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Abstract

The habilitation thesis is devoted to recent developments on boundary
value problems for nonlinear elliptic equations with a Hardy potential in a
measure framework. The presence of the Hardy potential which is singular
on the boundary of the domain under consideration and the involvement of
measures in the analysis yield substantial difficulties and lead to disclose the
novelty of the research. New aspects are displayed not only on employed
methods but also on observed novel phenomena.

The thesis consists of five chapters. The first chapter addresses the
main topics covered in the thesis and presents our contributions, which are
collected from our recent works, including results on the existence, nonexis-
tence, uniqueness, a priori estimates and qualitative properties of solutions,
a full characterization of isolated boundary singularities, removable singu-
larities. The major features of the problems under investigation depend
essentially on the expression of the nonlinear term in equations. Therefore,
typical models are successively considered throughout the last four chapters
in order to reveal different phenomena. In particular, chapter 2 deals with
absorption nonlinear terms and chapter 3 treats source nonlinear terms.
Chapter 4 is devoted to an extension of results in the previous chapters to
more general equations and systems. Finally chapter 5 focuses on the case
where nonlinear terms depend on both solutions and their gradient.
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CHAPTER 1

Introduction

Section 1.1 of this chapter is devoted to an overview on boundary value
problems for linear and nonlinear elliptic equations involving the classical
Laplace operator in function settings and in measure frameworks. We also
discuss the role of measures and point out essential differences between the
linear case and nonlinear case in measure frameworks. In Section 1.2, we
give the motivation for the study of singular operators which are the Laplace
operator perturbed by Hardy potentials. Then we address the main prob-
lems involving these operators in this thesis. The interaction between Hardy
potentials and measures leads to interesting features of the problems and re-
veals new phenomena. We present briefly our main contributions, including
results extracted from our joint paper with Moshe Marcus [106], with Kon-
stantinos Gkikas [78, 80] and on our single-author work [119], as well as
accompanying comments and comparisons with previous in the literature.
This may help the reader to grasp the main results more easily and to follow
the subsequent sections more smoothly. The detailed statements of these
results are provided in Section 1.3 of the chapter for the convenience of the
reader. Finally, in Section 1.4, we discuss related and open problems which
have recently attracted a great deal of attention.

The thesis is not a self-contained text despite of our effort to make
it accessible to researchers and students with different backgrounds. We
assume that the reader is familiar with basic notions in functional analysis
and measure theory which can be found in standard textbooks, for instance
[34, 64, 63, 1, 76]. However, at some places, relevant concepts and ideas
from these fields are recalled and explained in order the make the exposition
of the main results clearer.

1.1. Overview on boundary value problems

In this section, we first list basic notations that are used frequently
throughout the thesis. The reader is referred to the standard textbooks
[1, 34, 63, 76, 128, 116, 139, 140] for more properties of these notations.
Then we recall well known results for boundary value problems for linear and
nonlinear equations involving the classical Laplace operator. These results,
as well as the proofs, can be found in excellent references [116, 138, 139].

Basic notations.
• Assume Ω is a domain (namely a connected, open nonempty subset)

in RN (N ≥ 1). Let C(Ω) be the space of continuous functions on Ω. We
denote by Ck(Ω) the space of functions k times continuously differentiable
on Ω (for integer k ≥ 1) and C∞(Ω) = ∩k≥1C

k(Ω). Let Cc(Ω) be the space
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2 1. INTRODUCTION

of continuous functions on Ω with compact support in Ω. Put Ckc (Ω) =
Ck(Ω) ∩ Cc(Ω) and C∞c (Ω) = C∞(Ω) ∩ Cc(Ω).
• Let φ ∈ C(Ω) be a positive weight function. Denote by Lκ(Ω, φ), 1 ≤

κ <∞) the weighted Lebesgue space of functions v satisfying
∫

Ω |v|κφdx <
∞. This space is endowed with the norm

‖v‖Lκ(Ω,φ) :=

(∫
Ω
|v|κφdx

) 1
κ

.

When φ ≡ 1, these spaces become the usual Lebesgue spaces Lκ(Ω). We
denote by Lκloc(Ω) the space of functions v such that v ∈ Lκ(Ω′) for any
compact subset Ω′ ⊂ Ω.
• For 1 ≤ κ <∞, the weighted Sobolev space Wm,κ(Ω, φ) is defined by

Wm,κ(Ω, φ) := {v ∈ Lκ(Ω, φ) : Dβv ∈ Lκ(Ω, φ) for every |β| ≤ m}.
This space is endowed with the norm

‖v‖Wm,κ(Ω,φ) :=
∑
|β|≤m

‖Dβv‖Lκ(Ω,φ).

We denote by H1(Ω, φ) = W 1,2(Ω, φ). When φ ≡ 1, these spaces become
the usual Sobolev spaces Wm,κ(Ω). We denote by Wm,κ

loc (Ω) the space of
functions v such that v ∈Wm,κ(Ω′) for any compact subset Ω′ ⊂ Ω.
• A Borel measure on Ω is called a Radon measure if it is bounded on

compact sets of Ω. Let M(Ω, φ) be the space of Radon measures τ on Ω
satisfying

∫
Ω φd|τ | < ∞ and M+(Ω, φ) be the positive cone of M(Ω, φ).

Denote by M(∂Ω) the space of bounded Radon measures on ∂Ω and by
M+(∂Ω) the positive cone of M(∂Ω). The space M(Ω, φ) and the space
M(∂Ω) are respectively endowed with the norms

‖τ‖M(Ω,φ) :=

∫
Ω
φd|τ |,

‖ν‖M(∂Ω) :=

∫
∂Ω
d|ν|.

• Denote by Lκw(Ω, φ), 1 ≤ κ < ∞, the weak Lebesgue space (or
Marcinkiewicz space) with weight φ. The subscript w is an abbreviation
of “weak”. See the definition of weak Lebesgue spaces in subsection 1.3.1.
• Denote δ(x) = dist(x, ∂Ω) where ∂Ω is the boundary of Ω. When

φ = δθ with θ > −1, we have the spaces Lκ(Ω, δθ), Wm,κ(Ω, δθ), M(Ω, δθ)
and Lκw(Ω, δθ).
• A sequence {Ωn} is a C2 exhaustion of Ω if {Ωn} is uniformly of class

C2 and for every n, Ωn ⊂ Ωn+1 and ∪nΩn = Ω.
• Throughout the thesis, c, c1, c2, C, C1, C

′ denote positive constants
which may vary from line to line. We write C = C(a, b) to emphasize
the dependence of C on the data a, b.
• The notation f ∼ h means that there exist positive constants c1, c2

such that c1h < f < c2h.
• For any a, b ∈ R, we write a ∧ b = min{a, b} and a ∨ b = max{a, b}.
• For κ > 1, we denote by κ′ the conjugate exponent, i.e. κ′ = κ

κ−1 .

• For a set E in RN , denote by χE the indicator function of E.
• For x ∈ RN , denote by δx the Dirac measure concentrated at x.
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• Denote by dS the surface element on ∂Ω.
• For z ∈ ∂Ω, denote by nz the outer unit normal vector at z. We denote

by ∂
∂n the derivative in the outer normal direction on ∂Ω.

• The gradient of u is ∇u = ( ∂u∂x1 , ...,
∂u
∂xN

).

1.1.1. Function settings. Nonlinear elliptic equations have been one
of the most developed subject in the area of partial differential equations
(PDEs) not only because of their great interest to other fields within math-
ematics such as calculus of variations, harmonic analysis, measure theory,
differential geometry, fluid dynamics, probability theory, but also because of
their applications in physics, engineering, and other applied scientific disci-
plines. The simplest second order PDE is the Laplace equation

−∆u = 0 in Ω (1.1.1)

where Ω is a domain in the Euclidean space RN (2 ≤ N ∈ N) and ∆

denotes the Laplace operator (or Laplacian) defined by ∆u =
∑N

i=1
∂2u
∂x2i

.

In (1.1.1) and throughout the present thesis, we write the Laplace operator
with ‘minus sign’ because the operator −∆ is positive. In the context of this
habilitation thesis, unless otherwise stated, Ω is a C2 bounded domain (see
the definition of C2 domains in Gilbarg and Trugdinger [76]). A function
u ∈ C2(Ω) satisfying equation (1.1.1) is called harmonic.

Roughly speaking, a boundary value problem for (1.1.1) is a problem of
finding an harmonic function u in Ω which satisfies certain auxiliary bound-
ary conditions on some part of the boundary ∂Ω in some sense. There is a
huge literature on boundary value problems for (1.1.1), and for more gen-
eral elliptic equations, in which one of the earliest well-known works is the
Dirichlet problem which asks if we can find an harmonic function u in Ω
with a prescribed boundary value u = h on ∂Ω, where h is a given function
defined on ∂Ω. The history of such Dirichlet problem is remarkable and led
to an extensive development of methods in PDEs in function settings (see a
survey by Brezis and Browder [35]).

Another important equation is the Poisson equation which arises in many
varied physical situations

−∆u = τ in Ω, (1.1.2)

where τ is a given datum. The Dirichlet problem associated the Poisson
equation is {−∆u = τ in Ω,

u = ν on ∂Ω,
(1.1.3)

where ν is a given boundary datum. It is classical that if the data τ and ν are
smooth enough then problem (1.1.3) admits a unique classical solution u ∈
C2(Ω) ∩ C(Ω) (see for example [76, Theorem 4.3]) and hence the equation
and the boundary value condition in (1.1.3) are understood in the pointwise
sense. By multiplying the equation in (1.1.3) by φ ∈ C2

0 (Ω), where

C2
0 (Ω) = {φ ∈ C2(Ω) : φ = 0 on ∂Ω}

and then using the integration by parts, we obtain the formula

−
∫

Ω
u∆φdx =

∫
Ω
τφdx−

∫
∂Ω
ν
∂φ

∂n
dS, (1.1.4)



4 1. INTRODUCTION

where n is the outer normal unit vector to ∂Ω, ∂
∂n denotes the derivative

in the outer normal direction on ∂Ω and dS denotes the surface element on
∂Ω. When τ and ν are not regular, one faces a difficulty stemming from the
fact that (1.1.3) does not admit any classical solution. However we observe
that functions satisfying (1.1.4) may exist, which leads to the definition of
weak solutions. More precisely, Brezis [33] defined weak solutions to (1.1.3)
with integrable data as follows:

Assume τ ∈ L1(Ω, δ) and ν ∈ L1(∂Ω), a function u is a weak solution of
(1.1.3) if u ∈ L1(Ω) and u satisfies (1.1.4) for all φ ∈ C2

0 (Ω). Here δ is the
distance function to the boundary ∂Ω.

It is known, by the classical approximation method, that for any τ ∈
L1(Ω, δ) and ν ∈ L1(∂Ω), there exists a unique weak solution u of (1.1.3)
(see [116, Proposition 1.1.3]).

Let GΩ : Ω × Ω \ {(x, x) : x ∈ Ω} → R+ be the Green kernel (or Green
function) associated to the operator −∆ and PΩ : Ω × ∂Ω → R+ be the
Poisson kernel associated to −∆, i.e.

PΩ(x, y) = −∂G
Ω

∂n
(x, y) ∀x ∈ Ω, y ∈ ∂Ω.

More properties and sharp estimates of Green kernel and Poisson kernel can
be found in [132, 63, 31, 128, 139].

For any τ ∈ L1(Ω, δ) and ν ∈ L1(∂Ω), the unique weak solution to
(1.1.3) can be represented by

u(x) =

∫
Ω
GΩ(x, y)τ(y)dy +

∫
∂Ω
PΩ(x, y)ν(y)dS(y). (1.1.5)

The theory of linear problem (1.1.3) forms a basis for the investigation
of the Dirichlet problem{−∆u+ f(u) = τ in Ω,

u = ν on ∂Ω,
(1.1.6)

where f : R→ R is a given function, τ and ν are given data. The equation
in (1.1.6) consists of the linear part ∆u and the nonlinear part f(u). This
problem has been studied by many authors in various function settings (see,
for example, Brezis and Strauss [33, 40], Marcus and Véron [116], Quittner
and Souplet [127, 128] and Drábek and Milota [51] and references therein).
Weak solutions of problem (1.1.6) are defined Brezis and Strauss as follows:

Assume τ ∈ L1(Ω, δ) and ν ∈ L1(∂Ω), a function u is a weak solution of
(1.1.6) if u ∈ L1(Ω), f(u) ∈ L1(Ω, δ) and u satisfies

−
∫

Ω
u∆φdx+

∫
Ω
f(u)φdx =

∫
Ω
φτdx−

∫
∂Ω

∂φ

∂n
νdS ∀φ ∈ C2

0 (Ω). (1.1.7)

Notice that for any φ ∈ C2
0 (Ω), |φ| ≤ cδ, therefore φτ ∈ L1(Ω). Conse-

quently, L1(Ω, δ) is the largest function space for the data.
When f : R→ R is a continuous, nondecreasing function with f(0) = 0

(in this case it is called absorption nonlinear term), the solvability of (1.1.6)
for any τ ∈ L1(Ω, δ) and ν ∈ L1(∂Ω) is essentially due to Brezis and Strauss
[40] and was demonstrated by Marcus and Véron in [116, Proposition 2.1.2].
It is worth emphasizing that this result holds true for a quite large class
of absorption terms since it does not require any additional condition on
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f . Therefore, in this regard, linear problem (1.1.3) and nonlinear problem
(1.1.6) in L1 setting share a similarity.

1.1.2. Involvement of measures.
Thomas-Fermi equation. A motivation for the study of semilinear ellip-

tic equations in measure frameworks stems from the Thomas-Fermi theory
(see Lieb [95] and Bénilan and Brezis[20]). The theory was invented by
L. H. Thomas and E. Fermi in order to describe the electron density %(x),
x ∈ R3 and the ground state energy for a system (e.g. a molecule) consisting
of k nuclei of charges mi > 0 and fixed locations Ai ∈ R3 (1 ≤ i ≤ k) and `
electrons. The Thomas-Fermi energy functional for the system is

E(%) =
3

5

∫
R3

%
5
3dx−

∫
R3

V %dx+
1

2

∫
R3

∫
R3

%(x)%(y)

|x− y| dxdy + U

on

A := {% ≥ 0 : % ∈ L1(R3) ∩ L 5
3 (R3),

∫
R3

%dx = `},

where V (x) =
∑k

i=1mi|x − Ai|−1 and U(x) =
∑k

i,j=1mimj |Ai − Aj |−1. It

is noticed that % 7→ E(%) is convex. The Thomas-Fermi energy is defined by

ETF := inf
%∈A
E(%). (1.1.8)

The Euler-Lagrange equation, which is also call the Thomas-Fermi equation,
is

%
2
3 = (u− λ)+. (1.1.9)

where −λ is called the Lagrange multiplier or chemical potential and

u(x) = V (x)−
∫
R3

%(x)

|x− y|dy.

It is known that there is a minimizer % for (1.1.8) if and only if ` ≤ M :=∑k
i=1mi. The minimizer is unique, denoted by %TF , and satisfies (1.1.9)

for some λ ≥ 0. Conversely, any positive solution of (1.1.9) is a minimizer
of (1.1.8). In the neutral case, i.e. ` = M , one has % > 0 and λ = 0,

therefore (1.1.9) becomes %
2
3 = u. By applying ∆ on both sides, one obtains

a semilinear equation

−∆u+ 4π u
3
2 = 4π

k∑
i=1

mi δAi (1.1.10)

where δAi denotes the Dirac measure concentrated at Ai. It can be seen
that the left-hand side of this equation consists of a linear part ∆u and a

nonlinear part which is expressed by u
3
2 , while the right-hand side is the

sum of Dirac measures concentrated at the points Ai.

Interior measure data. Motivated by the investigation on equation (1.1.10),
Bénilan and Brezis [20] considered a more general equation

−∆u+ |u|p−1u = τ in Ω (1.1.11)

where Ω is a domain in RN , p > 1 and τ is a Radon measure on Ω. Equation
(1.1.10) is a particular case of (1.1.11) withN = 3 and p = 3

2 . The analysis of

this equation reveals that the theory in L1 setting previously established by
Brezis and Strauss [40] cannot be easily extended to a measure framework
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and new striking phenomena appear due to the nonlinear nature of the
problem. Therefore, dealing with a measure framework would provide a deep
insight about the problem. In particular, Bénilan and Brezis [20] showed
that the value N

N−2 is a critical exponent for the existence of equation (1.1.11)
with zero Dirichlet boundary condition u = 0. More precisely, they proved
that if 1 < p < N

N−2 then the problem has a unique solution, while if p ≥ N
N−2

then there is no solution with µ = δA for any A ∈ Ω. Many developments
have been achieved since the work of Bénilan and Brezis [20], including
Véron [136] and Brezis and Oswald [39] for a complete classification of
solutions with an isolated singularity, Vázquez and Véron [134, 135] for
more general nonlinearities, Brezis and Véron [41] for removable isolated
singularities, Baras and Pierre [14, 15] for removability results in terms of
Bessel capacities, Vázquez and Véron [133] and Friedman and Véron [70]
for isolated singularities of quasilinear equations.

Boundary measure data. Similar problems with boundary measures have
been also studied with important motivation coming from the probability
theory. Boundary value problems with measure data for linear and semilin-
ear equations are respectively related to Markov processes called diffusions
and superdiffusions. A diffusion is a model of a random motion of a single
particle and is characterized by a second order elliptic differential operator,
including the Laplacian. A superdiffusion, which describes a random evo-
lution of a cloud of particles, is closely related to semilinear equations. For
further discussions about the importance of measure boundary data in the
study of linear and semilinear equations in connection with diffusions and
superdiffusions, the reader is referred to excellent books of Dynkin [57, 58].

The role of boundary measures can be seen in particular from the rep-
resentation theorem for harmonic function. More precisely, given a positive
harmonic function in Ω, by Herglotz-Doob theorem [116, theorem 1.4.1],
there exists a unique measure ν ∈M+(∂Ω) such that

u(x) =

∫
∂Ω
PΩ(x, y)dν(y). (1.1.12)

holds. Such measure ν is called boundary measure of u and it is attained as
the limit of the Sobolev trace of the solution u in each surface parallel to
∂Ω. More precisely, let {Ωn} be a C2 exhaustion of Ω and denote by u|∂Ωn

the Sobolev boundary trace of u on ∂Ωn. Then there exists a nonnegative
bounded Radon measure ν on ∂Ω independent of the choice of the exhaustion
such that the sequence of measures {u|∂ΩndS} converges weakly to ν. The
above result shows that in order to completely characterize the boundary
behavior of harmonic functions, it is insufficient to deal only with function
settings and hence measures have to be involved in the analysis.

1.1.3. Measure frameworks.

Linear equations. The results for linear equations in function settings
can be extended to measure frameworks in which the definition of weak
solutions to (1.1.3) is modified as follows:
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Assume τ ∈ M(Ω, δ) and ν ∈ M(∂Ω). A function u of (1.1.3) is a
solution of (1.1.3) if

−
∫

Ω
u∆φdx =

∫
Ω
φdτ −

∫
∂Ω

∂φ

∂n
dν, ∀φ ∈ C2

0 (Ω). (1.1.13)

As explained in L1 setting, for any φ ∈ C2
0 (Ω), one has |φ| ≤ cδ, and hence

the first term on the right-hand side of (1.1.13) is finite. This also explains
why M(Ω, δ) is the largest possible measure space one can work on. The

second term on the right-hand side is finite because ∂φ
∂n is bounded.

It is known that, for any τ ∈ M(Ω, δ) and ν ∈ M(∂Ω), there exists a
unique solution of (1.1.3) and the solution can be represented by the Green
kernel acting on τ and the Poisson kernel acting on ν (see [116, Theorem
1.2.2]), i.e.

u(x) =

∫
Ω
GΩ(x, y)dτ(y) +

∫
∂Ω
PΩ(x, y)dν(y). (1.1.14)

In particular, given a measure ν ∈ M(∂Ω), the harmonic solution with
boundary condition u = ν is given by

u(x) =

∫
∂Ω
PΩ(x, y)dν(y). (1.1.15)

Absorption nonlinearities. Over the last decades, boundary value
problems for semilinear equations in measure frameworks have been inten-
sively investigated both in probabilistic approaches and analytic methods
with the aim of bringing into light and describing several aspects of nonlin-
ear phenomena. The pioneering work on the Dirichlet problem with measure
boundary data for semilinear elliptic equations with an absorption term

−∆u+ f(u) = 0 in Ω, (1.1.16)

where f : R → R is a nondecreasing, continuous function with f(0) = 0,
is due to Gmira and Véron [82]. They introduced the definition of weak
solutions of {−∆u+ f(u) = 0 in Ω,

u = ν on ∂Ω,
(1.1.17)

in spirit of Brezis [33] as follows:
Assume ν ∈ M(∂Ω). A function u is a weak solution of (1.1.17) if

u ∈ L1(Ω), f(u) ∈ L1(Ω, δ) and u satisfies

−
∫

Ω
u∆φdx+

∫
Ω
f(u)φdx = −

∫
∂Ω

∂φ

∂n
dν ∀φ ∈ C2

0 (Ω). (1.1.18)

The notion of weak solutions is well defined. Indeed, for any φ ∈ C2
0 (Ω),

one has ∆φ ∈ L∞(Ω) and hence u∆φ ∈ L1(Ω). Therefore the first term on
the left-hand side of (1.1.18) is finite. The second term on the left-hand side
of (1.1.18) is also finite due to the fact that |φ| ≤ cδ and f(u) ∈ L1(Ω, δ).
It can be also seen that the term on the right-hand side of (1.1.18) is also

finite because ∂φ
∂n is bounded on ∂Ω and ν is a bounded Radon measure on

∂Ω.
A highlighting feature is that, in contrast to the L1 case where the

existence holds true for every L1 boundary datum, the Dirichlet problem
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(1.1.17) is not solvable for every measure datum in general. More precisely,
Gmira and Véron [82] showed that if f satisfies∫ ∞

1
(f(t) + |f(−t)|)t−1−N+1

N−1dt <∞, (1.1.19)

then problem (1.1.17) has a unique weak solution. This result was demon-
strated by employing a classical approximation method, in combination with
Marcinkiewicz estimates on Green kernel and Martin kernel and Vitali con-
vergence theorem. Condition (1.1.19) is sharp and the value N+1

N−1 appearing

in (1.1.19) is a critical exponent for the existence of a solution to (1.1.17).
When f(u) = |u|p−1u with p > 1, equation (1.1.16) becomes

−∆u+ |u|p−1u = 0 in Ω, (1.1.20)

and condition (1.1.19) is interpreted as 1 < p < N+1
N−1 , which is the subcritical

range. Hence in this range, for any ν ∈M(∂Ω), problem{
−∆u+ |u|p−1u = 0 in Ω,

u = ν on ∂Ω,
(1.1.21)

admits a unique weak solution in this case. In the supercritical range, namely
p ≥ N+1

N−1 , it was shown (see [82]) that there is no weak solution of (1.1.21)
if ν is a Dirac measure concentrated at a point on ∂Ω. Furthermore, when
p ≥ N+1

N−1 , any nonnegative solution u ∈ C(Ω \ {0}) of (1.1.20) vanishing on

∂Ω\{0} is identically zero, i.e. isolated boundary singularities are removable.
The topic has reached to its full flowering through a series of celebrated

papers by Marcus and Véron [109, 111, 112, 113, 114, 115, 99, 116] and
many other works (see for examples [37, 30, 120, 29, 22] and references
therein). Taking into account the construction of the boundary measure
of positive harmonic functions, Marcus and Véron introduced a notion of
boundary trace [116, Definition 1.3.6] in order to describe the boundary
behavior of solutions to equation (1.1.16).

Definition 1.1 (m-boundary trace). Let u ∈ W 1,κ
loc (Ω) for some κ > 1.

We say that u possesses an m-boundary trace on ∂Ω if there exists a bounded
Radon measure ν on ∂Ω such that, for every C2 exhaustion {Ωn} of Ω and
every ϕ ∈ C(Ω),

lim
n→∞

∫
∂Ωn

u|∂ΩnϕdS =

∫
∂Ω
ϕdν.

Here u|∂Ωn denotes the Sobolev trace of u on ∂Ωn. The m-boundary trace
of u is denoted by tr(u).

It is known from [116, Proposition 1.3.7] that every positive harmonic
function u in Ω admits a positive m-boundary trace ν ∈ M(∂Ω), which in
fact coincides the boundary measure given by (1.1.15).

A first step to study the notion of m-boundary trace is to deal with
moderate solutions of (1.1.16), namely weak solutions of (1.1.16) which are
bounded by positive harmonic functions (see [116, Definition 3.1.1]). The
equivalence between the notion of m-boundary trace and the concept of mod-
erate solutions was established by Marcus and Véron [116, Theorem 3.1.2].
Moreover, these notions are equivalent to the condition f(u) ∈ L1(Ω, δ).
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Afterwards, Marcus and Véron generalized the notion of m-boundary
trace to a notion called rough boundary trace and pointed out that, un-
der some additional assumptions on f , every positive solution of (1.1.16)
possesses a rough boundary trace given by a positive outer regular Borel
measure on ∂Ω (see [115, Theorem 1.1] or [116, Theorem 3.1.8, Theorem
3.1.12 and Definition 3.1.14]). Conversely, they showed that the solvability
for (1.1.17) holds true when ν is a positive outer regular Borel measure which
may be infinite on subsets of ∂Ω (see [116, Theorem 3.3.1]). In particular,
if f(u) = |u|p−1u then, in the subcritical range p < N+1

N−1 , for any positive

outer regular Borel measure ν, problem (1.1.21) admits a unique positive so-
lution (see [115, Theorem 1.6]). Also, in the subcritical range, Marcus and
Véron [111, 115] characterized completely boundary isolated singularities
of nonnegative solutions of (1.1.20). It means that if u ∈ C(Ω\{0}) is a non-
negative solution of (1.1.20) vanishing on ∂Ω \ {0}, then either u = uk, the
solution of (1.1.21) with ν = kδ0 for some k ≥ 0 (weakly singular solutions),
or u = limk→∞ uk (strongly singular solution).

The supercritical case is more challenging and was treated by many au-
thors using various techniques. The removability result due to Gmira-Véron
has been significantly extended, either by using probabilistic approach by
Le Gall [92], [93], Dynkin and Kuznetsov [59], [60], under the restriction
N+1
N−1 ≤ p ≤ 2, or by employing purely analytic methods by Marcus and

Véron [112, 113, 114] in the whole range N+1
N−1 ≤ p. The key ingredient

in analyzing the problem is the Bessel capacity C 2
p
,p′ in (N − 1)-dimension,

where p′ = p
p−1 . Among the most interesting results, it is worth mention-

ing that problem (1.1.21) is solvable with ν ∈ M+(∂Ω) if and only if ν is
absolutely continuous with respect to the C 2

p
,p′-capacity. Furthermore, if

E ⊂ ∂Ω is compact and u ∈ C(Ω \ E) is a solution of (1.1.20) vanishing on
∂Ω \ E, then u is necessary zero if and only if C 2

p
,p′(E) = 0. A complete

characterization of positive solutions of (1.1.20) has been developed by Mse-
lati [117] when p = 2, by Dynkin [57, 58] for N+1

N−1 ≤ p ≤ 2, and finally by

Marcus [99] for the whole supercritical range p ≥ N+1
N−1 .

Source nonlinearities. An important PDE with a source term is the
Lane-Endem equation

−∆u = up in Ω, (1.1.22)

where p > 1, which was named after astrophysicists Jonathan Homer Lane
and Robert Emden. This equation was introduced in 1869 by Home Lane
[89] in the study of the temperature and the density of mass on the surface
of the Sun and has received special attention because it can be used to
describes polytropes in hydrostatic equilibrium as simple models of a star. A
systematic survey on the this equation from the physical and mathematical
point of view was presented in [42, 17]. A great number of remarkable
works have been carried out in various directions by many mathematicians,
including Lions [96], Brezis and Nirenberg [38], Gidas, Ni and Nirenberg
[73], Gidas and Spruck [74, 75], Baras and Pierre [14, 15] and Kalton and
Verbitsky [86], Polác̆ik, Quittner and Souplet [125], Quittner and Souplet
[127, 128].
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It is worth mentioning that a universal pointwise estimate for nonneg-
ative solutions of (1.1.22) was obtained by Polác̆ik, Quittner and Souplet
[125, Theorem 2.3] for 1 < p < N+2

N−2 by using a rescaling argument, a key
doubling property and Liouville-type results.

The Dirichlet problem with measure boundary data{−∆u = up in Ω,

u = ν on ∂Ω,
(1.1.23)

was first studied by Bidault-Véron and Vivier in [31] where estimates involv-
ing classical Green and Poisson kernels for the Laplacian were established
to obtain an existence result in the subcritical range, i.e. 1 < p < N+1

N−1 . Af-

terwards, Bidaut-Véron and Yarur [32] reconsidered this type of problem in
a more general setting and gave a necessary and sufficient condition for the
existence of solutions. Chen et al. [43] investigated the Dirichlet problem
with a more general source term by using the Schauder fixed point theorem
in combination with weighted Marcinkiewicz estimates. Recently, Bidaut-
Véron et al. [28] provided new criteria expressed in terms of boundary
capacities for the existence of weak solutions to problem (1.1.23).

A remarkable feature of the Dirichlet problem (1.1.23) is that, not only
the value of exponent p, but also the total mass of the boundary datum ν
plays an important role in deriving the existence and non-existence result.
More precisely, when 1 < p < N+1

N−1 , there exists a threshold value ρ∗ such

that problem (1.1.23) admits a solution if ‖ν‖M(∂Ω) ≤ ρ∗, and no solution if
‖ν‖M(∂Ω) > ρ∗ (see [31]).

It is worth mentioning that existence results for scalar equations were
extended to the Lane-Emden system

−∆u = vp + τ in Ω,

−∆v = up̃ + τ̃ in Ω,

u = ν, v = ν̃ on ∂Ω,

(1.1.24)

where τ, τ̃ are measures in Ω and ν, ν̃ are measures on ∂Ω. Various ex-
istence and non-existence results, as well as a priori estimates, for solu-
tions of (1.1.24) were established in [32]. See also the celebrated paper of
Polác̆ik, Quittner and Souplet [125] and the books of Quittner and Souplet
[127, 128] for related results.

Gradient-dependent nonlinearities. Equations with a nonlinear
term depending on the gradient of solutions (or the convection) arise in
various models of optimal stochastic control with state constrains. A typi-
cal equation is

−∆u+ |∇u|q = 0 in Ω, (1.1.25)

with q > 1, which is also a particular case of Hamilton-Jacobi-Bellman equa-
tions. Existence, a priori estimates and qualitative properties of solutions to
this equation, as well as more general class of equations, were discussed in
Lions [97] and Lasry and Lions [90]. The Dirichlet problem with measure
data {−∆u+ f(|∇u|) = 0 in Ω,

u = ν on ∂Ω
(1.1.26)
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where f : R+ → R+ is a continuous, nondecreasing function with f(0) = 0,
was first studied in our joint work with Véron [120]. Under the subcriticality
integral condition on f given by∫ ∞

1
f(t)t−1−N+1

N dt < +∞,

we obtained the existence of a positive solution to (1.1.26). When f is of
power type, namely f(|∇u|) = |∇u|q with 1 < q < 2, the subcriticality
integral condition reads as 1 < q < N+1

N . It was showed that N+1
N is the

critical exponent for the solvability of (1.1.26) and a complete description of
the structure of solutions with an isolated singularity on ∂Ω was provided.
Moreover, the existence of a solution to the Dirichlet problem with boundary
datum given by a Borel measure in the subcritical case, i.e. 1 < q < N+1

N ,

and a removability result in the supercritical case, i.e. N+1
N ≤ q < 2, were

also established.
These results were then extended in our joint paper with Marcus [105] to

the Dirichlet problem for a much more intricate equations with a nonlinear
term depending on both solutions and their gradient{−∆u+ f(u, |∇u|) = 0 in Ω,

u = ν on ∂Ω
(1.1.27)

Two model cases f(u, |∇u|) = up + |∇u|q and f(u, |∇u|) = up|∇u|q were
carefully studied in [105].

It is worth mentioning that equations with a gradient-dependent non-
linear term have been studied in various directions. We refer to Ghergu and
Rădulescu [71, 72] for singular elliptic equations with convection term and
zero Dirichlet condition, Alarcón, Garćıa-Melián [5, 6] for Keller-Osserman
type estimates and Liouville type theorems, Aghajani, Cowan and Lui [2,
3, 4] for singular solutions, Bidaut-Véron, Garcia-Huidobro and Véron [25,
26, 27] for a priori estimates on singular solutions.

1.2. Elliptic equations with a Hardy potential

In this section, we first explain the role of Hardy potentials and measures
in the investigation. Then we address the main problems regarding elliptic
equations with a Hardy potential in the thesis and depict briefly the main
results collected from our papers [106, 119, 78, 79, 80]. The detailed
statements of these results will be provided in Section 1.3.

1.2.1. The role of Hardy potentials. Schrödinger operators of the
form LV = ∆ + V , where V is a potential, have been intensively investi-
gated by numerous mathematicians because of their applications in non-
relativistic quantum mechanics, geometry, spectral and scattering theory,
and integrable systems (see for example [129, 131]). The behavior of the
potential V has a significant effect on properties of LV such as spectral prop-
erties and the existence of the associated Green kernel and Martin kernel.

The Coulombian potential V (x) = µ|x|−1, µ ∈ R, appears in the Thomas-
Fermi-Dirac-von Weizsäcker theory [18, 19]. The case where V is an inverse
square potential, i.e. V (x) = µ|x|−2, is called Leray-Hardy potential and
has been studied in connection with semilinear elliptic equations by Guerch
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and Véron [83], Ĉırstea [47], Dupaigne [55], Dávila and Dupaigne [49, 50],
Du and Wei [53], Chen and Véron [44].

When singular potentials, which blow up on the boundary ∂Ω, were
involved, in most of the cases, they were assumed to satisfy, e.g. |V (x)| ≤
cδ(x)2−ε for some ε > 0 small or more generally δV ∈ L1(Ω) (see [141, 122,
123]), which exclude the case where V behaves like δ−2 on certain part of
Ω. The case where

|V (x)| ≤ Cδ(x)−2 (1.2.1)

is of great interest and a theory of linear Schrödinger equation LV u = 0 on
manifolds was successfully and systematically developed by Ancona [7, 8].
The particular potential V (x) = µδ(x)−2 has received special attention and
it is called Hardy potential because of the close link to the Hardy inequality

CH(Ω)

∫
Ω

|ϕ|2
δ2

dx ≤
∫

Ω
|∇ϕ|2dx ∀ϕ ∈ H1

0 (Ω), (1.2.2)

where CH(Ω) denotes the best constant in Hardy inequality (also called
Hardy constant) given by

CH(Ω) := inf
ϕ∈H1

0 (Ω)\{0}

∫
Ω |∇ϕ|2dx∫
Ω(ϕ/δ)2dx

. (1.2.3)

In spirit of [69], Hardy inequality (1.2.2) can be interpreted as a form of
uncertainty principle. This means if the function ϕ in (1.2.2) is localized
close to the boundary (i.e. the term on the left-hand side of (1.2.2) is large)
then its momentum becomes large (i.e. the left-hand side of (1.2.2) is large).
The exponent −2 appearing in the power δ−2 plays a crucial role because it
keeps inequality (1.2.2) scaling invariant.

Inequality (1.2.2) in one dimensional case with Hardy constant CH(Ω) =
1
4 was discovered by Hardy [84, 85]. Moreover, he pointed out that the
Hardy constant is not attained. This inequality was then extended to Lip-
schitz domains in RN by Necas [118], Opic and Kufner [121] and was re-
visited by Brezis and Marcus [36]. It is classical that CH(Ω) ∈ (0, 1

4 ] and

CH(Ω) = 1
4 if Ω is convex (see [103, Theorem 11]) or if −∆δ ≥ 0 in the sense

of distributions (see [16, Theorem A]). Moreover, the infimum in (1.2.3) is
achieved if and only if CH(Ω) < 1

4 .
For µ ∈ R, denote by Lµ the Laplace operator perturbed by a Hardy

potential

Lµ := ∆ +
µ

δ2
, (1.2.4)

where δ(x) = dist(x, ∂Ω). Notice that the Hardy potential blows up on ∂Ω.
The energy functional associated to the operator Lµ is given by

Eµ(ϕ) =
1

2

∫
Ω

(
|∇ϕ|2 − µ

δ2
ϕ2
)
dx, ϕ ∈ H1

0 (Ω). (1.2.5)

We see that if µ ≤ CH(Ω)(≤ 1
4) then the energy functional is bounded from

below and important spectral properties of −Lµ can be derived, which plays
an important role in the study of linear and semilinear equations involving
−Lµ in a variational framework.
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Therefore, the first and important step in the investigation of boundary
value problem for equations involving Schrödinger operators LV satisfying
(1.2.1) is to understand the operator Lµ with the restriction µ ≤ 1

4 .

1.2.2. The role of measures. Similarly to the free potential case, i.e.
µ = 0, a heuristic strategy in the study of linear and nonlinear equations
involving Hardy potentials is first to treat them in a function setting and
then to extend the scope of the theory to a measure framework.

In function settings, the Dirichlet problems for linear and nonlinear equa-
tions involving Hardy potentials share a similarity. More precisely, the linear
problem admits a unique solution for any L1 data and nonlinear problem is
solvable for any L1 data with a large class of nonlinear terms. This can be
seen in [77, Proposition 3.2] and [106, Corollary C1].

However, beyond the similarity, there are sharp distinctions between
linear phenomena and nonlinear phenomena which have not been well un-
derstood until the involvement of measures in the analysis. The extension
from a function setting to a measure framework appears to be an appro-
priate approach to reveal and interpret these distinctions. The first one is
that, in contrast to the linear case where the solvability is valid for any
bounded Radon measure data (see [106, Proposition I]), in the nonlinear
case, the existence depends essentially on the nonlinear term and/or the
total mass of the boundary data and it is possible to construct bounded
measures (for example Dirac measures) for which the nonexistence occurs
(see [106, Theorem F]). Moreover, the multiplicity result may hold if the
total mass of the boundary data is small enough. The second distinction
is that, unlike the linear case where any positive solution of homogeneous
linear equations can be uniquely represented via a positive bounded mea-
sure on ∂Ω, in the nonlinear case, there are positive solutions of nonlinear
equations whose boundary behavior is given by a Borel measure which may
take infinite values on subsets of ∂Ω. These results will be discussed in the
next subsections (see also [106, 119, 77]).

1.2.3. Introduction of main problems. In this thesis, we are inter-
ested in boundary value problems for nonlinear elliptic equations involving
operator Lµ (defined in (1.2.4)) of the form

− Lµu± g(u, |∇u|) = 0 in Ω, (1.2.6)

where g is nondecreasing with respect to u and/or |∇u|. These equations
consist of two competing effects: the diffusion driven by the linear operator
Lµ and the reaction term expressed by the nonlinear term g(u, |∇u|). We
will focus on the range µ ∈ (0, 1

4 ] in which interesting properties of −Lµ are
exploitable (see the explanation in subsection 1.3.1). The nonlinear term
g(u, |∇u|) is called absorption (resp. source) if the ‘plus sign’ (resp. ‘minus
sign’) appears in (1.2.6). Typical models are g(u) = |u|p−1u, g(|∇u|) =
|∇u|q, g(u, |∇u|) = up + |∇u|q and g(u, |∇u|) = up|∇u|q.
Aim. The aim of the thesis is to present recent developments on nonlinear
equation (1.2.6). In particular, the following problems are addressed.

(1) The boundary trace problem: We aim to show that any positive so-
lution u of (1.2.6) can be uniquely characterized by a positive measure on
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the boundary ∂Ω. Roughly speaking, such a measure, if exists, is called the
boundary trace of u. This result is not only an extension of the Represen-
tation theorem for harmonic functions to solutions of nonlinear equations,
but also reveal new phenomena in the nonlinear case.

(2) The Dirichlet problem with measures for (1.2.6): Given a measure
ν defined on the boundary ∂Ω, we look for a solution to equation (1.2.6)
satisfying boundary condition u = ν in some sense. We also discuss various
necessary and sufficient conditions for the existence of solutions to (1.2.6).
Furthermore, we consider the questions of non-existence, uniqueness and
multiplicity in particular cases.

(3) Isolated boundary singularities: We investigate the case where the
boundary data concentrate only at a point on the boundary. More precisely,
we aim to give a complete description of the set of solutions to equation
(1.2.6) vanishing on ∂Ω \ {y} for y ∈ ∂Ω. This result will provide the exact
asymptotic behavior of such solutions near the isolated boundary singulari-
ties.

(4) Removable boundary singularities: Assume F ⊂ ∂Ω and u ∈ C(Ω\F )
is a nonnegative solution of (1.2.6) in Ω vanishing on ∂Ω\F . We will look for
conditions on the set F and the nonlinear term g under which the ‘singular
set’ F can be removable, i.e. u is identically zero. In particular, this result
shows the nonexistence of singular solutions when the nonlinear term grows
‘fast’.

Features. The above problems have the following main features.
• The presence of the Hardy potential which blows up on the boundary

∂Ω has an essential effect on the boundary behavior of solutions to (1.2.6).
Consequently, the boundary conditions cannot be imposed arbitrarily and
the Dirichlet problem for (1.2.6) cannot be handled by the classical tech-
niques.
• In general, universal estimates (for example the Keller-Osserman esti-

mate [87]) do not hold for positive solutions of (1.2.6).
• The expression of the nonlinear term g plays a crucial role in the study

of the solvability for boundary value problems for (1.2.6). In particular, the
absorption case and the source case are sharply different in the sense that
in the absorption case, the existence and uniqueness do not depend on the
total mass of the boundary data, while in the source case, the existence
relies not only the concentration but also on the total mass of the boundary
data and the uniqueness breaks down.
•When the nonlinear term g depends on the gradient of solutions, equa-

tion (1.2.6) becomes non-variational, it means that this equation cannot be
solved by using variational methods. Furthermore, the dependence of g on
the gradient ∇u causes the lack of monotonicity, which can be seen from an
easy observation that the inequality u(x) ≤ v(x) does not imply any relation
between |∇u(x)| and |∇v(x)|; therefore approaches based on the monotonic-
ity are invalid. In addition, the competition between up and |∇u|q generates
the complication of the study.
• In general, equation (1.2.6) is not scaling invariant (or in other words,

equation (1.2.6) does not admit any similarity transformation), i.e. if u is
a solution of (1.2.6) then the function v(x) = `αu(`βx), for ` > 0, α, β ∈ R,



1.2. ELLIPTIC EQUATIONS WITH A HARDY POTENTIAL 15

does not solve (1.2.6). Consequently, standard arguments relying on the
scaling invariance property are not applicable.
• The boundary data are given by measures on the boundary ∂Ω, which

makes solutions (if exist) significantly less regular. Therefore, the standard
approximation arguments are invalid or may be valid only under some ad-
ditional conditions on the nonlinear term g.

The interaction of the above features yields substantial difficulties and
leads to disclose new types of results. Therefore a new approach with subtle
analysis is required in the investigation.

1.2.4. Brief description of our contributions. This subsection serves
as a summary of the main results in the thesis and provides a comparison
with previous results. This might help the reader grasp the gist of the main
results. The reader who is interested in the detailed statements and the
proofs is referred to Section 1.3 and Chapters 2–5.

Boundary trace problem. We consider the boundary trace problem
for equation (1.2.6). To this purpose, we first investigate the boundary
behavior of Lµ-harmonic functions in Ω, i.e. solutions of the equation

− Lµu = 0 in Ω, (1.2.7)

which in turn indicates possible boundary behavior of solutions to corre-
sponding semilinear equations. Based on that, we introduce a notion of
normalized µ-boundary trace expressed by a bounded measure on the bound-
ary (see Definition 1.3). This notion is new (compared with the notion of
m-boundary trace when µ = 0 in Definition 1.1) because it depicts clearly
how a function admitting a normalized µ-boundary trace behaves on every
surface parallel to the boundary ∂Ω. Moreover, it is pointed out that this
notion is equivalent to the concept of moderate solutions of (1.2.6), namely
solutions which are dominated by a positive Lµ-harmonic function. In par-
allel, another notion of boundary trace defined by mean of weak convergence
of measures is introduced by Gkikas and Véron [77]. We then show that
these notions of boundary trace are equivalent (see subsection 1.3.2). Fur-
thermore, it is worth mentioning that any positive solution (not necessarily
moderate) admits a boundary trace given by a Borel measure on ∂Ω which
may be infinite on compact subsets of ∂Ω (see [77, Theorem F]).

Dirichlet problem. We investigate the Dirichlet problem{−Lµu± g(u, |∇u|) = 0 in Ω,

u = ν on ∂Ω,
(1.2.8)

where ν is a given measure on ∂Ω, µ ∈ (0, 1
4 ] and g is a nondecreasing func-

tion with respect to u and/or |∇u|. Since the analysis depends essentially
on the expression of the nonlinear term, typical models are considered sepa-
rately, for which we showed that if the nonlinear term g does not grow ‘too
fast’ with respect to u and/or |∇u|, then for any bounded Radon measure
ν on ∂Ω, problem (1.2.8) possesses a solution.

Absorption case. Let us illustrate the above-mentioned fact by consid-
ering the absorption case, namely the equation (1.2.8) with plus sign. The
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following exponent is deeply involved in the analysis

α :=
1

2
(1 +

√
1− 4µ). (1.2.9)

This exponent comes from the construction of a special solution of (1.2.7) in
the half space RN+ which is singular at the origin 0 and vanishes on ∂RN+ \{0}
(Actually this solution plays a similar role as the Poisson kernel of −∆ in
the half space). Notice that, since µ ∈ (0, 1

4 ], α ∈ [1
2 , 1).

When g : R→ R is a nondecreasing, continuous function depending only
on solutions u with g(0) = 0, we show that the condition∫ ∞

1
(g(t) + |g(−t)|)t−1−pµdt <∞, (1.2.10)

with

pµ :=
N + α

N + α− 2
, (1.2.11)

is a sufficient condition for the existence of (1.2.8) (see Theorem 1.10 and
[77, Theorem 3.3]). A typical model is g(u) = |u|p−1u with p > 1 and
(1.2.10) is satisfied if and only if 1 < p < pµ. For this model, pµ is called
a critical exponent for (1.2.8). We say that p is in the subcritical range if
p < pµ, otherwise we say that p is in the supercritical range.

When g : R+ → R+ is a nondecreasing, continuous function depending
only on |∇u| with g(0) = 0, we show that the condition∫ ∞

1
g(t)t−1−qµdt <∞, (1.2.12)

with

qµ :=
N + α

N + α− 1
, (1.2.13)

is a sufficient condition for the existence of (1.2.8) (see [79, Theorem B]).
A typical model is g(|∇u|) = |∇u|q with 1 < q < 2 and (1.2.12) is satisfied
if and only if 1 < q < qµ. For this model, qµ is called a critical exponent for
(1.2.8). We say that q is in the subcritical range if q < qµ, otherwise we say
that q is in the supercritical range.

