, pp. 1735-1780.

44

BIBLIOGRAPHY

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

WANG, Peilu; QIAN, Yao; SOONG, Frank K; HE, Lei; ZHAO, Hai.
Part-of-speech tagging with bidirectional long short-term mem-
ory recurrent neural network. arXiv preprint arXiv:1510.06168.
2015.

OLSTON, Christopher; NAJORK, Marc. Web crawling. Now Pub-
lishers Inc, 2010.

ZANETTIN, Federico. Parallel corpora in translation studies:
Issues in corpus design and analysis. Intercultural Faultlines. 2000,
pp- 105-118.

DE MARNEFFE, Marie-Catherine; MANNING, Christopher D;
NIVRE, Joakim; ZEMAN, Daniel. Universal dependencies. Com-
putational linguistics. 2021, vol. 47, no. 2, pp. 255-308.

PODHORNA-POLICKA, Alena. RapCor, Francophone Rap Songs
Text Corpus. In: RASLAN. 2020, pp. 95-102.

SCHMID, Helmut. TreeTagger-a language independent part-
of-speech tagger. http:/ /www. ims. uni-stuttgart. de/projekte/cor-
plex/TreeTagger/. 1994.

BHARDWA]J, Rupali; VATTA, Sonia. Implementation of ID3 al-
gorithm. International Journal of Advanced Research in Computer
Science and Software Engineering. 2013, vol. 3, no. 6.

FORNEY, G David. The viterbi algorithm. Proceedings of the IEEE.
1973, vol. 61, no. 3, pp. 268-278.

MICHELEFEIT, Jan; POMIKALEK, Jan;, SUCHOMEL, Vit. Text
Tokenisation Using unitok. In: HORAK, Ales; RYCHLY, Pavel
(eds.). RASLAN 2014. Brno, Czech Republic: Tribun EU, 2014,
pp- 71-75. 1sBN 2336-4289.

PADRO, Lluis; STANILOVSKY, Evgeny. Freeling 3.0: Towards
wider multilinguality. In: LREC2012. 2012.

BRANTS, Thorsten. TnT-a statistical part-of-speech tagger. arXiv
preprint ¢s/0003055. 2000.

PADRO, Lluis. A hybrid environment for syntax-semantic tag-
ging. arXiv preprint cmp-lg/9802002. 1998.

45

BIBLIOGRAPHY

24.

25.

26.

27.

28.

29.

30.

31.

32.

CARRERAS, Xavier; MARQUEZ, Lluis; PADRO, Lluis. Named
entity extraction using adaboost. In: COLING-02: The 6th Confer-
ence on Natural Language Learning 2002 (CoNLL-2002). 2002.

AGIRRE, Eneko; SOROA, Aitor. Personalizing pagerank for word
sense disambiguation. In: Proceedings of the 12th Conference of the
European Chapter of the ACL (EACL 2009). 2009, pp. 33—41.

ATSERIAS, Jordi; RODRIGUEZ, Horacio. Tacat: Tagged corpus
analizer tool. Technical report Isi-98-2-t. 1998.

ATSERIAS BATALLA, Jordi; COMELLES PUJADAS, Elisabet;
MAYOR MARTINEZ, Aingeru. TXALA un analizador libre de

dependencias para el castellano. Procesamiento del lenguaje natural,
n? 35 (sept. 2005); pp. 455-456. 2005.

SOON, Wee Meng; NG, Hwee Tou; LIM, Daniel Chung Yong.
A machine learning approach to coreference resolution of noun
phrases. Computational linguistics. 2001, vol. 27, no. 4, pp. 521-544.

STRAKA, Milan. UDPipe 2.0 Prototype at CoNLL 2018 UD Shared
Task. In: Proceedings of the CONLL 2018 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies. Brussels, Belgium:
Association for Computational Linguistics, 2018, pp. 197-207.
Available from por: 10.18653/v1/K18-2020.

CHO, Kyunghyun; VAN MERRIENBOER, Bart; BAHDANAU,
Dzmitry; BENGIO, Yoshua. On the properties of neural ma-
chine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259. 2014.

LING, Wang; LUIS, Tiago; MARU]JO, Luis; ASTUDILLO, Ramén
Fernandez; AMIR, Silvio; DYER, Chris; BLACK, Alan W; TRAN-
COSO, Isabel. Finding function in form: Compositional character

models for open vocabulary word representation. arXiv preprint
arXiv:1508.02096. 2015.

DOZAT, Timothy; QI, Peng; MANNING, Christopher D. Stan-
ford’s graph-based neural dependency parser at the conll 2017
shared task. In: Proceedings of the CONLL 2017 shared task: Multi-
lingual parsing from raw text to universal dependencies. 2017, pp. 20—
30.

