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Abstract: Accurate model calibration is essential for model-based design of synthetic gene
regulatory networks. Optimal experimental design (OED) techniques can be used to efficiently
decrease parameter uncertainty. However, many biological networks of interest exhibit multi-
modal response functions due to multistability. These models are incompatible with traditional
OED approaches that have been developed for models with mono-modal error distributions. In
this work we propose an OED approach for a gene expression model that exhibits bistability via
a saddle-node bifurcation with respect to an experimental input. We demonstrate construction
of an approximate likelihood and derive the corresponding Fisher information across the
monostable and bistable regimes. We use the linear noise approximation for the local error
model and apply logistic regression to capture the switching probabilities between the stable
equilibria. We then use this Fisher information matrix to generate locally optimal experimental
designs for this system. This leads to a simple, qualitative approach to optimal experimental
design based on experimental detection of bimodality.
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1. INTRODUCTION

Many synthetic biology projects aim to construct designer
gene regulatory circuits. These circuits often involve feed-
back and nonlinear dynamics, including bifurcations and
multistability (Del Vecchio et al., 2016). Model-based de-
sign can be a critical tool in the development of such
systems. However, biological models have traditionally suf-
fered from sloppy parameter estimates and poor predictive
accuracy, limiting the effectiveness of modeling in biolog-
ical design (Erguler and Stumpf, 2011; Gutenkunst et al.,
2007).

Optimal experimental design (OED) provides tools by
which synthetic biologists can improve the efficiency
of precise model calibration (Braniff and Ingalls, 2018;
Chakrabarty et al., 2013). However, OED approaches have
traditionally been applied to monostable systems, which
exhibit monomodal error distributions (Ruess et al., 2015)
that are often assumed to be Gaussian (Apgar et al., 2010;
Hagen et al., 2013). Many synthetic regulatory systems of
interest exhibit bifurcations and multistability (Del Vec-
chio et al., 2016), which can result in multimodal error
distributions. Limited attention has been given to these
more complex error distributions in the OED literature.
Examples have been developed for linear models (Atkin-
son and Fedorov, 2001), but they are not directly applica-
ble for modelling biological systems.

In this work we develop an OED procedure for character-
izing expression of an inducible auto-activating gene that
exhibits bistability over a subset of its induction range.
We use a stochastic model to account for random jumping
between the two equilibria in the multistable regime. This

jumping results in a bimodal error model. We use the linear
noise approximation (LNA) to form a Gaussian mixture
approximating the multimodal likelihood function. We
then apply OED to this approximation, using the Fisher
information to identify optimal experiments. Specifically,
we identify (i) an optimal set of induction input values,
and (ii) the fraction of the overall number of steady-state
single-cell observations to be taken at each input. The LNA
incurs approximation error when applied to multistable
systems (Hortsch and Kremling, 2018). However the LNA
is analytically differentiable with respect to both inputs
and parameters, and it is computationally tractable, both
of which are essential for performing optimization over the
experimental space.

Past work has investigated parameter estimation proce-
dures for multistable switches (Otero-Muras et al., 2014)
suggesting the tracing of hysteresis loops as a means to
detect bistable regions. This procedure requires complex
experiments with time-varying inputs and careful consid-
eration of the relaxation timescales as part of the experi-
mental design. Our approach uses a more direct strategy
for the identification of bistability, focusing exclusively
on steady state observations and bimodality detection.
Additionally, we provide a simple procedure for avoiding
irregularities caused by bifurcations. We find that, for our
example system, the optimal experiments follow a consis-
tent qualitative pattern. Further investigation will address
the question of whether this pattern generalizes to a simple
heuristic procedure for designing optimal experiments for
other bistable systems.
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2. METHODS

We employ a simple one-dimensional model to illustrate
the method. Equation 1 depicts the deterministic rate
equation for the mean concentration of the protein product
x of an auto-activating gene:

d

dt
x(t) = α0 + α

(u+ x(t))n

Kn + (u+ x(t))n
− x(t). (1)