When g : R+ × R+ → R+ is a nondecreasing, continuous function de-
pending on both solutions u and the gradient |∇u| with g(0, 0) = 0, we point
out that (see [80, Theorem 1.3]) the sufficient condition for the existence of
(1.2.8) can be nicely expressed by a combination of condition (1.2.10) and
condition (1.2.12) as ∫ ∞

1
g(t, t

pµ
qµ )t−1−pµdt <∞. (1.2.14)

There are two typical models that are worth highlighting.
• The first one is g(u, |∇u|) = up + |∇u|q with p > 1 and 1 < q < 2 and

(1.2.14) is satisfied if

1 < p < pµ and 1 < q < qµ. (1.2.15)

For this model, we say that (p, q) is in the subcritical range if (1.2.15) holds,
otherwise we say that (p, q) is in the supercritical range.
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• The second model is g(u, |∇u|) = up|∇u|q with p ≥ 0, 0 ≤ q < 2 and
p+ q > 1 and (1.2.14) is satisfied if

(N + α− 2)p+ (N + α− 1)q < N + α. (1.2.16)

For this model, we say that (p, q) is in the subcritical range if (1.2.16) holds,
otherwise we say that (p, q) is in the supercritical range.

Sharp solvability results in the typical models can be summarized in the
following table 1.

Absorption case Existence, uniqueness Non-existence
in subcritical range in supercritical range

g(u) = |u|p−1u p < pµ p ≥ pµ
g(|∇u|) = |∇u|q q < qµ qµ ≤ q < 2

g(u, |∇u|) = up + |∇u|q p < pµ and q < qµ p ≥ pµ or
qµ ≤ q < 2

g(u, |∇u|) = up|∇u|q (N + α− 2)p+ (N + α− 2)p+
(N + α− 1)q < N + α (N + α− 2)p ≥ N + α

Table 1: Absorption case

The above table shows that, in the subcritical range, for any bounded bound-
ary measure ν, problem (1.2.8) with plus sign admits a unique solution.
Moreover, this solution is bounded from above by the solution to the corre-
sponding linear problem {−Lµu = 0 in Ω,

u = ν on ∂Ω.
(1.2.17)

The proof of the existence result relies on the approximation method, mak-
ing use of sub and super solutions theorem, delicate estimates of Green
kernel and Martin kernel in weak Lebesgue spaces and Vitali convergence
theorem. The condition (1.2.14) allows to show that the sequence of ap-
proximate nonlinear terms is convergent. The existence result for the case
when g depends on both u and |∇u| is new, even in the case µ = 0. The
uniqueness in case the nonlinear term depends only on u is based on Kato
type inequalities which are achieved due to the monotonicity. The question
of uniqueness has remained open for a while, even when µ = 0, in case the
gradient |∇u| is involved in the analysis due to the lack of monotonicity. In
[105], we obtain the uniqueness for the case g(u, |∇u|) = up + |∇u|q and
µ = 0. One of the main thrusts of our thesis is to obtain the uniqueness
in the case g(u, |∇u|) = up|∇u|q and 0 < µ ≤ 1

4 in which the interplay
between up and |∇u|q drastically complicates the situation. Our existence
and uniqueness results cover well known results in case µ = 0 and provide a
full understanding in the case 0 ≤ µ ≤ 1

4 .
Also in the subcritical range, we provide a complete classification of

solutions of (1.2.6) with an isolated boundary singularity. In particular, we
show that there are actually two types of solutions with an isolated boundary
singularity at a point y ∈ ∂Ω: the weakly singular solutions, i.e. solutions
ukδy of (1.2.8) with plus sign and ν = kδy with k > 0 and δy being the Dirac

1The cases g(u) = |u|p−1u and g(|∇u|) = |∇u|q are particular cases of g(u, |∇u|) =
up|∇u|q with q = 0 and p = 0 respectively, however we include these cases in the table for
the sake of completeness.



18 1. INTRODUCTION

mass concentrated at y, and the strongly singular solution u∞δy which is the
limit u∞δy = limk→∞ ukδy (see Theorem 1.17 and Theorem 1.18).

In the supercritical range, we prove that boundary singularities are re-
movable. It means if E is a compact subset of ∂Ω which has a zero capacity
in certain sense and u ∈ C(Ω \ E) is a nonnegative solution of (1.2.6) with
plus sign such that u vanishes on ∂Ω \ E, then u is identically zero (see
Theorem 1.19 and Theorem 1.20).

Source case. Next we consider the source case, i.e. equation (1.2.6) with
minus sign. Phenomena occurring in this case are sharply different from
those in the absorption case. A striking distinction is that the existence for
(1.2.8) holds if the norm of ν is small and does not hold if the norm of ν is
large (see Theorem 1.12 and Theorem 1.21). Moreover, in contrast to the
absorption case, in the source case, solutions (if exist) are bounded from
below by the solution of (1.2.17). The method used to prove the existence
in the source case is different from that in the absorption case due to the
nature of the nonlinear term. In fact, when g(u) = up, we use the sup and
super solutions method combined with 3-G estimates to show the existence
of the minimal solution. This can be done thanks to the monotonicity of
the nonlinear term. In a more general case, or in case g depends also on
the gradient |∇u|, this method is invalid (due to the lack of monotonicity),
hence we employ the Schauder fixed point theorem to show the existence
under the smallness assumption on the boundary data.

The existence result in the typical models are summarized in the follow-
ing table 2 in which ‖ν‖M(∂Ω) denotes the norm of the boundary measure
datum ν.

Source case Existence Non-existence
in subcritical range in supercritical range

g(u) = up p < pµ and p < pµ, ‖ν‖M(∂Ω) > ρ∗

‖ν‖M(∂Ω) ≤ ρ∗ or p ≥ pµ
g(|∇u|) = |∇u|q q < qµ and Not known yet

‖ν‖M(∂Ω) small

g(u, |∇u|) = up + |∇u|q p < pµ and Not known yet
q < qµ and
‖ν‖M(∂Ω) small

g(u, |∇u|) = up|∇u|q (N + α− 2)p+ Not known yet
(N + α− 1)q < N + α

and ‖ν‖M(∂Ω) small

Table 2: Source case

From Table 2, we see that, in the source case, non-existence result holds
for the model g(u) = up if the norm of ν is large enough and has not been
known yet in other typical models.

We obtain various necessary and sufficient conditions in terms of sharp
estimates on Green kernel and Martin kernel (see Theorem 1.13 for the case
g(u) = up). We also establish criteria expressed in terms of capacities for the

2The cases g(u) = |u|p−1u and g(|∇u|) = |∇u|q are particular cases of g(u, |∇u|) =
up|∇u|q with q = 0 and p = 0 respectively, however we include these cases in the table for
the sake of completeness.
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existence of (1.2.8) (see Theorem 1.14 for the case g(u) = up and Theorem
1.22 for the case g depends on u and |∇u|). Our results for the case where
g depends only on u extend those in [31, 32, 28] for µ = 0, and the results
for the case where g depends on |∇u| are new even for µ = 0.

1.3. Detailed statement of main results

In this section, we first discuss important ingredients for the investi-
gation. Then we provide the detailed statement of our recent results on
the boundary value problems for linear and nonlinear equations involving
operator Lµ which were established in our papers [106, 119, 78, 79, 80].

1.3.1. Ingredients. Main ingredients in the study of boundary value
problems with measure data for equations (1.2.7) and (1.2.6) include eigen
pair of −Lµ and the Green kernel and the Martin kernel of −Lµ.

First eigenvalue and eigenfunction. The eigenvalue problem associated
to −Lµ is

λµ := inf
ϕ∈H1

0 (Ω)\{0}

∫
Ω(|∇ϕ|2 − µ

δ2
ϕ2)dx∫

Ω ϕ
2dx

. (1.3.1)

If µ < 1
4 then by [36, Remark 3.2], problem (1.3.1) admits a positive

minimizer ϕµ in H1
0 (Ω) and hence λµ is the first eigenvalue of −Lµ in H1

0 (Ω).
The function ϕµ, normalized by

∫
Ω(ϕ2

µ/δ
2)dx = 1, is the corresponding

positive eigenfunction and satisfies

−Lµϕµ = λµϕµ in Ω.

Moreover, by [66] (see also [108, Lemmas 5,1, 5.2] and [50, Lemma 7] for
an alternative proof), ϕµ ∼ δα in Ω, where α is given in (1.2.9). It is noted
that, since µ ∈ (0, 1

4 ], α ∈ [1
2 , 1).

If µ = 1
4 then there is no minimizer of (1.3.1) in H1

0 (Ω), but there exists

a nonnegative function ϕ 1
4
∈ H1

loc(Ω) such that −L 1
4
ϕ 1

4
= λ 1

4
ϕ 1

4
in Ω in the

sense of distributions. Again by [66], ϕ 1
4
∼ δ 1

2 in Ω.

We observe from (1.2.3) and (1.3.1) that λµ > 0 if µ < CH(Ω), λµ = 0 if
µ = CH(Ω) < 1

4 , while λµ < 0 when µ > CH(Ω). It is not known if λµ > 0

when µ = CH(Ω) = 1
4 . However, if Ω is convex or if −∆δ ≥ 0 in the sense of

distributions – in these cases CH(Ω) = 1
4 – then λ 1

4
> 0 (see [36, Thereom

II]) and [16, Theorem A with k = 1 and p = 2]).

Green kernel and Martin kernel. The positivity of the first eigenvalue
λµ plays a crucial role in derivation of the existence of Green kernel and
Martin kernel. From the above observation, we see that this property does
not hold for arbitrary µ ∈ (0, 1

4 ]. Therefore, in order to go further in the
study of the Green kernel and Martin kernel, we assume that

µ ∈ (0,
1

4
] and λµ > 0. (1.3.2)

Notice that this assumption (1.3.2) is fulfilled when µ ∈ (0, CH(Ω)). Through-
out the thesis, unless otherwise stated, we assume that (1.3.2) holds.
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We say that u is Lµ-harmonic (resp. Lµ-subharmonic, Lµ-superharmonic)
in Ω if u ∈ L1

loc(Ω) and

−Lµu = 0 (resp.− Lµu ≤ 0,−Lµu ≥ 0)

in the sense of distributions in Ω, namely

−
∫

Ω
uLµϕdx = (resp. ≤, ≥) 0, ∀ϕ ∈ C∞c (Ω).

Under assumption (1.3.2), ϕµ is a positive Lµ-superharmonic function
in Ω. Therefore, a classical result of Ancona [8] and a result of Gkikas
and Véron [77, Section 2] (for the case µ = 1

4) imply that for every y ∈ ∂Ω,
there exists a positive Lµ-harmonic function in Ω which vanishes on ∂Ω\{y}
and is unique up to a constant. This function is denoted by KΩ

µ (·, y) with

normalization KΩ
µ (x0, y) = 1 where x0 ∈ Ω is a fixed reference point. The

function (x, y) 7→ KΩ
µ (x, y), (x, y) ∈ Ω× ∂Ω, is called the Lµ-Martin kernel

in Ω relative to x0. We emphasize that the role of the Martin kernel is
similar to that of the Poisson kernel in case µ = 0. However, unlike the
Poisson kernel which has a finite mass, the Martin kernel KΩ

µ (, y) may have
zero or infinite mass at y. In particular, if µ ∈ (0, CH(Ω)), then the mass
of KΩ

µ (·, y) at y is zero and hence the Poisson kernel does not exist in this
case.

Furthermore, by [8] and [77, Theorem 2.33] (for µ = 1
4), there is a one-

to-one correspondence between the set of positive Lµ-harmonic functions
and the set of positive bounded Radon measures on ∂Ω. More precisely, we
have:

Theorem 1.2 (Representation Theorem). For every ν ∈ M+(∂Ω) the
function

KΩ
µ [ν](x) :=

∫
∂Ω
KΩ
µ (x, y)dν(y) ∀x ∈ Ω (1.3.3)

is Lµ-harmonic in Ω. Conversely, for every positive Lµ-harmonic function
u in Ω there exists a unique measure ν ∈ M+(∂Ω) such that u = KΩ

µ [ν] in
Ω.

The measure ν such that u = KΩ
µ [ν] is called the Lµ-boundary measure

of u. If µ = 0, ν becomes the m-boundary trace of u (see the definition of
m-boundary trace in Definition 1.1). However, when µ ∈ (0, CH(Ω)), it can
be proved that, for every ν ∈ M+(∂Ω), the m-boundary trace of KΩ

µ [ν] is
zero.

Let GΩ
µ be the Green kernel for the operator −Lµ in Ω× Ω defined by

GΩ
µ (x, y) =

∫ ∞
0

Hµ(x, y, t)dt

where Hµ is the heat kernel associated with −Lµ. By [66, Theorem 4.11],
for every x, y ∈ Ω, x 6= y,

GΩ
µ (x, y) ∼ |x− y|2−N

(
1 ∧ δ(x)αδ(y)α|x− y|−2α

)
. (1.3.4)

This estimate leads to the observation that a measure τ ∈M+(Ω, δα) if and
only if GΩ

µ [τ ] is finite a.e. in Ω (see [106, page 9]) where GΩ
µ is the Green
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operator acting on τ defined by

GΩ
µ [τ ](x) :=

∫
Ω
GΩ
µ (x, y)dτ(y).

From the following relation between Green kernel and Martin kernel

KΩ
µ (x, y) = lim

z→y

GΩ
µ (x, z)

GΩ
µ (x0, z)

∀x ∈ Ω, y ∈ ∂Ω,

and estimate (1.3.4), we deduce

KΩ
µ (x, y) ∼ δ(x)α|x− y|2−N−2α ∀x ∈ Ω, y ∈ ∂Ω. (1.3.5)

Estimates in weak Lebesgue spaces. Let us first recall the definition of
weak Lebesgue spaces (or Marcinkiewicz spaces). See the paper of Bénilan,
Brezis and Crandall [21] for more details of these spaces.

Let κ > 1, κ′ = κ
κ−1 and φ be a positive weight function. We set

Lκw(Ω, φ) :=
{
u ∈ L1

loc(Ω) : ‖u‖Lκw(Ω,φ) <∞
}

where

‖u‖Lκw(Ω,φ) := inf

{
c ∈ [0,∞] :

∫
E
|u|φdx ≤ c

(∫
E
φdx

) 1
κ′

, ∀ Borel E ⊂ Ω

}
.

The space Lκw(Ω, φ) is called the weak Lebesgue space with exponent κ (or
Marcinkiewicz space) with the norm ‖.‖Lκw(Ω,φ). The subscript w in the
notation stands for ‘weak’. The relation between the Lebesgue space norm
and the weak Lebesgue space norm is given in [21, Lemma A.2(ii)]. In
particular, for any 1 ≤ r < κ <∞ and u ∈ L1

loc(Ω), there exists C(r, κ) > 0
such that for any Borel subset E of Ω∫

E
|u|rφdx ≤ C(r, κ)‖u‖rLκw(Ω,φ)

(∫
E
φdx

)1− r
κ

.

We notice that Lκ(Ω, φ) ⊂ Lκw(Ω, φ) ⊂ Lr(Ω, φ) for all 1 ≤ r < κ. Weak
Lebesgue spaces play an important role because they provide optimal esti-
mates in the study of nonlinear elliptic equations in a measure framework.

Sharp estimates on Green kernel and Martin kernel in weak Lebesgue
spaces were obtained in [106, Proposition 2.8] and [78, Proposition 2.4]. By
using estimates (1.3.4) and (1.3.5), together with a key lemma in Bidaut-
Véron and Vivier [31, Lemma 2.4], we show that (see [78, Proposition 2.4])
there exists a constant c = c(N,µ,Ω) such that

‖GΩ
µ [τ ]‖

L
N+α
N+α−2
w (Ω,δα)

≤ c‖τ‖M(Ω,δα) ∀τ ∈M(Ω, δα), (1.3.6)

‖KΩ
µ [ν]‖

L
N+α
N+α−2
w (Ω,δα)

≤ c‖ν‖M(∂Ω) ∀ν ∈M(∂Ω). (1.3.7)

The above estimates indicate that the value N+α
N+α−2 would be a critical ex-

ponent for semilinear equations with the nonlinear term depending on solu-
tions.

When the nonlinear term depends on the gradient of solutions, the es-
timates on the gradient of the Green kernel and Martin kernel also play an
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important role in the analysis. More precisely, we prove that there exists a
positive constant c = c(N,µ,Ω) such that

‖∇GΩ
µ [|τ |]‖

L
N+α
N+α−1
w (Ω,δγ)

≤ c‖τ‖M(Ω,δα) ∀τ ∈M(Ω, δα), (1.3.8)

‖∇KΩ
µ [|ν|]‖

L
N+α
N+α−1
w (Ω,δα)

≤ c‖ν‖M(∂Ω) ∀ν ∈M(∂Ω), (1.3.9)

where

∇GΩ
µ [τ ](x) =

∫
Ω
∇xGΩ

µ (x, y)dτ(y)

∇Kµ[ν](x) =

∫
∂Ω
∇xKΩ

µ (x, z)dν(z).

Estimates (1.3.8) and (1.3.9) indicate that the value N+α
N+α−1 would be a

critical exponent for semilinear equations with the nonlinear term depending
on the gradient of solutions.

1.3.2. Notions of µ-boundary trace. One of the first attempt in
the study of boundary value problems for linear and nonlinear equations
involving operator Lµ was carried out by Bandle, Moroz and Reichel [11]
who investigated Lµ-sub and superharmonic functions and obtained the ex-
istence and nonexistence of large solutions, i.e. solutions blowing up on the
boundary ∂Ω. Further research related to large solutions is due to Bandle
and Pozio [12, 13] and Du and Wei [52]. However, there are other types of
solutions which may not singular on the whole boundary ∂Ω. Therefore, in
order to characterize the boundary behavior of such solutions to equations
with a Hardy potential, we need a new tool.

Normalized boundary trace. An interesting observation emerging from
estimate (1.3.5) and (1.3.3) is that there exists β0 > 0 small enough such
that for any ν ∈M+(∂Ω) and any β ∈ (0, β0), there holds∫

Σβ

KΩ
µ [ν]dS ∼ β1−α‖ν‖M(∂Ω),

where dS denotes the surface element on Σβ := {x ∈ Ω : δ(x) = β}. This,
together with the fact α < 1, implies that the m-boundary trace (see Def-
inition 1.1) of KΩ

µ [ν] is zero for any ν ∈ M+(∂Ω). Therefore, the notion
of m-boundary trace (see Definition 1.1) is no longer an appropriate tool
to describe the boundary behavior of KΩ

µ [ν]. Taking into account of the
Representation theorem (see Theorem 1.2), we see that this notion does not
play a role in the study of Lµ-harmonic functions. Therefore, we introduce
a new notion (see [106, Definition 1.2]) as follows:

Definition 1.3. Assume 0 < µ < CH(Ω). A function u ∈ W 1,r
loc (Ω)

with some r > 1 possesses a normalized µ-boundary trace if there exists a
measure ν ∈M(∂Ω) such that

lim
β→0

βα−1

∫
Σβ

|u−KΩ
µ [ν]|dS = 0, (1.3.10)

where dS denotes the surface element on Σβ. The normalized µ-boundary
trace will be denoted by tr∗µ(u).
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The terminology ‘normalized’ comes from the term βα−1 in (1.3.10).
Roughly speaking, the difference between the function u and Kµ[ν] on Σβ

has to be normalized by the weight βα−1 = δ(x)α−1 for x ∈ Σβ so that it
tends to zero. The weight βα−1 is also ‘propositional’ to the volume of the
surface Σβ. The term on the left-hand side of (1.3.10) can be understood
as the ‘average’ of the difference between u and Kµ[ν] near the boundary.

This notion is well-defined, i.e. if ν and ν ′ satisfy (1.3.10) then ν = ν ′

(see the remark after [106, Definition 1.2]). The condition u ∈ W 1,r
loc (Ω)

ensures the meaning of u on Σβ as the Sobolev trace of u on Σβ. The
restriction 0 < µ < CH(Ω) in [106] is imposed to guarantee that the first
eigenfunction ϕµ of −Lµ is a positive Lµ-superharmonic in Ω. The notion
was extended to the range µ < 1

4 by Marcus and Moroz in [104] due the fact
that there exist local Lµ-superharmonic functions in a neighborhood of ∂Ω.
The notion is new even in the case µ = 0 and enables us to measure how
close a function is in comparison with the Martin kernel near the boundary.

An important feature of this notion is that it allows to derive tr∗µ(GΩ
µ [τ ]) =

0 for any τ ∈M(Ω, δα) and tr∗µ(KΩ
µ [ν]) = ν for any ν ∈M(∂Ω).

Boundary trace defined in a dynamic way. In parallel, Gkikas and
Véron [77] introduced another notion of boundary trace which is defined
using the weak convergence of measures. Let D b Ω and x0 ∈ D be a fixed
reference point. If h ∈ C(∂D) then the following problem{−Lµu = 0 in D,

u = h on ∂D,
(1.3.11)

admits a unique solution which allows to define the Lµ-harmonic measure
ωx0D on ∂D by

u(x0) =

∫
∂D

h(y)dωx0D (y). (1.3.12)

Let {Ωn} be a C2 exhaustion of Ω. For each n, let ωx0Ωn
be the LΩn

µ -harmonic
measure on ∂Ωn.

Definition 1.4. Let µ ∈ (0, 1
4 ]. We say that a function u possesses a

µ-boundary trace if there exists a measure ν ∈M(∂Ω) such that for any C2

exhaustion {Ωn} of Ω, there holds

lim
n→∞

∫
∂Ωn

φu dωx0Ωn
=

∫
∂Ω
φdν ∀φ ∈ C(Ω). (1.3.13)

The µ-boundary trace of u is denoted by trµ(u) and we write trµ(u) = ν.

The advantage of this notion is that it does not require to determine the
normalization factor in the definition, however it does not provide informa-
tion on the boundary behavior of functions near ∂Ω.

Equivalence of the notions of µ-boundary trace. We show (see [78])
that the normalized µ-boundary trace in Definition 1.3 and the µ-boundary
trace in Definition 1.4 are actually equivalent. This is achieved thanks to the
following result (see Section 2, especially Proposition 2.5 and Proposition



24 1. INTRODUCTION

2.6 in [77]) {
tr∗µ(GΩ

µ [τ ]) = trµ(GΩ
µ [τ ]) = 0 ∀τ ∈M(Ω, δα),

tr∗µ(KΩ
µ [ν]) = trµ(KΩ

µ [ν]) = ν ∀ν ∈M(∂Ω).

Thanks to this result, these notions can be used interchangeably. In the
sequel, we employ the notion of µ-boundary trace given in Definition 1.4 in
the study of linear equations and nonlinear equations.

1.3.3. Linear equations. In this subsection, we consider nonhomoge-
neous linear equations of the form

− Lµu = τ in Ω (1.3.14)

with τ ∈ M(Ω, δα). The boundary value problem for (1.3.14) with µ-
boundary trace is formulated as{ −Lµu = τ in Ω

trµ(u) = ν,
(1.3.15)

where ν ∈M(∂Ω).

Definition 1.5. Assume τ ∈M(Ω, δα) and ν ∈M(∂Ω).
(i) A function u is a solution of (1.3.14) if u ∈ L1

loc(Ω) and u satisfies
(1.3.14) in the sense of distributions in Ω, namely

−
∫

Ω
uLµφdx =

∫
Ω
φdτ ∀φ ∈ C∞c (Ω).

(ii) A function u is a solution of (1.3.15) if u is a solution of (1.3.14) and
trµ(u) = ν.

Our main results regarding this problem provides a full understanding
of equation (1.3.14) and problem (1.3.15), as listed below.

Theorem 1.6. (i) For any ν ∈ M(∂Ω), the function u = KΩ
µ [ν] is the

unique solution of problem (1.3.15) with τ = 0. If u is a nonnegative Lµ-
harmonic function and trµ(u) = 0 then u = 0.

(ii) For any τ ∈M(Ω, δα), the function u = GΩ
µ [τ ] is the unique solution

of (1.3.15) with ν = 0. In particular, trµ(GΩ
µ [τ ]) = 0.

(iii) Let u be a positive Lµ-subharmonic function. If u is dominated by an
Lµ-superharmonic function then Lµu ∈M+(Ω, δα) and u has a µ-boundary
trace. In this case trµ(u) = 0 if and only if u ≡ 0.

(iv) Let u be a positive Lµ-superharmonic function. Then there exist
ν ∈M+(∂Ω) and τ ∈M(Ω, δα) such that

u = GΩ
µ [τ ] + KΩ

µ [ν]. (1.3.16)

In particular, u is an Lµ-potential (i.e., u does not dominate any positive
Lµ-harmonic function) if and only if trµ(u) = 0.

(v) For every ν ∈M(∂Ω) and τ ∈M(Ω, δα), problem (1.3.15) admits a
unique solution. The solution is given by (1.3.16).

(vi) u is a solution of of (1.3.15) if and only if u ∈ L1(Ω, δα) and

−
∫

Ω
uLµφdx =

∫
Ω
φdτ −

∫
Ω
KΩ
µ [ν]Lµφdx ∀φ ∈ X(Ω). (1.3.17)
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where Xµ(Ω) is the space of admissible test functions defined by

Xµ(Ω) := {φ ∈ H1
loc(Ω) : δ−αφ ∈ H1(Ω, δ2α), Lµφ ∈ L∞(Ω, δ−α)}.

(1.3.18)

Let us comment on the formula (1.3.17). Since u ∈ L1(Ω, δα) and Lµφ ∈
L∞(Ω, δ−α), it follows that uLµφ ∈ L1(Ω), hence the term on the left-hand
side of (1.3.17) is finite. Next, since φ ∈ Xµ(Ω), by [77, Lemma 3.1], we
have |φ| ≤ cδα, and hence the first term on the right-hand side of (1.3.17)
is finite. Finally, since KΩ

µ [ν] ∈ L1(Ω, δα) (see [78, Proposition 2.4]) and

Lµφ ∈ L∞(Ω, δ−α), the the second term on the right-hand side of (1.3.17)
is finite.

Theorem 1.6 was obtained in our joint work with Marcus [105, Propo-
sition I.] in case µ ∈ (0, CH(Ω)), dealing with the notion of normalized
µ-boundary trace and the space of test functions

Yµ(Ω) := {ζ ∈ C2(Ω) : Lµζ ∈ L∞(Ω, δ1−α), ζ ∈ L∞(Ω, δ−α)}
instead of Xµ(Ω), and then was extended in our joint work with Gkikas [78,
Section 2] to the case µ ∈ (0, 1

4 ], dealing with the notion of µ-boundary trace.
The above results generalize those for Laplacian in measure frameworks (see
[116]).

The theory for linear equation (1.3.14) forms a basis for the study of
nonlinear equation (1.2.6). The boundary value problem for (1.2.6) with a
given µ-boundary trace is formulated as{

−Lµu± g(u, |∇u|) = 0 in Ω,

trµ(u) = ν.
(1.3.19)

Let us give the definition of weak solutions of equation (1.2.6) and prob-
lem (1.3.19).

Definition 1.7. (i) A function u is a weak solution of (1.2.6) if u ∈
L1
loc(Ω), g(u, |∇u|) ∈ L1

loc(Ω) and u satisfies (1.2.6) in the sense of distribu-
tions in Ω, namely

−
∫

Ω
uLµφdx±

∫
Ω
g(u, |∇u|)φdx = 0 ∀φ ∈ C∞c (Ω).

(ii) Let ν ∈ M(∂Ω). A function u is a weak solution to of (1.3.19) if u
is a weak solution of (1.2.6) and trµ(u) = ν.

In the spirit of Theorem 1.6, it is interesting to ask if every weak solution
of (1.3.19) satisfies the decomposition

u±GΩ
µ [g(u, |∇u|)] = KΩ

µ [ν] in Ω (1.3.20)

and the weak formula

−
∫

Ω
uLµφdx±

∫
Ω
g(u, |∇u|)φ)dx = −

∫
Ω
KΩ
µ [ν]Lµφdx ∀φ ∈ Xµ(Ω).

(1.3.21)
The answer to this question is positive. We will discuss it the typical

models successively.
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1.3.4. Absorption term. In case g(u, |∇u|) = |u|p−1u, with p > 1,
and the plus sign occurs in (1.2.6), equation (1.2.6) and problem (1.3.19)
become

− Lµu+ |u|p−1u = 0 in Ω (1.3.22)

and {
−Lµu+ |u|p−1u = 0 in Ω

trµ(u) = ν,
(1.3.23)

where ν ∈M(∂Ω).
As in the the case µ = 0, the first step to analyze the µ-boundary trace

of solutions to (1.3.22) is to deal with moderate solutions of (1.3.22).

Definition 1.8. A function u is a moderate solution of (1.3.22) if |u| ≤ v
where v is a positive Lµ-harmonic function.

Our next theorem describes the relation between the concept of µ-
boundary trace and the notion of moderate solutions of (1.3.22).

Theorem 1.9. Assume p > 1 and let u be a positive solution of (1.3.22).
Then the following statements are equivalent.

(i) u is a Lµ-moderate solution of (1.3.22).

(ii) u admits a µ-boundary trace ν ∈ M+(∂Ω). It means u is a solution of
(1.3.23).

(iii) u ∈ Lp(Ω, δα) and (1.3.20) holds with g(u, |∇u|) = up and the plus sign,
where ν = trµ(u).

Furthermore, a positive function u is a solution of (1.3.23) if and only
if u ∈ Lp(Ω, δα) and (1.3.21) holds with g(u, |∇u|) = up and the plus sign.

This theorem is a combination of [106, Proof of Theorem A] and [77,
Proof of Proposition 3.5] and covers the previous results for the case µ = 0
in [116, Section 2.1]. The proof is based on Theorem 1.6, Representation
Theorem 1.2 and an approximation process.

A remarkable distinction in the study of nonlinear problem (1.3.23) in
comparison with that of linear problem (1.3.15) is that problem (1.3.23) is
solvable for any ν ∈ M(∂Ω) only if the nonlinear term does not grow ‘too
fast’. More precisely, we show that the exponent pµ given in (1.2.11) is a
critical exponent for the existence of solutions to (1.3.23) in the sense that
if 1 < p < pµ then problem (1.3.23) has a unique solution for every measure
ν ∈ M+(∂Ω) while, if p ≥ pµ then the problem has no solution if ν is a
Dirac measure. This is reflected in the following theorem.

Theorem 1.10. Assume p > 1.
(i) Existence, uniqueness and stability. If 1 < p < pµ then for every

ν ∈M(∂Ω) (1.3.23) admits a unique positive solution.
(i) Non-existence. If p ≥ pµ then for every k > 0 and y ∈ ∂Ω, there is

no positive solution of (1.3.23) with µ-boundary trace kδy, where δy denotes
the Dirac measure concentrated at y.

It is noticed that for any ν ∈ L1(∂Ω), problem (1.3.23) admits a unique
solution.

We proved Theorem 1.10 for µ ∈ (0, CH(Ω)) in connection with nor-
malized µ-boundary trace (see [106, Theorem E and Theorem F]). The
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results were extended by Marcus and Moroz [104] to the case µ < 1
4 for

arbitrary domains, without any requirement on the positivity of the first
eigenvalue λµ due to the key observation that there exists a positive local
Lµ-superharmonic function in the whole range µ < 1

4 .
In parallel, Gkikas and Véron considered the semilinear equations with a

class of more general absorption terms g(u) where g : R→ R is a continuous,
nondecreasing function with g(0) = 0, under assumption (1.3.2). They
pointed out in [77, Theorem 3.3] that, under the condition∫ ∞

1
(g(t) + |g(−t)|)t−1−pµdt <∞, (1.3.24)

for every ν ∈ M(∂Ω) there exists a unique weak solution of (1.3.19) with
nonlinear term g(u). Clearly, when g(u) = |u|p−1u, with p > 1, condition
(1.3.24) is translated as 1 < p < pµ and the existence result by Gkikas
and Véron covers statement (i) of Theorem 1.10. In particular, the result
asserts that for any k > 0, there exists a unique solution ukδy of (1.3.23)
with ν = kδy. It was also showed that the function u∞δy := limk→∞ ukδy is
a solution to the equation in (1.3.22) which vanishes on ∂Ω\{y} and admits
a strong singularity at y. When p ≥ pµ, they provided a necessary and
sufficient condition expressed in terms of Besov capacities for the existence
of a solution to (1.3.23), which includes statement (ii) of Theorem 1.10 as a
concrete case.

1.3.5. Source term. We are also interested in semilinear elliptic equa-
tions with a source term

− Lµu = g(u) in Ω (1.3.25)

and the associated boundary value problem{
−Lµu = g(u) in Ω

trµ(u) = ν
(1.3.26)

where g : R+ → R+ is a continuous, nondecreasing function with g(0) =
0. When dealing with (1.3.25) and (1.3.26), one encounters the following
difficulties. The first one stems from the lack of a universal upper bound for
solutions of (1.3.25). The second difficulty is that KΩ

µ [ν] is a subsolution of
(1.3.26) and therefore it is no longer an upper bound, but a lower bound for
solutions of (1.3.26).

We also show that weak solutions of (1.3.26) can be represented as in
(1.3.20), namely they can be decomposed as the sum of two terms: the action
of Green operator on the nonlinearity and the action of the Martin kernel
on the boundary datum. Equivalently, it also means that weak solutions
satisfy an integral formulation weakfor-ugradu (See [119, Theorem A] for
µ ∈ (0, CH(Ω)) and [78, Proposition A] for µ ∈ (0, 1

4 ] and more general
results involving also interior measure data).

A counterpart of Theorem 1.9 is also obtained for (1.3.25) and (1.3.26)
(see [77, Proposition A]). Based on this, together with weak Lebesgue space
estimate on Green kernel and Martin kernel and the Schauder fixed point
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theorem, we show that the value pµ given in (1.2.11) is also a critical ex-
ponent for the existence of (1.3.26), as stated below (see [119, Theorem H
and Theorem I]).

Theorem 1.11. (i) Subcritical case. Assume that

Λ0 :=

∫ ∞
1

g(t)t−1−pµdt <∞, (1.3.27)

and 0 ≤ g(t) ≤ Λ1t
p1 + θ for all t ∈ [0, 1] with some p1 > 1,Λ1 > 0, θ > 0.

There exist θ0 > 0 and ρ0 > 0 such that for any θ ∈ (0, θ0) and ν ∈
M+(∂Ω) such that ‖ν‖M(∂Ω) < ρ0, problem (1.3.26) admits a nonnegative
weak solution.

(ii) Sublinear case. Assume that

0 ≤ g(t) ≤ Λ2t
p2 + θ ∀t ≥ 0 (1.3.28)

for some p2 ∈ (0, 1], Λ2 > 0 and θ > 0. In (1.3.28), if p2 = 1 we assume
in addition that Λ2 is small enough. Then for any ν ∈ M+(∂Ω), (1.3.26)
admits a nonnegative weak solution.

When g(u) = up, we obtain a deeper analysis of the existence and non-
existence phenomena. Indeed, we prove (see [119, Theorem D and Theorem
G]) the existence of a threshold value for the existence of solutions to{

−Lµu = up in Ω,

trµ(u) = ρν,
(1.3.29)

where ρ > 0 is a parameter and ν ∈M+(∂Ω) with ‖ν‖M(∂Ω) = 1.

Theorem 1.12. Let p > 1 and ν ∈M+(∂Ω) with ‖ν‖M(∂Ω) = 1.
I. Subcritical case: p ∈ (1, pµ). There exists ρ∗ ∈ (0,∞) such that the

followings hold.

(i) If ρ ∈ (0, ρ∗] then problem (1.3.29) admits a minimal positive weak
solution uρν .

(ii) If ρ > ρ∗ then (1.3.29) does not admit any positive solution.

II. Supercritical case: p ≥ pµ. For every ρ > 0 and y ∈ ∂Ω, there is no
positive weak solution of (1.3.29) with ν = δy, where δy is the Dirac mass
concentrated at y ∈ ∂Ω.

Theorem 1.12 shows a sharp difference between the absorption case and
the source case. More clearly, in the source case, the existence depends not
only on the concentration of the boundary datum but also on its norm. It
was proved later on in our recent paper [23] that the multiplicity occurs
when ρ ∈ (0, ρ∗) and the uniqueness happens when ρ = ρ∗.

We also established various necessary and sufficient conditions in terms
of estimates on Green kernel (see [78, Theorem B]) for the existence for the
Dirichlet problem with interior measure data and boundary measure data{

−Lµu = up + στ in Ω,

trµ(u) = ρν.
(1.3.30)

Existence results are stated in the following theorem.
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Theorem 1.13. Let τ ∈M+(Ω, δα), ν ∈M+(∂Ω) and p > 0.
(i) Assume 0 < p < pµ. Then there exists a constant C > 0 such that

GΩ
µ [KΩ

µ [ν]p] ≤ CKΩ
µ [ν] a.e. in Ω, (1.3.31)

GΩ
µ [GΩ

µ [τ ]p] ≤ CGΩ
µ [τ ] a.e. in Ω. (1.3.32)

(ii) If (1.3.31) and (1.3.32) hold then problem (1.3.30) admits a weak
solution u satisfying

GΩ
µ [στ ] + KΩ

µ [ρν] ≤ u ≤ C(GΩ
µ [στ ] + KΩ

µ [ρν]) a.e. in Ω (1.3.33)

for σ > 0 and ρ > 0 small enough if p > 1, for any σ > 0 and ρ > 0 if
0 < p < 1.

(iv) If p > 1 and (1.3.30) admits a weak solution then (1.3.31) and
(1.3.32) hold with constant C = 1

p−1 .

(v) Assume 0 < p < pµ. Then there exists a constant C > 0 such that
for any weak solution u of (1.3.30) there holds

GΩ
µ [στ ] + KΩ

µ [ρν] ≤ u ≤ C(GΩ
µ [στ ] + KΩ

µ [ρν] + δα) a.e. in Ω. (1.3.34)

In order to deal with (1.3.30) in the supercritical case, i.e. p ≥ pµ, we
make use of interior capacities and boundary capacities which are recalled
below. For 0 ≤ θ ≤ β < N , set

Nθ,β(x, y) :=
1

|x− y|N−β max{|x− y|, δ(x), δ(y)}θ , ∀(x, y) ∈ Ω×Ω, x 6= y,

(1.3.35)

Nθ,β[τ ](x) :=

∫
Ω
Nθ,β(x, y)dτ(y), ∀τ ∈M+(Ω). (1.3.36)

For a > −1, 0 ≤ θ ≤ β < N and s > 1, define CapaNθ,β ,s by

CapaNθ,β ,s(E) := inf

{∫
Ω
δaφs dx : φ ≥ 0, Nθ,β [δaφ] ≥ χE

}
, (1.3.37)

for any Borel set E ⊂ Ω. Here χE denotes the indicator function of E.
Next we recall the capacity Cap∂Ω

θ,s introduced in [28] which is used to

deal with boundary measures. Let θ ∈ (0, N − 1) and denote by Bθ the
Bessel kernel in RN−1 with order θ. For s > 1, define

CapBθ,s(F ) := inf

{∫
RN−1

δsdy : φ ≥ 0, Bθ ∗ φ ≥ χF
}

(1.3.38)

for any Borel set F ⊂ RN−1. Since Ω is a bounded smooth domain in RN ,
there exist open sets O1, ..., Om in RN , diffeomorphisms Ti : Oi → B1(0)
and compact sets K1, ...,Km in ∂Ω such that

(i) Ki ⊂ Oi, 1 ≤ i ≤ m and ∂Ω ⊂ ∪mi=1Ki,
(ii) Ti(Oi ∩ ∂Ω) = B1(0) ∩ {xN = 0}, Ti(Oi ∩ Ω) = B1(0) ∩ {xN > 0},
(iii) For any x ∈ Oi∩Ω, there exists y ∈ Oi∩∂Ω such that δ(x) = |x−y|.

We then define the Cap∂Ω
θ,s−capacity of a compact set F ⊂ ∂Ω by

Cap∂Ω
θ,s(F ) :=

m∑
i=1

CapBθ,s(T̃i(F ∩Ki)), (1.3.39)

where Ti(F ∩Ki) = T̃i(F ∩Ki)× {xN = 0}.
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Let a > −1, 0 ≤ θ ≤ β < N and s > 1 and assume that −1 + s′(1 + θ−
β) < a < −1 + s′(N + θ − β). Then the above capacities are equivalent

CapaNθ,β ,s(E) ≈ Cap∂Ω
β−θ+a+1

s′ −1,s
(E) for any Borel E ⊂ ∂Ω.

The interested reader is referred to in [78, Section 3.3] for more properties of
of such capacities. Using these capacities, we give a criteria for the existence
of solutions.

Theorem 1.14. Let τ ∈ M+(Ω, δα) and ν ∈ M+(∂Ω). Assume p > 1.
Then the following statements are equivalent.

(i) There exists C > 0 such that the following inequalities hold∫
E
δαdτ ≤ CCap

(p+1)α
N2α,2,p′

(E) for all Borel set E ⊂ Ω, (1.3.40)

ν(F ) ≤ CCap∂Ω
1−α+α+1

p
,p′

(F ) for all Borel set F ⊂ ∂Ω. (1.3.41)

(ii) There exists a positive constant C such that (1.3.31) and (1.3.32)
hold.

(iii) Problem (1.3.30) has a positive weak solution for σ > 0 and ρ > 0
small enough.

We remark that capacities are a very useful tool which provides a finer
topology than Borel measures. When 1 < p < pµ, we have

inf
ξ∈Ω

Cap
(p+1)α
N2α,2,p′

({ξ}) > 0 and inf
z∈∂Ω

Cap∂Ω
1−α+α+1

p
,p′

({z}) > 0,

hence the Theorem 1.14 covers Theorem 1.13 (i)-(iii).
It is worth mentioning that we also extend existence results for scalar

equations to systems of the form
− Lµu = ε g(v) + στ in Ω,

− Lµv = ε g̃(u) + σ̃τ̃ in Ω,

trµ(u) = ρν, trµ(v) = ρ̃ν̃

(1.3.42)

where g and g̃ are nondecreasing, continuous functions in R with g(0) =
g̃(0) = 0, ε = ±1, σ > 0, σ̃ > 0, ρ > 0, ρ̃ > 0. The reader is referred to our
paper [78] for various existence results for (1.3.42).

1.3.6. Gradient-dependent nonlinearities. In this subsection, we
consider the Dirichlet problem for equation (1.2.6) with g : R+ ×R+ → R+

being nondecreasing and locally Lipschitz in its two variables with g(0, 0) =
0. We recall that the nonlinearity g(u, |∇u|) is called absorption (resp.
source) if the plus sign (resp. minus sign) appears in (1.2.6). Two prototype
models to keep in mind are g(u, |∇u|) = up+|∇u|q and g(u, |∇u|) = up|∇u|q.

First we are interested in the Dirichlet problem in the absorption case{
−Lµu+ g(u, |∇u|) = 0 in Ω,

trµ(u) = ν.
(1.3.43)

Weak solutions of (1.3.43) are defined in Definition 1.7.
The case where g depends only on |∇u| was studied in our joint paper

with Gkikas [79] where we showed that the value qµ given in (1.2.13) is a
critical value for the existence of (1.3.43). Several results were established for
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the Dirichlet problem, including uniqueness and full description of isolated
boundary trace in the case 1 < q < qµ and a removability result in the case
qµ ≤ q < 2.

Coming back to problem (1.3.43), the existence of a weak solution holds
under an integral condition on g (see [80, Theorem 1.3]).

Theorem 1.15. Assume g satisfies (1.2.14). Then for any ν ∈M+(∂Ω),
problem (1.3.43) admits a positive weak solution 0 ≤ u ≤ Kµ[ν] in Ω.

The proof is a highly nontrivial adaptation of that in the case where g
depends only on u or |∇u|, relying on sub and super solutions method, the
Schauder fixed point theorem and the Vitali convergence theorem.

Two typical models are g(u, |∇u|) = up+|∇u|q and g(u, |∇u|) = up|∇u|q.
The subcritical range and supercritical range for (p, q) are defined in (1.2.15)
and (1.2.16).

Next we show that the uniqueness holds in the cases g(u, |∇u|) = up +
|∇u|q and g(u, |∇u|) = up|∇u|q. As a matter of fact, the uniqueness is a
direct consequence of the following comparison principle (see [80, Theorem
1.5 and Theorem B.1]). This result is novel even in the case µ = 0.

Theorem 1.16. Assume g(u, |∇u|) = up + |∇u|q with p, q satisfying
(1.2.15) or g(u, |∇u|) = up|∇u|q with p, q satisfying (1.2.16) and q ≥ 1. Let
νi ∈ M+(∂Ω), i = 1, 2, and ui be a nonnegative solution of (1.3.43) with
ν = νi. If ν1 ≤ ν2 then u1 ≤ u2 in Ω.

The proof is based on a regularity result, the maximum principle, esti-
mates on the gradient of subsolutions of a nonhomogeneous linear equation.

Assume the origin 0 ∈ ∂Ω and let δ0 be the Dirac measure concentrated
at 0. It is known from Theorem 1.15 that for any k > 0, there exists a
unique solution uΩ

0,k of (1.3.43) with ν = kδ0. It is natural to ask what the

limk→∞ u
Ω
0,k could be. The answer is given in the next theorem where a

complete description of isolated singularities at 0 is established.
We first consider the case g(u, |∇u|) = up + |∇u|q. In this case, set

mp,q := max

{
p,

q

2− q

}
. (1.3.44)

Theorem 1.17. Assume g(u, |∇u|) = up + |∇u|q with p and q satisfying
(1.2.15).

I. Weak singularity. For any k > 0, let uΩ
0,k be the solution of

(1.3.43) with ν = kδ0. Then there exists a constant c = c(N,µ,Ω) > 0 such
that

uΩ
0,k(x) ≤ ckδ(x)α|x|2−N−2α ∀x ∈ Ω (1.3.45)

and

|∇uΩ
0,k(x)| ≤ ckδ(x)α−1|x|2−N−2α ∀x ∈ Ω. (1.3.46)

Moreover

lim
Ω3x→0

uΩ
0,k(x)

KΩ
µ (x, 0)

= k. (1.3.47)

Furthermore the mapping k 7→ uΩ
0,k is increasing.
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II. Strong singularity. Put uΩ
0,∞ := limk→∞ u

Ω
0,k. Then uΩ

0,∞ is a
solution of {

−Lµu+ g(u, |∇u|) = 0 in Ω,

u = 0 on ∂Ω \ {0}. (1.3.48)

Then there exists a constant c = c(N,µ, p, q,Ω) > 0 such that

c−1δ(x)α|x|−
2

mp,q−1 ≤ uΩ
0,∞(x) ≤ cδ(x)α|x|−

2
mp,q−1 ∀x ∈ Ω, (1.3.49)

|∇uΩ
0,∞(x)| ≤ cδ(x)α−1|x|−

2
mp,q−1

−α ∀x ∈ Ω. (1.3.50)

Moreover

lim
Ω 3 x → 0

x
|x| = σ ∈ SN−1

+

|x|
2

mp,q−1uΩ
0,∞(x) = ω(σ), (1.3.51)

locally uniformly on upper hemisphere SN−1
+ = RN+ ∩ SN . Here RN+ = {x =

(x1, ..., xN ) = (x′, xN ) : xN > 0} and SN−1 is the unit sphere in RN . The
function ω is the unique positive solution of{

−Lµω − `N,p,qω + J(ω,∇′ω) = 0 in SN−1
+

ω = 0 on ∂SN−1
+

(1.3.52)

where

Lµω = ∆′ω +
µ

(eN · σ)2
ω, `N,p,q =

2

mp,q

( 2

mp,q
+ 2−N

)
,

J(s, ξ) =



(( 2

mp,q

)2
s2 + |ξ|2

) q
2

, if p <
q

2− q , (s, ξ) ∈ R+ × RN

sp +

(( 2

mp,q

)2
s2 + |ξ|2

) q
2

, if p =
q

2− q , (s, ξ) ∈ R+ × RN

sp, if p >
q

2− q , (s, ξ) ∈ R+ × RN .