46

https://doi.org/10.18653/v1/K18-2020

Index

C
CoNLL-U, 28
corpora, 8

F
FreeLing, 23
fr_pipe, 21

M
morphological analysis, 3

N

new tagset, 35
NLP, 2

P
part of speech tagging, 4
POS tagging, 4

R
RapCor, 11

T
TreeTagger, 20

U

UD French GSD Corpus, 10
UDPipe, 26

Universal Dependencies, 9

47

A An appendix

In this section will be listed and described all scripts made in scope of
this thesis. Source codes are freely available with the thesis under the
GNU GPL license. However, python scripts released with the thesis
are not accompanied by any RapCor data. The source codes could be
split into two categories, the scripts used for tagging and creating new
vertical, and one time use scripts which were quickly made to solve a
quick problem. These scripts lack any documentation and were never
meant to be used again.

A.1 create_tsv_dictionary.py

create_tsv_dictionary.py is a script used for processing the new dictio-
nary, downloaded from Google Spreadsheets as .ods, into .tsv format.
The original spreadsheet has several lists which are joined together
into one large spreadsheet used during creation of the vertical.

$ python3 create_tsv_dictionary.py
dictionary_valide.ods dictionary_valide.tsv

A.2 compile_xlIsx.py and parse_html.py

New vertical is created by the following process: input in the form of
.docx document is received from the .cgi script, and converted to .html
using the lowriter; .html is then passed to the parse_html.py to create
the text, contents, and styles .txt files. Text contains song text sent to
the fr_pipe for tagging. Styles contains information about all coloring
styles in the document. And contents holds information about which
tokens have which styles, which part of song do they belong to, and
who sings them. These files plus the tagged vertical are passed to the
compile_xIsx.py which creates the final .xIsx vertical and the .cgi scripts
sends it to the user.

$ python3 parse_html.py song.html

$ python3 compile_xlsx.py song.vert song.xlsx
dictionary.tsv

48

A. AN APPENDIX

A.3 fr_pipe_v2

fr_pipe_v2 is the modernized version of the pipeline. It substitutes the
TreeTagger with the UDPipe, and two vertical conversion scripts. The
tokenizer produces vertical text in TreeTagger format, but UDPipe
needs input in the .conllu vertical, which is solved by vert_to_conllu.py
script. UDPipe then outputs tagged .conllu vertical which is then
converted back into TreeTagger vertical by conllu_to_vert.py, which
also translated UD tags into new RapCor tags using the tag_convertor.py
script.

$./fr_pipe_v2 < song.txt > song.vert

A.4 generate_codes_tsv.py

This script loads up RAPCOR-Knihovna.tsv, and rapcor_albums.js tables
which are being automatically generated from Google Spreadsheets,
and creates table of all codes in .tsv, and then uses it to write tables of
codes in .html format, which are then put online.

$ python3 generate_codes_tsv.py
RAPCOR-Knihovna.tsv rapcor_albums. js
codes.tsv ./html/

A.5 Utils

Utils contain all sorts of python scripts which were intended for one
time use and lack any documentation. These contain scripts for tagger
comparison (compare), creating test batch for the tagger comparison
(create test batch), comparing trained UDPipe2 with the manual anno-
tated data (evaluation), creating .xslx spreadsheets of RapCor codes
(get codes list), analysing tagsets of UD corpora (get tagset), and
searching for erroneous tags in the corpora (search for substandard

tags).

49

A. AN APPENDIX

A.6 UDPipe2

The UDPipe2 was used both for training and tagging. The training
was launched with the following parameters:

$ python3 udpipe2.py fr-gsd-model
--train fr_gsd-ud-train.conllu
--dev fr_gsd-ud-dev.conllu
--test fr_gsd-ud-test.conllu
--parse O

However, since the udpipe2.py script doesn’t take the input file
from stdin and doesn’t ouptut it to stdout, a variant called udpipe2_cmd.py
was created just for that purpose, so it can be included in the pipeline.
There it is launched with the following parameters:

$ python3 udpipe2_cmd.py fr-gsd-model --predict
--parse 0 < input.conllu > output.vert

50

	Introduction
	Natural Language Processing
	Part of Speech Tagging
	Challenges of POS tagging
	Types of POS taggers
	Training
	Rule-Based Approach
	Neural Approach

	Corpora
	Universal Dependencies (UD)
	UD Tagset
	UD French GSD Corpus

	RapCor
	RapCor Size
	RapCor Pipeline
	Spreadsheets
	Processing the texts

	RapCor Code System
	RapCor Data Formats
	Old Vertical Format
	New Vertical Format

	Comparison of POS Taggers
	TreeTagger
	Example
	fr_pipe
	Assessment

	FreeLing
	Inner Structure
	Example
	Assessment

	UDPipe
	Model
	CoNLL-U format
	Example
	Assessment

	Comparison

	New Developments
	New Tagset
	New fr_pipe
	New Tagger
	Tagging Pipeline
	Post-processing

	New Vertical
	New format
	Automatic Filling of Columns
	Summary

	Other
	Search for Substandard Tags
	Tables of Codes
	Dictionary Update
	Updating the Website
	Evaluating the New Tagger

	Conclusion
	Bibliography
	Index
	An appendix
	create_tsv_dictionary.py
	compile_xlsx.py and parse_html.py
	fr_pipe_v2
	generate_codes_tsv.py
	Utils
	UDPipe2