Here, u is the concentration of protein provided via a
separate, experimentally inducible, source. We assume u
and x are functionally identical, but x can be differenti-
ated during measurement, e.g. via a tag or co-expressed
reporter. We take the nominal parameter set as α0 = 0.5
α = 3 Kn = 9, and n = 3. The parameters α0, α, and
K are in arbitrary units of concentration; the time-scale
is chosen so the rate of degradation is unity. For this
parameterization the deterministic system exhibits bista-
bility for inputs u in the range u ∈ [uL, uR] = [0.07, 0.22],
and undergoes saddle-node bifurcations at these points,
see Figure 1B. We seek the inputs that provide maximally
informative observations for the purpose of accurately esti-
mating the parameter vector θ = [α0, α,K, n]. We assume
the experiments generate a noisy set of observations, D =
[y1, ..., yN ], taken in long-time equilibrium at input values
U = [u1, ..., uN ]. Further we assume the observations yi
are measurements of single-cell concentrations (via a high-
throughput instrument such as an automated microscope).
Below, we derive the distribution of observations y about
the mean x and the resulting likelihood function. We use
the likelihood to construct the Fisher information matrix
(FIM), and use a scalar function of the FIM as our opti-
mization objective, following classic optimal experimental
design theory (Fedorov, 2010).

The primary challenge with the proposed approach is that
gene expression is noisy, and at long-time equilibrium
there will inevitably be jumping between equilibria when
the system is operating in the bistable regime. Thus the
observations y will be bimodally distributed for inputs
u ∈ [uL, uR]. We can simulate this jumping behaviour
by using the deterministic rate law in equation (1) to
construct a corresponding Master equation model, with
reaction propensities as follows:

Production : Ω ·

(
αo + α

(u+ X
Ω )n

K + (u+ X
Ω )n

)
,

Decay : X

(2)

Here,X is the discrete (random) protein count and Ω is the
system size. Simulating this system using the stochastic
simulation algorithm (SSA) at a nominal system size of
Ω = 90 (Gillespie, 1977), we see the bimodal distribution
for intermediate values of u as shown in Figure 1A.

The bimodal distribution of the observations y cannot
be described by normally-distributed homoskedastic or
heteroskedastic error models around a single deterministic
mean. We instead assume y can be modeled by a Gaussian
mixture and propose an approximate log-likelihood for the
system of the form:

�(θ|D,U) =
∑
i

log{ρ(ui) · ϕT (yi|ui, θ)

+ [1− ρ(ui)] · ϕB(yi|ui, θ)}
(3)

Fig. 1. (A) An empirical density plot of the simulated
species concentration X/Ω for various inputs u, simu-
lated using the SSA with Ω = 90. (B) The bifurcation
curve (stable, solid; and unstable, dashed) for the
steady state protein concentration x∗ from the deter-
ministic model, with the LNA-derived standard error
(shaded). The simulated mean values (open circles)
and standard errors (error bars) were computed from
the SSA simulation.

Here ϕT (yi|ui, θ) and ϕB(yi|ui, θ) are the local distri-
butions of yi around the top and bottom bifurcation
branches, respectively, while ρ represents the probability
that a single-cell observation yi will have originated from
ϕT (yi|ui, θ) for a given input ui. Thus [1− ρ] is the prob-
ability that the observation originated from ϕB(yi|ui, θ)

To define ϕT (yi|ui, θ) and ϕB(yi|ui, θ), we apply Van Kam-
pen’s system size expansion (SSE) to the Master equation,

using the ansatz X = Ωx +
√
Ωζ, where ζ represents the

random fluctuations in species concentration around the
deterministic mean concentration x (Van Kampen, 1992).
At first order in the SSE, we recover the deterministic rate
equation (1) for mean concentration x. At steady state the
this rate law yields an equation for the steady state mean
x∗ in terms of the input u,

0 = g(x, u, θ) = α0 + α
(u+ x)n

Kn + (u+ x)n
− x (4)

which has multiple solutions in the bistable region (i.e. for
u ∈ [uL, uR]). Over that range we denote the lower root
(stable fixed point) as x∗

B , the middle root (unstable
saddle point) as x∗

M , and the upper root (stable fixed
point) as x∗

T . In the monostable region where u < uL,
the only root is x∗

B ; for u > uR, only x∗
T appears. Thus

x∗
B and x∗

T define the bottom and top branches of the
bifurcation curve respectively. The stable upper and lower
branches are shown in figure 1B along with the means
and standard deviations generated from SSA simulations.
(To compute the means and standard deviations we used
the position relative to the unstable branch to assign each
SSA-simulated concentration to either the upper or lower
basin of attraction.)