(1.3.53)

The above theorem shows that there is a competition between two terms
up and |∇u|q. In particular, if p > q

2−q then up is the dominant term,

otherwise |∇u|q is the dominant term. Moreover, it is observed that the
equation is not scaling invariant, unless p = q

2−q .

Isolated boundary singularities in the case g(u, |∇u|) = up|∇u|q are de-
picted in the next theorem (see [80, Theorem 1.6]). We notice that, unlike
the case of sum, in this case of product, the equation is scaling invariant
and the blowup rate is explicitly determined by the exponent 2−q

p+q−1 .

Theorem 1.18. Assume g(u, |∇u|) = up|∇u|q with q ≥ 1 and p and q
satisfying (1.2.16).

I. Weak singularity. For any k > 0, let uΩ
0,k be the solution of

(1.3.43) with ν = kδ0. Then (1.3.45)– (1.3.47) hold. Furthermore the map-
ping k 7→ uΩ

0,k is increasing.

II. Strong singularity. Put uΩ
0,∞ := limk→∞ u

Ω
0,k. Then uΩ

0,∞ is a

solution of (1.3.48). There exists a constant c = c(N,µ, p, q,Ω) > 0 such
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that

c−1δ(x)α|x|−
2−q
p+q−1

−α ≤ uΩ
0,∞(x) ≤ cδ(x)α|x|−

2−q
p+q−1

−α ∀x ∈ Ω, (1.3.54)

|∇uΩ
0,∞(x)| ≤ cδ(x)α−1|x|−

2−q
p+q−1

−α ∀x ∈ Ω. (1.3.55)

Moreover

lim
Ω 3 x → 0

x
|x| = σ ∈ SN−1

+

|x|
2−q
p+q−1uΩ

0,∞(x) = ω(σ), (1.3.56)

locally uniformly on upper hemisphere SN−1
+ = RN+ ∩ SN−1, where ω is the

unique solution of problem (1.3.52) with

Lµω = ∆′ω +
µ

(eN · σ)2
w, `N,p,q =

2− q
p+ q − 1

( 2p+ q

p+ q − 1
−N

)
,

J(s, ξ) = sp
(( 2− q

p+ q − 1

)2
s2 + |ξ|2

) q
2

(s, ξ) ∈ R+ × RN .

(1.3.57)

In the supercritical range, an important ingredient in the study is Bessel
capacities. First we recall below some notations concerning Besov spaces
and Bessel spaces (see, e.g., [1, 98, 130]). For σ > 0, 1 ≤ κ < ∞, we
denote by W σ,κ(Rd) the Sobolev space over Rd. If σ is not an integer the
Besov space Bσ,κ(Rd) coincides with W σ,κ(Rd). When σ is an integer we
denote ∆x,yf := f(x+ y) + f(x− y)− 2f(x). The Besov space is defined by

B1,κ(Rd) :=

{
f ∈ Lκ(Rd) :

∆x,yf

|y|1+ d
κ

∈ Lκ(Rd × Rd)

}
,

with norm

‖f‖B1,κ :=

(
‖f‖κLκ +

∫ ∫
Rd×Rd

|∆x,yf |κ
|y|κ+d

dxdy

) 1
κ

.

Then we have

Bm,κ(Rd) :=
{
f ∈Wm−1,κ(Rd) : Dθ

xf ∈ B1,κ(Rd) ∀θ ∈ Nd, |θ| = m− 1
}
,

with norm

‖f‖Bm,κ :=

‖f‖κWm−1,κ +
∑

|θ|=m−1

∫ ∫
Rd×Rd

|Dθ
x∆x,yf |κ
|y|κ+d

dxdy

 1
κ

.

For s ∈ R, the Bessel kernel of order s is defined by Gs(ξ) = F−1(1 +

|.|2)−
s
2F(ξ), where F is the Fourier transform of moderate distributions in

Rd. The Bessel space Ls,κ(Rd) is defined by

Ls,κ(Rd) := {f = Gs ∗ g : g ∈ Lκ(Rd)},
with norm

‖f‖Ls,κ := ‖g‖Lκ = ‖G−s ∗ f‖Lκ .
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It is known that if 1 < κ <∞ and s > 0, Ls,κ(Rd) = W s,κ(Rd) if s ∈ N and

Ls,κ(Rd) = Bs,κ(Rd) if s /∈ N, always with equivalent norms. The Bessel

capacity is defined for compact subsets K ⊂ Rd by

CRd
s,κ(K) := inf{‖f‖κLs,κ , f ∈ S ′(Rd), f ≥ χK}. (1.3.58)

It is extended to open sets and then Borel sets by the fact that it is an outer
measure.

Let ν ∈ M+(∂Ω). We say that ν is absolutely continuous with respect

to the Bessel capacity CRd
s,κ if

CRd
s,κ(E) = 0 =⇒ ν(E) = 0 for all Borel set E.

A necessary condition expressed by Bessel capacities for the existence of
a solution to (1.3.43) is obtained from [80, Theorem B.5 and Theorem 1.7].

Theorem 1.19. Let ν ∈M+(∂Ω) and assume that problem (1.3.43) has
a nonnegative solution u ∈ C2(Ω).
I. Assume g(u, |∇u|) = up + |∇u|q with (p, q) is in the supercritical range.

(i) If p ≥ pµ then ν is absolutely continuous with respect to CRN−1

2− 1+α
p′ ,p

′.

(ii) If qµ ≤ q < 2 then the followings occur.

(a) If q 6= α+1 then ν is absolutely continuous with respect to CRN−1

α+1
q
−α,q′.

(b) If q = α+ 1 then for any ε ∈ (0,min{α+ 1, (N−1)α
α+1 − (1− α)}) then

ν is absolutely continuous with respect to CRN−1

ε+1−α,α+1
α

.

II. Assume g(u, |∇u|) = up|∇u|q with (p, q) is in the supercritical range.
(i) If q 6= α + 1 then ν is absolutely continuous with respect to the capacity

CRN−1

1−α+α+1−q
p+q

,(p+q)′
. Here (p+ q)′ denotes the conjugate exponent of p+ q.

(ii) If q = α + 1 then for any ε ∈ (0,min{α + 1, (N−1)α
α+1 − (1 − α)}) then ν

is absolutely continuous with respect to CRN−1

1−α+ ε
p+α+1

,(p+α+1)′.

Define the weight function W by

W (x) :=


δ(x)1−α if µ <

1

4
,

δ(x)
1
2 | ln δ(x)| if µ =

1

4
.

(1.3.59)

We note that, by [77, Propositions 2.17-2.18], for any h ∈ C(∂Ω) there
exists a unique Lµ-harmonic function uh ∈ C(Ω) ∩ L1(Ω, δα) such that

lim
x∈Ω, x→ξ

uh(x)

W (x)
= h(ξ) ∀ξ ∈ ∂Ω. (1.3.60)

We note that (1.3.60) can be viewed as the boundary condition in the Hardy
potential case. If µ = 0 then α = 1 and W (x) ≡ 1, hence (1.3.60) becomes
the boundary condition in the classical sense.

We obtain a removability result in the supercritical range (see [80, The-
orem B.6 and Theorem 1.8]).

Theorem 1.20. Let E be a compact subset of ∂Ω.
I. Assume g(u, |∇u|) = up + |∇u|q with (p, q) is in the supercritical range.
Suppose
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(i) CRN−1

2− 1+α
p′ ,p

′(E) = 0 if p ≥ pµ,

or (ii) CRN−1

α+1
q
−α,q′(E) = 0 if qµ ≤ q < 2 and q 6= α+ 1.

or (iii) CRN−1

ε+1−α,q′(E) = 0, for some ε ∈ (0,min{α+ 1, (N−1)α
α+1 − (1−α)})

if q = α+ 1.
Then any nonnegative solution u ∈ C2(Ω) ∩ C(Ω \ E) of equation

− Lµu+ g(u, |∇u|) = 0 in Ω (1.3.61)

satisfying

lim
x∈Ω, x→ξ

u(x)

W (x)
= 0 ∀ξ ∈ ∂Ω \ E, (1.3.62)

is identically zero.

II. Assume g(u, |∇u|) = up|∇u|q with (p, q) is in the supercritical range.
Suppose

(i) CRN−1

1−α+α+1−q
p+q

,(p+q)′
(E) = 0 if q 6= α+ 1,

or (ii) CRN−1

1−α+ ε
p+α+1

,(p+α+1)′(E) = 0, for some ε ∈ (0,min{α+1, (N−1)α
α+1 −

(1− α)}), if q = α+ 1.
Then any nonnegative solution u ∈ C2(Ω) ∩ C(Ω \ E) of equation (1.3.61)
satisfying (1.3.62) is identically zero.

The results stated in Theorems 1.19 and 1.20 are novel, even for µ = 0.
Next we are interested in the boundary value problem for equations with

source term of the form{
−Lµu− g(u, |∇u|) = 0 in Ω,

trµ(u) = ρν,
(1.3.63)

where ρ is a positive parameter and ν ∈M+(∂Ω) with ‖ν‖M(∂Ω) = 1. Weak
solutions of (1.3.63) are defined in Definition 1.7.

The source case is different from the absorption case in an essential
way. This can be seen in the following result which guarantees the existence
of a weak solution under a smallness assumption on the total mass of the
boundary data.

Theorem 1.21. Let ν ∈M+(∂Ω) with ‖ν‖M(∂Ω) = 1. Assume g satisfies
(1.2.14) and

g(as, bt) ≤ k̃(ap̃ + bq̃)g(s, t) ∀(a, b, s, t) ∈ R4
+, (1.3.64)

for some p̃ > 1, q̃ > 1, k̃ > 0. Then there exists ρ0 > 0 depending on
N,µ,Ω, k̃, p̃, q̃ such that for any ρ ∈ (0, ρ0), problem (1.3.63) admits a posi-
tive weak solution u ≥ ρKµ[ν] in Ω.

It is easy to see that if g(u, |∇u|) = up + |∇u|q or g(u, |∇u|) = up|∇u|q
then (1.3.64) holds. Therefore Theorem 1.21 holds true for these typical
models.

Sufficient conditions for the existence for the Dirichlet problem in two
typical models with (p, q) being in supercritical range are expressed in terms
of capacities (see (1.3.37) and (1.3.39)). We note that the capacities used for
this case are different from the Bessel capacities employed in the absorption
case (see (1.3.58)).
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Theorem 1.22.
I. Assume g(u, |∇u|) = up + |∇u|q with p > 1 and α+1

N+α−1 < q < 1+α
α .

Assume one of the following conditions holds:
(i) There exists a constant C > 0 such that for every Borel set E ⊂ ∂Ω.

ν(E) ≤ C min{Cap∂Ω
1−α+α+1

p
,p′

(E), Cap∂Ω
−α+α+1

q
,q′

(E)}. (1.3.65)

(ii) There exists a positive constant C > 0

N2α,2[δα(p+1)N2α,2[ν]p] ≤ CN2α,2[ν] <∞ a.e. in Ω

N2α−1,1[δ(α−1)q+αN2α−1,1[ν]q] ≤ CN2α−1,1[ν] <∞ a.e. in Ω.
(1.3.66)

Then there exists ρ0 = ρ0(N,µ, p, q, C,Ω) > 0 such that for any ρ ∈ (0, ρ0),
problem (1.3.63) admits a weak solution u.

II. Assume g(u, |∇u|) = up|∇u|q with p ≥ 0, q ≥ 0, p + q > 1 and q <
1+α+(1−α)p

α . Assume one of the following conditions holds.
(i) There exists a constant C > 0 such that

ν(E) ≤ CCap∂Ω
1−α+α+1−q

p+q
,(p+q)′

(E) for every Borel set E ⊂ ∂Ω. (1.3.67)

Here (p+ q)′ denotes the conjugate exponent of p+ q.
(ii) There exists a positive constant C > 0 such that

N2α−1,1[δαp+(α−1)q+αN2α−1,1[ν]p+q] ≤ CN2α−1,1[ν] <∞ a.e. in Ω.
(1.3.68)

Then there exists ρ0 = ρ0(N,µ, p, q, C,Ω) > 0 such that for any ρ ∈ (0, ρ0),
problem (1.3.63) admits a weak solution u.

1.4. Related and open problems

We notice that because of the broadness of the topics regarding boundary
value problems for nonlinear equations with a Hardy potential, the results
presented above are a modest contribution to the recent developments and
are due to the our interest. The topics have received much attention and
many new results have been recently published. Some related interesting
results and open problems are listed below.

Multplicity and uniqueness. As pointed out before in Theorem 1.12,
when 1 < p < pµ, there exists a threshold value ρ∗ > 0 such that problem
(1.3.29) admits a minimal positive solution for ρ ∈ (0, ρ∗] and admits no
positive weak solution for ρ > ρ∗. In [23], we carried out a deeper analysis
on (1.3.29) and proved the multiplicity for ρ ∈ (0, ρ∗) and the uniqueness
for ρ = ρ∗, which complements the results in [119]. More precisely, the
structure of the solution set of problem (1.3.29) is described as follows.

Subcritical case: p ∈ (1, pµ). There exists ρ∗ ∈ (0,∞) such that the follow-
ings hold.

(i) If ρ ∈ (0, ρ∗) then problem (1.3.26) admits two positive solutions,
including the minimal positive solution.

(ii) If ρ = ρ∗ then problem (1.3.26) admits a unique positive solution.
(iii) If ρ > ρ∗ then (1.3.29) does not admit any positive solution.
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Supercritical case: p ≥ pµ. For every ρ > 0 and z ∈ ∂Ω, there is no
positive weak solution of (1.3.29) with ν = δy, where δy is the Dirac mass
concentrated at y ∈ ∂Ω.

The multiplicity for systems were also derived in [23] for measure data
with small total mass. However, this result provides partial understanding
of solution set of systems and needs to be improved.

Schrödinger equations with potential blowing up on boundary.
Let Ω ⊂ RN (N ≥ 3) be a C2 bounded domain and F ⊂ ∂Ω be a k
dimensional C2 submanifold, 0 ≤ k ≤ N − 1. Denote

δ(x) := dist(x, ∂Ω), δF (x) := dist(x, F )

and put
V (x) = VF (x) := δF (x)−2, x ∈ Ω.

Boundary value problems for semilinear equations with Schrödinger operator
LV := ∆ + µV , µ ∈ R, in the special cases k = N and k = 0 have been
extensively investigated. In particular, the case k = N − 1, F = ∂Ω and
V (x) = δ(x)−2 is well understood, as shown in this thesis, while the case
k = 0, F = {0} with the origin 0 ∈ ∂Ω and V (x) = |x|−2 was treated by
Chen and Véron [45]. It is also worth mentioning that the case of more
strongly singular potential V (x) = δ(x)−α with α > 2 was considered by Du
and Wei in [54]. The case 1 ≤ k ≤ N − 2 had remained open until our work
in [107]. In fact, we considered the case where F is a C2 submanifold of
dimension 0 ≤ k ≤ N − 2 without boundary and established the solvability
for solutions to the equation −LV u+g(u) = 0 in Ω with prescribed boundary
data. The reader is referred to the work of Fall and Mahmoudi [65] for Hardy
type estimates and estimate of the first eigenfunction.

Recently, Marcus published papers [100, 101] in which he considered the
potential V such that |V (x)| ≤ aδ(x)−2 for all x ∈ Ω and under additional
conditions, he obtained estimates on Green kernel, Martin kernel, as well as
sub and super harmonic functions. Moreover, large solutions of semilinear
equations are studied in [102].

Schrödinger equations with potential blowing up on a subset
of the domain Another interesting case is that

V (x) = µδΣ(x)−2, (1.4.1)

where Σ is a compact, C2 submanifold in Ω with dimension k with 0 ≤ k <
N − 2 and δΣ(x) = dist(x,Σ). The special case Σ = {0} ⊂ Ω was treated by
Guerch and Véron [83], Chen and Véron [44], Chen and Zhou [46], Ĉırstea
[47] and references therein. The case V satisfies (1.4.1) was considered in
a series of papers of Dávila and Dupaigne [49, 50, 55] where linear and
nonlinear equations involving LV = ∆ + V with source term was studied.
Recently, a complete study on the Green kernel and Martin kernel was given
in our joint paper with Gkikas [81] which provides a basis in dealing with
boundary value problems for linear equations regarding LV in a different
framework. In this direction, the analysis of semilinear equations involving
LV and absorption term is more challenging and still open.
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[5] S. Alarcón, J. Garćıa-Melián and A. Quaas, Nonexistence of positive superso-
lutions to some nonlinear elliptic problems, J. Math. Pures Appl. (9) 99 (2013), no.
5, 618–634.
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[114] M. Marcus and L. Véron, Capacitary estimates of positive solutions of semilinear
elliptic equations with absorbtion, J. Eur. Math. Soc. 6 (2004), 483-527.
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[137] L. Véron, Laurent Singularités éliminables d’équations elliptiques non linéaires
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CHAPTER 2

Moderate solutions of semilinear elliptic equations
with a Hardy potential

This chapter is based on our join paper with Moshe Marcus [106] on
boundary value problems for semilinear elliptic equations with an absorption
term and a Hardy potential. In this chapter, we introduce a notion of
normalized boundary trace and develop a theory of linear equations, which
in turn provides a basis for the study of semilinear equations.
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Abstract

Let � be a bounded smooth domain in RN . We study positive solutions of equation (E) −Lμu +uq = 0 in � where Lμ = � + μ

δ2 , 
0 < μ, q > 1 and δ(x) = dist (x, ∂�). A positive solution of (E) is moderate if it is dominated by an Lμ-harmonic function. If 
μ < CH (�) (the Hardy constant for �) every positive Lμ-harmonic function can be represented in terms of a finite measure on ∂�

via the Martin representation theorem. However the classical measure boundary trace of any such solution is zero. We introduce a 
notion of normalized boundary trace by which we obtain a complete classification of the positive moderate solutions of (E) in the 
subcritical case, 1 < q < qμ,c. (The critical value depends only on N and μ.) For q ≥ qμ,c there exists no moderate solution with 
an isolated singularity on the boundary. The normalized boundary trace and associated boundary value problems are also discussed 
in detail for the linear operator Lμ. These results form the basis for the study of the nonlinear problem.
© 2015 Elsevier Masson SAS. All rights reserved.

MSC: 35J60; 35J75; 35J10

Keywords: Hardy potential; Martin kernel; Moderate solutions; Normalized boundary trace; Critical exponent; Removable singularities

1. Introduction

In this paper, we investigate boundary value problem with measure data for the following equation

−�u − μ

δ2
u + uq = 0 (1.1)

in a C2 bounded domain �, where q > 1, μ ∈ R and δ(x) = dist (x, ∂�). This problem is naturally linked to the 
theory of linear Schrödinger equations −LV u = 0 where LV := � +V and the potential V satisfies |V | ≤ cδ−2. Such 
equations have been studied in numerous papers (see [1,2] and the references therein).
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Put

Lμ := � + μ

δ2
. (1.2)

A solution u ∈ L1
loc(�) of the equation −Lμu = 0 is called an Lμ-harmonic function. Similarly, if

−Lμu ≥ 0 or − Lμu ≤ 0

we say that u is Lμ-superharmonic or Lμ-subharmonic respectively. If μ = 0 we shall just use the terms harmonic, 
superharmonic, subharmonic.

Some problems involving equations (1.1) and (1.2) with μ < 1/4 were studied by Bandle, Moroz and Reichel [4]. 
They derived estimates of local Lμ-subharmonic and superharmonic functions and applied these results to study con-
ditions for existence or nonexistence of large solutions of (1.1). They also showed that the classical Keller–Osserman 
estimate [14,24] remains valid for (1.1).

The condition μ < 1
4 is related to Hardy’s inequality. Denote by CH(�) the best constant in Hardy’s inequality, 

i.e.,

CH (�) = inf
H 1

0 (�)

∫
�

|∇u|2dx∫
�
(u/δ)2dx

. (1.3)

By Marcus, Mizel and Pinchover [17], CH(�) ∈ (0, 14 ] and CH (�) = 1
4 when � is convex. Furthermore the infimum 

is achieved if and only if CH(�) < 1/4. By Brezis and Marcus [7], for every μ < 1/4 there exists a unique number 
λμ,1 such that

μ = inf
H 1

0 (�)

∫
�
(|∇u|2 − λμ,1u

2)dx∫
�
(u/δ)2dx

and the infimum is achieved. Thus λμ,1 is an eigenvalue of −Lμ and, by [7, Lemma 2.1], it is a simple eigenvalue. 
We denote by ϕμ,1 the corresponding positive eigenfunction normalized by 

∫
�
(ϕ2

μ,1/δ
2)dx = 1.

The mapping [1/4, ∞) � μ �→ λμ,1 is strictly decreasing. Therefore if μ < CH (�) then λμ,1 > 0. Consequently, in 
this case, ϕμ,1 is a positive supersolution of −Lμ. This fact and a classical result of Ancona [2] imply that for every 
y ∈ ∂�, there exists a positive Lμ-harmonic function in � which vanishes on ∂� \ {y} and is unique up to a constant. 
Denote this function by K�

μ (·, y), normalized by setting it equal to 1 at a fixed reference point x0 ∈ �. The function 
(x, y) �→ K�

μ (x, y), (x, y) ∈ � × ∂�, is the Lμ-Martin kernel in � relative to x0. Further, by [2]:

Representation Theorem. For every ν ∈ M+(∂�) the function

K�
μ [ν](x) :=

∫
∂�

K�
μ (x, y)dν(y) ∀x ∈ � (1.4)

is Lμ-harmonic, i.e., LμK�
μ [ν] = 0. Conversely, for every positive Lμ-harmonic function u there exists a unique 

measure ν ∈ M+(∂�) such that u = K�
μ [ν].

This theorem implies that – in the present case – the Lμ-Martin boundary of � coincides with the Euclidean 
boundary. (For the general definition of Martin boundary see, e.g. [1]. However this notion will not be used here 
beyond the representation theorem stated above.) The measure ν such that u = K�

μ [ν] is called the Lμ-boundary 
measure of u. If μ = 0, ν is equivalent to the classical measure boundary trace of u (see Definition 1.1). But if 
0 < μ < CH (�), it can be shown that, for every ν ∈ M+(∂�), the measure boundary trace of K�

μ [ν] is zero (see 
Corollary 2.11 below).

In the case μ = 0, the boundary value problem

−�u + |u|q−1u = 0 in �

u = ν on ∂� (1.5)
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where q > 1 and ν is either a finite measure or a positive (possibly unbounded) measure, has been studied by numerous 
authors. Following Brezis [6], if ν is a finite measure, a weak solution of (1.5) is defined as follows: u is a solution of 
the problem if u and δ|u|q are integrable in � and

∫
�

(−u�ζ + |u|q−1uζ )dx = −
∫
∂�

∂ζ

∂n
dν ∀ζ ∈ C2

0(�) (1.6)

where n is the outer unit normal on ∂�. Brezis proved that, if a solution exists then it is unique. Gmira and Véron [13]
showed that there exists a critical exponent, qc := N+1

N−1 , such that if 1 < q < qc , (1.6) has a weak solution for every 
finite measure ν but, if q ≥ qc there exists no positive solution with isolated point singularity.

Marcus and Véron [20] proved that every positive solution of the equation

−�u + uq = 0 (1.7)

possesses a boundary trace given by a positive measure ν, not necessarily bounded. In the subcritical case the blow-up 
set of the trace is a closed set. Furthermore they showed that, in this case, for every such positive measure ν, the 
boundary value problem (1.5) has a unique solution.

In the case q = 2, N = 2 this result was previously proved by Le Gall [15] using a probabilistic definition of the 
boundary trace.

In the supercritical case the problem turned out to be much more challenging. It was studied by several authors 
using various techniques. The problem was studied by Le Gall, Dynkin, Kuznetsov, Mselati a.o. employing mainly 
probabilistic methods. Consequently the results applied only to 1 < q ≤ 2. In parallel it was studied by Marcus and 
Veron employing purely analytic methods that were not subject to the restriction q ≤ 2. A complete classification of 
the positive solutions of (1.5) in terms of their behavior at the boundary was provided by Mselati [18] for q = 2, by 
Dynkin [11] for qc ≤ q ≤ 2 and finally by Marcus [16] for every q ≥ qc. For details and related results we refer the 
reader to [23,22,21,3,10] and the references therein.

In the case of equation (1.1) one is faced by the problem that, according to the classical definition of measure 
boundary trace, every positive Lμ-harmonic function has measure boundary trace zero. Therefore, in order to classify 
the positive solutions of (1.1) in terms of their behavior at the boundary, it is necessary to introduce a different 
notion of trace. As in the study of (1.7), we first consider the question of boundary trace for positive Lμ-harmonic or 
superharmonic functions.

We recall the classical definition of measure boundary trace.

Definition 1.1. (i) A sequence {Dn} is a C2 exhaustion of � if for every n, Dn is of class C2, Dn ⊂ Dn+1 and 
∪nDn = �. If the domains are uniformly of class C2 we say that {Dn} is a uniform C2 exhaustion.

(ii) Let u ∈ W
1,p

loc (�) for some p > 1. We say that u possesses a measure boundary trace on ∂� if there exists a 
finite measure ν on ∂� such that, for every uniform C2 exhaustion {Dn} and every ϕ ∈ C(�),

lim
n→∞

∫
∂Dn

u|∂DnϕdS =
∫
∂�

ϕdν.

Here u|Dn denotes the Sobolev trace. The measure boundary trace of u is denoted by tr (u).

For β > 0, denote

�β = {x ∈ � : δ(x) < β}, Dβ = {x ∈ � : δ(x) > β}, �β = {x ∈ � : δ(x) = β}.
Put

α± := 1

2
±

√
1

4
− μ. (1.8)

It can be shown (see Corollary 2.11 below) that the classical measure boundary trace of K�
μ [ν] is zero but there 

exist constants C1, C2 such that, for every ν ∈ M(∂�),
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C1 ‖ν‖M(∂�) ≤ 1

βα−

∫
�β

K�
μ [ν](x)dSx ≤ C2 ‖ν‖M(∂�) (1.9)

for all β ∈ (0, β0) where β0 > 0 depends only on �. In view of this we introduce the following definition of trace.

Definition 1.2. A positive function u possesses a normalized boundary trace if there exists a measure ν ∈ M+(∂�)

such that

lim
β→0

1

βα−

∫
�β

|u − K�
μ [ν]|dSx = 0. (1.10)

The normalized boundary trace will be denoted by tr∗(u).

Remark. The notion of normalized boundary trace is well defined. Indeed, suppose that ν and ν′ satisfy (1.10). Put v =
(K�

μ [ν − ν′])+ then v is a nonnegative Lμ-subharmonic function, v ≤ K[ν + ν′] and tr ∗(v) = 0. By Proposition 2.14, 
v = 0, i.e., K�

μ [ν − ν′] ≤ 0. By interchanging the roles of ν and ν′, we deduce that K�
μ [ν′ − ν] ≤ 0. Thus ν = ν′.

Denote by G�
μ the Green function of −Lμ in � and, for every positive Radon measure τ in �, put

G�
μ [τ ](x) :=

∫
�

G�
μ(x, y)dτ(y).

Denote by Mf (�), f a positive Borel function in �, the space of Radon measures τ on � satisfying 
∫
�

f d|τ | < ∞
and by M+

f (�) the positive cone of this space.

If τ is a positive measure such that G�
μ [τ ](x) < ∞ for some x ∈ � then τ ∈ Mδα+ (�) and G�

μ [τ ] is finite every-
where in �. The underlying reason for this is the behavior of the Green function at the boundary: for every β > 0
there exists cβ such that

c−1
β δ(x)α+ ≤ G�

μ(x, y) ≤ cβδ(x)α+ ∀x ∈ �β/2, y ∈ Dβ.

For details see Section 2.2 below.
We begin with the study of the linear boundary value problem,

−Lμu = τ in �

tr ∗(u) = ν, (1.11)

where ν ∈ M+(∂�) and τ ∈ M+
δα+ (�). As usual we look for solutions u ∈ L1

loc(�) and the equation is understood 
in the sense of distributions. The representation theorem implies that if τ = 0 the problem has a unique solution, 
u = K�

μ [ν].
We list below our main results regarding this problem.

Proposition I.

(i) If u is a non-negative Lμ-harmonic function and tr ∗(u) = 0 then u = 0.
(ii) If τ ∈ M+

δα+ (�) then G�
μ [τ ] has normalized trace zero. Thus G�

μ [τ ] is a solution of (1.11) with ν = 0.
(iii) Let u be a positive Lμ-subharmonic function. If u is dominated by an Lμ-superharmonic function then Lμu ∈

M+
δα+ (�) and u has a normalized boundary trace. In this case tr ∗(u) = 0 if and only if u ≡ 0.

(iv) Let u be a positive Lμ-superharmonic function. Then there exist ν ∈ M+(∂�) and τ ∈ M+
δα+ (�) such that

u = G�
μ [τ ] + K�

μ [ν]. (1.12)

In particular, u is an Lμ-potential (i.e., u does not dominate any positive Lμ-harmonic function) if and only if 
tr ∗(u) = 0.

(v) For every ν ∈ M+(∂�) and τ ∈ M+
δα+ (�), problem (1.11) has a unique solution. The solution is given by (1.12).
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Next we study the nonlinear boundary value problem,

−Lμu + uq = 0 in �

tr ∗(u) = ν (1.13)

where ν ∈ M+(∂�).

Definition 1.3. (i) A positive solution of (1.1) is Lμ-moderate if it is dominated by an Lμ-harmonic function.
(ii) A positive function u ∈ L

q

loc(�) is a (weak) solution of (1.13) if it satisfies the equation (in the sense of distribu-
tions) and has normalized boundary trace ν.

Definition 1.4. Put

X(�) = {ζ ∈ C2(�) : δα−Lμζ ∈ L∞(�), δ−α+ζ ∈ L∞(�)}.
A function ζ ∈ X(�) is called an admissible test function for (1.13).

Following are our main results concerning the nonlinear problem (1.13). Theorems A–D apply to arbitrary exponent 
q > 1.

Theorem A. Assume that 0 < μ < CH (�), q > 1. Let u be a positive solution of (1.1). Then the following statements 
are equivalent:
(i) u is Lμ-moderate.
(ii) u admits a normalized boundary trace ν ∈ M+(∂�). In other words, u is a solution of (1.13).
(iii) u ∈ L

q

δα+ (�) and

u + G�
μ [uq ] = K�

μ [ν] (1.14)

where ν = tr ∗(u).
Furthermore, a positive function u is a solution of (1.13) if and only if u/δα− ∈ L1(�), δα+uq ∈ L1(�) and

∫
�

(−uLμζ + uqζ )dx = −
∫
�

K�
μ [ν]Lμζdx ∀ζ ∈ X(�). (1.15)

Theorem B. Assume 0 < μ < CH (�), q > 1.

I. UNIQUENESS. For every ν ∈ M+(∂�), there exists at most one positive solution of (1.13).

II. MONOTONICITY. Assume νi ∈ M+(∂�), i = 1, 2. Let uνi
be the unique solution of (1.13) with ν replaced by νi , 

i = 1, 2. If ν1 ≤ ν2 then uν1 ≤ uν2 .

III. A-PRIORI ESTIMATE. There exists a positive constant c = c(N, μ, �) such that every positive solution u of (1.13)
satisfies,

‖u‖L1
δ−α− (�) + ‖u‖L

q

δα+ (�) ≤ c ‖ν‖M(∂�) . (1.16)

Theorem C. Assume 0 < μ < CH (�), q > 1. If ν ∈ M+(∂�) and K�
μ [ν] ∈ L

q

δα+ (�) then there exists a unique 
solution of the boundary value problem (1.13).

Corollary C1. For every positive function f ∈ L1(∂�) (1.13) with ν = f admits a unique positive solution.

Theorem D. Assume 0 < μ < CH (�), q > 1. If u is a positive solution of (1.13) then

lim
x→y

u(x)

K�
μ [ν](x)

= 1 non-tangentially, ν-a.e. on ∂�. (1.17)
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Let

qμ,c := N + α+
N − 1 − α−

. (1.18)

In the next two results we show, among other things, that qμ,c is the critical exponent for (1.13). This means that, 
if 1 < q < qμ,c then problem (1.13) has a unique solution for every measure ν ∈ M+(∂�) but, if q ≥ qμ,c then the 
problem has no solution for some measures ν, e.g. Dirac measure.

In Theorem E we consider the subcritical case 1 < q < qμ,c and in Theorem F the supercritical case.

Theorem E. Assume 0 < μ < CH (�) and 1 < q < qμ,c . Then:

I. EXISTENCE AND UNIQUENESS. For every ν ∈ M+(∂�) (1.13) admits a unique positive solution uν .

II. STABILITY. If {νn} is a sequence of measures in M+(∂�) weakly convergent to ν ∈ M+(∂�) then uνn → uν in 
L1

δ−α− (�) and in Lq

δα+ (�).

III. LOCAL BEHAVIOR. Let ν = kδy , where k > 0 and δy is the Dirac measure concentrated at y ∈ ∂�. Then, under 
the assumptions of Theorem E, the unique solution of (1.13), denoted by ukδy , satisfies

lim
x→y

ukδy (x)

K�
μ (x, y)

= k. (1.19)

Remark. Note that in part III we have ‘uniform convergence’ not just ‘non-tangential convergence’ as in Theorem D.

Theorem F. Assume 0 < μ < CH (�) and q ≥ qμ,c. Then for every k > 0 and y ∈ ∂�, there is no positive solution of 
(1.1) with normalized boundary trace kδy .

In the first part of the paper we study properties of positive Lμ-harmonic functions and the boundary value problem 
(1.11). In the second part, these results are applied to a study of the corresponding boundary value problem for the 
nonlinear equation (1.1). These results yield a complete classification of the positive moderate solutions of (1.1) in the 
subcritical case. They also provide a framework for the study of positive solutions of (1.1) that may blow up at some 
parts of the boundary. The existence of such solutions in the subcritical case has been studied (by different methods) 
in [5]. The boundary trace for positive non-moderate solutions and corresponding boundary value problems will be 
treated in a forthcoming paper.

The main ingredients used in this paper are: the Representation Theorem previously stated and other basic results 
of potential theory (see [1]), a sharp estimate of the Green kernel of −Lμ due to Filippas, Moschini and Tertikas [9], 
estimates for convolutions in weak Lp spaces (see [23, Section 2.3.2]) and the comparison principle obtained in [4].

2. The linear equation

Throughout this paper we assume that 0 < μ < CH (�).

2.1. Some potential theoretic results

We denote by Mδα (�), α ∈ R, the space of Radon measures τ on � satisfying 
∫
�

δα(x)d|τ | < ∞ and by M+
δα (�)

the positive cone of Mδα (�). When α = 0, we use the notation M(�) and M+(�). We also denote by M(∂�) the 
space of finite Radon measures on ∂� and by M+(∂�) the positive cone of M(∂�).

Let D be a C2 domain such that D � � and h ∈ L1(∂�). Denote by Sμ(D, h) the solution of the problem
{ −Lμu = 0 in D

u = h on ∂D.
(2.1)

Lemma 2.1. Let u be Lμ-superharmonic in � and D be a C2 domain such that D � �. Then u ≥ Sμ(D, u) a.e. in D.
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Proof. Since u is Lμ-superharmonic in �, there exists τ ∈ M+(�) such that −Lμu = τ . Let v be the solution of{ −Lμv = τ in D

v = 0 on ∂D
(2.2)

and put w = Sμ(D, u). Then w ≥ 0 and u|D = v + w ≥ v. �
Lemma 2.2. Let u be a nonnegative Lμ-superharmonic and {Dn} be a C2 exhaustion of �. Then

û := lim
n→∞ Sμ(Dn,u)

exists and is the largest Lμ-harmonic function dominated by u.

Proof. By Lemma 2.1, Sμ(Dn, u) ≤ u|Dn , hence the sequence {Sμ(Dn, u)} is decreasing. Consequently, û exists 
and is an Lμ-harmonic function dominated by u. Next, if v is an Lμ-harmonic function dominated by u then v ≤
Sμ(Dn, u) for every n ∈ N. Letting n → ∞ yields v ≤ û. �
Definition 2.3. A nonnegative Lμ-superharmonic function is called an Lμ-potential if its largest Lμ-harmonic mino-
rant is zero.

As a consequence of Lemma 2.2, we obtain

Lemma 2.4. Let up be a nonnegative Lμ-superharmonic function in �. If for some C2 exhaustion {Dn} of �,

lim
n→∞ Sμ(Dn,up) = 0, (2.3)

then up is an Lμ-potential in �. Conversely, if up is an Lμ-potential, then (2.3) holds for every C2 exhaustion {Dn}
of �.

For easy reference we quote below the Riesz decomposition theorem (see [1]).

Theorem 2.5. Every nonnegative Lμ-superharmonic function u in � can be written in a unique way in the form 
u = up + uh where up is an Lμ-potential and uh is a nonnegative Lμ-harmonic function in �.

The next result is a consequence of the Fatou convergence theorem [1, Theorem 1.8] and the following well-known 
fact: if a function satisfies the local Harnack inequality, fine convergence at the boundary (in the sense of [1]) implies 
non-tangential convergence.

Theorem 2.6. Let up be a positive Lμ-potential and u be a positive Lμ-harmonic function. Assume that up

u
satisfies 

the Harnack inequality. Then

lim
x→y

up(x)

u(x)
= 0 non-tangentially, ν-a.e. on ∂�

where ν is the Lμ-boundary measure of u.

2.2. The action of the Green and Martin kernels on spaces of measures

From [2], for every y ∈ ∂�, there exists a positive Lμ-harmonic function in � which vanishes on ∂� \ {y}. When 
normalized, this function is unique. We choose a fixed reference point x0 in � and denote by K�

μ,y this Lμ-harmonic 
function, normalized by K�

μ,y(x0) = 1. The function K�
μ (·, y) = K�

μ,y(·) is the Lμ-Martin kernel in �, normalized 
at x0.

For ν ∈ M(∂�) denote

K�
μ [ν](x) =

∫
∂�

K�
μ (x, y)dν(y).
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In what follows the notation f ∼ g means: there exists a positive constant c such that c−1f < g < cf in the domain 
of the two functions or in a specified subset of this domain. Of course, in the latter case, the constant depends on the 
subset.

Let G�
μ be the Green kernel for the operator Lμ in � × �. Fix a point x0 ∈ �. It is well known that the function 

x �→ G�
μ(x, x0) behaves like the first eigenfunction ϕμ,1(x) near the boundary, i.e., G�

μ(·, x0) ∼ ϕμ,1 in �β, (0 <
β < δ(x0)).

By [19, Lemmas 5,1, 5.2] (see also [8, Lemma 7] for an alternative proof)

c−1δ(x)α+ ≤ ϕμ,1(x) ≤ cδ(x)α+ . (2.4)

Thus, if 0 < β < δ(x0),

c−1
β δ(x)α+ ≤ G�

μ(x, x0) ≤ cβδ(x)α+ ∀x ∈ �β. (2.5)

Therefore, if τ ∈ Mδα+ (�) then

G�
μ [τ ](x) :=

∫
�

G�
μ(x, y)dτ(y) < ∞ a.e. in �.

Indeed, by (2.5) and the symmetry of the Green kernel, for every x ∈ �, the integral over �δ(x)/2 is finite. For 
y ∈ Dδ(x)/4, G�

μ(x, y) ≤ c|x −y|2−N . Therefore the integral is finite over this set as well. Inequality (2.5) also implies 
that, if τ is a positive Radon measure in � and G�

μ [τ ](x) < ∞ for some point x ∈ � then τ ∈ Mδα+ (�) and G�
μ [τ ] is 

finite everywhere in �.
By [9, Theorem 4.11], for every x, y ∈ �, x �= y,

G�
μ(x, y) ∼ min

{
|x − y|2−N , δ(x)α+δ(y)α+ |x − y|2α−−N

}
(2.6)

Since

K�
μ (x, y) := lim

z→y

G�
μ(x, z)

G�
μ(x0, z)

∀x ∈ �

it follows from (2.6) that

K�
μ (x, y) ∼ δ(x)α+|x − y|2α−−N ∀x ∈ �,y ∈ ∂�. (2.7)

Let G� = G�
0 and P � = P �

0 denote the Green and Poisson kernels of −� in �. Then, by (2.7)

K�
μ (x, y)

δ(x)α− ∼ δ(x)

|x − y|N
( |x − y|

δ(x)

)2α−
∼ P �(x, y)

( |x − y|
δ(x)

)2α−
. (2.8)

Denote Lp
w(�; τ), 1 ≤ p < ∞, τ ∈ M+(�), the weak Lp space defined as follows: a measurable function f in �

belongs to this space if there exists a constant c such that

λf (a; τ) := τ({x ∈ � : |f (x)| > a}) ≤ ca−p, ∀a > 0. (2.9)

The function λf is called the distribution function of f (relative to τ ). For p ≥ 1, denote

Lp
w(�; τ) = {f Borel measurable : sup

a>0
apλf (a; τ) < ∞}

and

‖f ‖∗
L

p
w(�;τ)

= (sup
a>0

apλf (a; τ))
1
p . (2.10)

This expression is not a norm, but for p > 1, it is equivalent to the norm

‖f ‖L
p
w(�;τ) = sup

{∫
ω

|f |dτ

τ(ω)1/p′ : ω ⊂ �,ω measurable ,0 < τ(ω)

}
. (2.11)

More precisely,
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‖f ‖∗
L

p
w(�;τ)

≤ ‖f ‖L
p
w(�;τ) ≤ p

p − 1
‖f ‖∗

L
p
w(�;τ)

. (2.12)

Notice that, for every α > −1,

Lp
w(�; δαdx) ⊂ Lr

δα (�) ∀r ∈ [1,p).

For every x ∈ ∂�, denote by nx the outward unit normal vector to ∂� at x.
The following is a well-known geometric property of C2 domains.

Proposition 2.7. There exists β0 > 0 such that
(i) For every point x ∈ �β0 , there exists a unique point σx ∈ ∂� such that |x − σx | = δ(x). This implies x =

σx − δ(x)nσx .
(ii) The mappings x �→ δ(x) and x �→ σx belong to C2(�β0) and C1(�β0) respectively. Furthermore,

limx→σ(x) ∇δ(x) = −nx .

By combining (2.6), (2.7) and [23, Lemma 2.3.2], we obtain

Proposition 2.8. There exist constants ci depending only on N, μ, β, � such that,∥∥G�
μ [τ ]∥∥

L

N+β
N−2
w (�,δβ)

≤ c1 ‖τ‖M(�) , ∀τ ∈ M(�), β > −1, (2.13)

∥∥G�
μ [τ ]∥∥

L

N+β
N−2α−
w (�,δβ−α+ )

≤ c1 ‖τ‖Mδα+ (�) , ∀τ ∈ Mδα+ (�), β > −2α−, (2.14)

∥∥K�
μ [ν]∥∥

L

N+β
N−1−α−
w (�,δβ)

≤ c2 ‖ν‖M(∂�) , ∀ν ∈ M(∂�), β > −1. (2.15)

Proof. We assume that τ is positive; otherwise we replace τ by |τ |. We consider τ as a positive measure in RN by 
extending τ by zero outside of �. For a ∈ (0, N), denote �a(x) = |x|a−N . By [23, inequality (2.3.17)],

‖�a ∗ τ‖
L

N+β
N−a
w (�,δβ)

≤ c ‖τ‖M(�) ∀β > max{−1,−a} (2.16)

where c = c(N, a, β, diam(�)). By (2.6),

G�
μ(x, y) ≤ c min{�2(x − y), δ(x)α+δ(y)α+�2α−(x − y)}.

Hence, by (2.16),∥∥G�
μ [τ ]∥∥

L

N+β
N−2
w (�,δβ)

≤ c ‖�2 ∗ τ‖
L

N+β
N−2
w (�,δβ)

≤ c′ ‖τ‖M(�) ∀β > −1,

∥∥G�
μ [τ ]∥∥

L

N+β
N−2α−
w (�,δβ−α+ )

≤ c
∥∥�2α− ∗ (δα+τ)

∥∥
L

N+β
N−2α−
w (�,δβ)

≤ c ‖τ‖Mδα+ (�) ∀β > −2α−.

Next we extend ν by zero outside ∂� and observe that, by (2.7), K�
μ (x, y) ≤ c�1+α−(x−y). Hence K�

μ [ν] ≤ c�1+α− ∗
ν and by (2.16),∥∥K�

μ [ν]∥∥
L

N+β
N−1−α−
w (�,δβ)

≤ c
∥∥�1+α− ∗ ν

∥∥
L

N+β
N−1−α−
w (�,δβ)

≤ c ‖ν‖M(∂�) ∀β > −1. �
Corollary 2.9. Let β > −1.

(i) If {νn} ⊂ M+(∂�) converges weakly to ν ∈ M+(∂�) then {K�
μ [νn]} converges to K�

μ [ν] in Lp

δβ (�) for every p

such that 1 ≤ p <
N+β

N−1−α− .

(ii) If {τn} ⊂ M+(�) converges weakly (relative to C0(�̄)) to τ ∈ M+(�) then {G�
μ [τn]} converges to G�

μ [τ ] in 

L
p

δβ (�) for every p such that 1 ≤ p <
N+β
N−2 .

Proof. We prove the first statement. The second is proved in a similar way.
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Since K�
μ (x, .) ∈ C(∂�) for every x ∈ �, {K�

μ [νn]} converges to K�
μ [ν] every where in �. By Holder inequality 

and (2.15), we deduce that {(K�
μ [νn])p} is equi-integrable w.r.t. δβdx for any 1 ≤ p <

N+β
N−1−α− . By Vitali’s theorem, 

K�
μ [νn] → K�

μ [ν] in Lp

δβ (�). �
2.3. Estimates related to the normalized trace

Proposition 2.10. There exist positive constants C1, C2 such that, for every β ∈ (0, β0),

C1β
α− ≤

∫
�β

K�
μ (x, y)dSx ≤ C2β

α− ∀y ∈ ∂�. (2.17)

The constants C1, C2 depend on N, �, μ but not on y.
Furthermore, for every r0 > 0,

lim
β→0

1

βα−

∫
�β\Br0 (y)

K�
μ (x, y)dSx = 0 ∀y ∈ ∂�. (2.18)

For r0 fixed, the rate of convergence is independent of y.

Proof. By (2.7),

1

βα−

∫
�β\Br0 (y)

K�
μ (x, y)dSx ≤ cβα+−α− . (2.19)

This implies (2.18).
For the next estimate it is convenient to assume that the coordinates are placed so that y = 0 and the tangent 

hyperplane to ∂� at 0 is xN = 0 with the xN axis pointing into the domain. For x ∈ RN put x′ = (x1, · · · , xN−1). Pick 
r0 ∈ (0, β0) sufficiently small (depending only on the C2 characteristic of �) so that

1

2
(|x′|2 + δ(x)2) ≤ |x|2 ∀x ∈ � ∩ Br0(0).

Then, if x ∈ �β ∩ Br0(0) =: �β,0,

1

4
(|x′| + β) ≤ |x|.

This inequality and (2.7) imply,∫
�β,0

K�
μ (x,0)dSx ≤ c0β

α+
∫

�β,0

(|x′| + β)2α−−NdSx

≤ c1β
α+

∫
|x′|<r0

(|x′| + β)2α−−Ndx′

≤ c2β
α+

r0∫
0

(t + β)2α−−2dt

< c2β
α−

∞∫
1

τ−2α+dτ = c2

2α+ − 1
βα− .

Thus, for β < r0,

1

βα−

∫
�β,0

K�
μ (x,0)dSx ≤ c2

2α+ − 1
. (2.20)

2. ELLIPTIC EQUATIONS WITH A HARDY POTENTIAL 57



M. Marcus, P.-T. Nguyen / Ann. I. H. Poincaré – AN 34 (2017) 69–88 79

Estimates (2.19) and (2.20) imply the second estimate in (2.17). The first estimate in (2.17) follows from (2.8). �
Since (2.17) holds uniformly w.r. to y ∈ ∂�, an application of Fubini’s yields the following.

Corollary 2.11. For every ν ∈ M+(∂�),

C1 ‖ν‖M(∂�) ≤ lim inf
β→0

∫
�β

K�
μ [ν]

δ(x)α− dSx

≤ lim sup
β→0

∫
�β

K�
μ [ν]

δ(x)α− dSx ≤ C2 ‖ν‖M(∂�) (2.21)

with C1, C2 as in (2.17).

Proposition 2.12. If τ ∈ Mδα+ (�) then

tr ∗(G�
μ [τ ]) = 0 (2.22)

and, for 0 < β < β0,

1

βα−

∫
�β

G�
μ [τ ]dSx ≤ c

∫
�

δα+d|τ |, (2.23)

where c is a constant depending on μ, �.

Proof. We may assume that τ > 0. Denote v := G�
μ [τ ]. We start with the proof of (2.23).

By Fubini’s theorem and (2.6),∫
�β

vdSx ≤ c
(∫

�

∫
�β∩B β

2
(y)

|x − y|2−NdSx dτ(y)

+ βα+
∫
�

∫
�β\B β

2
(y)

|x − y|2α−−NdSx δα+(y)dτ(y)
)

= I1(β) + I2(β).

Note that, if x ∈ �β and |x − y| ≤ β/2 then β/2 ≤ δ(y) ≤ 3β/2. Therefore

I1(β) ≤ c1

∫
�β∩B β

2
(y)

|x − y|2−α+−NdSx

∫
�

δ(y)α+ dτ(y)

≤ c′
1

β/2∫
0

r2−α+−NrN−2dr

∫
�

δ(y)α+ dτ(y)

≤ c′′
1βα−

∫
�

δ(y)α+ dτ(y)

and

I2(β) ≤ c2β
α+

∞∫
β/2

r2α−−NrN−2dr

∫
�

δ(y)α+ dτ = c′
2β

α−
∫
�

δ(y)α+ dτ.

This implies (2.23).
Given ε ∈ (0, ‖τ‖Mδα+ (�)) and β1 ∈ (0, β0) put τ1 = τχD̄β1

and τ2 = τ − τ1. Pick β1 = β1(ε) such that
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∫
�β1

δ(y)α+ dτ ≤ ε. (2.24)

Thus the choice of β1 depends on the rate at which 
∫
�β

δα+ dτ tends to zero as β → 0.

Put vi = G�
μ [τi]. Then, for 0 < β < β1/2,∫

�β

v1 dSx ≤ c3β
α+β

2α−−N

1

∫
�

δα+(y)dτ1(y).

Thus,

lim
β→0

1

βα−

∫
�β

v1 dSx = 0. (2.25)

On the other hand, by (2.23) and (2.24),

1

βα−

∫
�β

v2 dSx ≤ cε ∀β < β0. (2.26)

This implies that tr ∗(v) = 0. �
It is well-known that u is an Lμ-potential if and only if there exists a positive measure τ in � such that u =

G�
μ [τ ] (see e.g. [1, Theorem 12]). The estimate (2.6) implies that if G�

μ [τ ] �≡ ∞ then τ ∈ Mδα+ (�). Therefore as a 
consequence of the previous proposition:

Corollary 2.13. A positive Lμ-superharmonic function u is a potential if and only if tr ∗(u) = 0.

Remark. Let D � � be a C2 domain and denote by GD
μ and P D

μ the Green and Poisson kernels of Lμ in D. (To avoid 
misunderstanding we point out that, in the formula defining Lμ, δ(x) denotes, as before, the distance from x to ∂�, 
not to ∂D.) As every positive Lμ harmonic function has measure boundary trace zero, there is no Poisson kernel for 
Lμ in �. However, Lμ has a Poisson kernel in every C2 domain D strictly contained in �. This follows from the fact 
that the Green kernel GD

μ exists and behaves like GD
0 .

Proposition 2.14. Let w be a non-negative Lμ-subharmonic function. If w is dominated by an Lμ-superharmonic 
function then Lμw ∈ M+

δα+ (�) and w has a normalized boundary trace ν ∈ M+(∂�). If, in addition, tr ∗(w) = 0 then 
w = 0.

Proof. The first assumption implies that there exists a positive Radon measure λ in � such that −Lμw = −λ.
First assume that λ ∈ Mδα+ (�). Then v := w + G�

μ [λ] is a non-negative Lμ-harmonic function and consequently, 
by the representation theorem, v = K�

μ [ν] for some ν ∈ M+(∂�). By Proposition 2.12, tr ∗(w) = ν. If ν = 0 then 
v = 0 and therefore w = 0. Now let us drop the assumption on λ.

Let vβ be the unique solution of the boundary value problem,

−Lμvβ = −λβ in Dβ, vβ = hβ on ∂Dβ

where λβ is the restriction of λ to Dβ and hβ is the restriction of w to ∂Dβ . (The uniqueness follows from [4, 
Lemma 2.3].) The uniqueness implies that vβ = w�Dβ . By assumption there exists a positive Lμ-superharmonic 
function, say V , such that w ≤ V . Hence

w + GDβ
μ [λβ ] = PDβ

μ [hβ ] ≤ PDβ
μ [V �∂Dβ ] ≤ V.

This implies that G�
μ [λ] = limβ→0 GDβ

μ [λβ ] < ∞. For fixed x ∈ �, G�
μ(x, y) ∼ δ(y)α+ . Therefore the finiteness of 

G�
μ [λ] implies that λ ∈ Mδα+ (�). By the first part of the proof w has a normalized trace. �

Remark. See Proposition 2.20 below for a complementary result.

2. ELLIPTIC EQUATIONS WITH A HARDY POTENTIAL 59



M. Marcus, P.-T. Nguyen / Ann. I. H. Poincaré – AN 34 (2017) 69–88 81

2.4. Test functions

Denote

X(�) = {ζ ∈ C2(�) : δα−Lμζ ∈ L∞(�), δ−α+ζ ∈ L∞(�)}.

Proposition 2.15. For any ζ ∈ X(�), δα−|∇ζ | ∈ L∞(�).

Proof. Let ζ ∈ X(�) then there exist a positive constant c1 and a function f ∈ L∞(�) such that |ζ | ≤ c1δ
α+ and

−Lμζ = δ−α−f.

Take arbitrary point x∗ ∈ �β0 and put d∗ = 1
2δ(x∗), y∗ = 1

d∗ x∗, ζ∗(y) = ζ(d∗y) for y ∈ 1
d∗ �d∗ . Note that if x ∈ Bd∗(x∗)

then y = 1
d∗ x ∈ B1(y∗) and 1 ≤ dist (y, ∂( 1

d∗ �d∗)) ≤ 3. In B1(y∗),

−�ζ∗ − μ

dist (y, ∂( 1
d∗ �d∗))2

ζ∗ = d
2−α−∗ dist (y, ∂(

1

d∗
�d∗))

−α−f (d∗y).

By local estimate for elliptic equations [12, Theorem 8.32], there exists a positive constant c2 = c2(N, μ) such that

max
B 1

2
(y∗)

|∇ζ∗| ≤ c2[ max
B1(y∗)

|ζ∗| + max
B1(y∗)

(d
2−α−∗ dist (y, ∂(

1

d∗
�d∗))

−α− |f (d∗y)|].

This implies

d∗ |∇ζ(x∗)| ≤ c3(δ(x∗)α+ + ‖f ‖L∞(�) δ(x∗)2−α−),

where c3 = c3(N, μ, c1). Therefore

|∇ζ(x)| ≤ c4δ(x)α+−1 ∀x ∈ �β0

where c4 = c4(N, μ, c1, ‖f ‖L∞(�)). Thus δ−α−|∇ζ | ∈ L∞(�). �
Definition 2.16. Let x0 ∈ � and denote β̃(x0) = min(β0, 12δ(x0)). We say that G̃�

μ is a proper regularization of G�
μ

relative to x0 if G̃�
μ(x) = G�

μ(x0, x) for x ∈ �β̃(x0)
, G̃�

μ ∈ C2(�) ∩ C(�) and G̃�
μ ≥ 0 in �. Similarly δ̃ is a proper 

regularization of δ relative to x0 if δ̃(x) = δ(x) for x ∈ �β̃(x0)
, δ̃ ∈ C2(�) and δ̃ ≥ 0 in �.

Remark. Using (2.6) and (2.4), it is easily verified that the functions ϕμ,1, G�
μ [η] (for η ∈ L∞(�)), G̃�

μ and δ̃α+

belong to X(�). Moreover, using Proposition 2.15, one obtains,

ζ ∈ X(�) and h ∈ C2(�̄) =⇒ hζ ∈ X(�).

In the proofs of the next two propositions we use the following construction. Let D � � be a C2 domain. The Green 
function for −Lμ in D is denoted by GD

μ . (To avoid misunderstanding we point out that, in the formula defining Lμ, 
δ(x) denotes, as before, the distance from x to ∂�, not to ∂D.) Given x0 ∈ � we construct a family of functions 
G(x0) = {G̃Dβ

μ : 0 < β < 1
2 β̃(x0)} such that, for each β , G̃

Dβ
μ is a proper regularization of G

Dβ
μ (x0, ·) in Dβ and G(x0)

has the following properties:

• For every β ∈ (0, 12 β̃(x0)), G̃
Dβ
μ ∈ C2(Dβ), G̃

Dβ
μ ≥ 0 and G̃

Dβ
μ (x) = G

Dβ
μ (x0, x) for x ∈ Dβ \ Dβ̃(x0)

.

• The sequences {G̃Dβ
μ } and {LμG̃

Dβ
μ } converge to G̃�

μ and LμG̃�
μ respectively, as β → 0, a.e. in �.

•
∥∥∥G̃

Dβ
μ + |LμG̃

Dβ
μ |

∥∥∥
L∞(Dβ)

≤ Mx0 where Mx0 is a positive constant independent of β .

G(x0) will be called a uniform regularization of {GDβ
μ }.

For any function h ∈ C2(∂�), we say that h̃ is an admissible extension of h relative to x0 in � if h̃(x) = h(σ (x))

for x ∈ �β̃(x0)
and h̃ ∈ C2(�).
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2.5. Nonhomogeneous linear equations

Here we discuss the boundary value problem (1.11) in �.

Lemma 2.17. Let u ∈ L1
loc(�) be a positive solution (in the sense of distributions) of equation

−Lμu = τ (2.27)

in � where τ is a non-negative Radon measure.
If τ ∈ Mδα+ (�) then

−
∫
�

G�
μ [τ ]Lμζdx =

∫
�

ζdτ ∀ζ ∈ X(�). (2.28)

Proof. We may assume that τ is positive. By Proposition 2.12, tr ∗(G�
μ [τ ]) = 0. Therefore, given ε > 0, there exists 

β̄ = β̄(ε) < 1
2β0 such that,

1

βα−

∫
�β

G�
μ [τ ]dSx < ε and

∫
�β

δα+dτ < ε ∀β ∈ (0, β̄]. (2.29)

Let

I (β) :=
∫
Dβ

G�
μ [τ ]Lμζdx +

∫
Dβ

ζdτ.

To prove (2.28) we show that

lim
β→0

I (β) = 0. (2.30)

Put

τ1 := χD̄β̄
τ, τ2 := χ�β̄

τ

and, for 0 < β < β̄ ,

Ik(β) :=
∫

Dβ

G�
μ [τk]Lμζdx +

∫
Dβ

ζdτk, k = 1,2.

As |ζ | ≤ cδα+ and |Lμζ | ≤ c
δα− , (2.29) implies,

|I2(β)| ≤ cε ∀β ∈ (0, β̄). (2.31)

For every β ∈ (0, β̄),

−
∫

Dβ

G�
μ [τ1]Lμζdx =

∫
Dβ

ζdτ1 +
∫
�β

∂G�
μ [τ1]
∂n

ζdSx −
∫
�β

G�
μ [τ1]∂ζ

∂n
dSx.

Thus

I1(β) = −
∫
�β

∂G�
μ [τ1]
∂n

ζdSx +
∫
�β

G�
μ [τ1]∂ζ

∂n
dSx =: I1,1(β) + I1,2(β).

By Proposition 2.15 and (2.29),

|I1,2(β)| ≤ cε ∀β ∈ (0, β̄). (2.32)
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Next we estimate I1,1(β) for β ∈ (0, β̄/2). By Fubini,

I1,1(β) = −
∫
�β

∂

∂nx

∫
Dβ̄

G�
μ(x, y)dτ1(y)ζ(x)dSx

= −
∫

Dβ̄

∫
�β

∂G�
μ(x, y)

∂nx

ζ(x) dSxdτ1(y).

For every y ∈ Dβ̄ the function x �→ G�
μ(x, y) is Lμ-harmonic in �β̄ . By local elliptic estimates, for every ξ ∈ �β ,

sup
x∈Bβ/4(ξ)

|∇xG
�
μ(x, y)| ≤ cβ−1 sup

x∈Bβ/2(ξ)

G�
μ(x, y).

By Harnack’s inequality,

sup
x∈Bβ/2(ξ)

G�
μ(x, y) ≤ c′ inf

x∈Bβ/2(ξ)
G�

μ(x, y).

The constants c, c′ are independent of β ∈ (0, β̄/2), y ∈ Dβ̄ and ξ ∈ �β . Therefore we obtain,

|∇xG
�
μ(x, y)| ≤ Cβ−1G�

μ(x, y) ∀x ∈ �β, ∀y ∈ Dβ̄, ∀β ∈ (0, β̄/2). (2.33)

Hence,

|I1,1(β)| ≤ Cβ−1
∫
�β

G�
μ [τ1]|ζ |dSx.

As |ζ(x)| ≤ cδ(x)α+ it follows that,

|I1,1(β)| ≤ C
1

βα−

∫
�β

G�
μ [τ1]dSx.

Therefore, by (2.29),

|I1,1(β)| ≤ C′ε ∀β ∈ (0, β̄/2). (2.34)

Finally (2.30) follows from (2.31), (2.32) and (2.34). �
Theorem 2.18. Let ν ∈ M+(∂�) and τ ∈ Mδα+ (�). Then:

(i) Problem (1.11) has a unique solution. The solution is given by

u = G�
μ [τ ] + K�

μ [ν]. (2.35)

(ii) There exists a positive constant c = c(N, μ, �) such that

‖u‖L1
δ−α− (�) ≤ c(‖τ‖Mδα+ (�) + ‖ν‖M(∂�)). (2.36)

(iii) u is a solution of (1.11) if and only if u ∈ L1
δ−α− (�) and

−
∫
�

uLμζdx =
∫
�

ζdτ −
∫
�

K�
μ [ν]Lμζdx ∀ζ ∈ X(�). (2.37)

Proof. (i) Proposition 2.12 implies that (2.35) is a solution of (1.11).
If u and u′ are two solutions of (1.11) then v := (u − u′)+ is a nonnegative Lμ-subharmonic function such that 

tr ∗(v) = 0 and v ≤ 2G�
μ [|τ |] which is a positive Lμ-superharmonic function. By Proposition 2.14, v ≡ 0 and hence 

u ≤ u′ in �. Similarly u′ ≤ u, so that u = u′.
(ii) In view of (2.14) and (2.15), (2.36) is an immediate consequence of (2.35).
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(iii) Let u be the solution of (1.11). By (2.36), u ∈ L1
δ−α− (�) and by Lemma 2.17 and (2.35), u satisfies (2.37).

Conversely, suppose that u ∈ L1
δ−α− (�) and satisfies (2.37). We show that u is a solution of (1.11) or, equivalently, 

of (2.35).
By (2.37) with ζ ∈ C∞

c (�), u is a solution (in the sense of distributions) of the equation in (1.11). It remains to 
show that tr ∗(u) = ν. Put U = u − G�

μ [τ ] − K�
μ [ν] and note that, as −Lμu = τ , U is Lμ-harmonic.

Let z ∈ � and let G(z) be a uniform regularization of {GDβ
μ : 0 < β < 1

2 β̃(z)} (see Section 2.4). Then, for every 

β ∈ (0, 12 β̃(z)), G̃
Dβ
μ ∈ C2

0(Dβ). Recall that G̃
Dβ
μ (x) = G

Dβ
μ (z, x). Therefore, as ∂G

Dβ
μ (z,x)

∂nx
= P

Dβ
μ (z, x), x ∈ �β , we 

obtain

−
∫

Dβ

U(x)LμG̃
Dβ
μ (x)dx =

∫
�β

U(x)P
Dβ
μ (z, x)dSx = U(z). (2.38)

The second equality is a consequence of the fact that U is Lμ-harmonic. But LμG̃
Dβ
μ (x) → LμG̃�

μ(z, x) pointwise and 

the sequence {LμG̃
Dβ
μ } is bounded by a constant Mz. We observe that U ∈ L1(�); in fact by assumption u ∈ L1

δ−α− (�)

and therefore, by Proposition 2.8, U ∈ L1
δ−α− (�). Consequently, by (2.38),

U(z) = −
∫
�

U(x)LμG̃�
μ(z, x)dx.

Since G�
μ(z, ·) ∈ X(�), by (2.37) the right hand side vanishes. Thus U vanishes in �, i.e., u satisfies (2.35). �

Corollary 2.19. Let u be a positive Lμ superharmonic function. Then there exist ν ∈ M+(∂�) and τ ∈ M+
δα+ (�)

such that (1.12) holds.

Proof. By the Riesz decomposition theorem u can be written in the form u = up + uh where up is an Lμ-potential 
and uh is a non-negative Lμ-harmonic function. Therefore there exists ν ∈ M+(∂�) such that uh = K�

μ [ν]. Since up

is an Lμ-potential there exists a positive Radon measure τ such that up = G�
μ [τ ] (see e.g. [1, Theorem 12]). This 

necessarily implies that τ ∈ Mδα+ (�). �
Proposition 2.20. Let w be a non-negative Lμ-subharmonic function. If w has a normalized boundary trace then it 
is dominated by an Lμ-harmonic function.

Proof. There exist a positive Radon measure τ in � and a measure ν ∈ M+(∂�) such that

−Lμw = −τ in �, tr ∗(w) = ν.

Let uβ be the solution of

−Lμu = −τβ in Dβ, u = K�
μ [ν] on �β

where τβ := τχDβ . Then,

uβ + GDβ
μ [τβ ] = K�

μ [ν].
Letting β → 0 we obtain,

G�
μ [τ ] ≤ K�

μ [ν].
Hence τ ∈ M+

δα+ (�) and consequently

w + G�
μ [τ ] = K�

μ [ν]. � (2.39)
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3. The nonlinear equation

In this section, we consider the nonlinear equation

−Lμu + uq = 0 (3.1)

in � with 0 < μ < CH (�) and q > 1.

Proof of Theorem A. Since u is a positive solution of (1.1), u is Lμ-subharmonic. Assuming (i), u is dominated 
by an Lμ-harmonic function. Therefore, by Proposition 2.14, (i) =⇒ (ii) and u ∈ L

q

δα+ (�). On the other hand, by 
Proposition 2.20 (ii) =⇒ (i).

As mentioned above, (i) implies that u ∈ L
q

δα+ (�) and that there exists ν ∈ M+
δα+ (∂�) such that tr ∗(u) = ν. 

Therefore, by Theorem 2.18, (1.14) is a consequence of (2.37). Thus (i) =⇒ (iii).
Finally, the implication (iii) =⇒ (i) is obvious.
It remains to prove the last assertion. If u is a positive solution of (1.13) then, by (iii), u ∈ L

q

δα+ (�) and (1.15)
follows from Theorem 2.18.

Conversely, assume that δα+uq, u/δα− ∈ L1(�) and (1.15) holds. Then, by (1.15) with ζ ∈ C∞
c (�), u is a solution 

of (1.1). Taking ζf = G�
μ [f ] where f ∈ Cc(�) and f ≥ 0 we obtain

∫
�

(K�
μ [ν] − u)f dx =

∫
�

uqζf dx < ∞.

This implies u ≤ K�
μ [ν], i.e., u is Lμ-moderate. Therefore by (i), u is a solution of (1.13). �

Proof of Theorem B.
Uniqueness. Let u1 and u2 be two positive solutions of (1.13). Then v := (u1 − u2)+ is a subsolution of (1.1) and 
therefore an Lμ-subharmonic function. Furthermore, by (iii) in Theorem A, u1, u2 ∈ L

q

δα+ (�) and v ≤ G�
μ [uq

1 +
u

q

2 ] =: v̄. Obviously v̄ is Lμ superharmonic and tr ∗(v) = 0. Therefore, by Proposition 2.14, v = 0. Thus u1 ≤ u2 and 
similarly u2 ≤ u1.

Monotonicity. As before, v := (u1 − u2)+ is Lμ-subharmonic and it is dominated by an Lμ-superharmonic function. 
Since ν1 ≤ ν2, tr ∗(v) = 0. Hence by Proposition 2.14, v = 0.

A-priori estimate. Suppose that u is a positive solution of (1.13). Then (1.15) with ζ = G�
μ [1] implies (1.16). (Recall 

that G�
μ [1] ∼ δα+ .) �

For the proof of the next theorem we need

Lemma 3.1. Let D � � be a C2 domain and q > 1. If h is a positive function in L1(∂D) then there exists a unique 
solution of the boundary value problem,

−Lμu + uq = 0 in D

u = h on ∂D. (3.2)

Proof. First assume that h is bounded. Let P D
μ denote the Poisson kernel of −Lμ in D and put u0 := PD

μ [h]. Thus u0
is bounded. We show that there exists a non-increasing sequence of positive functions {un}∞1 , dominated by u0, such 
that un is the solution of the boundary value problem,

−�v + vq = μ

δ2
un−1 in D

v = h on ∂D n = 1,2, . . . (3.3)

As usual δ denotes the distance to ∂�, not to ∂D. For n = 1, u0 is a supersolution of the problem and, obviously v = 0
is a subsolution. Consequently there exists a unique solution u1. By induction, for n > 1,
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−�un−1 + u
q

n−1 = μ

δ2
un−2 ≥ μ

δ2
un−1.

Thus v = un−1 is a supersolution of (3.3) and it is bounded. It follows that there exists 0 ≤ un ≤ un−1 such that

−�un + u
q
n = μ

δ2
un−1 in D, un = h on ∂D.

As the sequence is monotone we conclude that u = limun is a solution of (3.2).
If h ∈ L1(∂D), we approximate it by a monotone increasing sequence of non-negative bounded functions {hk}. If 

vk is the solution of (3.2) with h replaced by hk then {vk} increases (by the comparison principle [4, Lemma 3.2]) and 
v = limvk is a solution of (3.2).

Uniqueness follows by the comparison principle. �
Proof of Theorem C. Put u0 := K�

μ [ν] and hβ := u0��β . Let uβ be the solution of (3.2) with h replaced by hβ , 
β ∈ (0, β0). Since u0 is a supersolution of (1.1) it follows that {uβ} decreases as β ↓ 0. Therefore u := limβ→0 uβ is 
a solution of (1.1).

We claim that tr ∗(u) = ν. Indeed,

uβ + GDβ
μ [uq

β ] = PDβ
μ [hβ ] = u0. (3.4)

Furthermore, in Dβ , uβ ≤ u0 ∈ L
q

δα+ (�). Therefore

GDβ
μ [uq

β ] → G�
μ [uq ].

Hence, by (3.4),

u + G�
μ [uq ] = u0 = K�

μ [ν].
By Proposition 2.12, tr ∗(u) = ν.

By Theorem B the solution is unique. �
Proof of Corollary C1. By the previous theorem, if ν = f where f is a positive bounded function then (1.13) has 
a solution. If 0 ≤ f ∈ L1(�) then it is the limit of an increasing sequence of such functions. Therefore, once again 
problem (1.13) with ν = f has a solution.

Proof of Theorem D. Put v = K�
μ [ν] − u. By the comparison principle v ≥ 0. Clearly v is Lμ-superharmonic in �

and, by definition tr ∗(v) = 0. By Proposition I(iv) v is an Lμ potential. Consequently, by Theorem 2.6,

lim
x→y

v(x)

K�
μ [ν] = 0 non-tangentially, ν a.e. on ∂�.

This implies (1.17). �
Proof of Theorem E. By Proposition 2.8, specifically inequality (2.15), K�

μ [ν] ∈ L
q

δα+ (�) for every q ∈ (1, qμ,c)

and ν ∈ M+(∂�). Therefore the first assertion of the theorem is a consequence of Theorem C.
We turn to the proof of stability. Put vn = K�

μ [νn]. By Proposition 2.8, {vn} is bounded in Lq

δα+ (�) for every 

q ∈ (1, qμ,c) and in Lp

δ−α− (�) for every p ∈ (1, N−α−
N−1−α− ). In addition vn → v pointwise in �. This implies that 

{vq
nδα+} and {vn/δ

α−} are uniformly integrable in �. Since uνn ≤ vn it follows that this conclusion applies also 
to {uνn}.

By the extension of the Keller–Osserman inequality due to [4], the sequence {uνn} is uniformly bounded in every 
compact subset of �. Therefore, by a standard argument, we can extract a subsequence, still denoted by {uνn} that 
converges pointwise to a solution u of (1.1). In view of the uniform convergence mentioned above we conclude that

uνn → u in L
q

δα+ (�) and in L1
δ−α− (�).

By Theorem A,

uνn + G�
μ [uq

νn
] = K�

μ [νn].
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In view of the previous observations, passing to the limit as n → ∞, we obtain,

u + G�
μ [uq ] = K�

μ [ν].
Again by Theorem A it follows that u is the (unique) solution of (1.13). Because of the uniqueness we conclude that 
the entire sequence {uνn} (not just a subsequence) converges to u as stated in assertion II. of the theorem.

Finally we prove assertion III. By Theorem A

ukδy + G�
μ [uq

kδy
] = kK�

μ (·, y). (3.5)

Combining (2.7), (2.6) and the fact ukδy ≤ kK�
μ (·, y), we obtain

G�
μ [uq

kδy
](x)

K�
μ (x, y)

≤ kq
G�

μ [(K�
μ (., y)q ](x)

K�
μ (x, y)

≤ ckq |x − y|N+α+−q(N−1−α−).

Since 1 < q < qμ,c , it follows that

lim
x→y

G�
μ [uq

kδy
](x)

K�
μ (x, y)

= 0.

Therefore, by (3.5), we obtain (1.19). �
Proof of Theorem F. Let y ∈ ∂�. By negation, assume that there exists a positive solution u of (1.13) with ν = kδy for 
some k > 0. By Theorem A, u ≤ kK�

μ(., y) and u ∈ L
q

δα+ (�). Let γ ∈ (0, 1) and denote Cγ (y) = {x ∈ � : γ |x − y| ≤
δ(x)}. By Theorem D,

lim
x∈Cγ (y),x→y

u(x)

K�
μ (x, y)

= k.

This implies that there exist positive numbers r0, c such that

u(x) ≥ cK�
μ (x, y) ∀x ∈ Cγ (y) ∩ Br0(y). (3.6)

By (2.7),

Jγ := ∫
Cγ (y)∩Br0 (y)

(K�
μ (x, y))qδ(x)α+dx

≥ c′ ∫
Cγ (y)∩Br0 (y)

δ(x)α+(q+1)|x − y|(2α−−N)qdx

≥ c′γ α+(q+1)
∫
Cγ (y)∩Br0 (y)

|x − y|α+−q(N−1−α−)dx.

Since q ≥ qμ,c the last integral is divergent. But (3.6) and the fact that u ∈ L
q

δα+ (�) imply that Jγ < ∞. We reached 
a contradiction. �
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CHAPTER 3

Semilinear elliptic equations with a Hardy
potential and a subcritical source term

This chapter is based on the paper [119]. In this chapter, we discuss
semilinear elliptic equations with a source term and a Hardy potential. Var-
ious necessary and sufficient conditions for the existence of solutions to the
corresponding Dirichlet problem are obtained.
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positive solutions of

−�u − μ

δ2 u = g(x, u) in �, tr∗(u) = ν. (P)
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1 Introduction

This paper concerns a study of weak solutions of semilinear elliptic equations with Hardy
potential and source term

− �u − μ

δ2 u = g(x, u) in � (1.1)

where � is a C2 bounded domain in RN (N > 2), μ ≥ 0, δ(x) := dist (x, ∂�) and g ∈
C(� × R+).

Henceforth, we will use the notations Lμ := � + μ

δ2 and (g ◦ u)(x) := g(x, u(x)).

Definition 1.1 (i) A function u is an Lμ-harmonic function (resp. Lμ-subharmonic, Lμ-
superharmonic) in � if u ∈ L1

loc(�) and

−Lμu = 0 (resp. − Lμu ≤ 0, −Lμu ≥ 0)

in the sense of distributions in �.
(ii) A function u is called a nonnegative weak solution (resp. subsolution, supersolution) of

(1.1) if u ≥ 0, u ∈ L1
loc(�), g ◦ u ∈ L1

loc(�) and

−Lμu = g ◦ u (resp. − Lμu ≤ g ◦ u,−Lμu ≥ g ◦ u)

in the sense of distributions in �.

Boundary value problem with measures for (1.1) with μ = 0 and g ◦ u = uq , i.e. the
problem

−�u = uq in �, u = ν on ∂� (1.2)

was first considered by Bidault-Véron and Vivier [7]. They established estimates involving
classical Green and Poisson kernels for −� and applied these estimates to obtain an existence
result in the subcritical case, i.e. 1 < q < qc := N+1

N−1 . Then Bidaut-Véron and Yarur [9]
reconsidered this type of problem in a more general setting and provided a necessary and
sufficient condition for the existence of a solution of (1.2). Chen et al. [12] investigated (1.1)
with μ = 0 and g satisfying a subcriticality condition. Their approach makes use of Schauder
fixed point theorem, essentially based on estimates related to weighted Marcinkiewicz spaces.
Recently, Bidaut-Véron et al. [8] provided new criteria for the existence of weak solutions of
problem (1.2) and extended those results to the case where � is replaced by Lμ.

When μ �= 0, the study of (1.1) relies strongly on the investigation of the linear equation

− Lμu = 0 in �. (1.3)
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Equation (1.3) with μ < 0, and more generally Schrödinger equations −�u + V (x)u = 0
where V is a nonnegative potential, was studied by Ancona [1,2], Marcus [18], Ancona and
Marcus [3] and by Véron and Yarur [25]. The case μ > 0 was considered by Bandle et al.
[4–6], Marcus and Nguyen [20], Gkikas and Véron [15] and by Marcus and Moroz [19] in
connection with the Hardy constant CH (�) which is given by

CH (�) = inf
H1

0 (�)\{0}

∫
�

|∇u|2dx
∫
�
(u/δ)2dx

. (1.4)

It is well known (see [11,21]) that CH (�) ∈ (0, 1
4 ] and CH (�) = 1

4 when � is convex.
Moreover the infimum is achieved if and only if CH (�) < 1/4.

Let φ ≥ 0 in � and p ≥ 1, we denote by L p(�;φ) the space of all functions v on �

satisfying
∫
�

|v| φ dx < ∞. We denote by M(�;φ) the space of Radon measures τ on
� satisfying

∫
�

φ d|τ | < ∞ and by M+(�;φ) the nonnegative cone of M(�;φ). When
φ ≡ 1, we use the usual notations M(�) and M+(�). We also denote by M(∂�) the space
of finite measures on ∂� and by M+(∂�) the nonnegative cone of M(∂�).

Let Gμ and Kμ be the Green and the Martin kernels for −Lμ in � respectively (see [20]
for more detail). Denote by Gμ and Kμ the associated operators defined by

Gμ[τ ](x) =
∫

�

Gμ(x, y)dτ(y), ∀τ ∈ M(�), (1.5)

Kμ[ν](x) =
∫

∂�

Kμ(x, z)dν(z), ∀ν ∈ M(∂�). (1.6)

Put

α± := 1 ± √
1 − 4μ

2
. (1.7)

Let λμ,1 be the first eigenvalue of −Lμ in � and denote by ϕμ,1 the corresponding
eigenfunction normalized by

∫
�
(ϕμ,1/δ)

2dx = 1 (see [11]). If μ ∈ (0,CH (�)) then λμ,1 >

0 and by [13] (see also [22]), there exists a constant c1 > 0 such that

c−1
1 δα+ ≤ ϕμ,1 ≤ c1δ

α+ in �. (1.8)

For β > 0, put

�β = {x ∈ � : δ(x) < β}, Dβ = {x ∈ � : δ(x) > β}, β = {x ∈ � : δ(x) = β}.
When dealing with boundary value problem associated to (1.1) with μ > 0 one encounters

the following difficulties:

– The first one is due to the fact that every positive Lμ-harmonic function has classical
measure boundary trace zero (see [20, Corollary 2.11]). Therefore, the classical notion
of boundary trace no longer plays an important role in describing the boundary behavior
of Lμ-harmonic function or solutions of (1.1).

– The second one stems from the invalidity of the classical Keller-Osserman estimate, as
well as the lack of a universal upper bound for solutions of (1.1). Moreover, contrast to the
case of nonnegative absorption nonlinearity, Kμ[ν] with ν ∈ M+(∂�) is a subsolution
of

− Lμu = g ◦ u in � (1.9)

and therefore it is no longer a natural upper bound for solutions of (1.9).
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In order to overcome the first difficulty, we shall employ the notion ofnormalized boundary
trace which is defined as follows:

Definition 1.2 A function u possesses a normalized boundary trace if there exists a measure
ν ∈ M(∂�) such that

lim
β→0

β−α−
∫

β

|u(x) − Kμ[ν](x)|dS(x) = 0. (1.10)

The normalized boundary trace of u is denoted by tr ∗(u).

In the above definition, we use the notation dS = dHN−1 where HN−1 denotes the
Hausdorff measure. This notion was introduced by Marcus and Nguyen [20] in the case
μ ∈ (0,CH (�)). It is worth mentioning that λμ,1 > 0 when μ ∈ (0,CH (�)) and hence
ϕμ,1 is a positive Lμ-superharmonic function in �. This fact, together with a classical result
of Ancona [2], guarantees the validity of Representation theorem (see [20]). The notion of
normalized boundary trace turned out to be appropriate to investigate the problem

− Lμu + uq = 0 in �, tr ∗(u) = ν. (1.11)

More precisely, when μ ∈ (0,CH (�)), they showed that there exists a critical exponent

q∗ = q∗(N , μ) := N + α+
N + α+ − 2

. (1.12)

for (1.11). This means that if 1 < q < q∗, for every positive finite boundary measure
ν on ∂�, (1.11) admits a unique positive solution, while if q ≥ q∗ there exists no positive
solution of (1.11) with ν being a Dirac measure. Stability result was also discussed in the case
1 < q < q∗. Problem (1.11) with uq replaced by a more general nonlinearity f (u) was then
investigated by Gkikas and Véron [15] in a slightly different setting. When f (u) = |u|q−1u,
they provided a necessary and sufficient condition in terms of Besov capacity for solving
(1.11) in the supercritical case, i.e. q ≥ q∗.

Because of the second difficulty, we mainly deal with the minimal solution of (1.9)
which possesses several exploitable properties. This solution is constructed due to sub-
supersolutions theorem in Sect. 3. Observe that Kμ[ν] with ν ∈ M+(∂�) is a subsolution
of (1.9); hence in order to prove the existence of a minimal solution of (1.9), it is sufficient
to find a supersolution of (1.9) which dominates Kμ[ν].

Throughout the present paper, we assume that μ ∈ (0,CH (�)). We now introduce the
definition of solutions of

− Lμu = g ◦ u in �, tr ∗(u) = ν. (1.13)

Definition 1.3 (i) A nonnegative function u is called a (weak) solution of (1.13) if u is a
solution of (1.1) and has normalized boundary trace ν.

(ii) Put

X (�) := {ζ ∈ C2(�) : δα−Lμζ ∈ L∞(�), δ−α+ζ ∈ L∞(�)}.
A function ζ ∈ X (�) is called an admissible test function for (1.13).

Notice that ϕμ,1 ∈ X (�). More properties of X (�) can be found in [20, Section 2.4].
Using this space, we establish integral formulation for weak solutions of (1.13). This is stated
in the following result.

Theorem A Let ν ∈ M+(∂�). The following statements are equivalent:
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(i) u is a positive weak solution of (1.13);
(ii) g ◦ u ∈ L1(�; δα+) and

u = Gμ[g ◦ u] + Kμ[ν]; (1.14)

(iii) u ∈ L1(�; δ−α−), g ◦ u ∈ L1(�; δα+) and

−
∫

�

uLμζdx =
∫

�

(g ◦ u)ζdx −
∫

�

Kμ[ν]Lμζdx ∀ζ ∈ X (�). (1.15)

Under some additional assumptions on g, we obtain an existence result for (1.13).

Theorem B Let g(x, r) be a nondecreasing continuous function with respect to r for every
x ∈ � and ν ∈ M+(∂�) with ‖ν‖M(∂�) = 1. Assume that there exist numbers c2 > 0, c3 >

0, 0 ≤ r1 < r2 ≤ ∞ and a function � : R+ → R+ such that

g(x, rs) ≤ �(r)g(x, s) ∀s ≥ 0, r > 0, x ∈ �, (1.16)

�(1 + c2c3r
−1�(r)) ≤ c2 ∀r ∈ (r1, r2), (1.17)

Gμ[g ◦ (Kμ[ν])] ≤ c3Kμ[ν] a.e. in �. (1.18)

1. existence. For any � ∈ (r1, r2) the problem

− Lμu = g ◦ u in �, tr ∗(u) = �ν (1.19)

admits a minimal positive weak solution u�ν in the sense that if v is a positive weak solution
of (1.19) then u�ν ≤ v in �.

2. Estimates. There exists a positive constant c4 = c4(c2, c3, �, �) such that

�Kμ[ν] ≤ u�ν ≤ c4�Kμ[ν] a.e. in �. (1.20)

3. Nontangential convergence. For ν-a.e. point z ∈ ∂�, there holds

lim
x→z

u�ν(x)

Kμ[ν](x) = � non-tangentially. (1.21)

Remark When g(x, u) = uq with q > 1, c4 can be chosen independently of �.

In the next results, we focus on the pure power case, namely the problem

−Lμu = uq in �, tr ∗(u) = ν (Dν)

where q > 0 and ν ∈ M+(∂�). We shall establish some estimates related Green and Martin
operators and a necessary condition for the existence of solutions of (Dν) in the case q > 1.

Theorem C Let q > 0 and ν ∈ M+(∂�). Then there exists a positive constant c5 =
c5(N , μ, q,�) such that

Gμ[Kμ[ν]q ] ≤ c5 ‖ν‖q−1
M(∂�)

Kμ[ν] a.e in �. (1.22)

Furthermore, if q > 1 and problem (Dν) admits a positive weak solution then there holds

Gμ[Kμ[ν]q ] ≤ 1

q − 1
Kμ[ν] a.e. in �. (1.23)
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Remark It is worth mentioning that when μ = 0, (1.22) and (1.23) were obtained by Bidaut-
Véron and Vivier [7]. When Lμ is replaced by a uniformly elliptic differential operator of
second order with bounded Hölder-continuous coefficients, (1.23) is relevant to [17, Theorem
7.6]. Recently, (1.23) with an inexplicit multiplier on the right hand-side were proved by
Véron et al. in [8, Theorem 4.1]. In this paper we employ the method in [7] to prove (1.22)
for q > 0 and apply the idea in [7,9,10] to point out that the multiplier on the right hand-
side of (1.23) can be explicitly chosen as 1

q−1 . When q = 1, estimate (1.22) becomes
Gμ[Kμ[ν]] ≤ c5Kμ[ν] with c5 = c5(N , μ,�), which can be regarded as the limiting case
of (1.23).

The next results reveal that q∗ is a critical exponent for (Dν). More precisely, in the
subcritical case, namely 1 < q < q∗, (Dν) admits a solution under a smallness assumption
on the boundary datum, while in the supercritical case, i.e. q ≥ q∗, this problem possesses
no solution with isolated boundary singularity.

For z ∈ ∂�, we denote by δz the Dirac measure concentrated at z. Existence and nonex-
istence results when 0 < q < q∗, q �= 1 are given as follows.

Theorem D Let q ∈ (0, q∗), q �= 1 and ν ∈ M+(∂�) with ‖ν‖M(∂�) = 1. For � > 0,
consider the problem

−Lμu = uq in �, tr ∗(u) = �ν. (D�ν)

1. Case: q ∈ (1, q∗). There is a threshold value �∗ ∈ R+ for (D�ν) such that the following
holds.

(i) If � ∈ (0, �∗] then problem (D�ν) admits a minimal positive weak solution u�ν .
Moreover, if � ∈ (0, �∗), u�ν satisfies (1.20) and (1.21). In addition, if {�n} is a nonde-

creasing sequence converging to �∗ then {u�nν
} converges to u�∗ν in L1(�; δ−α−) and

in Lq(�; δα+).
(ii) If � > �∗ then there exists no positive weak solution of (D�ν).

2. Case: q ∈ (0, 1). For every � > 0 problem (D�ν) admits a minimal solution u�ν which
satisfies satisfies (1.20) and (1.21). Moreover, lim�→∞ u�ν = ∞ a.e. in �.
For any 1 �= q ∈ (0, q∗), if ν = δz with z ∈ ∂� then there holds

lim
x→z

u�δz
(x)

Kμ(x, z)
= �. (1.24)

Remark Note that in the absorption case [namely equation (1.11)], if 1 < q < q∗, there are
two types of solution with isolated boundary singularity: the weakly singular solutions u�,z

(the solution of (1.11) with ν = �δz) and the strongly singular solution u∞,z . Actually, u∞,z

is the limit of the sequence u�,z as � → ∞. This limiting process can not be executed in the
source case since (D�δz ) admits no solution if � > �∗ due to Theorem D.

We next give a stability result.

Theorem E Let q ∈ (0, q∗), q �= 1 and {νn} is a sequence of measures in M+(∂�) which
converges weakly to ν ∈ M+(∂�). If q > 1, assume in addition that

sup
n

‖νn‖M(∂�) ≤ �∗. (1.25)

For each n, let uνn be a positive weak solution of (Dνn ). Then, up to a subsequence, {uνn }
converges to a positive weak solution uν of (Dν) in L1(�; δ−α−) and in Lq(�; δα+).
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An existence and stability result in the case q = 1 is stated in the following theorem in
which λμ,1 is the first eigenvalue of −Lμ in �.

Theorem F Let ν ∈ M+(∂�). For κ > 0, consider the problem

−Lμu = κu in �, tr ∗(u) = ν. (Eκ
ν )

There exists a number κ∗ ∈ (0, λμ,1] such that the following holds.

(i) If κ ∈ (0, κ∗) then problem (Eκ
ν ) admits aminimal positiveweak solution uκ,ν .Moreover,

uκ,ν satisfies (1.21).
Assume {νn} is a sequence of measures in M+(∂�) which converges weakly to ν ∈
M+(∂�) and for each n denote by uκ,νn a positive weak solution of (E

κ
νn

). Then, up to a
subsequence, {uκ,νn } converges to a positive weak solution uκ,ν of (Eκ

ν ) in L1(�; δ−α−).
(ii) If κ > κ∗ then (Eκ

ν ) admits no positive weak solution.

Furthermore, problem (E
λμ,1
ν ) admits no positive weak solution.

Remark It is notified by the referee that κ∗ = λμ,1. The way to prove it is to note that
−Lμ − κ admits the Green function Gμ,κ for any κ < μ and then to prove a modification of
Proposition 2.4 for Gμ,κ (see [24] for the existence of the Green function Gμ,κ ). The weaker
statement κ∗ ≤ λμ,1 in the present paper is essentially in order to simplify the proofs and to
streamline the exposition.

In the supercritical case, i.e. q ≥ q∗, there is no solution with an isolated boundary
singularity.

Theorem G Assume q ≥ q∗. Then for every � > 0 and z ∈ ∂�, there is no positive weak
solution of

−Lμu = uq in �, tr ∗(u) = �δz . (D�δz )

Here δz denotes the Dirac measure concentrated at z.

Remark Interesting removability results for (Dν) in terms of capacities in the supercritical
case was provided in [8].

In the next two theorems, we consider the case (g ◦ u)(x) = δ(x)γ g̃(u(x)) where γ >

−1 −α+ and g̃ : R+ → R+ is nondecreasing and continuous. In this framework, the critical
exponent for (1.1) is

q∗
γ = q∗

γ (N , μ, γ ) := N + α+ + γ

N + α+ − 2
. (1.26)

Clearly q∗
0 = q∗.

Theorem H gives an existence result for the problem

− Lμu = δγ g̃(u) in �, tr ∗(u) = �ν. (1.27)

Theorem H Let ν ∈ M+(∂�) with ‖ν‖M(∂�) = 1. Assume that

�0 :=
∫ ∞

1
s−1−q∗

γ g̃(s)ds < +∞, (1.28)

g̃(s) ≤ �1s
q1 + θ, ∀s ∈ [0, 1] for some q1 > 1,�1 > 0, θ > 0. (1.29)

Then there exist θ0 > 0 and �0 > 0 depending on N , μ, γ,�0,�1 and q1 such that for every
θ ∈ (0, θ0) and � ∈ (0, �0) problem (1.27) admits a weak solution u ≥ �Kμ[ν] in �.
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Remark If g̃ satisfies (1.28) we say that g̃ is subcritical with respect to γ .