The next order in the SSE yields the linear noise approx-
imation (LNA) (Van Kampen, 1992). From the LNA we
have an expression for the local variance of y about x∗;

σ2(x∗, u, θ) =

(
a0 + a (u+x∗)n

Kn+(u+x∗)n + x
)

−2Ω ∂
∂xg(x, u, θ)|x=x∗

, (5)

We evaluated this variance function, σ2(x∗, u, θ), at the
roots x∗

B and x∗
T to compute the local variance around each

bifurcation branch (Tomioka et al., 2004). Figure 1B shows
the reasonable agreement between the SSE and SSA for
both the means and the standard deviations, at a system
size of Ω = 90. Using the means and variance derived from
the SSE we define the local distribution ϕB(yi|ui, θ) such
that {yi|ρ = 0} ∼ N (x∗

B , σ
2(x∗

B , u)) and ϕT (yi|ui, θ) such
that {yi|ρ = 1} ∼ N (x∗

T , σ
2(x∗

T , u)).

To describe the branch probability ρ, we use an alternate
framing of the system dynamics as stochastic diffusion
within a bistable potential. Focusing on the observation
y, define V (y) =

∫ y

y0
−g(ν, u, θ) dν as a potential function

for the vector field of the deterministic rate equation.
Thus, as a somewhat ad hoc approximation, we can write
dy(t) = −V (y) +

√
2εdW . Here ε represents the strength

of a constant noise source and dW are increments from
the Wiener process. This approximation does not corre-
spond directly to either the linear noise approximation
(which has a constant noise source at steady state but
a monostable potential about the deterministic mean)
or the Kramers-Moyal expansion (which has a nonlinear
diffusion term). However, it allows us to use Kramers’
expression for the the escape times between two wells in a
potential (Berglund, 2011);

τBT ≈ 2π√
V ′′(x∗

B)|V ′′(x∗
M )|

e2(|V (x∗
M )−V (x∗

B)|)/εB ,

τTB ≈ 2π√
V ′′(x∗

T )|V ′′(x∗
M )|

e2(|V (x∗
M )−V (x∗

T )|)/εT .
(6)

Here τBT and τTB are the expected waiting times for
the first crossing of the unstable equilibria x∗

M from the
bottom-to-top, or top-to-bottom respectively, assuming
the system is initialized at equilibrium in the correspond-
ing potential basin. Here εB and εT represent the noise
strength within each potential. Assuming that the well-
to-well transition rates are inversely proportional to these
expected waiting times, we can write an equilibrium con-
stant for switching between wells asKe = τBT /τTB . Recall
that we defined ρ as the probability of being in the well
around x∗

T . We can then write ρ = Ke/(1 +Ke), i.e.

ρ(u, θ) ≈ logistic
( |V (x∗

M )− V (x∗
B)|

εB
− |V (x∗

M )− V (x∗
T )|

εT

+
1

2
log (V ′′(x∗

T ))−
1

2
log (V ′′(x∗

B))
)
,

(7)

where logistic(z) = (1 + e−z)−1. This is essentially the
Erying-Kramers (EK) law for reaction rates (Berglund,
2011), where the logistic argument involving the potential
is a function of the input u. While this ad hoc approxima-
tion provides some mathematical insight, we cannot hope
to generalize it directly to higher dimensional systems for
which potentials cannot be readily constructed. Moreover,
it relies on the assumption of constant noise that is small
relative to the depth of the potential well. While these
drawbacks make this expression unsuitable for direct ap-
plication, the functional form of the EK approximation for
ρ(u, θ) suggests a logistic function may provide a satisfac-

tory approximation for the branch probability. As such we
have used the approximation:

ρ(u, c0, c1) ≈
1

1 + exp(− (c0 + c1u))
(8)

Here, the nonlinear expression involving the potential has
been replaced with a linear expression in u. To assess the
accuracy of this approach, we used the SSA to numerically
determine the probability that the state lies in the basin of
attraction of either the top or bottom stable fixed points
after long simulation times, see figure 2A. As shown, the

Fig. 2. (A) Probability that the system is within the basin
of attraction of the upper equilibrium point in long-
time equilibrium for Ω = {60, 90, 120}; SSA (circles),
corresponding logistic fit (curve). The fit values are;
c = [−18.1 111.7] for Ω = 90, c = [−24.2 150.3] for
Ω = 120 and c = [−12.1 73.8] for Ω = 60. (B) The
Hartigan dip statistic computed for various inputs
using N = 100, 1000, or 10000 observations. The
algorithm was taken from (Mechler et al., 2019).