The case where g̃ is linear or sublinear is treated in the following theorem.

Theorem I Let ν ∈ M+(∂�) with ‖ν‖M(∂�) = 1. Assume that

g̃(s) ≤ �2s
q2 + θ, ∀s ≥ 0 (1.30)

for some q2 ∈ (0, 1],�2 > 0 and θ > 0.
In (1.30), if q2 = 1 we assume in addition that �2 is small enough. Then for any � > 0,

(1.27) admits a weak solution u ≥ �Kμ[ν].
Remark In Theorem I, when q2 < 1, the smallness assumption on θ is not required.

The plan of the paper is as follows. In Sect. 2 we give results concerning Green and Martin
kernels and boundary value problem for linear equations with Hardy potential. Theorems A
and B are proved in Sect. 3. It is noteworthy that main ingredients in proving Theorem A are:
a generalization of Herglotz–Doob theorem to Lμ-superharmonic functions and the theory of
Schrödinger linear equations. Theorem B is established using a sub-supersolutions theorem.
The proof of Theorems C–G are presented in Sect. 4. Finally, in Sect. 5 the existence result
in the case of more general source terms (Theorems H and I) is obtained due to the Schauder
fixed point theorem and estimates in weak L p spaces.

2 Preliminaries

Throughout this paper we assume that 0 < μ < CH (�).

2.1 Weak L p spaces

We denote by L p
w(�; τ), 1 ≤ p < ∞, τ ∈ M+(�), the weak L p space (or Marcinkiewicz

space) (see [23]). When τ = δαdx , for simplicity, we use the notation L p
w(�; δα). Notice

that, for every α > −1,

L p
w(�; δαdx) ⊂ Lr (�; δα), ∀r ∈ [1, p).

If u ∈ L p
w(�; δα)(α > −1) then

∫

|{u|≥s}
δαdx ≤ s−p ‖u‖p

L p
w(�;δα)

. (2.1)

2.2 Green and Martin kernels

Let Gμ be the Green kernel for the operator −Lμ in �×� and denote by Gμ the associated
operator defined by (1.5). It was shown in [20] that for every τ ∈ M(�; δα+), |Gμ[τ ]| < ∞
a.e. in �. Denote by Kμ the Martin kernel for −Lμ in � and by Kμ the Martin operator
defined by (1.6).

In what follows the notation f ∼ g means: there is a constant c > 0 such that c−1 f <

g < c f in the domain of the two functions.
By [14, Theorem 4.11] and [20] (see also [15]),

Gμ(x, y) ∼ min
{
|x − y|2−N , δ(x)α+δ(y)α+ |x − y|2α−−N

}
∀x, y ∈ �, x �= y;

(2.2)

Kμ(x, z) ∼ δ(x)α+|x − z|2α−−N ∀x ∈ �, z ∈ ∂�. (2.3)
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The following estimates can be found in [16, Proposition 2.4]

Proposition 2.1 (i) Let β ∈ ( − Nα+
N+2α+−2 ,

Nα+
N−2

)
. Then there exists a constant c7 =

c7(N , μ, β,�) such that
∥
∥Gμ[τ ]∥∥

L

N+β
N+α+−2
w (�;δβ )

≤ c7 ‖τ‖M(�;δα+ ) ∀τ ∈ M(�; δα+). (2.4)

(ii) Let β > −1. Then there exists a constant c8 = c8(N , μ, β,�) such that
∥
∥Kμ[ν]∥∥

L

N+β
N+α+−2
w (�;δβ )

≤ c8 ‖ν‖M(∂�) ∀ν ∈ M(∂�). (2.5)

2.3 Some results on linear equations

In this subsection, we recall some results concerning boundary value problem for non homo-
geneous linear equation

− Lμu = τ in �. (2.6)

Definition 2.2 (i) A function u is a solution of (2.6) if u ∈ L1
loc(�) and (2.6) is understood

in the sense of distributions.
(ii) Let τ ∈ M(�; δα+) and ν ∈ M(∂�). A function u is a weak solution of

− Lμu = τ in �, tr ∗(u) = ν, (2.7)

if u is a solution of (2.6) and u admits normalized boundary trace ν.

Definition 2.3 A nonnegative Lμ-superharmonic function is called an Lμ-potential if its
largest Lμ-harmonic minorant is zero.

The following results, which can be found in [20, Proposition I], is crucial in proving
Theorem A.

Proposition 2.4 (i) If τ = 0 then problem (2.7) has a unique weak solution u = Kμ[ν]. If
u is a nonnegative Lμ-harmonic function and tr ∗(u) = 0 then u = 0.

(ii) If τ ∈ M+(�; δα+) then tr ∗(Gμ[τ ]) = 0. Thus Gμ[τ ] is a solution of (2.7) with ν = 0.
(iii) Let u be a positive Lμ-subharmonic function. If u is dominated by an Lμ-superharmonic

function then Lμu ∈ M+(�; δα+) and u has a normalized boundary trace. In this case
tr ∗(u) = 0 if and only if u ≡ 0.

(iv) Let u be a positive Lμ-superharmonic function. Then there exist ν ∈ M+(∂�) and
τ ∈ M+(�; δα+) such that

u = Gμ[τ ] + Kμ[ν]. (2.8)

In particular, u is an Lμ-potential if and only if tr ∗(u) = 0.
(v) For every ν ∈ M+(∂�) and τ ∈ M+(�; δα+), (2.7) has a unique positive solution

which is given by (2.8). Moreover, there exists a positive constant c9 = c9(N , μ,�)

such that

‖u‖L1(�;δ−α− ) ≤ c9(‖τ‖M(�;δα+ ) + ‖ν‖M(∂�)). (2.9)

(vi) u is a solution of of (2.7) if and only if u ∈ L1(�; δ−α−) and

−
∫

�

uLμζdx =
∫

�

ζdτ −
∫

�

Kμ[ν]Lμζdx, ∀ζ ∈ X (�). (2.10)
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For easy reference, we present a potential theoretic result which serves to prove Theorem B.

Theorem 2.5 Let w1 be a positive Lμ-potential and w2 be a positive Lμ-harmonic function
with ν = tr ∗(w2). Assume that w1

w2
satisfies the local Harnack inequality. Then for ν-a.e.

z ∈ ∂�,

lim
x→z

w1(x)

w2(x)
= 0 non-tangentially.

This theorem can be obtained by combining the Fatou convergence theorem [1, Theorem
1.8] and the fact that if a function satisfies the Harnack inequality, fine convergence at the
boundary (in the sense of [1]) implies non-tangential convergence (for more details, see [3]).

3 Nonlinear equations with source term

In this section, we deal with nonlinear equations involving source term

− Lμu = g ◦ u (3.1)

in � where 0 < μ < CH (�) and g : � × R+ → R+ is continuous.

3.1 Properties of weak solutions

For z ∈ ∂�, denote by nz the outward unit normal vector to ∂� at z. We recall below a
geometric property of C2 domains (see [23]).

Proposition 3.1 There exists β0 > 0 such that for every point x ∈ �β0 , there exists a unique
point σx ∈ ∂� such that x = σx − δ(x)nσx . The mappings x �→ δ(x) and x �→ σx belong
to C2(�β0) and C

1(�β0) respectively. Moreover, limx→σ(x) ∇δ(x) = −nσx .

For D � �, let GD
μ and K D

μ be the Green and Poisson kernels of −Lμ in D respectively.
Denote by GD

μ and KD
μ the corresponding Green and Poisson operators in D.

We prove below main properties of solutions of (1.13).

Proof of Theorem A (i) �⇒ (ii). Assume u is a positive weak solution of (1.13). Put
τ = g ◦u and for β ∈ (0, β0) denote τβ := τ |Dβ and λβ := u|β . Consider the boundary
value problem

−Lμv = τβ in Dβ, v = λβ on β.

This problem admits a unique solution vβ (the uniqueness is derived from [5, Lemma
2.1] since μ < CH (�)). Therefore vβ = u|Dβ . We have

u|Dβ = vβ = GDβ
μ [τβ ] + KDβ

μ [λβ ].
It follows that

∫

Dβ

G
Dβ
μ (·, y)(g ◦ u)(y) dy = GDβ

μ [τβ ] ≤ u|Dβ .

Letting β → 0, we get
∫

�

Gμ(·, y)(g ◦ u)(y) dy ≤ u. (3.2)
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Fix a point x0 ∈ � such that u(x0) < ∞. Keeping in mind that Gμ(x0, y) > cx0δ(y)
α+

for every y ∈ �, we deduce from (3.2) that g◦u ∈ L1(�; δα+). Thanks to Proposition 2.4
(v), we obtain (1.14).
(ii) �⇒ (i). Assume u is a function such that g ◦ u ∈ L1(�; δα+) and (1.14) holds.
By Proposition 2.4 (i) −LμKμ[ν] = 0, which implies that u is a solution of (3.1). On
the other hand, since g ◦ u ∈ L1(�; δα+), we deduce from Proposition 2.4 (ii) that
tr ∗(Gμ[g ◦ u]) = 0. Consequently, tr ∗(u) = tr ∗(Kμ[ν]) = ν.
(i) �⇒ (iii). Assume u is a positive solution of (1.13). From the implication (i) �⇒ (ii),
we deduce that u ∈ L1(�; δ−α−) and g ◦ u ∈ L1(�; δα+). Hence, by Proposition 2.4
(vi), u satisfies (1.15).
(iii) �⇒ (i). This implication follows directly from Proposition 2.4 (vi). ��

3.2 Nondecreasing source

We start with an existence result for (3.1) in presence of sub and super solutions.

Theorem 3.2 Let g ∈ C(� × R+), g(x, r) be nondecreasing with respect to r for any
x ∈ �. Assume that there exist a subsolution V1 and a supersolution V2 of (3.1) such that
0 ≤ V1 ≤ V2 in �. Then there exists a solution u of (3.1) which satisfies V1 ≤ u ≤ V2 in �.

Moreover, if V1 = Kμ[ν] for some ν ∈ M+(∂�) and g ◦ V2 ∈ L1(�; δα+) then there
exists a minimal positive weak solution uν of (1.13) in the sense that uν ≤ v in � for every
positive weak solution v of (1.13).

Lemma 3.3 Let D � �, f ∈ L1(D), f ≥ 0 and η ∈ L1(∂D), η ≥ 0. Then there exists a
unique solution of

−Lμu = f in D, u = η on ∂D. (3.3)

Proof We start with the case f ∈ L2(D) and η = 0. Let us consider the functional

J (v) := 1

2

∫

D

(
|∇v|2 − μ

δ2 v2
)
dx −

∫

D
f vdx

over the space H1
0 (D). Since μ < CH (�), by Hardy inequality and the variational method,

one can show that the problem minH1
0 (D) J (v) admits a solution v ∈ H1

0 (D). The minimizer
v is the unique weak solution of (3.3).

If f ∈ L1+(D) then we can approximate it by an increasing sequence { fm} ⊂ L∞+ (D).
Let vm be the solution of (3.3) with η = 0 and f replaced by fm . By comparison principle
[5, Lemma 2.1], {vm} increases and therefore v := limm→∞ vm is a solution of (3.3) with
η = 0.

We next consider the case η ∈ L1(∂D). Let v be a solution of (3.3) with η = 0 then
u = v +PD

μ [η] is a solution of (3.3). The uniqueness follows from the comparison principle.
��

Proof of Theorem 3.2 Put u0 := V1 and ηβ := V1|β for β ∈ (0, β0). For n ≥ 1, consider
the problem

− Lμu = g ◦ un−1 in Dβ, u = ηβ on ∂Dβ . (3.4)

For each n ≥ 1, by Lemma 3.3 there exists a unique solution uβ,n of (3.4). Moreover, since
g(x, r) is nondecreasing with respect to r for every x ∈ �, by applying the comparison
principle, we deduce that
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V1 ≤ uβ,n ≤ uβ,n+1 ≤ V2

in Dβ . Therefore uβ := limn→∞ uβ,n is a solution of (3.1) in Dβ which satisfies V1 ≤ uβ ≤
V2 in Dβ . Moreover,

uβ = GDβ
μ [g ◦ uβ ] + PDβ

μ [ηβ ]. (3.5)

For 0 < β ′ < β < β0, by the comparison principle, uβ,1 ≤ uβ ′,1 in Dβ . By the monotonicity
assumption on g, it follows that uβ,n ≤ uβ ′,n in Dβ for every n > 1. Therefore V1 ≤ uβ ≤
uβ ′ ≤ V2 in Dβ and hence u := limβ↓0 uβ is a solution of (3.1) in � satisfying V1 ≤ u ≤ V2.

In the case V1 = Kμ[ν], formulation (3.5) becomes

uβ = GDβ
μ [g ◦ uβ ] + Kμ[ν]. (3.6)

Put uν := limβ↓0 uβ . Since 0 ≤ g ◦ uβ ≤ g ◦ V2 ∈ L1(�; δα+), it follows that

lim
β↓0

GDβ
μ [g ◦ uβ ] = Gμ[g ◦ uν].

Letting β ↓ 0 in (3.6), we infer that uν satisfies (1.14), namely uν is a solution of (1.13). If v

is a solution of (1.13) then v ≥ Kμ[ν] and g ◦ v ∈ L1(�; δα+); consequently uν ≤ v in �.
��

Proof of Theorem B We first notice that since g◦(Kμ[ν]) ∈ L1
loc(�) and Gμ[g◦(Kμ[ν])] <

∞, it follows that g ◦ (Kμ[ν]) ∈ L1(�; δα+) due to a similar argument as in the proof of
Theorem A. It is easy to see that Kμ[ν] is a subsolution of (3.1). For � ∈ (r1, r2), we look
for a supersolution v of the form

v = �Kμ[ν] + c2Gμ[g ◦ (�Kμ[ν])] (3.7)

where c2 is the constant in (1.17). By (1.16) and (1.18), we obtain

v ≤ �(1 + c2c3�
−1�(�))Kμ[ν] in �.

The monotonicity property of g implies

g ◦ v ≤ g ◦ (�(1 + c2c3�
−1�(�))Kμ[ν]) in �.

By (1.16),

g ◦ v ≤ �(1 + c2c3�
−1�(�))g ◦ (�Kμ[ν]) in �. (3.8)

In light of (1.17), we deduce

g ◦ v ≤ c2g ◦ (�Kμ[ν]) = −Lμv (3.9)

This means v is a supersolution of (3.1).
We apply Theorem 3.2 to derive that problem (1.19) admits a minimal solution u�ν

satisfying
�Kμ[ν] ≤ u�ν ≤ �Kμ[ν] + c2Gμ[g ◦ (Kμ[ν])] in �. (3.10)

Estimate (1.20) follows directly from (1.18) and (3.10) with c4 = 1 + c2c3�
−1�(�).

We next prove (1.21). Due to (1.14), it is sufficient to prove that for ν-a.e. z ∈ ∂�,

lim
x→z

Gμ[g ◦ u�ν](x)
Kμ[ν](x) = 0 non-tangentially. (3.11)

To obtain (3.11), we shall employ Theorem 2.5. Since Kμ[ν] is a positive Lμ-harmonic
function satisfying local Harnack inequality, we only need to show that:
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(i) Gμ[g ◦ u�ν] is a positive Lμ-potential;
(ii) Gμ[g ◦ u�ν] satisfies Harnack inequality.

Since g ◦ u�ν ∈ L1(�; δα+), tr ∗(Gμ[g ◦ u�ν]) = 0 and hence (i) follows from Propo-
sition 2.4 (iv). By (1.20), we infer that u�ν satisfies the local Harnack inequality. Since u�ν

can be written under the form (1.14), it follows that Gμ[g ◦ u�ν] satisfies this inequality too.
Hence (ii) is verified. By invoking Theorem 2.5, we get (3.11). ��

4 Power source

In this section, we focus on the equation

− Lμu = uq in �. (4.1)

4.1 Subcritical case

We start with a lemma the proof of which is an adaptation of an idea in [7].

Lemma 4.1 Assume 1 ≤ q < q∗ and z ∈ ∂�. Then there exists a constant c10 =
c10(N , μ, q,�) such that

Gμ[Kμ(·, z)q ](x) ≤ c10|x − z|N+α+−(N+α+−2)q Kμ(x, z) ∀x ∈ �. (4.2)

Proof The proof is an adaptation of the argument in [7]; for the convenience of the reader it
is presented below. By (2.2) and (2.3), there exists a positive constant c11 such that for every
x ∈ �,

Gμ[Kμ(·, z)q ](x) ≤ c11δ(x)
α+

∫

�

|x − y|2α−−N |y − z|(2−α+−N )q

min
{|x − y|α+ , |y − z|α+}

dy. (4.3)

Put

D1 = � ∩ B(x, |x − z|/2),

D2 = � ∩ B(z, |x − z|/2),

D3 = �\(D1 ∪ D2),

and

Ii :=
∫

Di

|x − y|2α−−N |y − z|(2−α+−N )q

min
{|x − y|α+ , |y − z|α+}

dy, i = 1, 2, 3.

For every y ∈ D1, |x − z| ≤ 2|y − z|, therefore

I1 ≤ c12|x − z|(2−α+−N )q
∫

D1

|x − y|1+α−−Ndy

≤ c′
12|x − z|1+α−−(N+α+−2)q . (4.4)

For every y ∈ D2, |x − z| ≤ 2|x − y|, hence

I2 ≤ c13|x − z|1+α−−N
∫

D2

|y − z|(2−α+−N )qdy

≤ c′
13|x − z|1+α−−(N+α+−2)q . (4.5)
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For every y ∈ D3, |y − z| ≤ 3|x − y|, therefore

I3 ≤ c14

∫

D3

|y − z|1+α−−N−(N+α+−2)qdy ≤ c′
14|x − z|1+α−−(N+α+−2)q . (4.6)

Combining (4.3)–(4.6), we obtain

Gμ[Kμ(·, z)q ](x) ≤ c11(c
′
12 + c′

13 + c′
14)δ(x)

α+|x − z|1+α−−(N+α+−2)q . (4.7)

Estimate (4.2) follows straightforward from (2.3) and (4.7). ��
Proposition 4.2 Assume 0 < q < q∗ and ν is a positive finite measure on ∂�. Then
Kμ[ν] ∈ Lq(�; δα+) and there exists a constant c15 = c15(N , μ, q,�) such that

Gμ[Kμ[ν]q ] ≤ c15 ‖ν‖q−1
M(∂�)

Kμ[ν] in �. (4.8)

Proof We may assume that ‖ν‖M(∂�) = 1 (if it is not the case, one can replace ν by

ν/ ‖ν‖M(∂�)). We first consider the case q ≥ 1. From (2.5) and the fact that Lq∗
w (�; δα+) ⊂

Lq(�; δα+), we deduce that Kμ[ν] ∈ Lq(�; δα+). It follows from (1.6) and Jensen’s inequal-
ity that

Kμ[ν](x)q ≤
∫

∂�

Kμ(x, z)qdν(z) for a.e. x ∈ �.

Consequently,

Gμ[Kμ[ν]q ](x) ≤
∫

∂�

∫

�

Gμ(x, y)Kμ(y, z)qdν(z)dy.

By Lemma 4.1, since N + α+ − (N + α+ − 2)q > 0,

Gμ[Kμ[ν]q ](x) ≤ c10

∫

∂�

|x − z|N+α+−(N+α+−2)q Kμ(x, z)dν(z)

≤ c10(diam(�))N+α+−(N+α+−2)qKμ[ν](x).
Thus we obtain (4.8).

If 0 < q < 1 then

Gμ

[
Kq

μ[ν]] ≤ Gμ

[
1 + Kμ[ν]] = Gμ[1] + Gμ

[
Kμ[ν]] in �.

From the case q = 1, we deduce that

Gμ[Kq
μ[ν]] ≤ Gμ[1] + c15Kμ[ν] in �.

By the estimate Gμ[1] ≤ c16Kμ[ν], where c16 = c16(N , μ,�), we conclude (4.8). ��
Lemma 4.3 Let f ∈ L1(�; δα+), f ≥ 0, ν ∈ M+(∂�), ν �≡ 0 and φ ∈ C1([0,∞)) be a
concave, nondecreasing function such that φ(1) ≥ 0 and φ′ is bounded. Let ϕ be a positive
function in L1

loc(�) such that −Lμϕ ≥ f . Then

φ′
(

ϕ

Kμ[ν]
)

f ∈ L1(�; δα+), (4.9)

−Lμ

[

Kμ[ν]φ
(

ϕ

Kμ[ν]
)]

≥ φ′
(

ϕ

Kμ[ν]
)

f in the weak sense. (4.10)
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Proof Since −Lμϕ ≥ f ≥ 0, by Proposition 2.4, there exist τ ∈ M+(�; δα+) and λ ∈
M+(∂�) such that

ϕ = Gμ[ f ] + Gμ[τ ] + Kμ[λ].
Put ψ := Kμ[ν]. Let { fn} and {τn} be two sequences inC∞

c (�) such that { fn} converges to f
in L1(�; δα+) and {τn} converges to τ in the weak sense of M+(�; δα+). Let {νn} and {λn} be
two sequences in C1(∂�) converging to ν and λ respectively in the weak sense of M+(∂�).
Put ϕn := Gμ[ fn] + Gμ[τn] + Kμ[λn] and ψn := Kμ[νn]. By the bootstrap argument, one
can prove that ϕn, ψn ∈ C2(�) for every n ∈ N. By [20] {Gμ[ fn]}, {Gμ[τn]}, {Kμ[λn]}
and {Kμ[νn]} converge to Gμ[ f ], Gμ[τ ], Kμ[λ] and Kμ[ν] respectively in L1(�, δα+). As
a consequence, up to subsequences, {ϕn} and {ψn} converge to ϕ and ψ respectively a.e. in
�. Therefore, for n large enough, ψn > 0.

Due to [10, Lemma 5.3],

−�

[

ψnφ

(
ϕn

ψn

)]

≥ φ′
(

ϕn

ψn

)

(−�ϕn) +
[

φ

(
ϕn

ψn

)

− ϕn

ψn
φ′

(
ϕn

ψn

)]

(−�ψn).

It follows that

−Lμ

[

ψnφ

(
ϕn

ψn

)]

≥ φ′
(

ϕn

ψn

)

(−Lμϕn) +
[

φ

(
ϕn

ψn

)

− ϕn

ψn
φ′

(
ϕn

ψn

)]

(−Lμψn).

Consequently,

− Lμ

[

ψnφ

(
ϕn

ψn

)]

≥ φ′
(

ϕn

ψn

)

fn . (4.11)

Then for every nonnegative function ζ ∈ X (�), there holds

−
∫

�

ψnφ

(
ϕn

ψn

)

Lμζdx ≥
∫

�

φ′
(

ϕn

ψn

)

fnζdx . (4.12)

We see that

0 ≤ ψnφ

(
ϕn

ψn

)

≤ ψn

(

φ(0) + φ′(0)
ϕn

ψn

)

= c17(ψn + ϕn). (4.13)

By (2.4) and (2.5), {ϕn} and {ψn} are uniformly bounded in L p(�; δ−α−) for p ∈
(1,

N−α−
N−1−α− ). Due to Hölder inequality, {ϕn} and {ψn} are uniformly integrable with respect

to δα−dx . In view of Vitali theorem {ϕn} and {ψn} converge to ϕ and ψ in L1(�; δ−α−)

respectively. By (4.13) and dominated convergence theorem we deduce that

ψnφ

(
ϕn

ψn

)

→ ψφ

(
ϕ

ψ

)

in L1(�; δ−α−).

Due to Fatou lemma, by sending n → ∞ in (4.12), we obtain (4.9) and (4.10). ��

Theorem 4.4 Let q > 1 and ν ∈ M+(∂�), ν �≡ 0. If problem (Dν) admits a positive weak
solution then

Gμ[Kμ[ν]q ] ≤ 1

q − 1
Kμ[ν] in �. (4.14)

123

84 3. EQUATIONS WITH A HARDY POTENTIAL AND A SOURCE TERM



44 Page 16 of 28 P.-T. Nguyen

Proof Let u a positive weak solution of (Dν); then by Theorem A, uq ∈ L1(�; δα+) and
(1.14) holds. Consequently Kμ[ν]q ∈ L1(�; δα+). Now applying Lemma 4.3 with f =
uq , ϕ = u and

φ(s) =

⎧
⎪⎨

⎪⎩

1 − s1−q

q − 1
, if s ≥ 1,

s − 1 if 0 ≤ s < 1,

we obtain the following estimate in the weak sense

− Lμ

[

Kμ[ν]φ
(

u

Kμ[ν]
)]

≥
(

u

Kμ[ν]
)−q

uq = Kμ[ν]q . (4.15)

Put

� := Kμ[ν]φ
(

u

Kμ[ν]
)

and �̃ := Gμ[Kμ[ν]q ].

Then � is an Lμ-superharmonic function and by Proposition 2.4, � admits a nonnegative
normalized boundary trace. By Kato lemma (see [23]), (�̃ − �)+ is an Lμ-subharmonic
function and tr ∗((�̃ − �)+) = 0. It follows that (�̃ − �)+ = 0 and hence �̃ ≤ � in �.
This means

Gμ[Kμ[ν]q ] ≤ Kμ[ν]φ
(

u

Kμ[ν]
)

≤ 1

q − 1
Kμ[ν].

��
Proof of Theorem C The theorem follows from Lemma 4.1 and Theorem 4.4. ��
Proposition 4.5 Assume 0 < q < q∗, q �= 1 and ν ∈ M+(∂�) such that ‖ν‖M(∂�) = 1.

(i) If q > 1 then there exists a positive number �0 > 0 depending on N , μ, q,� such that
for every � ∈ (0, �0) problem (D�ν) admits a minimal weak solution u�ν .

(ii) If q ∈ (0, 1) then for every � > 0 problem (D�ν) admits a minimal weak solution u�ν .

For any 1 �= q ∈ (0, q∗), u�ν satisfies (1.20) and (1.21).

Proof We shall apply Theorem B to deduce the existence of a solution of (D�ν). One can
verify that the functions g(x, s) = sq and �(s) = sq with q > 0 satisfy (1.16). From
Proposition 4.2 we deduce that condition (1.18) is fulfilled with the constant c15. For such g
and �, condition (1.17) is valid if one can find a positive constant c18 such that

1 + c18c15�
q−1 ≤ c

1
q
18. (4.16)

If q > 1 then there exist �0 = �0(q, c15) and c18 = c18(q) such that (4.16) holds true
for every � ∈ (0, �0). If q < 1 then for every � ∈ [1,∞) one can choose c18 = c18(c15)

large enough such that (4.16) holds. If q < 1 then for every � ∈ (0, 1) one can choose
c18 = c18(q, �, c15) large enough such that (4.16) holds. Hence, by Theorem B, there exists
a minimal solution u�ν of (D�ν) which satisfies (1.20) and (1.21). ��
Lemma 4.6 Let 0 < q �= 1 and ν ∈ M+(∂�). Then there is a constant c19 =
c19(N , μ, q,�) such that if u is a solution of (Dν)

‖u‖L1(�;δ−α− ) + ∥
∥uq

∥
∥
L1(�;δα+ )

≤ c19(1 + ‖ν‖M(∂�)). (4.17)
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Proof Indeed, by taking ζ = ϕμ,1 (the first eigenfunction of −Lμ) in the formulation satisfied
by u, we obtain

λμ,1

∫

�

uϕμ,1dx =
∫

�

uqϕμ,1dx + λμ,1

∫

�

Kμ[ν]ϕμ,1dx . (4.18)

Case 1: q > 1. By Young inequality, we get
∫

�

uϕμ,1dx ≤ (2λμ,1)
−1

∫

�

uqϕμ,1dx + (2λμ,1)
1

q−1

∫

�

ϕμ,1dx . (4.19)

By (4.18) and (4.19), we obtain
∫

�

uqϕμ,1dx + 2λμ,1

∫

�

Kμ[ν]ϕμ,1dx ≤ (2λμ,1)
q

q−1

∫

�

ϕμ,1dx . (4.20)

Since the second term on the left hand-side of (4.20) is nonnegative, we deduce by (1.8) that

‖u‖qLq (�;δα+ )
≤ c2

1(2λμ,1)
q

q−1

∫

�

δα+dx ≤ c20. (4.21)

On the other hand, we derive from (1.14), (2.4) and (2.5) that

‖u‖L1(�;δ−α− ) ≤ c21(
∥
∥uq

∥
∥
L1(�;δα+ )

+ ‖ν‖M(∂�)). (4.22)

Combining (4.21) and (4.22), we obtain (4.17).
Case 2: q ∈ (0, 1). By Young inequality, we have

∫

�

uqϕμ,1dx ≤ λμ,1

2

∫

�

uϕμ,1dx + (2λ−1
μ,1)

q
1−q

∫

�

ϕμ,1dx .

Consequently,
∫

�

uϕμ,1dx ≤ (2λ−1
μ,1)

1
1−q

∫

�

ϕμ,1dx + 2
∫

�

Kμ[ν]ϕμ,1dx .

Therefore

‖u‖L1(�;δα+ ) ≤ c22(1 + ‖ν‖M(∂�)). (4.23)

Combining (4.22) and (4.23) leads to (4.17). ��
Theorem 4.7 Assume q ∈ (1, q∗) and ν ∈ M+(∂�) with ‖ν‖M(∂�) = 1. Then there exists
a threshold value �∗ ∈ R+ for (D�ν) such that the following holds.

(i) If � ∈ (0, �∗] then (D�ν) admits a minimal weak solution u�ν . If � ∈ (0, �∗) then u�ν

satisfies (1.20) and (1.21). Moreover {u�ν} is an increasing sequence which converges,

as � → �∗, to the minimal positive weak solution u�∗ν of (D�∗ν) in L1(�; δ−α−) and

in L1(�; δα+).
(ii) If � > �∗ then there exists no positive weak solution of (D�ν).

Proof Put

A := {� > 0 : (D�ν) admits a weak solution} and �∗ := sup A.

By Proposition 4.5, (D�ν) admits a solution for � > 0 small, therefore A �= ∅. Moreover,
from Theorem 4.4, we deduce that �∗ is finite.

We shall show that (0, �∗) ⊂ A. To this purpose, we have to show that if 0 < � < �′
and A � �′ < �∗ then � ∈ A. Since �′ ∈ A, due to Theorem 4.4, there exists a minimal
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weak solution u�′ν of (D�′ν) which is greater than �Kμ[ν]. By Theorem 3.2, (D�ν) admits
a minimal weak solution u�ν , i.e. � ∈ A.

Next we prove that �∗ ∈ A, namely problem (D�∗ν) admits a weak solution. Let {�n} be
an increasing sequence converging to �∗. For each n, let u�nν be a weak solution of (D�nν).
Then u�nν ∈ L1(�; δ−α−) ∩ Lq(�; δα+) and it satisfies

−
∫

�

u�nνLμζdx =
∫

�

uq�nνζdx − �n

∫

�

Kμ[ν]Lμζdx ∀ζ ∈ X (�). (4.24)

It follows from Lemma 4.6 that the sequence {uq�nν} is uniformly bounded in L1(�; δα+)

and hence by local regularity for elliptic equations there exists a subsequence, still denoted
by the same notation, such that {u�nν} converges a.e. to a function u�∗ν . From Theorem A,
there holds

u�nν = Gμ[uq�nν] + �nKμ[ν]. (4.25)

Thanks to Proposition 2.1, {u�nν} is uniformly bounded in Lq1(�; δ−α−) and in Lq2(�; δα+)

where 1 < q1 <
N−α−

N−1−α− and q < q2 < q∗. We invoke Holder inequality to infer that

{u�nν} and {uq�nν} are uniformly integrable with respect to δ−α−dx and δα+dx respectively.
As a consequence, {u�nν} converges to u�∗ν in L1(�; δ−α−) and {uq�nν} converges to uq�∗ν in

L1(�; δα+). Letting n → ∞ in (4.24) implies

−
∫

�

u�∗νLμζdx =
∫

�

uq�∗νζdx − �∗
∫

�

Kμ[ν]Lμζdx ∀ζ ∈ X (�). (4.26)

We infer from Theorem A that u�∗ν is a solution of (D�∗ν).
Notice that, in light of Theorem 3.2 and the above argument, one can prove that {u�ν} is

an increasing sequence converging to the minimal solution u�∗ν of (D�∗ν) in L1(�; δ−α−)

and in Lq(�; δα+).
We next show that for each � ∈ (0, �∗), there exists a minimal weak solution u�ν of (D�ν)

which satisfies (1.20). Take �′ = �+�∗
2 and let u�′ν be a solution of (D�′ν). We apply (4.10)

with ν replaced by �′ν, ϕ = u�′ν, f = uq
�′ν and

φ(s) =

⎧
⎪⎨

⎪⎩

s(1 + εsq−1)
− 1

q−1 , if s ≥ 1,
(

�

�′

)q

s +
(

�

�′

)

−
(

�

�′

)q

if 0 ≤ s ≤ 1
with ε =

(
�′

�

)q−1

− 1.

We get

−Lμ

(

Kμ[�′ν]φ
(

u�′ν
Kμ[�′ν]

))

≥ φ′
(

u�′ν
Kμ[�′ν]

)

uq
�′ν

=
(

Kμ[�′ν]φ
(

u�′ν
Kμ[�′ν]

))q

.

Therefore

� = Kμ[�′ν]φ
(

u�′ν
Kμ[�′ν]

)

is a supersolution of (4.1). Moreover � ≥ �Kμ[ν]. By Theorem 3.2 there exists a minimal
weak solution u�ν of (D�ν) such that

�Kμ[ν] ≤ u�ν ≤ � in �.
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This implies

�Kμ[ν] ≤ u�ν ≤ ε
− 1

q−1 �′Kμ[ν] in �.

Therefore we get (1.20) with c4 = �−1�′ε− 1
q−1 . Finally, (1.21) can be obtained by a similar

argument as in the proof of Theorem B. ��
Proof of Theorem D Part (1) follows from Theorem 4.7. Part (2) follows from Proposition 4.5
(ii).

If ν = �δz , by (1.14) and (1.20), we obtain

� ≤ u�δz
(x)

Kμ(x, z)
≤ � + c23

Gμ[Kμ(·, z)q ](x)
Kμ(x, z)

(4.27)

Since q < q∗, it follows from Lemma 4.1 that

lim
x→z

Gμ[Kμ(·, z)q ](x)
Kμ(x, z)

= 0.

Thus, by (4.27), we conclude (1.24). ��
Proof of Proposition E If q > 1, assumption (1.25) guarantees the existence of a solution
uνn of (Dνn ). Moreover, since {νn} converges weakly to ν, it follows that ‖ν‖M(∂�) ≤ �∗.
Due to Lemma 4.6, the sequence {uνn } is uniformly bounded in Lq(�; δα+). Employing a
similar argument as in the proof of Theorem 4.7, we obtain the convergence in L1(�; δ−α−)

and in Lq(�; δα+).
If q ∈ (0, 1), due to Lemma 4.6, we obtain the convergence in L1(�; δ−α−). ��
We next consider the case q = 1.

Lemma 4.8 Let κ > 0 and u be a positive solution of

− Lμu = κu in �. (4.28)

Then u satisfies the Harnack inequality; i.e. for every a ∈ (0, 1) and x ∈ �,

sup
B(x,aδ(x))

u ≤ c24 inf
B(x,aδ(x))

u (4.29)

where c24 = c24(N , μ, q,�).

Proof Equation (4.28) can be written as follows

− �u =
( μ

δ2 + κ
)
u in �. (4.30)

Take arbitrarily a ∈ (0, 1) and x0 ∈ �. Put d := a+1
2 δ(x0) and M := maxB(x0,d) u. Put

y0 := d−1x0, �d := d−1�, δd(y) := dist (y, ∂�d) with y ∈ �d .

We define

vd(y) := M−1u(dy), ∀y ∈ �d .

Clearly, maxB(y0,1) vd = 1 and due to (4.30) we deduce that vd is a solution of

− �vd = V vd in �d . (4.31)
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where

V (y) := μ

δd(y)2 + d2κ.

One can find a positive constant c25 such that V (y) ≤ c25δd(y)−2 for every y ∈ �d . Notice
that B(y0, 1) ⊂ �d and for every y ∈ B(y0, 1), there holds

δd(y) ≥ 1 − a

1 + a
.

Hence 0 ≤ V ≤ c26 in B(y0, 1) where c26 = c26(a, μ). By applying Harnack inequality, we
deduce that there is a constant c27 = c27(a, μ, N ,�) such that

sup
B(y0, 2a

a+1 )

vd ≤ c27 inf
B(y0, 2a

a+1 )

vd .

Thus we obtain (4.29). ��

Proof of Theorem F Put

κ0 = min
{

1,
∥
∥Gμ[1]∥∥−1

L∞(�)

}
.

��

Claim 1 For any κ ∈ (0, κ0) there exists a minimal solution uκ,ν of (Eκ
ν ).

Fix q ∈ (1, q∗) such that κ < (q
∥
∥Gμ[1]∥∥L∞(�)

)−1 and let �∗ be the threshold value for
(D�ν). Put � = ‖ν‖M(∂�) > 0.

We first assume that � ∈ (0, �∗) and let uν be the minimal weak solution of (Dν). By
Young inequality, we get

uqν + 1 ≥ uν + 1

q
≥ κ(uν + Gμ[1]) in �.

It follows that

−Lμ(uν + Gμ[1]) ≥ κ(uν + Gμ[1]) in �.

Therefore uν + Gμ[1] is a super solution of the equation

− Lμu = κu in �. (4.32)

Clearly Kμ[ν] is a subsolution of (4.32). By Theorem 3.2 there is a minimal weak solution
uκ,ν of (Eκ

ν ) which satisfies Kμ[ν] ≤ uκ,ν ≤ uν + Gμ[1] in �. Since Gμ[1] ≤ c16Kμ[ν],
we infer that uκ,ν satisfies (1.20) and (1.21).

If � ≥ �∗ then there exists m > 0 such that �/m ∈ (0, �∗). Let uκ, ν
m

be the minimal
weak solution of (Eκ

ν
m
). Put uκ,ν = muκ, ν

m
then by the linearity, we deduce that uκ,ν is the

minimal weak solution of (Eκ
ν ) with satisfies (1.20) and (1.21).

Claim 2 There exists a number κ∗ ∈ (0, λμ,1] such that the following holds.

(i) If κ ∈ (0, κ∗) then (Eκ
ν ) admits a solution;

(ii) If κ > κ∗ then (Eκ
ν ) admits no solution.
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Put B := {κ > 0 : (Eκ
ν ) admits a weak solution} and denote κ∗ := sup B. We shall

show that (0, κ∗) ⊂ B. Take κ ′ ∈ B and let uκ ′,ν be the minimal solution of (Eκ ′
ν ). For

any κ ∈ (0, κ ′), uκ ′,ν and Kμ[ν] are respectively super and sub solutions of (Eκ
ν ) such that

Kμ[ν] ≤ uκ ′,ν . Then by Theorem 3.2 there exists a minimal solution uκ,ν of (Eκ
ν ) satisfying

Kμ[ν] ≤ uκ,ν ≤ uκ ′,ν in �. Hence κ ∈ B.
By Lemma 4.8, Gμ[uκ,ν] satisfies local Harnack inequality. Hence, we deduce from The-

orem 2.5 that, for ν-a.e. z ∈ ∂ω, there holds

lim
x→z

Gμ[uκ,ν](x)
Kμ[ν](x) = 0.

Consequently, (1.21) remains valid with u�ν replaced by uκ,ν .
Now let ν ∈ M+(∂�), κ ∈ B and denote by uκ,ν a solution of (Eκ

ν ). Then by Theorem A,

−
∫

�

uκ,νLμζdx = κ

∫

�

uκ,νζdx −
∫

�

Kμ[ν]Lμζdx ∀ζ ∈ X (�).

Taking ζ = ϕμ,1, we obtain

λμ,1

∫

�

uκ,νϕμ,1dx = κ

∫

�

uκ,νϕμ,1dx + λμ,1

∫

�

Kμ[ν]ϕμ,1dx, (4.33)

which implies that κ < λμ,1. Consequently, κ∗ ≤ λμ,1.
We show that λμ,1 /∈ B by contradiction. Indeed, suppose that there exists ν ∈ M+(∂�)

such that the problem

− Lμu = λμ,1u in �, tr ∗(u) = ν (4.34)

admits a weak solution û. Take ϕμ,1 as a test function in the weak formulation satisfied by
û, we deduce ν ≡ 0, which is a contradiction.

Now let κ ∈ (0, κ∗) and assume {νn} is a sequence of measures in M+(∂�) which
converges weakly to ν ∈ M+(∂�). Let uκ,νn be a solution of (Eκ

νn
). By (4.33), we deduce

∥
∥uκ,νn

∥
∥
L1(�;δα+ )

≤ c28(λμ,1 − κ)−1 ‖νn‖M(∂�) ≤ c29(λμ,1 − κ)−1 ‖ν‖M(∂�) .

By a similar argument as in the proof of Theorem 4.7, we deduce that, up to a subsequence,
{uκ,νn } converges to a solution uκ,ν of (Eκ

ν ) in L1(�, δ−α−).

Remark (i) If κ > 0 small then uκ,ν satisfies (1.20). Moreover, if ν = �δz with � > 0, z ∈
∂� then uκ,�δz

satisfies (1.24).
(ii) It is notified by the referee that κ∗ = λμ,1. This can be obtained by noticing that −Lμ−κ

admits the Green function Gμ,κ for any κ < μ and then by proving a modification of
Proposition 2.4 for Gμ,κ (see [24] for the existence of the Green function Gμ,κ ). The
weaker statement κ∗ ≤ λμ,1 in the present paper is essentially in order to simplify the
proofs and to streamline the exposition.

4.2 Supercritical case

Proof of Theorem G This theorem is a consequence of a more general result established in
[8]. We present below a simple proof for the special case treated here.

Suppose by contradiction that for some � > 0 and z ∈ ∂� there exists a positive weak
solution u of (D�δz ). Then by Theorem A, u ∈ Lq(�; δα+) and u ≥ �Kμ(·, z). This, along
with (2.3), implies
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∫

�

δ(x)α+u(x)qdx ≥
∫

�

δ(x)α+Kμ(x, z)qdx

≥
∫

�

δ(x)α+(q+1)|x − y|(2α−−N )qdx

≥ c30

∫

{
x∈�:δ(x)≥ 1

2 |x−y|
} δ(x)α+(q+1)|x − y|(2α−−N )qdx .

Fix r0 > 0 such that

C :=
{

x : |x | ≤ r0, δ(x) ≥ 1

2
|x − y|

}

⊂
{

x ∈ � : δ(x) ≥ 1

2
|x − y|

}

.

Then
∫

�

δ(x)α+u(x)qdx ≥ c′
30

∫

C
|x − y|α+−(N−1−α−)qdx . (4.35)

Since q ≥ q∗, the integral on the right hand-side of (4.35) is divergent, which in turn implies
that u /∈ Lq(�; δα+). Thus we get a contradiction. ��

Remark Interesting removability result in the supercritical case can be found in [8].

5 More general source

In this section, we assume that (g ◦ u)(x) = δ(x)γ g̃(u(x)) where γ > −1 − α+ and
g̃ : R+ → R+ is nondecreasing and continuous. Theorems H and I are obtained by using
the method in [12].

5.1 Subcriticality

Let {gn} be a sequence of C1 nonnegative functions defined on R+ such that

gn(0) = g̃(0), gn ≤ gn+1 ≤ g̃, sup
R+

gn = n and lim
n→∞ ‖gn − g̃‖L∞

loc(R+) = 0. (5.1)

Put

γ̃ := min{α+ + γ,−α−} > −1. (5.2)

In preparation for proving Theorem H, we establish the following lemma.

Lemma 5.1 Let ν ∈ M+(∂�) with ‖ν‖M(∂�) = 1 and {gn} ⊂ C1(R+) be a sequence
satisfying (5.1). Assume (1.28) and (1.29) are satisfied. Then there exist λ̄, θ0 > 0 and
�0 > 0 depending on�0,�1, N , μ, γ and q1 such that for every θ ∈ (0, θ0) and � ∈ (0, �0)

the following problem

− Lμv = δγ gn(v + �Kμ[ν]) in �, tr ∗(v) = 0 (5.3)

admits a positive weak solution vn ∈ L
q∗
γ

w (�; δα++γ ) ∩ Lq1(�; δ−α−) satisfying

‖vn‖
L
q∗
γ

w (�;δα++γ )
+ ‖vn‖Lq1 (�;δγ̃ ) ≤ λ̄. (5.4)
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Proof We shall use Schauder fixed point theorem to show the existence of a positive weak
solution of (5.3). For n ∈ N, define the operator Sn by

Sn(v) := Gμ[δγ gn(v + �Kμ[ν])] ∀v ∈ L1+(�). (5.5)

Set

M1(v) := ‖v‖
L
q∗
γ

w (�;δα++γ )
∀v ∈ L

q∗
γ

w (�; δα++γ ),

M2(v) := ‖v‖Lq1 (�;δγ̃ ) ∀v ∈ Lq1(�; δγ̃ ),

M(v) := M1(v) + M2(v) ∀v ∈ L
q∗
γ

w (�; δα++γ ) ∩ Lq1(�; δγ̃ ).

(5.6)

Step 1: To estimate L1(�; δα++γ )-norm of gn(v + �Kμ[ν]) for v ∈ L
q∗
γ

w (�; δα++γ ) ∩
Lq1(�; δγ̃ ).

For λ > 0, set Aλ := {x ∈ � : v + �Kμ[ν] > λ} and a(λ) := ∫
Aλ

δα++γ dx . We write

∥
∥gn(v + �Kμ[ν])∥∥L1(�;δα++γ )

=
∫

A1

gn(v + �Kμ[ν])δα++γ dx

+
∫

Ac
1

gn(v + �Kμ[ν])δα++γ dx

=: I + I I.

(5.7)

We first estimate I from above. We see that

I = a(1)gn(1) +
∫ ∞

1
a(s)dgn(s).

Since (1.28) holds, it was proved in [12, Lemma 3.1] that there exists an increasing sequence
of positive number {� j } such that

lim
j→∞ � j = ∞ and lim

j→∞ �
−q∗

γ

j g̃(� j ) = 0. (5.8)

Consequently,

lim
j→∞ �

−q∗
γ

j gn(� j ) = 0, ∀n ∈ N. (5.9)

Observe that

∫ ∞

1
a(s)dgn(s) = lim

j→∞

∫ � j

λ

a(s)dgn(s).

On the other hand, by (2.1) one gets, for every s > 0,

a(s) ≤ ∥
∥v + �Kμ[ν]∥∥q

∗
γ

L
q∗
γ

w (�;δα++γ )

s−q∗
γ ≤ c31(M1(v) + c32�)q

∗
γ s−q∗

γ (5.10)
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where ci = ci (N , μ, γ,�) with i = 31, 32. Using (5.10), we obtain

a(1)gn(1) +
∫ � j

1
a(s)dgn(s)

≤ c31(M1(v) + c32�)q
∗
γ gn(1) + c31(M1(v) + c32�)q

∗
γ

∫ � j

1
s−q∗

γ dgn(s)

≤ c31(M1(v) + c32�)q
∗
γ �

−q∗
γ

j gn(� j ) + c31q
∗
γ (M1(v)

+ c32�)q
∗
γ

∫ � j

1
s−1−q∗

γ gn(s)ds.

By virtue of (5.8), letting j → ∞ yields

I ≤ c31q
∗
γ (M1(v) + c32�)q

∗
γ

∫ ∞

1
s−1−q∗

γ gn(s)ds

≤ c33�0M1(v)q
∗
γ + c33�0�

q∗
γ (5.11)

where c33 = c33(N , μ, γ,�).
To handle the remaining term I I , without lost of generality, we assume q1 ∈ (1,

N+γ̃
N−1−α− ).

Since g̃ satisfies condition (1.29) and gn ≤ g̃, it follows that gn satisfies this condition too.
Hence

I I ≤ �1

∫

Ac
1

(v + �Kμ[ν])q1δα++γ dx + θ

∫

Ac
1

δα++γ dx

≤ �1c34

∫

�

vq1δα++γ dx + �1c34�
q1 + c34θ

≤ �1c35M2(v)q1 + �1c34�
q1 + c34θ

(5.12)

where ci = ci (N , μ, q1, γ,�), i = 34, 35.
Combining (5.7), (5.11) and (5.12) yields

∥
∥gn(v + �Kμ[ν])∥∥L1(�;δα++γ )

≤ c33�0M1(v)q
∗
γ + c35�1M2(v)q1

+c34θ + d� (5.13)

where d� = c33�0�
q∗
γ + c34�1�

q1 .
Step 2: To estimate M1, M2 and M .

From (2.4), we have

M1(Sn(v)) = ∥
∥Gμ[δγ gn(v + �Kμ[ν])]∥∥

L
q∗
γ

w (�;δα++γ )

≤ c7
∥
∥gn(v + �Kμ[ν])∥∥L1(�;δα++γ )

.
(5.14)

It follows that

M1(Sn(v)) ≤ c7c33�0M1(v)q
∗
γ + c7c35�1M2(v)q1 + c7c34θ + c7d�. (5.15)

Applying (2.4), we get

M2(Sn(v)) = ∥
∥Gμ[δγ gn(v + �Kμ[ν])]∥∥Lq1 (�;δγ̃ )

≤ c36
∥
∥gn(v + �Kμ[ν])∥∥L1(�;δα++γ )

,

which implies

M2(Sn(v)) ≤ c36c33�0M1(v)q
∗
γ + c36c35�1M2(v)q1 + c36c34θ + c36d�. (5.16)
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Consequently,

M(Sn(v)) ≤ c37�0M1(v)q
∗
γ + c38�1M2(v)q1 + c40θ + c39d� (5.17)

where c37 = (c7 + c36)c33, c38 = (c7 + c36)c35, c39 = c7 + c36, c40 = (c7 + c36)c34.
Therefore if M(Sn(v)) ≤ λ then

M(Sn(v)) ≤ c37�0λ
q∗
γ + c38�1λ

q1 + c40θ + c39d�.

Since q∗
γ > 1 and q1 > 1, there exist �0 > 0 and θ0 > 0 such that for any � ∈ (0, �0) and

θ ∈ (0, θ0) the equation

c37�0λ
q∗
γ + c38�1λ

q1 + c40θ + c39d� = λ

admits a largest root λ̄ > 0. Therefore,

M(v) ≤ λ̄ �⇒ M(Sn(v)) ≤ λ̄. (5.18)

Step 3: We apply Schauder fixed point theorem to our setting.
Set

O := {φ ∈ L1+(�) : M(φ) ≤ λ̄}.
Clearly, O is a convex subset of L1(�). We shall show that O is a closed subset of L1(�).
Indeed, let {φm} be a sequence in O converging to φ in L1(�). Obviously, φ ≥ 0. We can
extract a subsequence, still denoted by {φm}, such that φm → φ a.e. in �. Consequently, by
Fatou’s lemma, Mi (φ) ≤ lim infm→∞ Mi (φm) for i = 1, 2. It follows that M(φ) ≤ λ̄. So
φ ∈ O and therefore O is a closed subset of L1(�).

In light of (5.13) and (5.18), Sn is well-defined on O and Sn(O) ⊂ O.
We observe that Sn is continuous. Indeed, if φm → φ as m → ∞ in L1(�) then gn(φm +

�Kμ[ν]) → gn(φ + �Kμ[ν]) as m → ∞ in L1(�; δα++γ ). By (2.4), Sn(φm) → Sn(φ) as
m → ∞ in L1(�).

We next show that Sn is a compact operator. Let {φm} ⊂ O and for each n put
ψm := Sn(φm). Hence {�ψm} is uniformly bounded in L p(G) for every compact subset
G ⊂ �. Therefore {ψm} is uniformly bounded in W 1,p(G). Consequently, there exists a
subsequence, still denoted by {ψm}, and a function ψ such that ψm → ψ a.e. in �. By
dominated convergence theorem, ψm → ψ in L1(�). Thus Sn is compact.

By Schauder fixed point theorem there is a function vn ∈ L1+(�) such that Sn(vn) = vn
and M(vn) ≤ λ̄ where λ̄ is independent of n. Due to Proposition 2.4, tr ∗(vn) = 0 and vn is
a nonnegative solution of (5.3). Moreover, there holds

−
∫

�

vn Lμζdx =
∫

�

δγ gn(vn + �Kμ[ν])ζdx ∀ζ ∈ X (�). (5.19)

��
Proof of Theorem H Let θ ∈ (0, θ0) and � ∈ (0, �0). For each n, set un = vn + �Kμ[ν]
where vn is the solution constructed in Lemma 5.1. Then tr ∗(un) = �ν and

−
∫

�

unLμζdx =
∫

�

δγ gn(un)ζdx − �

∫

�

Kμ[ν]Lμζdx ∀ζ ∈ X (�). (5.20)

Since {vn} ⊂ O, the sequence {gn(vn + �Kμ[ν])} is uniformly bounded in L1(�; δα++γ )

and the sequence { μ

δ2 vn} is uniformly bounded in Lq1(G) for every compact subset G ⊂ �.

As a consequence, {�vn} is uniformly bounded in L1(�). By regularity result for elliptic
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equations, there exists a subsequence, still denoted by {vn}, and a function v such that vn → v

a.e. in �. Therefore un → u a.e. in � with u = v + �Kμ[ν] and gn(un) → g̃(u) a.e. in �.
We show that un → u in L1(�; δ−α−). Since {vn} is uniformly bounded in Lq1(�; δγ̃ ), by

(2.5), we derive that {un} is uniformly bounded in Lq1(�; δ−α−). Due to Hölder inequality,
{un} is uniformly integrable with respect to δ−α−dx . We invoke Vitali’s convergence theorem
to derive that un → u in L1(�; δ−α−).

We next prove that gn(un) → g̃(u) in L1(�; δα++γ ). For λ > 0 and n ∈ N set Bn,λ :=
{x ∈ � : un > λ} and bn(λ) := ∫

Bn,λ
δα++γ dx . For any Borel set E ⊂ �,

∫

E
gn(un)δ

α++γ dx =
∫

E∩Bn,λ

gn(un)δ
α++γ dx +

∫

E∩Bc
n,λ

gn(un)δ
α++γ dx

≤
∫

Bn,λ

gn(un)δ
α++γ dx + �λ

∫

E
δα++γ dx

≤ bn(λ)gn(λ) +
∫ ∞

λ

bn(s)dgn(s) + �λ

∫

E
δα++γ dx . (5.21)

where �λ := sup[0,λ] g. By proceeding as in the proof of Lemma 5.1, we deduce

bn(λ)gn(λ) +
∫ ∞

λ

bn(s)dgn(s) ≤ c41
∫ ∞
λ

s−1−q∗
γ gn(s)ds

≤ c41
∫ ∞
λ

s−1−q∗
γ g̃(s)ds (5.22)

where c41 depends on N , μ, γ and �. Note that the term on the right hand-side of (5.22) tends
to 0 as λ → ∞. Therefore for any ε > 0, there exists λ > 0 such that the right hand-side of
(5.22) is smaller than ε

2 . Fix such λ and put η = ε
2�λ

. Then, by (5.21),

∫

E
δ(x)α++γ dx ≤ η �⇒

∫

E
gn(un)δ(x)

α++γ dx < ε.

Therefore the sequence {gn(un)} is uniformly integrable with respect to δα++γ dx . Due to
Vitali convergence theorem, we deduce that gn(un) → g̃(u) in L1(�; δα++γ ).

Finally, by sending n → ∞ in each term of (5.20) we obtain

−
∫

�

uLμζdx =
∫

�

δγ g̃(u)ζdx − �

∫

�

Kμ[ν]Lμζdx ∀ζ ∈ X (�). (5.23)

By Theorem A, u is a nonnegative weak solution of (1.27). ��
5.2 Sublinearity

In this subsection we deal with the case where g is sublinear.

Lemma 5.2 Let ν ∈ M+(∂�) with ‖ν‖M(∂�) = 1 and {gn} ⊂ C1(R+) be a sequence
satisfying (5.1). Assume (1.30) is satisfied. Then for every � > 0 problem (5.3) admits a
nonnegative solution vn satisfying

‖vn‖L1(�;δγ̃ ) ≤ λ̃ (5.24)

where γ̃ is as in (5.2) and λ̃ depends on �2, q2, N , μ and γ .
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Proof The proof is similar to that of Lemma 5.1, also based on Schauder fixed point theorem.
So we point out only the main modifications. Let Sn be the operator defined in (5.5). Fix
q3 ∈ (

1,
N+γ̃

N−1−α−
)

and put

N (v) := ‖v‖Lq3 (�;δγ̃ ) ∀v ∈ Lq3(�; δγ̃ ).

Combining (2.4), (2.5) and (1.30) leads to

N (Sn(v)) ≤ c42
∥
∥gn(v + �Kμ[ν])∥∥L1(�;δα++γ )

≤ c42

∫

�

�2(v + �Kμ[ν])q2δα++γ dx + c42θ

∫

�

δα++γ dx

≤ c42�2

∫

�

vq2δα++γ dx + c43(�
q2 + θ)

≤ c44�2

(∫

�

vq3δα++γ dx

) q2
q3 + c43(�

q2 + θ)

≤ c44�2N (v)q2 + c43(�
q2 + θ)

where ci = ci (N , μ, γ,�, q2) (42 ≤ i ≤ 44). Therefore, if N (v) ≤ λ for some λ > 0 then

N (Sn(v)) ≤ c44�2λ
q2 + c43(�

q2 + θ).

Consider the following algebraic equation

c44�2λ
q2 + c43(�

q2 + θ) = λ. (5.25)

If q2 < 1 then for any � > 0 (5.25) admits a unique positive root λ̃. If q2 = 1 then for �2

small such that c44�2 < 1 and � > 0 Eq. (5.25) admits a unique positive root λ̃. Therefore,

N (v) ≤ λ̃ �⇒ N (Sn(v)) ≤ λ̃. (5.26)

By proceeding as in the proof of Lemma 5.1, one can prove that Sn is a continuous, compact
operator from the closed, convex set

Õ := {v ∈ L1+(�) : N (v) ≤ λ̃}
into itself. Thus by appealing to Schauder fixed point theorem, we see that there exists a
function vn ∈ L1+(�) such that Sn(vn) = vn and N (vn) ≤ λ̃ with λ̃ being independent of n.
By Proposition 2.4, tr ∗(vn) = 0 and vn is a nonnegative solution of (5.3). Moreover (5.19)
holds. ��
Proof of Theorem I Let vn be the solution of (5.3) constructed in Lemma 5.2. Put un =
vn + �Kμ[ν] then un satisfies (5.20). By a similar argument as in the proof of Theorem H,
there exists a subsequence, still denoted by {un} and a function u such that un → u a.e. in �.
Since {vn} ⊂ Õ, it follows that {vn} is uniformly bounded in Lq3(�; δ−α−), so is {un}. By
Holder inequality, {un} is uniformly integrable in L1(�; δ−α−). Due to (1.30), {gn(un)} is
uniformly integrable in L1(�; δα++γ ). Vitali convergence theorem implies that un → u in
L1(�; δ−α−) and gn(un) → g̃(u) in L1(�; δα++γ ). Letting n → ∞ in (5.20), we conclude
that u is a positive solution of (1.27). ��
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CHAPTER 4

Semilinear elliptic equations and systems with
Hardy potentials

This chapter, which is based on a collaboration with Gkikas [78], is a
continuation of our study on semilinear equations with a Hardy potential.
We offer a unified approach and go further in the analysis of the boundary
value problems with both interior and boundary measure data. We also
extend several existence results for semilinear equations to systems.
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Abstract

Let � ⊂ RN (N ≥ 3) be a bounded C2 domain and δ(x) = dist (x, ∂�). Put Lμ = � + μ

δ2 with μ > 0. 
In this paper, we provide various necessary and sufficient conditions for the existence of weak solutions to

−Lμu = up + τ in �, u = ν on ∂�,

where μ > 0, p > 0, τ and ν are measures on � and ∂� respectively. We then establish existence results 
for the system

⎧⎪⎪⎨
⎪⎪⎩

− Lμu = ε vp + τ in �,

− Lμv = ε up̃ + τ̃ in �,

u = ν, v = ν̃ on ∂�,

where ε = ±1, p > 0, p̃ > 0, τ and τ̃ are measures on �, ν and ν̃ are measures on ∂�. We also deal with 
elliptic systems where the nonlinearities are more general.
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1. Introduction

Let � ⊂ RN (N ≥ 3) be a bounded C2 domain, δ(x) = dist (x, ∂�) and g ∈ C(R). Put Lμ :=
� + μ

δ2 . In the present paper we study semilinear problems with Hardy potential of the form

−Lμu = g(u) + τ in �, (1.1)

where μ > 0, τ is a Radon measure on �.
The boundary value problem with measures for (1.1) without Hardy potential and with power 

absorption nonlinearity, i.e. μ = 0, τ = 0, g(u) = −|u|p−1u, p > 1, was well understood in the 
literature, starting with a work by Gmira and Véron [10]. It was proved that there is the critical 
exponent p∗ := N+1

N−1 in the sense that if p ∈ (1, p∗) then there is a unique weak solution for 
every finite measure ν on �, while if p ∈ [p∗, ∞) there exists no solution with a boundary 
isolated singularity. Marcus and Véron [15,16] studied this problem by introducing a notion of 
boundary trace, providing a complete description of isolated singularities in the subcritical case, 
i.e. 1 < p < p∗, and giving a removability result in the supercritical case, i.e. p ≥ p∗.

The solvability for boundary value problem for (1.1) without Hardy potential and with power 
source term, namely μ = 0, τ = 0, g(u) = up , p > 1, was studied by Bidaut-Véron and Vivier 
[4] in connection with sharp estimates of the Green operator and the Poisson operator associ-
ated to (−�) in �. They proved that, in the subcritical case 1 < p < p∗, the problem admits a 
solution if and only if the total mass of the boundary datum ν is sufficiently small. Afterwards, 
Bidaut-Véron and Yarur [6] reconsidered this type of problem in a more general setting and pro-
vided a necessary and sufficient condition for the existence of solutions. Recently, Bidaut-Véron 
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et al. [5] provided new criteria for the existence of solutions with p > 1 in terms of the capacity 
associated to the Besov spaces.

Let φ ≥ 0 in � and p ≥ 1, we denote by Lp(�; φ) the space of all function v on � satisfy-
ing 

∫
�

|v|p φdx < ∞. We denote by M(�; φ) the space of Radon measures τ on � satisfying ∫
�

φ d|τ | < ∞ and by M+(�; φ) the nonnegative cone of M(�; φ). When φ ≡ 1, we use the 
notations M(�) and M+(�). We also denote by M(∂�) the space of finite measures on ∂� and 
by M+(∂�) the nonnegative cone of M(∂�).

Let Gμ and Kμ be the Green kernel and Martin kernel of −Lμ in �, Gμ and Kμ be the 
corresponding Green operator and Martin operator (see [14,9] for more details). Let CH be Hardy 
constant, namely

CH := inf
v∈H 1

0 (�)\{0}

∫
�

|∇v|2dx∫
�
(v/δ)2dx

(1.2)

then it is well known that 0 < CH ≤ 1
4 and if � is convex then CH = 1

4 (see for example [12]). 
Moreover the infimum is achieved if and only if CH < 1

4 . When −�δ ≥ 0 in � in the sense of 
distributions, the first eigenvalue λμ of Lμ in � is positive, i.e.

λμ := inf
ϕ∈H 1

0 (�)\{0}

∫
�
(|∇ϕ|2 − μ

δ2 ϕ2)dx∫
�

ϕ2dx
> 0. (1.3)

For μ ∈ (0, 14 ], denote by α the following fundamental exponent

α := 1

2
(1 + √

1 − 4μ). (1.4)

Notice that 1
2 < α < 1. The eigenfunction ϕμ associated to λμ with the normalization ∫

�
(ϕμ/δ)2dx = 1 satisfies c−1δα ≤ ϕμ ≤ cδα for some constant c > 0 (see [7]).
In relation to Hardy constant, Bandle et al. [3] classified large solutions of the linear equation

−Lμu = 0 in �, (1.5)

and of the associated nonlinear equation with power absorption

−Lμu + up = 0 in �. (1.6)

In [14], Marcus and P.-T. Nguyen studied boundary value problem for (1.5) and (1.6) with μ ∈
(0, CH ) in measure framework by introducing a notion of normalized boundary trace which is 
defined as follows:

Definition 1.1. A function u ∈ L1
loc(�) possesses a normalized boundary trace if there exists a 

measure ν ∈ M(∂�) such that

lim
β→0

βα−1
∫

{x∈�:δ(x)=β}
|u − Kμ[ν]|dS = 0. (1.7)

The normalized boundary trace is denoted by tr ∗(u).
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The restriction μ ∈ (0, CH ) in [14] is due to the fact that in this case Lμ is weakly coercive in 
H 1

0 (�) and consequently by a result of Ancona [2, Remark p. 523] there is a (1 − 1) correspon-
dence between M+(∂�) and the class of positive Lμ harmonic functions, namely any positive 
Lμ harmonic function u can be written in a unique way under the form u = Kμ[ν] for some 
ν ∈ M+(∂�).

The notion of normalized boundary trace was proved [14] to be an appropriate generaliza-
tion of the classical boundary trace to the setting of Hardy potentials, giving a characterization 
of moderate solutions of (1.6). In addition, it was showed in [14] that there exists the critical 
exponent

pμ := N + α

N + α − 2
(1.8)

such that if p ∈ (1, pμ) then there exists a unique solution of (1.6) with tr ∗(u) = ν for every 
finite measure ν on ∂�, while if p ≥ pμ there is no solution of (1.6) with an isolated boundary 
singularity. Marcus and Moroz [13] then extended the notion of normalized boundary trace to the 
case μ < 1

4 and employed it to investigate (1.6). When μ = 1
4 , Lμ is no longer weakly coercive 

and hence Ancona’s result cannot be applied. However, Gkikas and Véron [9] observed that if 
the first eigenvalue of −L 1

4
is positive then the kernel K 1

4
(·, y) with pole at y ∈ ∂� is unique up 

to a multiplication and any positive L 1
4

harmonic function u admits such a representation. Based 
on that observation, they considered the boundary value problem with measures for (1.6), fully 
classifying isolated singularities in the subcritical case p ∈ (1, pμ) and providing removability 
result in the supercritical case p ≥ pμ. A main ingredient in [9] is the notion of boundary trace
which is defined in a dynamic way and is recalled below.

Let D � � and x0 ∈ D. If h ∈ C(∂D) then the following problem

{−Lμu = 0 in D,

u = h on ∂D,
(1.9)

admits a unique solution which allows to define the Lμ-harmonic measure ωx0
D on ∂D by

u(x0) =
∫

∂D

h(y)dω
x0
D (y). (1.10)

A sequence of domains {�n} is called a smooth exhaustion of � if ∂�n ∈ C2, �n ⊂ �n+1, 
∪n�n = � and HN−1(∂�n) → HN−1(∂�). For each n, let ωx0

�n
be the L�n

μ -harmonic measure 
on ∂�n.

Definition 1.2. A function u possesses a boundary trace if there exists a measure ν ∈ M(∂�)

such that for any smooth exhaustion {�n} of �,

lim
n→∞

∫
∂�n

ζudω
x0
�n

=
∫
∂�

ζ dν ∀ζ ∈ C(�). (1.11)

The boundary trace of u is denoted by tr (u).
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It is worthy mentioning that in Definition 1.2, μ is allowed to belong to the range (0, 14 ]
provided λμ > 0.

In parallel, semilinear equations with Hardy potential and source term

−Lμu = up in � (1.12)

were treated by Bidaut-Véron et al. [5] and by P.-T. Nguyen [18] and a fairly complete description 
of the profile of solutions to (1.12) was obtained in subcritical case p < pμ (see [18]) and in 
supercritical case p ≥ pμ (see [5]).

Our first contribution is to show that the notion of normalized boundary trace given in Def-
inition 1.1 is equivalent to that in Definition 1.2 by examining tr (G�

μ [τ ]) = tr ∗(G�
μ [τ ]) and 

tr (K�
μ [ν]) = tr ∗(K�

μ [ν]). This enables to establish important results for the boundary value prob-
lem for linear equations (see Proposition 2.13) which in turn forms a basic to study the boundary 
value problem for {−Lμu = g(u) + τ in �,

tr (u) = ν.
(1.13)

When dealing with (1.13), one encounters the following difficulties. The first one is due to 
the presence of the Hardy potential in the linear part of the equations. More precisely, since the 
singularity of the potential at the boundary is too strong, some important tools such as Hopf’s 
lemma, the classical notion of boundary trace, are invalid, and therefore the system cannot be 
handled via classical elliptic PDEs methods. The second one comes from the interplay between 
the nonlinearity, the Hardy potential and measure data. The interaction between the difficulties 
generates an intricate dynamics both in � and near ∂� and leads to disclose new type of results.

Convention. Throughout the paper, unless otherwise stated, we assume that μ ∈ (0, 14 ] and the 
first eigenvalue λμ of −Lμ in � is positive. We emphasize that if μ ∈ (0, CH ) then λμ > 0.

Definition 1.3. (i) The space of test functions is defined as

Xμ(�) := {ζ ∈ H 1
loc(�) : δ−αζ ∈ H 1(�, δ2α), δ−αLμζ ∈ L∞(�)}. (1.14)

(ii) Let (τ, ν) ∈ M(�, δα) ×M(∂�). We say that u is a weak solution of (1.13) if u ∈ L1(�; δα), 
g(u) ∈ L1(�; δα) and

−
∫
�

uLμζ dx =
∫
�

g(u)ζ dx +
∫
�

ζdτ −
∫
�

Kμ[ν]Lμζ dx ∀ζ ∈ Xμ(�). (1.15)

Main properties of solutions of (1.13) are established in the following proposition.

Proposition A. Let τ ∈ M(�; δα) and ν ∈ M(∂�). The following statements are equivalent.
(i) u is a weak solution of (1.13).
(ii) g(u) ∈ L1(�; δα) and

u = Gμ[g(u)] + Gμ[τ ] + Kμ[ν]. (1.16)

(iii) u ∈ L1
loc(�), g(u) ∈ L1

loc(�), u is a distributional solution of (1.1) and tr (u) = ν.
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This allows to establish necessary and sufficient conditions for the existence of a weak solu-
tion of

{−Lμu = up + στ in �,

tr (u) = �ν.
(1.17)

Theorem B. Let τ ∈ M+(�; δα), ν ∈ M+(∂�) and p > 0.
(i) Assume 0 < p < pμ. Then there exists a constant C > 0 such that

Gμ[Kμ[ν]p] ≤ CKμ[ν] a.e. in �. (1.18)

(ii) Assume 0 < p < pμ. Then there exists a constant C > 0 such that

Gμ[Gμ[τ ]p] ≤ CGμ[τ ] a.e. in �. (1.19)

(iii) If (1.18) and (1.19) hold then problem (1.17) admits a weak solution u satisfying

Gμ[στ ] + Kμ[�ν] ≤ u ≤ C(Gμ[στ ] + Kμ[�ν]) a.e. in � (1.20)

for σ > 0 and � > 0 small enough if p > 1, for any σ > 0 and � > 0 if 0 < p < 1.
(iv) If p > 1 and (1.17) admits a weak solution then (1.18) and (1.19) hold with constant 

C = 1
p−1 .

(v) Assume 0 < p < pμ. Then there exists a constant C > 0 such that for any weak solution u
of (1.17) there holds

Gμ[στ ] + Kμ[�ν] ≤ u ≤ C(Gμ[στ ] + Kμ[�ν] + δα) a.e. in �. (1.21)

In order to study (1.17) in the supercritical case, i.e. p ≥ pμ, we make use of the capacities 
introduced in [5] which is recalled below. For 0 ≤ θ ≤ β < N , set

Nθ,β(x, y) := 1

|x − y|N−β max{|x − y|, δ(x), δ(y)}θ ∀(x, y) ∈ � × �, x = y, (1.22)

Nθ,β [τ ](x) :=
∫
�

Nθ,β(x, y)dτ ∀τ ∈ M+(�). (1.23)

For a > −1, 0 ≤ θ ≤ β < N and s > 1, define Capa
Nθ,β ,s by

Capa
Nθ,β ,s(E) := inf

⎧⎪⎨
⎪⎩

∫
�

δaφs dx : φ ≥ 0, Nθ,β [δaφ] ≥ χE

⎫⎪⎬
⎪⎭ , (1.24)

for any Borel set E ⊂ �. For θ ∈ (0, N − 1) and s > 0, let Cap∂�
θ,s be the capacity defined in [5, 

Definition 1.1]. Notice that if θs > N − 1 then Cap∂�
θ,s({z}) > 0 for every z ∈ ∂�.
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Theorem C. Let τ ∈ M+(�; δα) and ν ∈ M+(∂�). Assume p > 1. Then the following state-
ments are equivalent.

(i) There exists C > 0 such that the following inequalities hold

∫
E

δαdτ ≤ CCap(p+1)α

N2α,2,p
′(E) ∀ Borel E ⊂ �, (1.25)

ν(F ) ≤ CCap∂�

1−α+ α+1
p

,p′(F ) ∀ Borel F ⊂ ∂�. (1.26)

(ii) There exists a positive constant C such that (1.18) and (1.19) hold.
(iii) Problem (1.17) has a positive weak solution for σ > 0 and � > 0 small enough.

Remark. When τ = 0, Theorem C covers Theorem B (i), (iii) due to the fact that
Cap∂�

1−α+ α+1
p

,p′({z}) > c > 0 for every z ∈ ∂� if 1 < p < pμ. Also if 1 < p < pμ then (see 

Lemma 3.10)

inf
ξ∈�

Cap(p+1)α

N2α,2,p
′({ξ}) > 0,

which implies the statements (ii) and (iii) in Theorem B.

The next goal of the present paper is the study of weak solutions of semilinear elliptic system 
involving Hardy potential

⎧⎪⎪⎨
⎪⎪⎩

−Lμu = g(v) + τ in �,

−Lμv = g̃(u) + τ̃ in �,

tr (u) = ν, tr (v) = ν̃

(1.27)

where τ, τ̃ ∈ M(�; δα), ν, ν̃ ∈ M(∂�), g, g̃ ∈ C(R).

Definition 1.4. A pair (u, v) is called a weak solution of (1.27) if u ∈ L1(�; δα), v ∈ L1(�; δα), 
g̃(u) ∈ L1(�; δα), g(v) ∈ L1(�; δα) and

−
∫
�

uLμζ dx =
∫
�

g(v)ζ dx +
∫
�

ζ dτ −
∫
�

Kμ[ν]Lμζ dx,

−
∫
�

vLμζ dx =
∫
�

g̃(u)ζ dx +
∫
�

ζ dτ̃ −
∫
�

Kμ[ν̃]Lμζ dx ∀ζ ∈ Xμ(�).

(1.28)

A counterpart of Proposition A in the case of systems is the following:

Proposition D. Let τ, τ̃ ∈ M(�; δα) and ν, ν̃ ∈ M(∂�). Then the following statements are equiv-
alent.
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(i) (u, v) is a weak solution of (1.27).
(ii) g̃(u) ∈ L1(�; δα), g(v) ∈ L1(�; δα) and

u = Gμ[g(v)] + Gμ[τ ] + Kμ[ν], v = Gμ[g̃(u)] + Gμ[τ̃ ] + Kμ[ν̃]. (1.29)

(iii) (u, v) ∈ (L1
loc(�))2, (g(v), g̃(u)) ∈ (L1

loc(�))2, (u, v) is a solution of

{−Lμu = g(v) + τ in �,

−Lμv = g̃(u) + τ̃ in �,
(1.30)

in the sense of distributions and tr (u) = ν and tr (v) = ν̃.

Elliptic systems arise in biological applications (e.g. population dynamics) or physical ap-
plications (e.g. models of nuclear reactor) and have been drawn a lot of attention (see [8,19]
and references therein). A typical case is Lane–Emden system, i.e. system (1.27) with μ = 0, 
g(v) = vp , g̃(u) = up̃ . Bidaut-Véron and Yarur [6] proved various existence results for Lane–
Emden system under conditions involving the following exponents

q := p̃
p + 1

p̃ + 1
, q̃ := p

p̃ + 1

p + 1
. (1.31)

We first treat the system

⎧⎪⎪⎨
⎪⎪⎩

− Lμu = vp + στ in �,

− Lμv = ũp̃ + σ̃ τ̃ in �,

tr (u) = �ν, tr (v) = �̃ν̃,

(1.32)

where p > 0, p̃ > 0, τ, τ̃ ∈ M(�; δα) and ν, ν̃ ∈ M(∂�).
The next theorem provides a sufficient condition for the existence of solutions of (1.32).

Theorem E. Let p > 0, p̃ > 0, τ, τ̃ ∈ M+(�; δα) and ν, ν̃ ∈ M+(∂�). Assume pp̃ = 1, q < pμ, 
Gμ[τ ] + Kμ[ν + ν̃] ∈ Lp̃(�, δα). Then system (1.32) admits a weak solution (u, v) for σ > 0
and σ̃ > 0 small if pp̃ > 1, for any σ > 0 and σ̃ > 0 if pp̃ < 1. Moreover

v ≈ Gμ[ω] + Kμ[ν̃], (1.33)

u ≈ Gμ[(Gμ[ω] + Kμ[ν̃])p] + Gμ[τ ] + Kμ[ν] (1.34)

where the similarity constants depend on N, p, p̃, μ, �, σ, σ̃ , τ, τ̃ and

ω := Gμ[τ + Kμ[ν̃]p]p̃ + Kμ[ν]p̃ + τ̃ .

A new criterion for the existence of (1.32), expressed in terms of the capacities Capa
Nθ,β ,s and 

Cap∂�
θ,s , is stated in the following result.
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Theorem F. Let p > 1, p̃ > 1, τ, τ̃ ∈ M+(�; δα) and ν, ν̃ ∈ M+(∂�). Assume there exists C > 0
such that

max

⎧⎨
⎩

∫
E

δαdτ,

∫
E

δαdτ̃

⎫⎬
⎭ ≤ C min{Cap(p+1)α

N2α,2,p
′(E),Cap(p̃+1)α

N2α,2,p̃
′(E)}, ∀E ⊂ �, (1.35)

max{ν(F ), ν̃(F )} ≤ C min{Cap∂�

1−α+ 1+α
p

,p′(F ),Cap∂�

1−α+ 1+α
p̃

,p̃′(F )}, ∀F ⊂ ∂�. (1.36)

Then (1.32) admits a weak solution (u, v) for σ > 0, σ̃ > 0, � > 0, �̃ > 0 small enough. There 
exists C > 0 such that

Gμ[στ ] + Kμ[�ν] ≤ u ≤ C(Gμ[στ + σ̃ τ̃ ] + Kμ[�ν + �̃ν̃]),
Gμ[σ̃ τ̃ ] + Kμ[�̃ν̃] ≤ v ≤ C(Gμ[στ + σ̃ τ̃ ] + Kμ[�ν + �̃ν̃]). (1.37)

Finally, we deal with elliptic systems with more general nonlinearities⎧⎪⎪⎨
⎪⎪⎩

− Lμu = ε g(v) + στ in �,

− Lμv = ε g̃(u) + σ̃ τ̃ in �,

tr (u) = �ν, tr (v) = �̃ν̃ on ∂�

(1.38)

where g and g̃ are nondecreasing, continuous functions in R, ε = ±1, σ > 0, σ̃ > 0, � > 0, 
�̃ > 0.

We shall treat successively the cases ε = −1 and ε = 1. For any function f , define

�f :=
∞∫

1

s−1−pμ |f (s) − f (−s)|ds (1.39)

with pμ defined in (1.8).

Theorem G. Let ε = −1 and σ, σ̃ , �, �̃ be positive numbers, τ, τ̃ ∈ M(�; δα) and ν, ν̃ ∈
M(∂�). Assume that �g + �g̃ < ∞ and g(s) = g̃(s) = 0 for any s ≤ 0. Then system (1.38)
admits a weak solution (u, v).

When ε = 1, different phenomenon occurs, which is reflected in the following result.

Theorem H. Let ε = 1, τ, τ̃ ∈ M(�; δα) and ν, ν̃ ∈ M(∂�).

I. SUBCRITICALITY. Assume that �g + �g̃ < ∞. In addition, assume that there exist q1 > 1, 
a1 > 0, b1 > 0 such that

|g(s)| ≤ a1|s|q1 + b1 ∀s ∈ [−1,1], (1.40)

|g̃(s)| ≤ a1|s|q1 + b1 ∀s ∈ [−1,1]. (1.41)

Then (1.38) admits a weak solution for b1, σ, σ̃ , �, �̃ small enough.
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II. SUBLINEARITY. Assume that there exist q1 > 1, q2 ∈ (0, 1], a2 > 0 and b2 > 0 such that 
Kμ[|ν̃|] + Gμ[|τ̃ |] ∈ Lq1(�; δα−1) and

|g(s)| ≤ a2|s|q1 + b2 ∀s ∈ R, (1.42)

|g̃(s)| ≤ a2|s|q2 + b2 ∀s ∈ R. (1.43)

(a) If q1q2 = 1 and a2 > 0 is small then (1.38) admits a weak solution for any σ > 0, σ̃ > 0, 
� > 0, �̃ > 0.

(b) If q1q2 < 1 then (1.38) admits a weak solution for any σ > 0, σ̃ > 0, � > 0, �̃ > 0.

III. SUBCRITICALITY AND SUBLINEARITY. Assume that �g < ∞. In addition, assume that 
there exist a1 > 0, a2 > 0, b1 > 0, b2 > 0, q1 ∈ (1, pμ), q2 ∈ (0, 1], such that (1.40) and (1.43)
hold.

(a) If q1q2 > 1 then (1.38) admits a weak solution for b1, b2, σ, σ̃ , �, �̃ small enough.
(b) If q2pμ = 1 and a2 is mall enough then (1.38) admits a weak solution for any σ > 0, 

σ̃ > 0, � > 0, �̃ > 0.
(c) If q2pμ < 1 then (1.38) admits a weak solution for every for any σ > 0, σ̃ > 0, � > 0, 

�̃ > 0.

Remark about elliptic equations and systems with weights. We emphasize that Theorems B
and C can be extended to the case of equations with weights of the form

−Lμu = δγ up + στ in �, (1.44)

and Theorems E–H can be extended to the case of systems with weights of the form

{ − Lμu = ε δγ g(v) + στ in �,

− Lμv = ε δγ̃ g̃(u) + σ̃ τ̃ in �,
(1.45)

by using similar arguments. However, in order to avoid the complication of the proofs, we state 
and prove the results without weights.

The paper is organized as follows. In Section 2 we investigate properties of the boundary 
trace defined in Definition 1.2 and prove Propositions A and D. Theorems B and C are proved 
in Section 3 due to estimates on Green kernel, Martin kernel and the capacities Cap(p+1)α

N2α,2,p
′ and 

Cap∂�

1−α+ α+1
p

,p′ . In Section 4 sufficient conditions for the existence of weak solutions to elliptic 

systems with power source terms (1.32) (Theorems E and F) are obtained by combining the 
method in [6] and the capacity approach. Finally, in Section 5, we establish existence results 
for elliptic systems with more general nonlinearities (Theorems G and H) due to Schauder fixed 
point theorem.

Notations. Throughout this paper, C, c, c′, ... denotes positive constants which may vary from 
one appearance to another. The notation A ≈ B means c−1B ≤ A ≤ cB for some constant c > 1
depending on some structural constant.
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2. Preliminaries

2.1. Green kernel and Martin kernel

Denote by Lp
w(�; τ), 1 ≤ p < ∞, τ ∈ M+(�), the weak Lp space (or Marcinkiewicz space) 

(see [17]). When τ = δsdx, for simplicity, we use the notation Lp
w(�; δs). Notice that, for every 

s > −1,

Lp
w(�; δs) ⊂ Lr(�; δs) ∀r ∈ [1,p). (2.1)

Moreover for any u ∈ L
p
w(�; δs) (s > −1),

∫
{|u|≥λ}

δsdx ≤ λ−p ‖u‖p

L
p
w(�;δs )

∀λ > 0. (2.2)

Let G�
μ and K�

μ be respectively the Green kernel and Martin kernel of −Lμ in � (see [14,9]) for 
more details). We recall that

G�
μ(x, y) ≈ min

{
|x − y|2−N, δ(x)αδ(y)α|x − y|2−N−2α

}
∀x, y ∈ �,x = y, (2.3)

K�
μ (x, y) ≈ δ(x)α|x − y|2−N−2α ∀x ∈ �, y ∈ ∂�. (2.4)

Finally, we denote by Gμ and Kμ be the corresponding Green operator and Martin operator (see 
[14,9]), namely

Gμ[τ ](x) =
∫
�

Gμ(x, y)dτ(y), ∀τ ∈ M(�), (2.5)

Kμ[ν](x) =
∫
∂�

Kμ(x, z)dν(z), ∀ν ∈ M(∂�). (2.6)

Let us recall a result from [4] which will be useful in the sequel.

Proposition 2.1. ([4, Lemma 2.4]) Let ω be a nonnegative bounded Radon measure in D = � or 
∂� and η ∈ C(�) be a positive weight function. Let H be a continuous nonnegative function on 
{(x, y) ∈ � × D : x = y}. For any λ > 0 we set

Aλ(y) := {x ∈ � \ {y} : H(x,y) > λ} and mλ(y) :=
∫

Aλ(y)

η(x)dx.
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Suppose that there exist C > 0 and k > 1 such that mλ(y) ≤ Cλ−k for every λ > 0. Then the 
operator

H[ω](x) :=
∫
D

H(x, y)dω(y)

belongs to Lk
w(�; η) and

||H[ω]||Lk
w(�;η) ≤ (1 + Ck

k − 1
)ω(D).

By combining (2.3), (2.4) and the above Lemma we have the following result.

Lemma 2.2. Let γ ∈
(
− αN

N+2α−2 , αN
N−2

)
. Then there exists C = C(N, μ, γ, �) > 0 such that

sup
ξ∈�

∣∣∣∣
∣∣∣∣Gμ(·, ξ)

δ(ξ)α

∣∣∣∣
∣∣∣∣
L

N+γ
N+α−2
w (�;δγ )

< C. (2.7)

Proof. Let ξ ∈ �. We will apply Proposition 2.1 with D = �, η = δγ with γ > −1, ω = δαδξ , 
where δξ is the Dirac measure concentrated at ξ , and

H(x,y) = Gμ(x, y)

δ(y)α
.

Then

H[ω](x) =
∫
�

Gμ(x, y)

δ(y)α
δ(y)αdδξ (y) = Gμ(x, ξ).

From (2.3), there exists C = C(N, μ, �) such that, for every (x, y) ∈ � × �, x = y,

Gμ(x, y) ≤ Cδ(y)α|x − y|2−N−α, (2.8)

Gμ(x, y) ≤ C
δ(y)α

δ(x)α
|x − y|2−N, (2.9)

Gμ(x, y) ≤ Cδ(x)αδ(y)α|x − y|2−N−2α. (2.10)

By (2.8), for any x ∈ Aλ(y),

λ ≤ C|x − y|2−N−α, (2.11)

and form (2.9) and (2.10)

δ(x)α ≤ C

λ
|x − y|2−N and δ(x)α ≥ Cλ|x − y|N+2α−2 (2.12)
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We consider two cases: γ ≥ 0 and −1 < γ < 0.

Case 1: γ ≥ 0. Due to (2.11) and (2.12) we have

mλ(y) =
∫

Aλ(y)

δ(x)γ dx ≤
∫

Aλ(y)

(
C

λ
|x − y|2−N

) γ
α

dx ≤ Cλ− N+γ
N+α−2 ,

with γ < αN
N−2 . Observe that ω(�) = δ(ξ)α , by Proposition 2.1, we get

∣∣∣∣Gμ(·, ξ)
∣∣∣∣

L

N+γ
N+α−2
w (�; δγ )

≤ Cδ(ξ)α.

This implies (2.7).

Case 2: −1 < γ < 0. By (2.11) and (2.12) we have

mλ(y) =
∫

Aλ(y)

δ(x)γ dx ≤
∫

Aλ(y)

(Cλ|x − y|N+2α−2)
γ
α dx ≤ Cλ− N+γ

N+α−2 ,

with γ > − αN
N+2α−2 . By arguing similarly as in Case 1, we get (2.7). �

Lemma 2.3. Let γ > −1. Then there exists C = C(N, μ, γ, �) > 0 such that

sup
ξ∈∂�

∣∣∣∣Kμ(·, ξ)
∣∣∣∣

L

N+γ
N+α−2
w (�;δγ )

< C.

Proof. Let ξ ∈ ∂�. We will apply Proposition 2.1 with D = ∂�, η = δγ with γ > −1 and 
ω = δξ . The rest of the proof can be proceeded as in the proof of Lemma 2.2 and we omit it. �

In view of (2.1), Lemma 2.2 and Lemma 2.3, one can obtain easily the following proposition 
(see also [14,18]).

Proposition 2.4. (i) Let γ ∈ (− αN
N+2α−2 , αN

N−2 ). Then there exists a constant c = c(N, μ, γ, �)

such that

∥∥Gμ[τ ]∥∥
L

N+γ
N+α−2
w (�;δγ )

≤ c ‖τ‖M(�;δα) ∀τ ∈ M(�; δα). (2.13)

(ii) Let γ > −1. Then there exists a constant c = c(N, μ, γ, �) such that

∥∥Kμ[ν]∥∥
L

N+γ
N+α−2
w (�;δγ )

≤ c ‖ν‖M(∂�) ∀ν ∈ M(∂�). (2.14)
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2.2. Boundary trace

In this section we study properties of the boundary trace in connection with of Lμ harmonic 
functions. In particular, we show that, when μ < CH (�), the boundary trace defined in Defini-
tion 1.2 coincides the notion of normalized boundary trace introduced in Definition 1.1). To this 
end, we will examine that tr (Gμ[τ ]) = 0 for every τ ∈ M(�; δα) and tr (Kμ[ν]) = ν for every 
ν ∈ M(∂�). These results are proved below, based on a combination of the ideas in [9] and [14]. 
It is worth emphasizing that the below results are valid for μ ∈ (0, 14 ] (under the condition that 
the first eigenvalue λμ of −Lμ is positive).

Proposition 2.5. Let τ ∈ M(�; δα) and u = Gμ[τ ]. Then tr (u) = 0.

Proof. First we assume that τ is nonnegative. Let {�n} be a smooth exhaustion of � and for 
each n, let ωx0

�n
be the L�n

μ harmonic measure on ∂�n. Then u satisfies

{−Lμu = τ in �n

u = u on ∂�n.
(2.15)

Thus

u = G�n
μ [τ ] + K�n

μ [u] = G�n
μ [τ ] +

∫
∂�n

udω
x0
�n

. (2.16)

This, joint with G�n
μ [τ ] ↑ Gμ[τ ] as n → ∞, ensures

lim
n→∞

∫
∂�n

udω
x0
�n

= 0,

namely tr (u) = 0.
In the general case, the result follows from the linearity property of the problem. �
The next result shows that the boundary trace of Lμ harmonic function can be achieved in a 

dynamic way.

Proposition 2.6. [9, Proposition 2.34] Let x0 ∈ �1 and μ ∈ M(∂�). Put

v(x) :=
∫
∂�

Kμ(x, y)dν(y),

then for every ζ ∈ C(�),

lim
n→∞

∫
∂�n

ζvdω
x0
�n

=
∫
∂�

ζdν. (2.17)
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Also we have the following representation formula for Lμ harmonic functions.

Proposition 2.7. [9, Theorem 2.33] Let u be a positive Lμ harmonic in �. Then u ∈ L1(�; δα)

and there exists a unique Radon measure ν on ∂� such that

u(x) =
∫
∂�

Kμ(x, y)dν(y). (2.18)

In the following proposition, we study the boundary trace of Lμ subharmonic functions.

Proposition 2.8. Let w be a nonnegative Lμ subharmonic function. If w is dominated by an Lμ

superharmonic function then Lμw ∈ M+(�; δα) and w has a boundary trace ν ∈ M(∂�). In 
addition, if tr (w) = 0 then w = 0.

Proof. By proceeding as in the proof of [14, Proposition 2.14] and using Proposition 2.7, we 
obtain the desired result. �
Proposition 2.9. Let w be a nonnegative Lμ subharmonic function. If w has a boundary trace 
then it is dominated by an Lμ harmonic function.

Proof. The proof is similar to that of Proposition 2.20 in [14]. For the sake of convenience we 
give it below. Let {�n} be as in the proof of Proposition 2.5 and fix x0 ∈ �1. For any x ∈ �, 
set

un(x) =
∫

∂�n

wdωx
�n

,

then un is L�n
μ harmonic function with boundary trace w. Furthermore, by the maximum princi-

ple we have that w ≤ un in �n. Let ν ∈ M(∂�) be such that

lim
n→∞

∫
∂�n

ζwdω
x0
�n

=
∫
∂�

ζdν ∀ζ ∈ C(�). (2.19)

Then

un(x0) =
∫

∂�n

wdω
x0
�n

→
∫
∂�

dν.

We infer from Harnack inequality that {un} is locally uniformly bounded and hence there exists 
an Lμ harmonic function u such that un → u locally uniformly in �. By Proposition 2.8, there 
exists a nonnegative measure τ ∈ M+(�; δα) such that

w = −Gμ[τ ] + Kμ[ν].
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On the other hand,

w = −G�n
μ [τ ] + un → −Gμ[τ ] + u,

locally uniformly in �. Thus we can deduce that u = Kμ[ν] and the result follows. �
Proposition 2.10. Let u be a nonnegative Lμ superharmonic function. Then there exist ν ∈
M+(∂�) and τ ∈ M+(�; δα) such that

u = Gμ[τ ] + Kμ[ν].