SSA results are fit well by a logistic function, over a range
of system sizes. These logistic curves are specified by pa-
rameters c0, c1, which we organize into vector c = [c0 c1].
These are auxiliary parameters, in the sense that, while
having some underlying connection to mechanistic param-
eters θ, they are not the direct target of our experiment,
and serve primarily to account for variability that would
otherwise make the model intractable.

Substituting the expression for ρ(u, c) into (3) results in
an appropriate mixture likelihood function on the bistable
region. However, it cannot be evaluated as written on the
monostable branches, where only one of the two distribu-
tions is defined. One approach to resolve this issue would
be to modify the behaviour of ρ at the bifurcation points
in a piecewise fashion. But that would introduce points
of non-differentiability (with respect to θ) in ρ, which
would invalidate use of the Fisher information (Pronzato
and Pázman, 2013). As a tractable alternative, we define
a guaranteed bistability region, as follows. We presume
that preliminary experiments have identified a region of
bimodality. This can be achieved by, e.g. a screening
experiment, using a grid or bisection search with a bi-
modality statistic, such as the the Hartigan Dip Statistic
(HDS) (Hartigan et al., 1985), shown in Figure 2B. (The
HDS is a min-max, non-parametric comparison of the
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spond directly to either the linear noise approximation
(which has a constant noise source at steady state but
a monostable potential about the deterministic mean)
or the Kramers-Moyal expansion (which has a nonlinear
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the system is initialized at equilibrium in the correspond-
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strength within each potential. Assuming that the well-
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where logistic(z) = (1 + e−z)−1. This is essentially the
Erying-Kramers (EK) law for reaction rates (Berglund,
2011), where the logistic argument involving the potential
is a function of the input u. While this ad hoc approxima-
tion provides some mathematical insight, we cannot hope
to generalize it directly to higher dimensional systems for
which potentials cannot be readily constructed. Moreover,
it relies on the assumption of constant noise that is small
relative to the depth of the potential well. While these
drawbacks make this expression unsuitable for direct ap-
plication, the functional form of the EK approximation for
ρ(u, θ) suggests a logistic function may provide a satisfac-

tory approximation for the branch probability. As such we
have used the approximation:

ρ(u, c0, c1) ≈
1

1 + exp(− (c0 + c1u))
(8)

Here, the nonlinear expression involving the potential has
been replaced with a linear expression in u. To assess the
accuracy of this approach, we used the SSA to numerically
determine the probability that the state lies in the basin of
attraction of either the top or bottom stable fixed points
after long simulation times, see figure 2A. As shown, the

Fig. 2. (A) Probability that the system is within the basin
of attraction of the upper equilibrium point in long-
time equilibrium for Ω = {60, 90, 120}; SSA (circles),
corresponding logistic fit (curve). The fit values are;
c = [−18.1 111.7] for Ω = 90, c = [−24.2 150.3] for
Ω = 120 and c = [−12.1 73.8] for Ω = 60. (B) The
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using N = 100, 1000, or 10000 observations. The
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SSA results are fit well by a logistic function, over a range
of system sizes. These logistic curves are specified by pa-
rameters c0, c1, which we organize into vector c = [c0 c1].
These are auxiliary parameters, in the sense that, while
having some underlying connection to mechanistic param-
eters θ, they are not the direct target of our experiment,
and serve primarily to account for variability that would
otherwise make the model intractable.

Substituting the expression for ρ(u, c) into (3) results in
an appropriate mixture likelihood function on the bistable
region. However, it cannot be evaluated as written on the
monostable branches, where only one of the two distribu-
tions is defined. One approach to resolve this issue would
be to modify the behaviour of ρ at the bifurcation points
in a piecewise fashion. But that would introduce points
of non-differentiability (with respect to θ) in ρ, which
would invalidate use of the Fisher information (Pronzato
and Pázman, 2013). As a tractable alternative, we define
a guaranteed bistability region, as follows. We presume
that preliminary experiments have identified a region of
bimodality. This can be achieved by, e.g. a screening
experiment, using a grid or bisection search with a bi-
modality statistic, such as the the Hartigan Dip Statistic
(HDS) (Hartigan et al., 1985), shown in Figure 2B. (The
HDS is a min-max, non-parametric comparison of the
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observed distribution with the family of unimodal distri-
butions, see (Hartigan et al., 1985) for details.) The HDS
can detect a subinterval of the bistable region where ρ
deviates significantly from 0 or 1. Using an appropriate
threshold, this data can be used to define a region of
guaranteed bistabilty u ∈ [BL, BR] ⊂ [uL, uR]. For values
of u outside [BL, BR], we set ρ to either 0 or 1, thus
approximating the system as monostable. By imposing the
conservative bounds BL and BR, we have traded precision
at the bifurcation points for tractability (and smoothness
with respect to the parameters) of the resulting likelihood.
To make use of this construction we restrict the permissible
parameter vectors θ so that model’s bifurcation points fall
outside the guaranteed bistable interval: Θ ∈ {θ|uL(θ) <
BL & BR < uR(θ)}. The likelihood function can then be
written as:

�(θ, c|D,U) =
∑
i

log{ρ(ui, c) · ϕT (yi|ui, θ)

+ [1− ρ(ui, c)] · ϕB(yi|ui, θ)}
Where:

ρ(u, c) =



0 u ≤ BL

logistic(c0 + c1u) BL < u < BR

1 BR ≤ u

(9)

Note that ρ(u, c) depends only on the auxiliary parameters
c while the local distributions ϕB and ϕT depend only on
the reaction parameters θ.

We will use the Fisher information to quantify experimen-
tal optimality and thus identify the optimal set of inputs.
The inverse of the Fisher information matrix is equivalent
to the asymptotic covariance of the parameter estimates
computed using a maximum likelihood estimator (Ford
et al., 1989). Calculation of the Fisher information for
this nonlinear system relies on a nominal parameterization:

θ̂, ĉ. Consequently our results are only guaranteed to be
locally optimal. The initial screening experiments used to
define the guaranteed bistability bounds can provide these
nominal (preliminary) estimates. The Fisher information
for a single sample ui is;

I(ui|θ̂, ĉ) = Eyi

[
∇θ,c�(θ, c|yi, ui)

T∇θ,c�(θ, c|yi, ui)
]

(10)

where yi is the observed steady state protein concentration
resulting from input ui. For inputs where the response is
approximated as monostable (i.e. ui < BL or BR < ui),
the Fisher information has an analytic expression. It can
be computed as

I(ui|θ̂) =
∇θx

∗(ui, θ̂)
T∇θx

∗(ui, θ̂)

σ2(x∗, ui, θ̂)

+
1

2

(
∇θσ

2(x∗, ui, θ̂)
T∇θσ

2(x∗, ui, θ̂)
)

(σ2(x∗, ui, θ̂))2

(11)

Here x∗ correspond to x∗
B or x∗

T depending on the input.
The sensitivity of the branch mean x∗ is

∇θx
∗(ui, θ) =

∂g(x∗,ui,θ)
∂θ(

1− ∂g(x∗,ui,θ)
∂x∗

) , (12)

For the variances, we can compute the derivatives analyt-
ically as

∇θσ
2(x∗, ui, θ) =

∂σ2(x∗, ui, θ)

∂θ

+
∂σ2(x∗, ui, θ)

∂x∗ ∇θx
∗(x∗, ui, θ).

(13)

To evaluate each of eq. 11-13, we solve for the roots of
g(x∗, ui, θ), x

∗
B and x∗

T , numerically.

For inputs in the guaranteed bistable region u ∈ [BL, BR],
calculation of the Fisher information is more complicated
due to the mixed Gaussian response. We computed the
sensitivity ∇θ,cl(θ, c|yi, ui) using the algorithmic differen-
tiation capabilities of CasADi (Andersson et al., 2018).
The expectation integral in the Fisher information (equa-
tion 10) is then computed numerically using MATLAB’s
globally adaptive quadrature function integral.

In this work we solve for what is known in the OED
literature as the approximate optimal design (Pronzato,
2008). Using this approach the optimal design consists
of a set of unique inputs Ū = {u1, ..., uS} and a corre-
sponding set of sampling weights, ξ̄ = {ξ1, ..., ξS}, such
that

∑
i ξi = 1. The weight ξi reflects the fraction of the

total number of observations that should be made with
the given input ui. (The reason these designs are called
approximate is that, with a finite number of total samples
in the experiment, one may only approximate the optimal
weighting unless the solution happens to have relatively
simple fractional weights.) The total Fisher information
for the experiment is additive over inputs u (assuming
uncorrelated observations), therefore for an approximate
design the total FIM is a weighted average, with weights
ξ̄ = [ξ1, ..., ξS ]:

ITot(Ū , ξ̄|θ̂, ĉ) =
S∑
i

ξiI(ui|θ̂, ĉ). (14)

Next, we select a scalar function of the total informa-
tion matrix as the OED objective. We use two different
optimality measures. The first is the standard D-optimal
objective, defined as the determinant of the total Fisher

information |ITot(Ū |θ̂, ĉ)| (Atkinson and Donev, 1992).
Maximizing this objective is equivalent to minimizing the
volume of the asymptotic confidence ellipsoid for the entire
parameter set (θ, c). Because our primary interest is in
accurately estimating the reaction parameters θ, we also
consider Ds-optimality, which aims to specifically mini-
mize the confidence ellipsoid of θ, without consideration for
the accuracy in c (Atkinson and Donev, 1992). To define
Ds-optimality, first recall that the asymptotic covariance
matrix, C, is equal to the inverse of the total FIM, ITot.
We block partition both matrices as follows;

ITot =

[
Iθ,θ Iθ,c
ITθ,c Ic,c

]
, C =

[
Cθ,θ Cθ,c

CT
θ,c Cc,c

]
, (15)

A Ds-optimal design minimizes the determinant of Cθ,θ,
thus minimizing the confidence ellipsoid for θ. This is
equivalent to maximizing the determinant (Atkinson and
Donev, 1992):

|Iθ,θ − Iθ,cI
−1
c,c I

T
θ,c| =

|ITot|
|Ic,c|

. (16)

Having defined the D-optimal and Ds-optimal objectives,
we can identify optimal experimental designs {ξi, ui}. To
determine the D-optimal designs we use the CVX package
over an adaptively refined grid of candidate ui’s (Grant

and Boyd, 2019). For the Ds-optimal designs we use
CasADi and the IPOPT package for optimization, again
using an adaptive grid for u (Andersson et al., 2018;
Wächter and Biegler, 2006).

3. RESULTS

We begin by investigating the manner in which the op-
timal designs depend on the nominal values of the lo-
gistic parameters c, with θ fixed at the nominal vector
[0.5, 3, 3

√
9, 3], and with Ω = 90, BL = 0.1 and BR = 0.2.

For this analysis, we reparameterize the function ρ such
that c0 = −ccc1. The new parameter cc corresponds to the
u-value for which ρ = 0.5. This allows us to independently
set the midpoint and slope of the logistic. Figure 3A
depicts ρ for c1 fixed and cc varying; Figure 3B shows ρ for
varying c1 values with cc constant. The parameter ranges
were chosen centered on the fit values of c = [−18, 111] at
Ω = 90 (shown in figure 2A). The corresponding optimal
designs are depicted beneath: optimal inputs, ui (stem
locations); optimal weights, ξi (stem height). Both the Ds

and D optimal designs are shown.

Fig. 3. (A) Plots of ρ for cc = 0.152, 0.162, 0.172
(c0 = −16.9,−18.0,−19.1), with c1 = 111. (B) Plots
of ρ for c1 = 76, 111, 156 with cc = 0.162 (c0 =
−12.33, −18.00, −25.30). (C, D) Corresponding Ds-
optimal designs. (E, F) Corresponding D-optimal
designs. Input values ui correspond to stem locations.
Weights ξi correspond to stem heights. Note the short
stems at both ends of each feasible input range.

These results reveal that the optimal design in each case
involves (i) a modest experimental effort to characterize
the monostable response at the extremes of the feasible
input range, and (ii) a much heavier sampling within the
bistable region. For Ds-optimal experiments, the optimal
design clusters the bimodal samples near the mid-point
of the logistic function (where ρ ≈ 0.5). For D-optimal
experiments, which aim to characterize the full parameter
set (θ, c), optimal samples consistently track a pair of
percentiles of ρ above and below the mid-point.