Proof. Let �n and ωx0
�n

be as in the proof of Proposition 2.5. Since u is Lμ superharmonic 
function there exists a nonnegative Radon measure in � such that

−Lμu = τ in �

in the sense of distributions. Note that u is the unique solution of

{−Lμw = τ in �n

w = u on ∂�n.
(2.20)

Therefore

u = G�n
μ [τ ] + K�n

μ [u]. (2.21)

Set wn = K�n
μ [u]. Since τ ≥ 0, by the above quality, we have 0 ≤ wn(x) ≤ u(x). Thus by the 

Harnack inequality, wn → w locally uniformly in �. Furthermore, w is an Lμ harmonic function 
in � and by Proposition 2.18 there exists ν ∈ M+(∂�) such that

w = Kμ[ν]. (2.22)

Now since G�n
μ ↑ Gμ as n → ∞, we deduce from (2.21) and (2.22) that

u = G�n
μ [τ ] + K�n

μ [u] → Gμ[τ ] + Kμ[ν].

Since

Gμ(x, y) ≥ c(x,μ,N)δ(y)α,

we can easily prove that τ ∈ M+(�; δα) which completes the proof. �
The above results enable to study the boundary value problem for the linear equation

{−Lμu = τ in �,

tr (u) = ν.
(2.23)
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Definition 2.11. Let (τ, ν) ∈ M(�; δα) × M(∂�). We say that u is a weak solution of (2.23) if 
u ∈ L1(�; δα) and

−
∫
�

uLμζ dx =
∫
�

ζ dτ −
∫
�

Kμ[ν]Lμζ dx ∀ζ ∈ Xμ(�), (2.24)

Proposition 2.12. For any (τ, ν) ∈ M(�; δα) × M(∂�) there exists a unique weak solution of 
(2.23). Moreover

u = Gμ[τ ] + Kμ[ν], (2.25)

‖u‖L1(�;δα) ≤ c(‖τ‖M(�;δα) + ‖ν‖M(∂�)). (2.26)

In addition, for any ζ ∈ Xμ(�), ζ ≥ 0,

−
∫
�

|u|Lμζ dx ≤
∫
�

ζ sign (u) dτ −
∫
�

Kμ[|ν|]Lμζ dx, (2.27)

and

−
∫
�

u+Lμζ dx ≤
∫
�

ζ sign +(u) dτ −
∫
�

Kμ[ν+]Lμζ dx. (2.28)

Proof. The proof is similar to that of [9, Proposition 3.2] and we omit it. �
Remark 2.1. If h ∈ L1(∂�, dω

x0
� ) is the boundary value of (2.23), the above Proposition is valid 

for dν = hdω
x0
� .

Proposition 2.13. (i) For τ ∈ M(�; δα), tr (Gμ[τ ]) = 0 and for ν ∈ M(∂�), tr (Kμ[ν]) = ν.
(ii) Let w be a nonnegative Lμ subharmonic function in �. Then w is dominated by an Lμ

superharmonic function if and only if w has a boundary trace ν ∈ M(∂�). Moreover, if w has a 
boundary trace then Lμw ∈ M+(�; δα). If, in addition, if tr (w) = 0 then w = 0.

(iii) Let u be a nonnegative Lμ superharmonic function. Then there exist ν ∈ M+(∂�) and 
τ ∈ M+(�, δα) such that (2.25) holds.

(iv) Let (τ, ν) ∈ M(�; δα) × M(∂�). Then there exists a unique weak solution u of (2.23). 
The solution is given by (2.25). Moreover, there exists c = c(N, μ, �) such that (2.26) holds.

Proof. Statement (i) follows from Proposition 2.5 and Proposition 2.6. Statement (ii) can be 
deduced from Proposition 2.8 and Proposition 2.9. Statement (iii) follows from Proposition 2.10. 
Finally statement (iv) is obtained due to Proposition 2.12. �
Proof of Proposition A. We infer from [9] that (i) ⇐⇒ (ii). By an argument similar to that of 
the proof of [18, Theorem B], we deduce that (ii) ⇐⇒ (iii). �

For β > 0, put

�β := {x ∈ � : δ(x) < β}, Dβ := {x ∈ � : δ(x) > β}, �β := {x ∈ � : δ(x) = β}. (2.29)
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Lemma 2.14. There exists β∗ > 0 such that for every point x ∈ �β∗ , there exists a unique point 
σx ∈ ∂� such that x = σx − δ(x)nσx . The mappings x �→ δ(x) and x �→ σx belong to C2(�β∗)
and C1(�β∗) respectively. Moreover, limx→σ(x) ∇δ(x) = −nσx .

Proof of Proposition D. (iii) =⇒ (ii). Assume (u, v) is a distribution solution of (1.30). Put 
ω := g(v) and denote ωβ := ω|Dβ , τβ := τ |Dβ and λβ := u|�β for β ∈ (0, β∗). Consider the 
boundary value problem

−Lμw = ωβ + τβ in Dβ, w = λβ on �β.

This problem admits a unique solution wβ (see [9]). Therefore wβ = u|Dβ . We have

u|Dβ = wβ = GDβ
μ [ωβ ] + GDβ

μ [τβ ] + PDβ
μ [λβ ]

where GDβ
μ and PDμ

μ are respectively Green kernel and Poisson kernel of −Lμ in Dβ .
It follows that∣∣∣∣∣∣∣

∫
Dβ

G
Dβ
μ (·, y)g(v(y)) dy

∣∣∣∣∣∣∣ =
∣∣∣GDβ

μ [τβ ]
∣∣∣ ≤ ∣∣u|Dβ

∣∣ +
∣∣∣G�

μ [τ ]
∣∣∣ +

∣∣∣K�
μ [ν]

∣∣∣ .

Letting β → 0, we get

∣∣∣∣∣∣
∫
�

Gμ(·, y)g(v(y)) dy

∣∣∣∣∣∣ < ∞. (2.30)

Fix a point x0 ∈ �. Keeping in mind that Gμ(x0, y) ≈ δ(y)α for every y ∈ �β∗ , we deduce 
from (2.30) that g(v) ∈ L1(�; δα). Similarly, one can show that g̃(u) ∈ L1(�; δα). Thanks to 
Proposition 2.13 (v), we obtain (1.29).

(ii) =⇒ (iii). Assume u and v are functions such that g̃(u) ∈ L1(�; δα), g(v) ∈ L1(�; δα)

and (1.29) holds. By Proposition 2.13 (i) LμKμ[ν] = LμKμ[ν̃] = 0, which implies that (u, v)

is a solution of (1.30). On the other hand, since g̃(u) ∈ L1(�; δα) and g(v) ∈ L1(�; δα), 
we deduce from Proposition 2.13 (ii) that tr (Gμ[g̃(u)]) = tr (Gμ[g(v)]) = 0. Consequently, 
tr (u) = tr (Kμ[ν]) = ν and tr (v) = tr (Kμ[ν̃]) = ν̃.

(iii) =⇒ (i). Assume (u, v) is a positive solution of (1.30) in the sense of distributions. From the 
implication (iii) =⇒ (ii), we deduce that u ∈ L1(�; δα), v ∈ L1(�; δα), g̃(u) ∈ L1(�; δα) and 
g(v) ∈ L1(�; δα). Hence, by Proposition 2.13, (1.28) holds for every φ ∈ Xμ(�).

(i) =⇒ (iii). This implication follows straightforward from Proposition 2.13. �
3. The scalar problem

3.1. Concavity properties and Green properties

Here we give some concavity lemmas that will be employed in the sequel.
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Proposition 3.1. Let ϕ ∈ L1(�; δα), ϕ ≥ 0 and τ ∈ M+(�; δα). Set

w := Gμ[ϕ + τ ] and ψ = Gμ[τ ].

Let φ be a concave nondecreasing C2 function on [0, ∞), such that φ(1) ≥ 0. Then φ′(w/ψ)ϕ ∈
L1(�; δα) and the following holds in the weak sense in �

−Lμ(ψφ(w/ψ)) ≥ φ′(w/ψ)ϕ.

Proof. Let {ϕn}, τn ∈ C∞(�) such that ϕn → ϕ in L1(�, δα) and τn ⇀ τ . Set wn := Gμ[ϕn +
τn] and ψn = Gμ[τn]. Since wn ≥ ψn > 0 for any n ≥ n0 for some n0 ∈ N, we have by straight-
forward calculations

−�

(
ψnφ(

wn

ψn

)

)
= (−�ψn)

(
φ(

wn

ψn

) − wn

ψn

φ′(wn

ψn

)

)
+ (−�wn)φ

′(wn

ψn

)

− ψnφ
′′(wn

ψn

)

∣∣∣∣∇
(

wn

ψn

)∣∣∣∣
2

.

Now note that, since φ′ ≥ 0, we have

(−�wn)φ
′(wn

ψn

) ≥ φ′(wn

ψn

)

(
−�ψn − μ

ψn

δ2 + μ
wn

δ2 + ϕn

)
.

This, together with the fact that φ(t) − tφ′(t) + φ′(t) ≥ 0 for any t ≥ 1, implies

(−�ψn)

(
φ(

wn

ψn

) − wn

ψn

φ′(wn

ψn

)

)
+ (−�wn)φ

′(wn

ψn

)

≥ (−�ψn)

(
φ(

wn

ψn

) − wn

ψn

φ′(wn

ψn

) + φ′(wn

ψn

)

)
+ φ′(wn

ψn

)

(
−μ

ψn

δ2 + μ
wn

δ2 + ϕn

)

≥ μ
ψn

δ2

(
φ(

wn

ψn

) − wn

ψn

φ′(wn

ψn

) + φ′(wn

ψn

)

)
+ φ′(wn

ψn

)

(
−μ

ψn

δ2 + μ
wn

δ2 + ϕn

)

= μ

δ2 ψnφ(
wn

ψn

) + φ′(wn

ψn

)ϕn.

Thus we have proved

−Lμ

(
ψnφ(

wn

ψn

)

)
≥ φ′(wn

ψn

)ϕn.

Also

ψnφ(
wn

ψn

) ≤ ψn(φ(0) + φ′(0)
wn

ψn

) ≤ C(ψn + wn)
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and

−
∫
�

ψnφ(
wn

ψn

)Lμξ dx ≥
∫
�

φ′(wn

ψn

)ϕnξ dx ∀ξ ∈ Xμ(�).

By passing to the limit with Lebesgue theorem and Fatou lemma, we complete the proof. �
In the next Lemma we will prove the 3-G inequality which will be useful later.

Lemma 3.2. There exists a positive constant C = C(N, μ, �) such that

Gμ(x, y)Gμ(y, z)

Gμ(x, z)
≤ C

(
δ(y)α

δ(x)α
Gμ(x, y) + δ(y)α

δ(z)α
Gμ(y, z)

)
∀(x, y, z) ∈ � × � × �. (3.1)

Proof. It follows from (2.3) and the inequality |δ(x) − δ(y)| ≤ |x − y| that

Gμ(x, y) ≈ min
{
|x − y|2−N , δ(x)αδ(y)α |x − y|2−2α−N

}
≈ |x − y|2−N δ(x)αδ(y)α

(
max

{
δ(x)αδ(y)α, |x − y|2α

})−1

≈ |x − y|2−N δ(x)αδ(y)α (max {δ(x), δ(y), |x − y|})−2α

= δ(x)αδ(y)αN2α,2(x, y), ∀x, y ∈ �, x = y,

where N2α,2(x, y) is defined in (1.23) with a = 2α and β = 2. By [5, Lemma 2.2] we deduce 
that there exists a positive constant C = C(N, μ, �) such that

1

N2α,2(x, z)
≤ C

(
1

N2α,2(x, y)
+ 1

N2α,2(y, z)

)
. (3.2)

From (3.2) we can easily obtain (3.1). �
Lemma 3.3. Let 0 < p < pμ and τ ∈ M+(�; δα). Then there is a constant C = C(N, μ, p,

τ, �) > 0 such that (1.19) holds.

Proof. First we assume that p > 1. By (2.13) we have that Gμ[τ ]p ∈ L1(�; δα). We write

Gμ[τ ](y) =
∫
�

Gμ(y, z)dτ(z) =
∫
�

Gμ(y, z)

δ(z)α
δ(z)αdτ(z),

thus

Gμ[τ ](y)p ≤ C

∫
�

δ(z)α
(

Gμ(y, z)

δ(z)α

)p

dτ(z).
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Consequently,

Gμ[Gμ[τ ]p](x) ≤ C

∫
�

∫
�

Gμ(x, y)Gμ(y, z)pδ(z)α(1−p)dτ(z)dy. (3.3)

Also by (3.1) we obtain

∫
�

∫
�

Gμ(x, y)Gμ(y, z)pδ(z)α(1−p)dτ(z)dy

≤ C

∫
�

Gμ(x, z)

∫
�

δ(y)α

((
Gμ(x, y)

δ(x)α

)(
Gμ(y, z)

δ(z)α

)p−1

+
(

Gμ(y, z)

δ(z)α

)p
)

dydτ(z)

≤ C

∫
�

Gμ(x, z)

∫
�

δ(y)α
((

Gμ(x, y)

δ(x)α

)p

+
(

Gμ(y, z)

δ(z)α

)p)
dydτ(z), (3.4)

where in the last inequality we have used the Hölder inequality. By (3.3), (3.4) and Lemma 2.2
we derive that

Gμ[Gμ[τ ]p](x) ≤ C

∫
�

Gμ(x, z)dτ(z).

Note that the above argument is still valid for p = 1.
If 0 ≤ p < 1 then

Gμ[Gμ[τ ]p] ≤ C(Gμ[1] + Gμ[Gμ[τ ]]).
By combining the case p = 1 and the estimate Gμ[1] ≤ CGμ[τ ], we obtain (1.19). �
Actually (1.19) is a sufficient condition for the existence of weak solution of

{−Lμu = up + στ in �,

tr (u) = 0 on ∂�.
(3.5)

Proposition 3.4. Let 0 < p = 1, σ > 0 and τ ∈ M+(�; δα). Assume that there exists a positive 
constant C such that (1.19) holds. Then problem (3.5) admits a weak solution u satisfying

Gμ[στ ] ≤ u ≤ CGμ[στ ] a.e. in �, (3.6)

with another constant C > 0, for any σ > 0 small enough if p > 1, for any σ > 0 if p < 1.

Proof. We adapt the idea in the proof of [6, Theorem 3.4]. Put w := AGμ[στ ] where A > 0 will 
be determined later. By (1.19),

Gμ[wp + στ ] ≤ (CApσp−1 + 1)Gμ[στ ] in �.
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Therefore we deduce that w ≥ Gμ[wp + στ ] as long as

CApσp−1 + 1 ≤ A. (3.7)

If p > 1 then (3.7) holds if we choose A > 1 and then choose σ > 0 small enough. If p ∈ (0, 1)

then (3.7) holds if we choose σ > 0 arbitrary and then choose A > 0 large enough.
Next put u0 := Gμ[στ ] and un+1 := Gμ[up

n +στ ]. It is clear that {un} is increasing and un ≤
w in � for all n. Since (1.19) holds, wp ∈ L1(�; δα). Consequently, by monotone convergence 
theorem, there exists a function u ∈ Lp(�; δα) such that up

n → up in L1(�; δα). It is easy to see 
that u is a solution of (3.5) satisfying (3.6). �

Estimate (1.19) is also a necessary condition for the existence of weak solution of (3.5).

Proposition 3.5. Let p > 1, σ > 0 and τ ∈ M+(�; δα). Assume that problem (3.5) admits a 
weak solution. Then (1.19) holds with C = 1

p−1 .

Proof. We adapt the argument used in the proof of [6, Proposition 3.5]. Assume (3.5) has a 
solution u ∈ Lp(�; δα) and assume σ = 1. By applying Proposition 3.1 with ϕ replaced by up

and with

φ(s) =
{

(1 − s1−p)/(p − 1) if s ≥ 1,

s − 1 if s < 1,

we get (1.19) with C = 1
p−1 . �

Proposition 3.6. Let 0 < p < pμ, σ > 0 and τ ∈ M+(�; δα). Then there exists a positive con-
stant C = C(N, μ, �, σ, τ) such that for any weak solution u of (3.5) there holds

Gμ[στ ] ≤ u ≤ C(Gμ[στ ] + δα) a.e. in �. (3.8)

Proof. We follow the idea in the proof of [6, Theorem 3.6]. We may assume that σ = 1. If 
0 ≤ p < 1, then

u = Gμ[up + τ ] ≤ C(Gμ[1] + Gμ[u] + Gμ[τ ]).

Since Gμ[1] ≤ Cδα a.e. in �, we obtain

u ≤ C(δα + Gμ[u] + Gμ[τ ]) a.e. in �.

Therefore it is sufficient to deal with the term Gμ[u] and we may assume that p ≥ 1. Set

u1 := u − Gμ[τ ] = Gμ[up],

hence u = u1 +Gμ[τ ]. Since u ∈ Lp(�; δα) (by assumption), it follows that u +τ ∈ M+(�; δα), 
therefore by (2.13), u ∈ Ls(�; δα), for all 1 ≤ s < pμ. Thus there exists k0 > 1 such that up ∈
Lk0(�; δα).
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Let p < s < pμ. By Hölder inequality we obtain

u1(x)k0s = Gμ[up](x)k0s =
⎛
⎝∫

�

Gμ(x, y)

δ(y)α
δ(y)αu(y)pdy

⎞
⎠

k0s

≤
⎛
⎝∫

�

Gμ(x, y)

δ(y)α
δ(y)αu(y)k0pdy

⎞
⎠

s ⎛
⎝∫

�

Gμ(x, y)

δ(y)α
δ(y)αdy

⎞
⎠

(k0−1)s

k0

≤ C

∫
�

(
Gμ(x, y)

δ(y)α

)s

δ(y)αu(y)k0pdy.

This, joint with Lemma 2.2, yields

∫
�

u1(y)k0sδ(y)αdy ≤ C

∫
�

u(y)k0pδ(y)α
∫
�

(
Gμ(x, y)

δ(y)α

)s

δ(x)αdxdy < c.

Since up ≤ C(u
p

1 + Gμ[τ ]p), by Lemma 3.3 we have

u ≤ C
(
Gμ[Gμ[τ ]p] + u2

) + Gμ[τ ] ≤ C(Gμ[τ ] + u2),

where u2 := Gμ[up
1 ]. Note that u2 ∈ L

k0s2

p2 (�; δα).
By induction we define un := Gμ[up

n−1] and we have u ≤ C(Gμ[τ ] + un), u
p
n ∈ Lsn(�; δα)

with sn = k0s
n

pn . Since sn → ∞, by [17, Lemma 2.3.2] we have for 1 < s < pμ,

un ≤ C

∫
�

|x − y|2−α−Nu
p
n−1δ(y)αdy

≤ C

⎛
⎝∫

�

|x − y|(2−α−N)sδ(y)αdy +
∫
�

|x − y|2−α−Nu
ps
s−1
n−1δ(y)αdy

⎞
⎠

≤ C′,

for n large enough. Therefore we obtain u ≤ C(Gμ[τ ] + 1), which implies u ≤ C(Gμ[τ ] +
Gμ[1]) with another C > 0. This, together with the inequality Gμ[1] ≤ Cδα , implies (3.8). �
3.2. New Green properties

Lemma 3.7. Let 0 < p < pμ, τ ∈ M+(�; δα). Let s be such that

max
(
0,p − pμ + 1

)
< s ≤ 1. (3.9)
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Then there exists a constant C > 0 such that

Gμ[Gμ[τ ]p] ≤ CGμ[τ ]s a.e. in �. (3.10)

Proof. First we assume that p > 1. In view of the proof of Lemma 3.3, we have

Gμ[Gμ[τ ]p](x) ≤ C

∫
�

∫
�

Gμ(x, y)Gμ(y, z)pδ(z)α(1−p)dτ(z)dy

= C

∫
�

∫
�

Gμ(x, y)1−sGμ(x, y)sGμ(y, z)s
(

Gμ(y, z)

δα(z)

)p−s

δ(z)α(1−s)dτ (z)dy

≤ C

∫
�

Gμ(x, z)sδ(z)α(1−s)

∫
�

δ(y)α
Gμ(x, y)

δ(x)

(
Gμ(y, z)

δ(z)α

)p−s

dydτ(z) (3.11)

+ C

∫
�

Gμ(x, z)sδ(z)α(1−s)

∫
�

δ(y)α
(

Gμ(x, y)

δ(x)

)1−s (
Gμ(y, z)

δ(z)α

)p

dydτ(z) (3.12)

≤ C

∫
�

Gμ(x, z)sδ(z)α(1−s)

∫
�

δ(y)α
(

Gμ(x, y)

δ(x)

)p−s+1

dydτ(z) (3.13)

+
∫
�

Gμ(x, z)sδ(z)α(1−s)

∫
�

δ(y)α
(

Gμ(y, z)

δ(z)α

)p−s+1

dydτ(z) (3.14)

≤ C

∫
�

(
Gμ(x, z)

δ(z)α

)s

δ(z)αdτ(z) (3.15)

≤ C

⎛
⎝∫

�

Gμ(x, z)dτ(z)

⎞
⎠

s

. (3.16)

Here (3.11) and (3.12) follow from (3.1), (3.13) and (3.14) follow from Hölder inequality, and 
(3.15) follows from Lemma 2.2, Hölder inequality and (3.9).

Note that the above approach can be applied to the case p = 1.
If 0 ≤ p < 1 then

Gμ[Gμ[τ ]p] ≤ C(Gμ[1] + Gμ[Gμ[τ ]]) ≤ C(Gμ[1] + Gμ[τ ]s)
Then (3.10) follows by a similar argument as in the proof of Lemma 3.3. �
3.3. Capacities and existence results

For a ≥ 0, 0 ≤ θ ≤ β < N and s > 1, let Nθ,β , Nθ,β and Capa
Nθ,β ,s be defined as in (1.22), 

(1.23) and (1.24) respectively.
In this section we recall some results in [5, Section 2].
We recall below the definition of the capacity associated to Nθ,β (see [11]).
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Definition 3.8. Let a ≥ 0, 0 ≤ θ ≤ β < N and s > 1. Define Capa
Nθ,β ,s by

Capa
Nθ,β ,s(E) := inf

⎧⎪⎨
⎪⎩

∫
�

δaφsdy : φ ≥ 0, Nθ,β [δaφ] ≥ χE

⎫⎪⎬
⎪⎭ ,

for any Borel set E ⊂ �.

Clearly we have

Capa
Nθ,β ,s(E) = inf

⎧⎪⎨
⎪⎩

∫
�

δ−a(s−1)φsdy : φ ≥ 0, Nθ,β [φ] ≥ χE

⎫⎪⎬
⎪⎭ ,

for any Borel set E ⊂ �. Furthermore we have by [1, Theorem 2.5.1]

(
Capa

Nθ,β ,s(E)
) 1

s = inf
{
ω(E) : ω ∈ M+

b (�),
∣∣∣∣Nθ,β [ω]∣∣∣∣

Ls′ (�;δa)
≤ 1

}
, (3.17)

for any compact set E ⊂ � where s′ is the conjugate exponent of s.
Using [5, Theorem 2.6], we obtain easily the following result.

Proposition 3.9. Let p > 1, σ > 0 and τ ∈ M+(�; δα). Then the following statements are equiv-
alent.

1. There exists C > 0 such that the following inequality hold∫
E

δαdτ ≤ CCap(p+1)α

N2α,2,p
′(E),

for any Borel E ⊂ �.
2. There exists a constant C > 0 such that (1.19) holds.
3. Problem (3.5) has a positive weak solution for σ > 0 small enough.

Proof. First we note that

G(x,y) = δ(x)αδ(y)αN2α,2(x, y), ∀x, y ∈ �, x = y.

Thus the inequality

Gμ[Gμ[τ ]p] ≤ CGμ[τ ] a.e. in �

is equivalent to

N2α,2[δ(p+1)α(y)N2α,2[τ̃ ]p(y)](x) ≤ CN2α,2[τ̃ ](x) a.e. in �,

where dτ̃ (y) = δα(y)dτ(y).
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Now notice that if u is a positive solution of (3.5) then by Proposition 2.12 we have that 
u = Gμ[up] + Gμ[τ ] which implies that

u

δ(x)α
≈ N2α,2

[
δ(p+1)α

( u

δα

)p]
(x) + σN2α,2[τ̃ ](x),

the desired results follow by [5, Theorem 2.6] and [5, Proposition 2.7]. �
Let us now give a result which implies the existence for the problem (3.5).

Lemma 3.10. Let 1 < p < pμ. Then

inf
ξ∈�

Cap(p+1)α

N2α,2,p
′({ξ}) > 0.

Proof. By (3.17) it is enough to show that

sup
ξ∈�

∣∣∣∣N2α,2[δξ ]
∣∣∣∣

Lp(�;δ(p+1)α)
< C < ∞,

which is equivalent to

sup
ξ∈�

∣∣∣∣
∣∣∣∣Gμ(·, ξ)

δ(ξ)α

∣∣∣∣
∣∣∣∣
Lp(�;δα)

< C. (3.18)

The result follows by Lemma 2.2 and (2.1). �
3.4. Boundary value problem

Estimate (1.18) is a necessary and sufficient condition for the existence of weak solutions of

{−Lμu = up in �,

tr (u) = �ν on ∂�.
(3.19)

Proposition 3.11. [5, Theorem 4.1] Let p > 1, � > 0 and ν ∈ M+(∂�). Then, the following 
statements are equivalent.

1. There exists C > 0 such that the following inequality holds

ν(F ) ≤ CCap∂�

1−α+ 1+α
p

,p′(F )

for any Borel F ⊂ ∂�.
2. There exists C > 0 such that (1.18) holds.
3. Problem (3.19) has a positive weak solution for � > 0 small enough.

Lemma 3.12. Let ν ∈ M+(∂�) and 0 < p < pμ. Then there exists a constant C > 0 such that 
(1.18) holds.
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Proof. We first assume that 1 < p < pμ. Let ξ ∈ ∂�; we have δξ (F ) < cCap∂�

1−α+ 1+α
p

,p′(F ) for 

every F ⊂ ∂� where c is independent of ξ . By Proposition 3.11, (1.18) holds with ν replaced by 
δξ and with the constant C independent of ξ . By taking integral over ξ ∈ ∂�, we get (1.18).

Next, if p ∈ (0, 1], we choose s > 1 such that 1 < ps < pμ. By Young’s inequality,

Gμ[Kμ[ν]p] ≤ C(Gμ[1] + Gμ[Kμ[ν]ps]) ≤ C(Gμ[1] + Kμ[ν]). (3.20)

This, combined with the inequality Gμ[1] ≤ cδα ≤ c′Kμ[ν] a.e. in � leads to (1.18). �
Proposition 3.13. Let p > 0, � > 0 and ν ∈ M+(∂�).

(i) Assume there exists a constant C > 0 such that (1.18) holds. Then problem (3.19) admits a 
weak solution u satisfying

Kμ[�ν] ≤ u ≤ CKμ[�ν] a.e. in �, (3.21)

with another constant C > 0, for any � > 0 small enough if p > 1, for any � > 0 if p ∈ (0, 1).
(ii) Assume p > 1 and problem (3.19) admits a weak solution. Then (1.18) holds with C =

1
p−1 .

(iii) Assume 0 < p < pμ. Then there exists a constant C > 0 such that for any weak solution 
u of (3.19) there holds

Kμ[�ν] ≤ u ≤ C(Kμ[�ν] + δα) a.e. in �. (3.22)

Proof. By using an argument as in the proof of Proposition 3.4, Proposition 3.5 and Proposi-
tion 3.6, we obtained the desired results. �

The above results allow to study elliptic equations with interior and boundary measures.

Proposition 3.14. Let p > 0, σ > 0, � > 0 and τ ∈ M+(�; δα) and ν ∈ M+(∂�). If (1.18) and 
(1.19) hold then problem (1.17) admits a weak solution u satisfying (1.20) for σ > 0 and � > 0
small enough if p > 1, for any σ > 0 and � > 0 if 0 < p < 1.

Furthermore if 0 < p < pμ there exists a constant C > 0 such that for any weak solution u of 
(1.17) estimate (1.21) holds.

Proof. We adapt the argument in the proof of [4, Theorem 3.13]. Put v := u − Kμ[�ν] then v
satisfies

{−Lμv = (v + Kμ[�ν])p + στ in �,

tr (v) = 0.
(3.23)

Consider the following problem

{−Lμw = cpwp + cp(Kμ[�ν])p + στ in �,

tr (w) = 0
(3.24)
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where cp := max{1, 2p−1}. Since (1.18) holds, it follows that Kμ[ν]p ∈ L1(�; δα). Since (1.19)
holds, we infer from Proposition 3.4 that problem (3.24) admits a weak solution w for σ > 0
and � > 0 small enough if p > 1, for any σ > 0 and � > 0 if 0 < p < 1. Notice that w is a 
supersolution of (3.24), we infer that there is a weak solution v of (3.23) satisfying v ≤ w a.e.
in �. By Proposition 3.4 and (1.18), we get

w ≤ cGμ[Kμ[�ν]p + στ ] ≤ c′(Gμ[στ ] + Kμ[�ν]) a.e. in �.

This implies (1.20).
If 0 < p < pμ then (1.21) follows from Proposition 3.6 and Proposition 3.13 (iii). �

Proof of Theorem B. Statements (i) and (ii) follow from Lemma 3.12 and Lemma 3.3 respec-
tively. Statement (iii) follows from Proposition 3.14. Statement (iv) follows from Proposition 3.5
and Proposition 3.13 (ii). Statement (v) is derived from Proposition 3.14 (ii). �
Proof of Theorem C. The implications (i) ⇐⇒ (ii) =⇒ (iii) follow from Proposition 3.11, 
Proposition 3.9 and Proposition 3.14. We will show that (iii) =⇒ (ii). Since (1.17) has a weak 
solution for σ > 0 small and � > 0 small, it follows that (3.5) admits a solution for σ > 0 small 
and (3.19) admits a solution for � > 0 small. Due to Proposition 3.11 and Proposition 3.9, we 
derive (1.19) and (1.18). This completes the proof. �
4. Elliptic systems: the power case

Let μ ∈ (0, 14 ]. In this section, we deal with system (1.32). We recall that pμ is defined in 
(1.31) and

q := p̃
p + 1

p̃ + 1
, q̃ := p

p̃ + 1

p + 1
.

Without loss of generality, we can assume that 0 < p ≤ p̃. Then p ≤ q ≤ q̃ ≤ p̃ if pp̃ ≥ 1. Put

tμ := p̃
(
p − pμ + 1

)
.

Notice that if q < pμ then tμ < q < pμ.

Lemma 4.1. Let p > 0, p̃ > 0 and τ ∈ M+(�; δα). Assume q < pμ. Then for any t ∈
(max(0, tμ), p̃], there exists a positive constant c = c(N, p, p̃, μ, t, τ) (independent of τ if 
p > 1) such that

Gμ[Gμ[τ ]p]p̃ ≤ cGμ[τ ]t . (4.1)

In particular,

Gμ[Gμ[τ ]p]p̃ ≤ CGμ[τ ]q, (4.2)

Gμ[Gμ[Gμ[τ ]p]p̃] ≤ CGμ[τ ] (4.3)

where C = C(N, p, p̃, μ, τ).
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Proof. Since q < pμ, it follows that p < pμ, hence max(0, p − pμ + 1) < 1. Let t ∈
(max(0, tμ, p̃] then max(0, p − pμ + 1) < t

p̃
≤ 1. By applying Lemma 3.7 with s replaced by t

p̃
respectively in order to obtain

Gμ[Gμ[τ ]p] ≤ cGμ[τ ] t
p̃ ,

which implies (4.1). Since tμ < q ≤ p̃, by taking t = q in (4.1) we obtain (4.2). Next, since 
q < pμ, by apply Lemma 3.7 with γ replaced by γ̃ and (4.2), we get

Gμ[Gμ[Gμ[τ ]p]p̃] ≤ CGμ[Gμ[τ ]q ] ≤ CGμ[τ ]. �
Lemma 4.2. Let p > 0, p̃ > 0, τ, τ̃ ∈ M+(�; δα) and ν, ν̃ ∈ M+(∂�). Assume that there exist 
positive functions U ∈ Lp̃(�; δα) and V ∈ Lp(�; δα) such that

U ≥ Gμ[(V + Kμ[�̃ν̃])p] + Gμ[στ ],
V ≥ Gμ[(U + Kμ[�ν])p̃] + Gμ[σ̃ τ̃ ] (4.4)

in �. Then there exists a weak solution (u, v) of (1.32) such that

Gμ[στ ] + Kμ[�ν] ≤ u ≤ U,

Gμ[σ̃ τ̃ ] + Kμ[�̃ν̃] ≤ v ≤ V.
(4.5)

Proof. Put u0 := 0 and

{
vn+1 := Gμ[up̃

n ] + Gμ[σ̃ τ̃ ] + Kμ[�̃ν̃], n ≥ 0,

un := Gμ[vp
n ] + Gμ[στ ] + Kμ[�ν], n ≥ 1.

(4.6)

We see that 0 ≤ v1 = Gμ[σ̃ τ̃ ] + Kμ[�̃ν̃] ≤ V . It is easy to see that {un} and {vn} are nondecreas-
ing sequences, 0 ≤ un ≤ U and 0 ≤ vn ≤ V in �. By monotone convergence theorem, there exist 
u ∈ Lp̃(�; δα) and v ∈ Lp(�; δα) such that un → u in L1(�), vn → v in L1(�), up̃

n → up̃ in 
L1(�; δα), vp

n → vp in L1(�; δα). Moreover u ≤ U and v ≤ V in �. By letting n → ∞ in (4.6), 
we obtain

{
v = Gμ[up̃] + Gμ[σ̃ τ̃ ] + Kμ[�̃ν̃],
u = Gμ[vp] + Gμ[στ ] + Kμ[�ν].

(4.7)

Thus (u, v) is a weak solution of (1.32) and satisfies (4.5). �
Proof of Theorem E. We first show that the following system has weak a solution

⎧⎪⎪⎨
⎪⎪⎩

− Lμw = (w̃ + Kμ[�̃ν̃])p + στ in �,

− Lμw̃ = (w + Kμ[�ν])p̃ + σ̃ τ̃ in �,

tr (u) = tr (v) = 0.

(4.8)
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Fix ϑi > 0, (i = 1, 2, 3, 4) and set

� := Gμ[ϑ1τ + Kμ[ϑ2ν̃]p]p̃ + Kμ[ϑ3ν]p̃ + ϑ4τ̃ .

For κ ∈ (0, 1], put

σ := κ
1
p̃ ϑ1, σ̃ := κϑ4, � := κ

1
p̃ ϑ3, �̃ := κ

1
pp̃ ϑ2.

Then from the assumption, we deduce that � ∈ M+(�; δα). By Lemma 4.1,

Gμ[Gμ[Gμ[�]p]p̃] ≤ CGμ[�] (4.9)

where C = C(N, p, p̃, μ, σ, σ̃ , κ, τ, τ̃ ). Set

V := AGμ[κ�] and U := Gμ[(V + Kμ[�̃ν̃])p + στ ]

where A > 0 will be determined later on. We have

(U + Kμ[�ν])p̃ + σ̃ τ̃

≤ c
{
Gμ

[
(a3κGμ[�] + Kμ[�̃ν̃])p

]p̃ + Gμ[στ ]p̃ + Kμ[�ν]p̃
}

+ σ̃ τ̃

≤ c
{
App̃κpp̃Gμ[Gμ[�]p]p̃ + Gμ[Kμ[�̃ν̃]p]p̃

}
+ c Gμ[στ ]p̃ + c Kμ[�ν]p̃ + σ̃ τ̃

where c = c(p, p̃). It follows that

Gμ[(U + Kμ[�ν])p̃ + σ̃ τ̃ ] ≤ I1 + I2 (4.10)

where

I1 := cApp̃κpp̃Gμ

[
Gμ[Gμ[�]p]p̃

]
+ c Gμ

[
Gμ[Kμ[�̃ν̃]p]p̃

]
,

I2 := c Gμ[Gμ[στ ]p̃] + c Gμ[Kμ[�ν]p̃] + Gμ[σ̃ τ̃ ].

We first estimate I1. Observe that

Gμ

[
Gμ[Kμ[�̃ν̃]p]p̃

]
= Gμ

[
Gμ[Kμ[ϑ2ν̃]p]p̃

]
≤ Gμ[κ�].

This, together with (4.9) implies

I1 ≤ c (App̃κpp̃−1 + 1)Gμ[κ�]. (4.11)

Next it is easy to see that

I2 ≤ c Gμ[κ�]. (4.12)
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By collecting (4.10), (4.11) and (4.12), we obtain

Gμ[(U + Kμ[�ν])p̃ + σ̃ τ̃ ] ≤ c(App̃κpp̃−1 + 1)Gμ[κ�] (4.13)

with another constant c. We will choose A and κ such that

c (App̃κpp̃−1 + 1) ≤ A. (4.14)

If pp̃ > 1 then we can choose A > 0 large enough and then choose κ > 0 small enough (depend-
ing on A) such that (4.14) holds. If pp̃ < 1 then for any κ > 0 there exists A large enough such 
that (4.14) holds. For such A and κ , we obtain

Gμ[(U + Kμ[�ν])p̃ + σ̃ τ̃ ] ≤ V.

By Lemma 4.2, there exists a weak solution (w, w̃) of (4.8) for σ > 0, σ̃ > 0, ν > 0, ν̃ > 0 small 
if pp̃ > 1, for any σ > 0, σ̃ > 0, ν > 0, ν̃ > 0 if pp̃ < 1. Moreover, (w, w̃) satisfies

w̃ ≈ Gμ[ω], (4.15)

w ≈ Gμ[(Gμ[ω] + Kμ[ν̃])p] + Gμ[τ ] (4.16)

where C = C(N, p, p̃, μ, �, σ, σ̃ , τ, τ̃ ).
Next put u := w + Kμ[�ν] and v := w̃ + Kμ[�̃ν̃] then (u, v) is a weak solution of (1.32). 

Moreover (1.33) and (1.34) follow directly from (4.15) and (4.16). �
Proof of Theorem F. Put τ ∗ := max{τ, τ̃ } and ν∗ := max{ν, ν̃}. Fix ϑ > 0, ϑ̃ > 0 and for κ ∈
(0, 1], put σ = � = (κϑ)

1
p̃ and σ̃ = κϑ̃, �̃ = (κϑ̃)

1
pp̃ . Set

τ # := ϑτ + ϑ̃ τ̃ and ν# := ϑν + ϑ̃ ν̃

then τ # ≤ (ϑ + ϑ̃)τ ∗ and ν# ≤ (ϑ + ϑ̃)ν∗.
Put V := A(Gμ[κτ #] + Kμ[κν#]) where A > 0 will be determined later on and put U :=

Gμ[(V + Kμ[�̃ν̃])p + στ ].
We have

Up̃ + σ̃ τ̃ ≤ cApp̃κpp̃
{
Gμ[Gμ[τ #]p]p̃ + Gμ[Kμ[ν#]p]p̃

}
+ c σ p̃Gμ[τ ]p̃

+ c �p̃Kμ[ν]p̃ + c σ̃ τ̃ ,

with c = c(p, p̃). It follows that

Gμ[(U + Kμ[�ν])p̃ + σ̃ τ̃ ] ≤ c (J1 + J2) (4.17)

where

J1 := App̃κpp̃
{
Gμ[Gμ[Gμ[τ #]p]p̃] + Gμ[Gμ[Kμ[ν#]p]p̃]

}
,
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J2 := σ p̃Gμ[Gμ[τ ]p̃] + �p̃Gμ[Kμ[ν]p̃] + σ̃Gμ[τ̃ ] + �̃Kμ[ν̃].

We first estimate J1. We have

J1 ≤ App̃κpp̃(ϑ + ϑ̃)pp̃
{
Gμ[Gμ[Gμ[τ ∗]p]p̃] + Gμ[Gμ[Kμ[ν∗]p]p̃]

}
.

By (1.35), (1.36) and Proposition 3.11, Proposition 3.9 we infer that

J1 ≤ cApp̃κpp̃(ϑ + ϑ̃)pp̃(Gμ[τ ∗] + Kμ[ν∗])

where c is a positive constant. Therefore

J1 ≤ cApp̃κpp̃(ϑ + ϑ̃)pp̃ max(ϑ−1, ϑ̃−1)(Gμ[τ #] + Kμ[ν#]). (4.18)

We next estimate J2. Again by (1.35), (1.36) and Proposition 3.11, Proposition 3.9, we deduce

J2 ≤ c (σ p̃Gμ[τ ] + �p̃Kμ[ν] + σ̃Gμ[τ̃ ] + �̃Kμ[ν̃])
= c κ(Gμ[τ #] + Kμ[ν#]).

(4.19)

Combining (4.17), (4.18) and (4.19) implies

Gμ[Up̃ + σ̃ τ̃ ] + Kμ[�̃ν̃] ≤ C(App̃κpp̃−1 + 1)(Gμ[κτ #] + Kμ[κν#]) (4.20)

where C is another positive constant. We choose A > 0 and κ > 0 such that

C(App̃κpp̃−1 + 1) ≤ A. (4.21)

Since pp̃ > 1, one can choose A large enough and then choose κ > 0 small enough such that 
(4.21) holds. For such A and κ , we have

Gμ[Up̃ + σ̃ τ̃ ] + Kμ[�̃ν̃] ≤ V.

By Lemma 4.2, there exists a weak solution (u, v) of (1.32) which satisfies (1.37). �
5. General nonlinearities

5.1. Absorption case

In this section we treat system (1.38) with ε = −1. We recall that �g and �g̃ are defined in 
(1.39).

Proof of Theorem G. Step 1: We claim that

∫
�

g(Kμ[|ν̃|] + Gμ[|σ̃ |])δαdx +
∫
�

g̃(Kμ[|ν|] + Gμ[|τ |])δαdx < ∞. (5.1)
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For λ > 0, set Ãλ := {x ∈ � : Kμ[|ν̃|] + Gμ[|τ̃ |] > λ} and a(λ) := ∫
Ãλ

δαdx. We write

∥∥g(Kμ[|ν̃|] + Gμ[|τ̃ |])∥∥
L1(�;δα)

=
∫
Ã1

g(Kμ[|ν̃|] + Gμ[|τ̃ |])δαdx

+
∫
Ãc

1

g(Kμ[|ν̃|] + Gμ[|τ̃ |])δαdx

≤
∫
Ã1

g(Kμ[|ν̃|] + Gμ[|τ̃ |])δαdx + g(1)

∫
�

δαdx.

(5.2)

We have

∫
Ã1

g(Kμ[|ν̃|] + Gμ[|τ̃ |])δαdx = a(1)g(1) +
∞∫

1

a(s)dg(s).

On the other hand, by (2.2) and Proposition 2.4 one gets, for every s > 0,

a(s) ≤ C
(∥∥Kμ[|ν̃|]∥∥pμ

L
pμ
w (�;δα)

+ ∥∥Gμ[|τ̃ |]∥∥pμ

L
pμ
w (�;δα)

)
s−pμ ≤ C s−pμ (5.3)

where C = C(N, μ, �, γ, ‖ν̃‖M(∂�) , ‖τ̃‖M(�;δα)). Thus

a(1)g(1) +
∞∫

1

a(s)dg(s) ≤ C + C

∞∫
1

s−1−pμg(s)ds ≤ Cpμ�g. (5.4)

By combining the above estimates we obtain

∥∥g(Kμ[|ν̃|] + Gμ[|τ̃ |])∥∥
L1(�;δα)

≤ Cpμ�g + g(1)

∫
�

δαdx ≤ C.

Similarly,

∥∥g̃(Kμ[|ν|] + Gμ[|τ |])∥∥
L1(�;δα)

≤ C̃pμ�g̃ + g̃(1)

∫
�

δαdx ≤ C̃.

Thus (5.1) follows directly.

Step 2: Existence.
Put u0 := Kμ[ν] + Gμ[τ ]. Let v0 be the unique weak solution of the following problem

{−Lμv0 + g̃(u0) = τ̃ in �,

tr (v0) = ν̃.
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For any k ≥ 1, since g, g̃ satisfy (5.1) there exist functions uk and vk satisfying

⎧⎪⎪⎨
⎪⎪⎩

− Lμuk + g(vk−1) = τ in �,

− Lμvk + g̃(uk) = τ̃ in �,

tr (uk) = ν, tr (vk) = ν̃.

(5.5)

Moreover

uk + Gμ[g(vk−1)] = Gμ[τ ] + Kμ[ν],
vk + Gμ[g̃(uk)] = Gμ[τ̃ ] + Kμ[ν̃]. (5.6)

Since g, g̃ ≥ 0, it follows that, for every k ≥ 1,

Kμ[ν] + Gμ[τ ] − Gμ[g(Kμ[ν̃] + Gμ[τ̃ ])] ≤ uk ≤ Kμ[ν] + Gμ[τ ] = u0

and

Kμ[ν̃] + Gμ[τ̃ ] − Gμ[g̃(Kμ[ν] + Gμ[τ ])] ≤ vk ≤ Kμ[ν̃] + Gμ[τ̃ ]

in �. Now, suppose that for some k ≥ 1, uk ≤ uk−1. Since g and g̃ are nondecreasing, we deduce 
that

vk = Kμ[ν̃] + Gμ[τ̃ ] − Gμ[g̃(uk)] ≥ Kμ[ν̃] + Gμ[τ̃ ] − Gμ[g̃(uk−1)] = vk−1,

uk+1 = Kμ[ν] + Gμ[τ ] − Gμ[g(vk)] ≤ Kμ[ν] + Gμ[τ ] − Gμ[g(vk−1)] = uk.
(5.7)

This means that {vk} is nondecreasing and {uk} is nonincreasing. Hence, there exist u and v such 
that uk ↓ u and vk ↑ v in � and

Kμ[ν] + Gμ[τ ] − Gμ[g(Kμ[ν̃] + Gμ[τ̃ ])] ≤ u ≤ Kμ[ν] + Gμ[τ ],

Kμ[ν̃] + Gμ[τ̃ ] − Gμ[g̃(Kμ[ν] + Gμ[τ ])] ≤ v ≤ Kμ[ν̃] + Gμ[τ̃ ].

Since g and g̃ are continuous and nondecreasing, we infer from monotone convergence 
theorem and (5.1) that g(vk) → g(v) in L1(�; δα) and g̃(uk) → g̃(u) in L1(�; δα). As a conse-
quence,

Gμ[g̃(uk)] → Gμ[g̃(u)] a.e. in �,

Gμ[g(vk)] → Gμ[g(v)] a.e. in �.