We next investigated the sensitivity of optimal sample
placement to the nominal θ vector, by holding the logistic
parameters constant at c = [−18.0, 111] and randomly se-
lecting ten θ vectors from a normal distribution with mean

[0.5, 3, 3
√
9, 3] and standard deviations of 10% of the mean

values. To ensure all θ were consistent with the assump-
tions used to derive the likelihood, we rejected parameter
sets that did not result in deterministic bistability at u =
BL − ε and u = Br + ε, with ε = 0.05, as well as rejecting
parameters sets that resulted in bistability at u = 0 and
u = 0.3 (the upper and lower bounds of the feasible range
for u). Figure 4A depicts stable branches of the ten random
bifurcation curves for the chosen θ parameter sets. Figures
4B and C depict the corresponding Ds-optimal and D-
optimal designs respectively. With the logistic parameters

Fig. 4. (A) Stable branches of the bifurcation curves
generated from ten random parameter sets θ. (B) Ds-
optimal sample weights and inputs for the chosen
θ parameters sets, with logistic parameters c held
constant. (C) Corresponding D-optimal designs.

held constant, the optimal samples for both Ds and D op-
timality show a similar placement and weighting, despite
the variability in the model parameterization. This finding
suggests that, at this systems size (Ω = 90), the shape of
the logistic function (which characterizes the bimodality)
has a strong effect on the optimal sample placement.
These also implies that preference between the D or Ds

objectives will depend predominantly on the experimental
plans. If the experimenter will only perform a single ex-
periment, the Ds design yields an optimal estimate for the
primary parameters θ. However, if the experimenter plans
to perform a series of iterated experiments, refining their
parameter estimates and re-optimizing their experimental
design after each iteration, the D-optimal design will yield
a sequence of improved estimates for both θ and c. As the
optimal design appears to depend largely on the values of
c, the D-optimal objective is ideal for this case.

Referring to Figures 3 and 4, we note that the Ds-optimal
designs tended to sample from single mid-point near the
middle of the bistable region at a percentile near ρ = 0.5.
Likewise the D-optimal designs appear to select a pair
of optimal inputs that map to relatively consistent and
symmetric percentiles on the ρ logistic curve. To further
assess this trend, we generated 500 fully randomized
parameters sets. Vectors θ was chosen as above; values of
c1 were selected from a uniform distribution over [91 141],
while cc was selected from a uniform distribution over
[0.125 0.175]. This ensured the mid-point ρ = 0.5 did not
fall too close to the boundaries of the guaranteed bistable
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and Boyd, 2019). For the Ds-optimal designs we use
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using an adaptive grid for u (Andersson et al., 2018;
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u-value for which ρ = 0.5. This allows us to independently
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varying c1 values with cc constant. The parameter ranges
were chosen centered on the fit values of c = [−18, 111] at
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locations); optimal weights, ξi (stem height). Both the Ds
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designs. Input values ui correspond to stem locations.
Weights ξi correspond to stem heights. Note the short
stems at both ends of each feasible input range.

These results reveal that the optimal design in each case
involves (i) a modest experimental effort to characterize
the monostable response at the extremes of the feasible
input range, and (ii) a much heavier sampling within the
bistable region. For Ds-optimal experiments, the optimal
design clusters the bimodal samples near the mid-point
of the logistic function (where ρ ≈ 0.5). For D-optimal
experiments, which aim to characterize the full parameter
set (θ, c), optimal samples consistently track a pair of
percentiles of ρ above and below the mid-point.

We next investigated the sensitivity of optimal sample
placement to the nominal θ vector, by holding the logistic
parameters constant at c = [−18.0, 111] and randomly se-
lecting ten θ vectors from a normal distribution with mean

[0.5, 3, 3
√
9, 3] and standard deviations of 10% of the mean

values. To ensure all θ were consistent with the assump-
tions used to derive the likelihood, we rejected parameter
sets that did not result in deterministic bistability at u =
BL − ε and u = Br + ε, with ε = 0.05, as well as rejecting
parameters sets that resulted in bistability at u = 0 and
u = 0.3 (the upper and lower bounds of the feasible range
for u). Figure 4A depicts stable branches of the ten random
bifurcation curves for the chosen θ parameter sets. Figures
4B and C depict the corresponding Ds-optimal and D-
optimal designs respectively. With the logistic parameters

Fig. 4. (A) Stable branches of the bifurcation curves
generated from ten random parameter sets θ. (B) Ds-
optimal sample weights and inputs for the chosen
θ parameters sets, with logistic parameters c held
constant. (C) Corresponding D-optimal designs.

held constant, the optimal samples for both Ds and D op-
timality show a similar placement and weighting, despite
the variability in the model parameterization. This finding
suggests that, at this systems size (Ω = 90), the shape of
the logistic function (which characterizes the bimodality)
has a strong effect on the optimal sample placement.
These also implies that preference between the D or Ds

objectives will depend predominantly on the experimental
plans. If the experimenter will only perform a single ex-
periment, the Ds design yields an optimal estimate for the
primary parameters θ. However, if the experimenter plans
to perform a series of iterated experiments, refining their
parameter estimates and re-optimizing their experimental
design after each iteration, the D-optimal design will yield
a sequence of improved estimates for both θ and c. As the
optimal design appears to depend largely on the values of
c, the D-optimal objective is ideal for this case.

Referring to Figures 3 and 4, we note that the Ds-optimal
designs tended to sample from single mid-point near the
middle of the bistable region at a percentile near ρ = 0.5.
Likewise the D-optimal designs appear to select a pair
of optimal inputs that map to relatively consistent and
symmetric percentiles on the ρ logistic curve. To further
assess this trend, we generated 500 fully randomized
parameters sets. Vectors θ was chosen as above; values of
c1 were selected from a uniform distribution over [91 141],
while cc was selected from a uniform distribution over
[0.125 0.175]. This ensured the mid-point ρ = 0.5 did not
fall too close to the boundaries of the guaranteed bistable
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region BL = 0.1 and BR = 0.2. Figure 5 shows histograms
of theDs andD-optimal sampling locations in the bistable
region across all of the randomly generated parameter sets,
where the optimal inputs u have been mapped against
percentiles of the logistic ρ. The figure shows clear trends:

Fig. 5. (A) Histogram for 500 random parameters sets;
shown are the frequency of Ds-optimal input values
that fall within the bistable region, plotted according
to the percentiles of the logistic ρ to which they cor-
respond. (B) Corresponding histogram for D-optimal
inputs.

the Ds-optimal input, for use when applying a single
round of OED, lies near the 60th percentile of ρ; the
D-optimal inputs, which are suited to an iterative OED
application, occur near the 25th and 85th percentiles of ρ.
Referring to Figure 2, we note that the 60th percentile
of ρ is approximately where the HDS peaks, while the
25th and 85th percentiles occur where the HDS rises above
the baseline. These results suggest a simple heuristic for
performing OED in this bistable system by using the HDS
to do a preliminary search for these locations. After these
critical values have been located, the experimenter can

use the existing data to provide initial estimates of θ̂ and
ĉ and perform a D or Ds optimal design. For a crude
approximation of the optimal design, the logistic could
be fit using only the peak and bounds of the elevated
HDS signal to approximate the percentile locations. These
critical HDS locations could also be used to select the
inputs u directly. The sampling weights ξ could then be
approximated based on an average of weights across many
θ values, as shown in Figure 4. As shown in Figure 4B and
C, θ appears to have a limited effect on the optimal design
once the logistic is known, with the majority of samples
being taken in the biomodal input range.

4. CONCLUSION

In this work we applied OED to an inducible and auto-
activating gene expression motif that exhibits bistability.
We used a stochastic model to derive an approximate like-
lihood function, based on the LNA, and a logistic approxi-
mation for stochastic switching between stable points mo-
tivated by Eyring-Kramers’ law. We defined a likelihood
to avoid irregularities caused by the bifurcations. We then
used Ds and D-optimality criteria to determine optimal

inputs and sampling proportions for steady state exper-
iments. We showed that, for the given nominal parame-
ter set and system sizes, the logistic switching function
strongly influences the optimal input placement and that
optimal inputs roughly correspond to certain percentiles
on the logistic curve. Our results suggest that bimodal-
ity statistics, like the HDS, may provide a convenient
method to perform optimal experiments in the absence of
accurate initial estimates for the model parameters. These
results can be further investigated by additional simulation
studies, to examine a wider range of system sizes and
parameters. Additional tests can incorporate maximum
likelihood fitting to SSA-generated data. We chose the
somewhat artificial one-dimensional system used here be-
cause it provided a simple, tractable example, allowing
us to more thoroughly illustrate the connection between
optimal designs and bistability. Extending our analysis to
higher-dimensional systems will reveal whether the simple
design heuristic we discovered may be representative of a
more general property of OED for bistable systems. An
obvious next step is to extend our analysis to a more
realistic two-dimensional toggle switch, a direction which
we are currently pursuing. Another possible line of inquiry
would involve using model and dimensionality reduction
techniques to map higher dimensional systems into a one
or two dimensional observation space. These reduction
techniques may be easier to apply at steady state, rather
than in a dynamic context, which is an attractive feature
of targeting steady state experiments. Finding an appro-
priate model reduction procedure would ideally make it
straightforward to validate and apply our heuristic design
rule to a much broader class of systems.
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