By letting k → ∞ in (5.6), we obtain the desired result. �
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5.2. Source case: subcriticality

In this section for simplicity we consider system (1.38) with ε = 1. Assume that g(0) =
g̃(0) = 0. In preparation for proving Theorem H, we establish the following lemma:

Lemma 5.1. Assume ε = 1, g and g̃ are bounded, nondecreasing and continuous functions in R. 
Let τ, τ̃ ∈ M(�; δα) and ν, ν̃ ∈ M(∂�). Assume there exist a1 > 0, b1 > 0 and q1 > 1 such that 
(1.40) and (1.41) are satisfied. Then there exist λ∗, λ̃∗, b∗ > 0 and �∗ > 0 depending on N , μ, �
γ , γ̃ , �g , �g̃ , a1, q1 such that the following holds. For every b1 ∈ (0, b∗) and σ, σ̃ , �̃, � ∈ (0, �∗)
the system

⎧⎪⎪⎨
⎪⎪⎩

− Lμu = g(v + �̃Kμ[ν̃] + σ̃Gμ[τ̃ ]) in �,

− Lμv = g̃(u + �Kμ[ν] + σGμ[τ ]) in �,

tr (u) = tr (v) = 0

(5.8)

admits a weak solution (u, v) satisfying

‖u‖
L

pμ
w (�;δα)

+ ‖u‖Lq1 (�;δα−1) ≤ λ∗,

‖v‖
L

pμ
w (�;δα)

+ ‖v‖Lq1 (�;δα−1) ≤ λ̃∗.
(5.9)

Proof. Without loss of generality, we assume that ‖τ‖M(�;δα) = ‖τ̃‖M(�;δα) = ‖ν‖M(∂�) =
‖ν̃‖M(∂�) = 1. We shall use Schauder fixed point theorem to show the existence of positive 
weak solutions of (5.8). Define

S(w) := Gμ[g(w + �̃Kμ[ν̃] + σ̃Gμ[τ̃ ])],
S̃(w) := Gμ[g̃(w + �Kμ[ν] + σGμ[τ ])], ∀w ∈ L1(�).

(5.10)

Set

M1(w) := ‖w‖
L

pμ
w (�;δα)

, ∀w ∈ L
pμ
w (�; δα),

M̃1(w) := ‖w‖
L

pμ
w (�;δα)

, ∀w ∈ L
pμ
w (�; δα),

M2(w) := ‖w‖Lq1 (�;δα−1) , ∀w ∈ Lq1(�; δα−1),

M(w) := M1(w) + M2(w), ∀w ∈ L
pμ
w (�; δα) ∩ Lq1(�; δα−1),

M̃(w) := M̃1(w) + M2(w), ∀w ∈ L
pμ
w (�; δα) ∩ Lq1(�; δα−1).

Step 1: Upper bound for g(w + �̃Kμ[ν̃] + σ̃Gμ[τ̃ ]) in L1(�; δα) with w ∈ L
pμ
w (�; δα) ∩

Lq1(�; δα−1).
For λ > 0, set B̃λ := {x ∈ � : |w| + �̃Kμ[|ν̃|] + σ̃Gμ[|τ̃ |] > λ} and b(λ) := ∫

B̃λ
δαdx. We 

write
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∥∥g(w + �̃Kμ[ν̃] + σ̃Gμ[τ̃ ])∥∥
L1(�;δα)

≤
∫
B̃1

g(|w| + �̃Kμ[|ν̃|] + σ̃Gμ[|τ̃ |])δαdx

+
∫
B̃c

1

g(|w| + �̃Kμ[|ν̃|] + σ̃Gμ[|τ̃ |])δαdx

−
∫
B̃1

g(−|w| − �̃Kμ[|ν̃|] − σ̃Gμ[|τ̃ |])δαdx

−
∫
B̃c

1

g(−|w| − �̃Kμ[|ν̃|] − σ̃Gμ[|τ̃ |])δαdx

=: I + II + III + IV .

(5.11)

We first estimate I . Since g ∈ C(R+) is nondecreasing, one gets

I = b(1)g(1) +
∞∫

1

b(s)dg(s).

Since g is bounded, there exists an increasing sequence of real positive number {�j} such that

lim
j→∞�j = ∞ and lim

j→∞�
−pμ

j g(�j ) = 0. (5.12)

Observe that

∞∫
1

b(s)dg(s) = lim
j→∞

�j∫
λ

b(s)dg(s).

On the other hand, by (2.2) one gets, for every s > 0,

a(s) ≤ ∥∥|w| + �̃Kμ[|ν̃|] + σ̃Gμ[|τ̃ |]∥∥pμ

L
pμ
w (�;δα)

s−pμ ≤ C(M1(w) + �̃ + σ̃ )pμs−pμ (5.13)

where C = C(N, μ, �). Using (5.13), we obtain

b(1)g(1) +
�j∫

1

b(s)dg(s)

≤ C(M1(w) + �̃ + σ̃ )pμg(1) + C(M1(w) + �̃ + σ̃ )pμ

�j∫
1

s−pμdg(s)

4. EQUATIONS AND SYSTEMS WITH HARDY POTENTIALS 135



K.T. Gkikas, P.-T. Nguyen / J. Differential Equations 266 (2019) 833–875 869

≤ C(M1(w) + �̃ + σ̃ )pμ�
−pμ

j g(�j ) + Cpμ(M1(w) + �̃ + σ̃ )pμ

�j∫
1

s−1−pμg(s)ds.

By virtue of (5.12), letting j → ∞ yields

I ≤ Cpμ(M1(w) + �̃ + σ̃ )pμ

∞∫
1

s−1−pμg(s)ds. (5.14)

Similarly we have

III ≤ −Cpμ(M1(w) + �̃ + σ̃ )pμ

∞∫
1

s−1−pμg(−s)ds.

To handle the remaining terms II, III , without lost of generality, we assume q1 ∈
(1, N+α−1

N+α−2 ). Since g satisfies condition (1.40), it follows that

max{II, IV } ≤ a1

∫
B̃c

1

(|w| + �̃Kμ[|ν̃|] + σ̃Kμ[|τ̃ |])q1δαdx + b1

∫
B̃c

1

δαdx

≤ a1C

∫
�

|w|q1δαdx + a1c34(�̃
q1 + σ̃ q1) + b1C

≤ a1CM2(w)q1 + a1C(�̃q1 + σ̃ q1) + b1C

(5.15)

where C = C(N, μ, �).
Combining (5.11), (5.14) and (5.15) yields

∥∥g(w + �̃Kμ[ν̃] + σ̃Gμ[τ̃ ])∥∥
L1(�;δα)

≤ C�gM1(w)pμ + a1CM2(w)q1 + b1C + d�̃,σ̃ (5.16)

where d�̃,σ̃ = C�g(�̃
pμ + σ̃ pμ) + a1C(�̃q1 + σ̃ q1).

Step 2: Estimates on M1, M2 and M.
From (2.13), we have

M̃1(S(w)) = ∥∥Gμ[g(w + �̃Kμ[ν̃] + σ̃Gμ[τ̃ ])∥∥
L

pμ
w (�;δα)

≤ C
∥∥g(w + �̃Kμ[ν̃] + σ̃Gμ[τ̃ ])∥∥

L1(�;δα)
.

(5.17)

It follows that

M̃1(S(w)) ≤ C�gM1(w)pμ + a1CM2(w)q1 + b1C + Cd�̃,σ̃ . (5.18)
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Applying (2.13), we get

M2(S(w)) = ∥∥Gμ[g(w + �̃Kμ[ν̃] + σ̃Gμ[τ̃ ])∥∥
Lq1 (�;δα−1)

≤ C
∥∥g(w + �̃Kμ[ν̃] + σ̃Gμ[τ̃ ])∥∥

L1(�;δα)
,

which implies

M2(S(w)) ≤ C�gM1(w)pμ + a1CM2(w)q1 + b1C + Cd�̃,σ̃ . (5.19)

Consequently,

M̃(S(w)) ≤ C�gM1(w)pμ + a1CM2(w)q1 + b1C + Cd�̃,σ̃ . (5.20)

Similarly, we can show that

M(S̃(w)) ≤ C̃�g̃M̃1(w)pμ + a1C̃M2(w)q1 + b1C̃ + C̃d�,σ (5.21)

where C̃ is a positive constant. Define the functions η and η̃ as follows

η(λ) := max{C�g, C̃�g̃}λpμ + max{C, C̃}a1λ
q1 + max{C, C̃}b1 + max{Cd�̃,σ̃ , C̃d�,σ }

η̃(λ) := max{C�g, C̃�g̃}λpμ + max{C, C̃}a1λ
q1 + max{C, C̃}b1 + max{Cd�̃,σ̃ , C̃d�,σ }

where C and C̃ are the constants in (5.20) and (5.21) respectively. By (5.20) and (5.21), we 
deduce

M̃(S(w)) ≤ η(M(w)) and M(S̃(w)) ≤ η̃(M̃(w)).

Since pμ > 1 and q1 > 1, there exist �∗ > 0 and b∗ > 0 depending on N , μ, �, �g , �g̃ , a1, q1

such that for any �, �̃ ∈ (0, �∗) and b1 ∈ (0, b∗) there exist λ∗ > 0 and λ̃∗ > 0 such that

η(λ∗) = λ̃∗ and η̃(λ̃∗) = λ∗.

Here λ∗ and λ̃∗ depend on N , μ, �, �g , �g̃ , a1, q1. Therefore,

M(w) ≤ λ∗ =⇒ M̃(S(w)) ≤ λ̃∗
M̃(w) ≤ λ̃∗ =⇒ M(S̃(w)) ≤ λ∗.

(5.22)

Step 3: To apply Schauder fixed point theorem.
For w1, w2 ∈ L1(�), put

T(w1,w2) := (S(w2), S̃(w1)), (5.23)

D := {(ϕ, ϕ̃) ∈ L1+(�) × L1+(�) : M(ϕ) ≤ λ∗ and M̃(ϕ̃) ≤ λ̃∗}.
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Clearly, D is a convex subset of L1(�) × L1(�). We shall show that D is a closed subset of 
(L1(�))2. Indeed, let {(ϕm, ϕ̃m)} be a sequence in D converging to (ϕ, ϕ̃) in (L1(�))2. Obvi-
ously, ϕ ≥ 0 and ϕ̃ ≥ 0. We can extract a subsequence, still denoted by the same notation, such 
that (ϕm, ϕ̃m) → (ϕ, ϕ̃) a.e. in �. Consequently, by Fatou’s lemma,

Mi (ϕ) ≤ lim inf
m→∞ Mi (ϕm), Mi (ϕ̃) ≤ lim inf

m→∞ Mi (ϕ̃m)

for i = 1, 2. It follows that M(ϕ) ≤ λ∗ and M(ϕ̃) ≤ λ̃∗. So (ϕ, ϕ̃) ∈ D and therefore D is a closed 
subset of L1(�) × L1(�).

Clearly, T is well defined in D. For (w, w̃) ∈ D, we get M(w) ≤ λ∗ and M(w̃) ≤ λ̃∗, hence 
M̃(S(w)) ≤ λ̃∗ and M(S(w̃)) ≤ λ∗. It follows that T(D) ⊂ D.

We observe that T is continuous. Indeed, if wm → w and w̃m → w̃ as m → ∞ in L1(�) then 
since g, g̃ ∈ C(R) ∩ L∞(R), it follows that

g(w̃m + �̃Kμ[ν] + σ̃Gμ[τ̃ ]) → g(w̃ + �̃Kμ[ν] + σ̃Gμ[τ̃ ]) in L1(�; δα),

and

g̃(wm + �Kμ[ν] + σGμ[τ ]) → g̃(w + �Kμ[ν] + σGμ[τ ]) in L1(�; δα)

as m → ∞. By (2.13), S(w̃m) → S(w̃) and S̃(wm) → S̃(w) as m → ∞ in L1(�). Thus 
T(wm, w̃m) → T(w, w̃) in L1(�) × L1(�).

We next show that T is a compact operator. Let {(wm, w̃n)} ⊂ D and for each m ≥ 1, put ψm =
S(w̃m) and ψ̃m = S̃(wm). Hence {�ψm} and {�ψ̃m} are uniformly bounded in Lp(G) for every 
subset G � �. Therefore {ψm} is uniformly bounded in W 1,p(G). Consequently, there exists 
a subsequence, still denoted by the same notation, and functions ψ, ψ̃ such that (ψm, ψ̃m) →
(ψ, ψ̃) a.e. in �. By dominated convergence theorem, (ψm, ψ̃m) → (ψ, ψ̃) in L1(�) × L1(�). 
Thus T is compact.

By Schauder fixed point theorem there is (u, v) ∈ D such that T(u, v) = (u, v). �
Proof of Theorem H.I. Let {gn} and {g̃n} be the sequences of continuous, nondecreasing func-
tions defined on R such that

gn(0) = g(0), |gn| ≤ |gn+1| ≤ |g|, sup
R

|gn| = n and lim
n→∞‖gn − g‖L∞

loc(R) = 0,

g̃n(0) = g̃(0), |g̃n| ≤ |g̃n+1| ≤ |g̃|, sup
R

|g̃n| = n and lim
n→∞‖g̃n − g̃‖L∞

loc(R) = 0.
(5.24)

Due to Lemma 5.1, there exist λ∗, λ̃∗, b∗ > 0 and �∗ > 0 depending on N , μ, �, �g , �g̃ , a1, q1
such that for every b1 ∈ (0, b∗), �̃, � ∈ (0, �∗) and n ≥ 1 there exists a solution (wn, w̃n) ∈ D of

⎧⎪⎨
⎪⎩

−Lμwn = gn(w̃n + �̃Kμ[ν̃] + σ̃Gμ[τ̃ ]) in �,

−Lμw̃n = g̃n(wn + �Kμ[ν] + σGμ[τ ]) in �,

tr (wn) = tr (w̃n) = 0.

(5.25)
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For each n, set un = wn + �Kμ[ν] + σGμ[τ ] and vn = w̃n + �̃Kμ[ν̃] + σ̃Gμ[τ̃ ]. Then

−
∫
�

unLμφdx =
∫
�

gn(vn)φdx + σ

∫
�

φdτ − �

∫
�

Kμ[ν]Lμφ dx ∀φ ∈ Xμ(�), (5.26)

−
∫
�

vnLμφdx =
∫
�

g̃n(un)φdx + σ̃

∫
�

φdτ̃ − �̃

∫
�

Kμ[ν̃]Lμφ dx ∀φ ∈ Xμ(�). (5.27)

Since {(wn, w̃n)} ⊂ D and the fact that �gn ≤ �g , we obtain from (5.16) that

‖gn(vn)‖L1(�;δα) ≤ C�gλ
pμ∗ + a1Cλ

q1∗ + b∗C + d�∗ (5.28)

Hence the sequence {g(vn)} is uniformly bounded in L1(�; δα). Since {(wn, w̃n)} ⊂ D, the se-
quence { μ

δ2 wn} and { μ

δ2 w̃n} are uniformly bounded in Lq1(G) for every subset G � �. As a 
consequence, {�wn} and {�w̃n} are uniformly bounded in L1(G) for every subset G � �. By 
regularity results for elliptic equations, there exist subsequences, still denoted by the same no-
tations, and functions w and w̃ such that (wn, w̃n) → (w, w̃) a.e. in �. Therefore (un, vn) →
(u, v) a.e. in � with u = w + �Kμ[ν] + σGμ[τ ] and u = w̃ + �̃Kμ[ν̃] + σ̃Gμ[τ̃ ]. Moreover 
(g̃n(un), gn(vn)) → (g̃(u), g(v)) a.e. in �.

We show that un → u in L1(�; δα). Since {wn} is uniformly bounded in Lq1(�; δα−1), by 
(2.14), we derive that {un} is uniformly bounded in Lq1(�; δα). Due to Holder inequality, {un} is 
uniformly integrable with respect to δαdx. We invoke Vitali convergence theorem to derive that 
un → u in L1(�; δα). Similarly, one can prove that vn → v in L1(�; δα).

We next prove that gn(vn) → g(v) in L1(�; δα). For λ > 0 and n ∈ N set Bn,λ := {x ∈ � :
|vn| > λ} and bn(λ) := ∫

Bn,λ
δαdx. For any Borel set E ⊂ �,

∫
E

gn(vn)δ
αdx =

∫
E∩Bn,λ

gn(vn)δ
αdx +

∫
E∩Bc

n,λ

gn(vn)δ
αdx

≤
∫

Bn,λ

gn(vn)δ
αdx + mg,λ

∫
E

δαdx

≤ bn(λ)gn(λ) +
∞∫

λ

bn(s)dgn(s) + mg,λ

∫
E

δαdx,

(5.29)

where mg,λ := sup[0,λ] g. By proceeding as in the proof of Lemma 5.1 in order to get (5.14), we 
deduce

bn(λ)gn(λ) +
∞∫

λ

bn(s)dgn(s) ≤ C

∞∫
λ

s−1−pμgn(s)ds ≤ C

∞∫
λ

s−1−pμg(s)ds (5.30)

where C depends on N , μ, �g , �g̃ , a1, q1. Note that the term on the right hand-side of (5.30)
tends to 0 as λ → ∞. Take arbitrarily ε > 0, there exists λ > 0 such that the right hand-side of 
(5.30) is smaller than ε

2 . Fix such λ and put η = ε
2mg,λ

. Then, by (5.29),
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∫
E

δ(x)αdx ≤ η =⇒
∫
E

gn(vn)δ(x)αdx < ε.

Therefore the sequence {gn(vn)} is uniformly integrable with respect to δαdx. Due to Vitali 
convergence theorem, we deduce that gn(vn) → g(v) in L1(�; δα).

By sending n → ∞ in each term of (5.26) we obtain

−
∫
�

uLμφdx =
∫
�

g(v)φdx + σ

∫
�

φ dτ − �

∫
�

Kμ[ν]Lμφ dx, ∀φ ∈ Xμ(�). (5.31)

Similarly, one can show that g̃n(un) → g̃(u) in L1(�; δα). By letting n → ∞ in (5.27), we get

−
∫
�

vLμφdx =
∫
�

g̃(u)φdx + σ̃

∫
�

φ dτ̃ − �̃

∫
�

Kμ[ν̃]Lμφ dx, ∀φ ∈ Xμ(�). (5.32)

Thus (u, v) is a solution of (1.27). �
5.3. Source case: sublinearity

We next deal with the case where g and g̃ are sublinear.

Proof of Theorem H.II. The proof is similar to that of Lemma 5.1, also based on Schauder 
fixed point theorem. So we point out only the main modifications. Let S and S̃ be the operators 
defined in (5.10). Put

N1(w) := ‖w‖Lq1 (�;δα−1) , ∀w ∈ Lq1(�; δα−1),

N2(w) := ‖w‖L1(�;δα−1) , ∀w ∈ L1(�; δα−1).

Combining (2.13), (2.14) and (1.42) leads to

N2(S(w)) ≤ a2CN1(w)q1 + C(�̃q1 + σ̃ q1 + b2).

On the other hand

N1(S̃(w)) ≤ a2CN2(w)q2 + C(�q2 + σq2 + b2)..

Define

ξ1(λ) := a2Cλq1 + C(�̃q1 + σ̃ q1 + b2),

ξ2(λ) := a2Cλq2 + C(�q2 + σq2 + b2).

Then

N2(S(w)) ≤ ξ1(N1(w)) and N1(S̃(w)) ≤ ξ2(N2(w)).
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If q1q2 < 1 then we can find λ1 and λ2 such that ξ1(λ1) = λ2 and ξ2(λ2) = λ1. Thus if 
N1(w) < λ1 then N2(S(w)) < λ2 and if N2(w) < λ2 then N1(S̃(w)) < λ1.

If q1q2 = 1 and a2 small enough we can find, λ1 and λ2 such that ξ1(λ1) = λ2 and ξ2(λ2) = λ1.
The rest of the proof can be proceeded as in the proof of Lemma 5.1 and the proof of Theo-

rem H.I. and we omit it. �
5.4. Source case: subcriticality and sublinearity

Proof of Theorem H.III. Set

N(w) := ‖w‖Lq1 (�;δα−1) , ∀w ∈ Lq1(�; δα−1).

By an argument similar to the proof of Lemma 5.1 and Theorem H.II, we get

N(S(w)) ≤ C�gM1(w)pμ + a1CM2(w)q1 + b1C + d�̃,σ̃ .

On the other hand

M(S̃(w)) ≤ a2CN(w)q2 + C(�q2 + σq2 + b2).

Set

ξ̂1(λ) := C�gλ
pμ + a1Cλq1 + b1C + d�̃,σ̃ ,

ξ̂2(λ) := a2Cλq2 + C(�q2 + σq2 + b2).

Then

N(S(w)) ≤ ξ̂1(M(w)) and M(S̃(w)) ≤ ξ̂2(N(w)).

We consider there cases.
Case 1: q1q2 > 1. Since pμ > q1, it follows that pμq2 > 1. Therefore there exist b∗ > 0 and 

�∗ > 0 such that for b1, b2 ∈ (0, b∗) and � ∈ (0, �∗) one can find λ1 > 0 and λ2 > 0 satisfying

ξ̂1(λ1) = λ2 and ξ̂2(λ2) = λ1. (5.33)

Case 2: pμq2 = 1. In this case, there exist a∗ > 0 such that if a2 ∈ (0, a∗) then for every � > 0
and �̃ > 0 one can find λ1 > 0 and λ2 > 0 satisfying (5.33).

Case 3: pμq2 < 1. In this case for every � > 0 and �̃ > 0 one can find λ1 > 0 and λ2 > 0 such 
that (5.33) holds.

Hence, in any case,

M(w) ≤ λ1 =⇒ N(S(w)) ≤ ξ̂1(λ1) = λ2

N(w) ≤ λ2 =⇒ M(S̃(w)) ≤ ξ̂2(λ2) = λ1.

The rest of the proof can be proceeded as in the proof of Lemma 5.1 and the proof of Theo-
rem H.II. and we omit it. �
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CHAPTER 5

Elliptic equations with a Hardy potential and a
gradient-dependent nonlinearity

An investigation on semilinear equations with a Hardy potential and
a gradient-dependent nonlinear term is presented in this chapter, which is
based on a joint work with Gkikas [80]. We establish sharp existence and
uniqueness results and obtain a complete description of isolated singularities
in subcritical range. We also show that singularities are removable in the
supercritical range.
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Abstract: Let Ω ⊂ ℝN (N ≥ 3) be a C2 bounded domain, and let δ be the distance to ∂Ω. We study equations
(E±), −Lμu ± g(u, |∇u|) = 0 in Ω, where Lμ = ∆ + μ

δ2 , μ ∈ (0,
1
4 ] and g : ℝ ×ℝ+ → ℝ+ is nondecreasing and

locally Lipschitz in its two variables with g(0, 0) = 0. We prove that, under some subcritical growth assump-
tion on g, equation (E+) with boundary condition u = ν admits a solution for any nonnegative bounded
measure on ∂Ω, while equation (E−)with boundary condition u = ν admits a solution provided that the total
mass of ν is small. Then we analyze the model case g(s, t) = |s|p tq and obtain a uniqueness result, which
is even new with μ = 0. We also describe isolated singularities of positive solutions to (E+) and establish
a removability result in terms of Bessel capacities. Various existence results are obtained for (E−). Finally, we
discuss existence, uniqueness and removability results for (E±) in the case g(s, t) = |s|p + tq.

Keywords: Hardy Potential, Singular Solutions, Boundary Trace, Uniqueness, Critical Exponent, Gradient
Term, Isolated Singularities
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1 Introduction and Main Results

Let Ω be a C2 bounded domain in ℝN (N ≥ 3), μ ∈ (0, 14 ] and δ(x) = δΩ(x) := dist(x, ∂Ω). In this paper, we
investigate the boundary value problem with measure data for equation

−Lμu ± g(u, |∇u|) = 0 in Ω, (E±)

where Lμ = LΩμ := ∆ + μ
δ2 and g : ℝ ×ℝ+ → ℝ+ is nondecreasing and locally Lipschitz in its two variables with

g(0, 0) = 0. The term μ
δ2 is called Hardy potential since it is related to the Hardy inequality. The nonlinear-

ity g(u, |∇u|) is called absorption (resp. source) if the “plus sign” (resp. “minus sign”) appears in (E±). One
prototype model to keep in mind is g(u, |∇u|) = |u|p|∇u|q.

1.1 Background and Main Contributions

The boundary value problem for (E±) without Hardy potential, i.e. μ = 0, has received substantial attention
over the last decades, starting from the pioneering work of Brezis [10]. In particular, Brezis proved that, for
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every prescribed L1 boundary datum, the semilinear equation with absorption term

− ∆u + g(u) = 0 in Ω (1.1)

admits a unique solution. Afterwards, equation (1.1) in measure framework was first considered by Gmira
and Véron in [18] where they showed that boundary value problem for (1.1) is not always solvable for every
measure boundary datum. Because of its applications inmany areas, equation (1.1) with g(u, |∇u|) = |u|p−1u
has been intensively studied in many works, among them is the celebrated series of papers of Marcus and
Véron [26–28]. These results were then extended to the equation with gradient-dependent absorption term

−∆u + g(u, |∇u|) = 0 in Ω.

We refer to [32] for the case when g depends only on ∇u and to [24, 30] for the case when g depends on both
u and ∇u.

Equation (E−) with μ = 0, i.e.
− ∆u − g(u, |∇u|) = 0 in Ω, (1.2)

has been studied in various directions. Necessary and sufficient criteria in terms of capacities for the
existence of a solution with measure boundary data were obtained in [9]. Singular solutions of (1.2)
with g(u, |∇u|) = |∇u|q in a perturbation of the ball was studied in [2]. Recently, Bidaut-Véron, Garcia-
Huidobro and Véron have established a priori estimates for solutions of (1.2) with g(u, |∇u|) = |u|p|∇u|q
or g(u, |∇u|) = |u|p +M|∇u|q (see [7, 8]).

The case with Hardy potential has been intensively studied over the last decade. See e.g. Bandle, Moroz
and Reichel [5], Bandle, Marcus and Moroz [4], Marcus and Nguyen [25], Gkikas and Véron [17], Marcus and
Moroz [23], Nguyen [31], Gkikas and Nguyen [16]. In the aforementioned papers, the best constant in the
Hardy inequality

CH(Ω) := inf
φ∈H1

0(Ω)\{0}

∫Ω|∇φ|
2 dx

∫Ω(φ/δ)
2 dx

(1.3)

is deeply involved in the analysis. It is well known that CH(Ω) ∈ (0, 14 ] and CH(Ω) =
1
4 if Ω is convex (see [22,

Theorem 11]) or if −∆δ ≥ 0 in the sense of distributions (see [6, Theorem A]). Moreover, the infimum in (1.3)
is achieved if and only if CH(Ω) < 1

4 .
Moreover, Brezis and Marcus [11, Remark 3.2] proved that, for any μ < 1

4 , the eigenvalue problem

λμ := inf
φ∈H1

0(Ω)\{0}

∫Ω(|∇φ|
2 − μ

δ2 φ
2) dx

∫Ω φ
2 dx

(1.4)

admits aminimizerφμ inH1
0(Ω), andhence λμ is the first eigenvalue of−Lμ inH1

0(Ω).Moreover,−Lμφμ = λμφμ
inΩ.When μ = 14 , there is nominimizer of (1.4) inH1

0(Ω), but there exists a nonnegative functionφ 1
4
∈H1

loc(Ω)
such that −L 1

4
φ 1

4
= λ 1

4
φ 1

4
in Ω in the sense of distributions.

We see from (1.3) and (1.4) that λμ > 0 if μ < CH(Ω), λμ = 0 if μ = CH(Ω) < 1
4 , while λμ < 0 when

μ > CH(Ω). It is not known if λμ > 0 when μ = CH(Ω) = 1
4 . However, if Ω is convex or if −∆δ ≥ 0 in the sense

of distributions (in these cases CH(Ω) = 1
4 ), then λ 1

4
> 0 (see [11, Theorem II] and [6, Theorem A] with k = 1

and p = 2).
Throughout the present paper, we assume that

μ ∈ (0, 14 ] and λμ > 0. (1.5)

This assumption implies the validity of the representation theorem which states that every positive Lμ-
harmonic function u in Ω (i.e. u is a solution of Lμu = 0 in Ω in the sense of distributions) can be uniquely
represented in the form u = 𝕂μ[ν] for some positive measure ν ∈M+(∂Ω) (the space of positive bounded
measure on ∂Ω), where𝕂μ denotes the Martin operator (see Subsection 2.2 for more details). The represen-
tation theorem is derived from Ancona [3] (see also [25, page 70]) in the case μ < CH(Ω) and was proved by
Gkikas and Véron [17, Theorem 2.33] in the case μ = 1

4 and λ 1
4
> 0.
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In order to investigate the boundary behavior of Lμ-harmonic functions, Gkikas and Véron [17] intro-
duced a notion of boundary trace in a dynamic way which is recalled below.

Let D ⋐ Ω and x0 ∈ D. If h ∈ C(∂D), then the problem

{
−Lμu = 0 in D,

u = h on ∂D

admits a unique solution which allows to define the Lμ-harmonic measure ωx0D on ∂D by

u(x0) = ∫
∂D

h(y) dωx0D (y).

A sequence of domains {Ωn} is called a smooth exhaustion of Ω if ∂Ωn ∈ C2, Ωn ⊂ Ωn+1, ⋃n Ωn = Ω and
HN−1(∂Ωn)→ HN−1(∂Ω). For each n, let ωx0Ωn be the L

Ωn
μ -harmonic measure on ∂Ωn.

Definition 1.1. Let μ ∈ (0, 14 ]. We say that a function u possesses a boundary trace if there exists a measure
ν ∈M(∂Ω) (the space of bounded measure on ∂Ω) such that, for any smooth exhaustion {Ωn} of Ω, it holds

lim
n→∞
∫
∂Ωn

ϕu dωx0Ωn = ∫
∂Ω

ϕ dν for all ϕ ∈ C(Ω).

The boundary trace of u is denoted by tr(u), and we write tr(u) = ν.

In [17, Proposition 2.34], Gkikas and Véron proved that if tr(𝕂μ[ν]) = ν for every ν ∈M(∂Ω). This fact and
the representation theorem allow to characterize Lμ-harmonic functions in terms of their boundary behavior.
It was shown in [15] that, when μ ∈ (0, CH(Ω)), the notion of boundary trace in Definition 1.1 coincides with
the notion of normalized boundary trace introduced byMarcus andNguyen in [25, Definition 1.2]. This notion
was employed to formulate the boundary value problem

{
−Lμu ± |u|p−1u = 0 in Ω,

tr(u) = ν.
(1.6)

A complete description of the structure of positive solutions to (1.6) with “plus sign” was established in [17,
25], and various existence results for (1.6) with “minus sign” were given in [15, 31] in connection to the
critical exponent

pμ :=
N + α

N + α − 2 with α := 12 +
√ 1
4 − μ. (1.7)

In particular, it was proved that, when 1 < p < pμ, equation (1.6) with “plus sign” admits a unique solution
for every finite measure ν ∈M+(∂Ω), while the existence phenomenon occurs for (1.6) with “minus sign”
only with boundary measure of small total mass. When p ≥ pμ, the nonexistence phenomenon happens,
i.e. equations (E±) do not admit any solution with an isolated singularity. Related results were obtained in
[4, 5, 23] and references therein.

Very recently, a thorough study of the boundary value problem

{
−Lμu + |∇u|q = 0 in Ω,

tr(u) = ν
(1.8)

was carried out in [16], revealing that the value

qμ :=
N + α

N + α − 1

is a critical exponent for the solvability of (1.8). This means that if 1 < q < qμ, then, for every ν ∈M+(∂Ω),
there is a unique solution of (1.8); otherwise, if qμ ≤ q < 2, singularities are removable.

Motivated by the aforementioned works, in the present paper, we aim to investigate related issues for
(E±). Main features of a boundary value problem for (E±) with measure are
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∙ the presence of the Hardy potential which blowups strongly at the boundary,
∙ the dependence of the nonlinearity on both solution and its gradient,
∙ rough data which cause the invalidity of some classical results.
The interplay between the features leads to new essential difficulties, hence complicates drastically the anal-
ysis and produces interestingly new phenomena.

Our contributions are the following.
∙ We establish the existence of weak solutions of (E±) with prescribed boundary trace ν under sharp

assumption on g. In particular, by using the standard approximation method, combined with the esti-
mates of theGreen kernel and theMartin kernel aswell as their gradient [15], the sub- and supersolutions
theorem and the Vitali convergence theorem, we show that, for every measure ν ∈M+(∂Ω), equation
(E+) admits a solution. Unlike the absorption case, thanks to the Schauder fixed point theorem, we can
construct a solution to (E±) under the smallness assumption on the total mass of the boundary datum.

∙ We prove the comparison principle for (E+), which in turn implies the uniqueness. This result, which is
obtained by developing the method in [16, 24] and the theory of linear equations [15, 17, 25], is new,
even in the case without Hardy potential.

∙ We show sharp a priori estimates for singular solutions of (E±). This allows to study solutions with an
isolated singularity. As a matter of fact, we show that there are two types of solutions with an isolated
singularity of (E+): weakly singular ones and strongly singular one. Moreover, the strongly singular solu-
tion can be obtained as the limit of the weakly singular solutions. It is interesting that this phenomenon
does not occur for (E−). The interaction of up and |∇u|q is a source of difficulties, which requires a delicate
analysis and heavy computations.

∙ We demonstrate removability results of singularities in terms of capacities. The absorption case and
source case are treated differently using different types of capacities (see [9, 16]).

Our results cover and refinemost of the aforementionedworks in the literature and provide a full understand-
ing of equations with Hardy potential and gradient-dependent nonlinearity.

1.2 Main Results

First we are concerned with a boundary value problem for equations with absorption term of the form

{
−Lμu + g(u, |∇u|) = 0 in Ω,

tr(u) = ν.
(Pν+)

Before stating the main results, let us give the definition of weak solutions of (Pν+).

Definition 1.2. Let ν ∈M(∂Ω). A function u is called a weak solution of (Pν+) if

u ∈ L1(Ω, δα), g(u, |∇u|) ∈ L1(Ω, δα)

and
−∫
Ω

uLμζ dx + ∫
Ω

g(u, |∇u|)ζ dx = −∫
Ω

𝕂μ[ν]Lμζ dx for all ζ ∈ Xμ(Ω),

where the space of test function Xμ(Ω) is defined by

Xμ(Ω) := {ζ ∈ H1
loc(Ω) : δ

−αζ ∈ H1(Ω, δ2α), δ−αLμζ ∈ L∞(Ω)}. (1.9)

We notice that this definition is inspired by the definition in [17, Section 3.2]. Formore properties of the space
of test functions Xμ(Ω), we refer to [17].

Our first result is the existence of a weak solution of (Pν+) under an integral condition on g.

Theorem 1.3 (Existence). Assume g satisfies

Λg :=
∞

∫
1

g(s, s
pμ
qμ )s−1−pμ ds <∞. (1.10)

Then, for any ν ∈M+(∂Ω), (Pν+) admits a positive weak solution 0 ≤ u ≤ 𝕂μ[ν] in Ω.
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Remark 1.4. We remark the following.
(i) If g(s, t) = |s|p tq for s ∈ ℝ, t ∈ ℝ+, p, q ≥ 0, p + q > 1, then g satisfies (1.10) if

(N + α − 2)p + (N + α − 1)q < N + α. (1.11)

(ii) If g(s, t) = |s|p + tq for s ∈ ℝ, t ∈ ℝ+, p > 1, q > 1, then g satisfies (1.10) if

1 < p < pμ and 1 < q < qμ . (1.12)

It is worth noticing that this theorem is established by developing the sub- and supersolutions method in
[16], in combination with the Schauder fixed point theorem and the Vitali convergence theorem.

It seems infeasible to obtain the uniqueness in case of general nonlinearity; however, when

g(u, |∇u|) = |u|p|∇u|q ,

we are able to prove the comparison principle, which in turn implies the uniqueness. The method is delicate,
relying on a regularity result (see Proposition 4.1), maximum principle (see Lemma 4.2), estimates on the
gradient of subsolutions of a nonhomogeneous linear equation (see Lemma4.4).Weemphasize that this result
is new even in the case without Hardy potential, i.e. μ = 0.

Theorem 1.5 (Comparison Principle). Assume g(u, |∇u|) = |u|p|∇u|q with q ≥ 1 and p and q satisfying (1.11).
Let νi ∈M+(∂Ω), i = 1, 2, and let ui be a nonnegative solution of (Pν+)with ν = νi. If ν1 ≤ ν2, then u1 ≤ u2 in Ω.

Assume 0 ∈ ∂Ω, and denote by δ0 the Dirac measure concentrated at 0. A complete picture of isolated singu-
larities concentrated at 0 is depicted in the next theorem.

Theorem 1.6. Assume g(u, |∇u|) = |u|p|∇u|q with q ≥ 1 and p and q satisfying (1.11).
(I) Weak singularity. For any k > 0, let uΩ0,k be the solution of

{
−Lμu + g(u, |∇u|) = 0 in Ω

tr(u) = kδ0.
(1.13)

Then there exists a constant c = c(N, μ, Ω) > 0 such that uΩ0,k(x) ≤ ckδ(x)
α|x|2−N−2α for every x ∈ Ω and

|∇uΩ0,k(x)| ≤ ckδ(x)
α−1|x|2−N−2α for all x ∈ Ω.

Moreover,

lim
Ω∋x→y

uΩ0,k(x)

KΩ
μ (x, 0)

= k. (1.14)

Furthermore, the mapping k → uΩ0,k is increasing.
(II) Strong singularity. Put uΩ0,∞ := limk→∞ uΩ0,k. Then u

Ω
0,∞ is a solution of

{
−Lμu + g(u, |∇u|) = 0 in Ω,

u = 0 on ∂Ω \ {0}.
(1.15)

There exists a constant c = c(N, μ, p, q, Ω) > 0 such that

c−1δ(x)α|x|−
2−q
p+q−1−α ≤ uΩ0,∞(x) ≤ cδ(x)

α|x|−
2−q
p+q−1−α for all x ∈ Ω,

|∇uΩ0,∞(x)| ≤ cδ(x)
α−1|x|−

2−q
p+q−1−α for all x ∈ Ω.

Moreover,
lim

Ω∋x→0
x
|x|=σ∈S

N−1
+

|x|
2−q
p+q−1 uΩ0,∞(x) = ω(σ), (1.16)

locally uniformly on the upper hemisphere SN−1+ = ℝN+ ∩ SN−1, where ω is the unique solution of problem
(4.35). HereℝN+ = {x = (x1, . . . , xN) = (x, xN) : xN > 0}, and SN−1 is the unit sphere inℝN .
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Let us discuss briefly the proof of Theorem1.6. Themain ingredients in the proof of convergence (1.14) are the
estimates on the Green kernel (2.1) and the Martin kernel (2.2) and condition (1.11). From the monotonicity
of the sequence {uΩ0,k}, universal estimate (4.15) and a standard argument, we deduce that uΩ0,∞ is a solution
of (1.15). The proof of convergence (1.16) relies strongly on the similarity transformation Tℓ (see (4.19)) and
the study of problem (4.35) in the upper hemisphere SN−1+ . The existence and uniqueness result for (4.35) is
provided in Section 4.4.

When g(u, |∇u|) = |u|p|∇u|q with q ≥ 1, in order to deal with a wider range of p and q (i.e. p and q may
not satisfy (1.11)), we make use of Bessel capacities (see Section 5). A necessary condition for the existence
of a solution to (Pν+) and a removability result are stated in the following theorems.

Theorem 1.7 (Absolute Continuity). Assume g(u, |∇u|) = |u|p|∇u|q with

p ≥ 0, 1 ≤ q < 2, p + q > 1 and (N + α − 2)p + (N + α − 1)q ≥ N + α.

Let ν ∈M+(∂Ω) and assume that problem (Pν+) has a nonnegative solution u ∈ C2(Ω).
(i) If q ̸= α + 1, then ν is absolutely continuous with respect to CℝN−11−α+ α+1−qp+q ,(p+q) , i.e. ν(K) = 0 for any Borel set

K ⊂ ∂Ω such that CℝN−11−α+ α+1−qp+q ,(p+q) (K) = 0. Here (p + q) denotes the conjugate exponent of p + q.
(ii) If q = α + 1, then, for any ε ∈ (0,min{α + 1, (N−1)αα+1 − (1 − α)}), ν is absolutely continuous with respect to

CℝN−11−α+ ε
p+α+1 ,(p+α+1)

 . Here the capacity CℝN−1s,κ is defined in Section 5.

Put

W(x) :=
{
{
{

δ(x)1−α if μ < 1
4 ,

δ(x) 12 |ln δ(x)| if μ = 1
4 .

(1.17)

We note that, by [17, Propositions 2.17, 2.18], for any h ∈ C(∂Ω), there exists a unique Lμ-harmonic
function uh ∈ C(Ω) ∩ L1(Ω, δα) such that

lim
x∈Ω, x→ξ

uh(x)
W(x)
= h(ξ) for all ξ ∈ ∂Ω. (1.18)

In addition, tr(uh) = hωx0 , where x0 ∈ Ω is a fixed reference point and ωx0 is the Lμ-harmonic measure in Ω
(see [17, Subsection 2.3] for further details). It is worthmentioning that (1.18) can be viewed as the boundary
condition in the case with Hardy potential. If μ = 0, then α = 1 and W(x) ≡ 1, in which case (1.18) becomes
the boundary condition in the classical sense.

The following result provides a removability result for solutions with “zero boundary condition” on
∂Ω \ K (see (1.20)).

Theorem 1.8 (Removability). Assume p ≥ 0, 1 ≤ q < 2, p + q > 1 and (N + α − 2)p + (N + α − 1)q ≥ N + α. Let
K ⊂ ∂Ω be compact such that
(i) CℝN−11−α+ α+1−qp+q ,(p+q) (K) = 0 if q ̸= α + 1 or
(ii) CℝN−11−α+ ε

p+α+1 ,(p+α+1)
 (K) = 0 for some ε ∈ (0,min{α + 1, (N−1)αα+1 − (1 − α)}) if q = α + 1.

Then any nonnegative solution u ∈ C2(Ω) ∩ C(Ω \ K) of

− Lμu + |u|p|∇u|q = 0 in Ω (1.19)

such that
lim

x∈Ω, x→ξ

u(x)
W(x)
= 0 for all ξ ∈ ∂Ω \ K (1.20)

is identically zero.

Next we deal with the boundary value problem for equations with source term of the form

{
−Lμu − g(u, |∇u|) = 0 in Ω,

tr(u) = ν.
(Pν−)

Weak solutions of (Pν−) are defined similarly to Definition 1.2.
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Phenomena occurring in this case are different from those in the case of absorption nonlinearity. This is
reflected in Theorem 1.9 which ensures the existence of a weak solution under a smallness assumption on the
total mass of the boundary data.

In order to make the statement clear and lucid, we rewrite equation (Pν−) as

{
−Lμu − g(u, |∇u|) = 0 in Ω,

tr(u) = ϱν,
(Pϱν− )

where ϱ is a positive parameter and ν ∈M+(∂Ω) with ‖ν‖M(∂Ω) = 1.

Theorem 1.9 (Existence Result for (Pϱν− ) in Subcritical Case). Let ν ∈M+(∂Ω) with ‖ν‖M(∂Ω) = 1. Assume g
satisfies (1.10) and

g(as, bt) ≤ k̃(a ̃p + b ̃q)g(s, t) for all (a, b, s, t) ∈ ℝ4+, (1.21)

for some ̃p > 1, ̃q > 1, k̃ > 0. Then there exists ϱ0 > 0 depending on N, μ, Ω, Λg , k̃, ̃p, ̃q such that, for any
ϱ ∈ (0, ϱ0), problem (Pϱν− ) admits a positive weak solution u ≥ ϱ𝕂μ[ν] in Ω.

This result is established by combining an idea in [34] and the Schauder fixed point theorem.

Remark 1.10. It is easy to see that if g(s, t) = |s|p tq or g(s, t) = |s|p + tq, then (1.21) holds.

Thenext result provides sufficient conditions for the existence of a solution to (Pϱν− )with g(u, |∇u|) = |u|p|∇u|q
in terms of capacities. See the definition of the capacities Cap∂Ω andℕ2α−1,1 in Section 7.

Theorem 1.11 (Existence Result for (Pϱν− )). Assume that g(u, |∇u|) = |u|p|∇u|q with p ≥ 0, q ≥ 0, p + q > 1 and
q < 1+α+(1−α)p

α . Assume one of the following conditions holds.
(i) There exists a constant C > 0 such that

ν(E) ≤ C Cap∂Ω1−α+ α+1−qp+q ,(p+q) (E) for every Borel set E ⊂ ∂Ω.

Here (p + q) denotes the conjugate exponent of p + q.
(ii) There exists a positive constant C > 0 such that

ℕ2α−1,1[δαp+(α−1)q+αℕ2α−1,1[ν]p+q] ≤ Cℕ2α−1,1[ν] <∞ a.e. in Ω. (1.22)

Then there exists ϱ0 = ϱ0(N, μ, p, q, C, Ω) > 0 such that, for any ϱ ∈ (0, ϱ0), problem (Pϱν− ) admits a weak solu-
tion u satisfying

|u| ≤ Cδαℕ2α−1,1[ϱν], |∇u| ≤ Cδα−1ℕ2α−1,1[ϱν] in Ω, (1.23)

where C = C(N, μ, Ω) is a positive constant.

Organization of the paper. In Section 2, we recall main properties of the first eigenvalue and the correspond-
ing eigenfunction of −Lμ in Ω and collect estimates on the Green kernel and the Martin kernel, as well as
their gradient. In Section 3, we prove Theorem 1.3, and in Section 4, we demonstrate Theorem 1.5 and Theo-
rem 1.6. In Section 5, we give the proof of Theorem 1.7 and Theorem 1.8. Section 6 is devoted to the proof of
Theorem 1.9, and in Section 7, the proof of Theorem 1.11 is provided. In Appendix A, we construct a barrier
in the case g(u, |∇u|) = |u|p|∇u|q. Finally, in Appendix B, we discuss the case g(u, |∇u|) = |u|p + |∇u|q and
state main results without proofs since the arguments are similar to those in the case g(u, |∇u|) = up|∇u|q.

1.3 Notations

We list below some notations that we use frequently in the present paper.
∙ For ϕ ≥ 0, denote by Lκ(Ω, ϕ) (κ > 1) the space of functions v satisfying ∫Ω|v|

κϕ dx <∞. We denote by
H1(Ω, ϕ) the space of functions v such that v ∈ L2(Ω, ϕ) and ∇v ∈ L2(Ω, ϕ). Let M(Ω, ϕ) be the space
of Radon measures τ on Ω satisfying ∫Ω ϕ d|τ| <∞, and let M+(Ω, ϕ) be the positive cone of M(Ω, ϕ).
Denote by M(∂Ω) the space of bounded Radon measures on ∂Ω and by M+(∂Ω) the positive cone of
M(∂Ω).
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∙ Denote Lκw(Ω, τ), 1 ≤ κ <∞, τ ∈M+(Ω), the weak Lκ space (or Marcinkiewicz space) with weight τ. The
subscript w is an abbreviation of “weak”. See Subsection 2.2 for more details.

∙ We denote by λμ the first eigenvalue of −Lμ and by φμ the corresponding eigenfunction (see Subsec-
tion 1.4).

∙ For κ > 1, we denote by κ the conjugate exponent.
∙ Throughout the paper, c, c1, c2, C, C1, C denote positive constants which may vary from line to line. We

write C = C(a, b) to emphasize the dependence of C on the data a, b.
∙ The notation f ≈ h means that there exist positive constants c1, c2 such that c1h < f < c2h.
∙ Denote by χE the indicator function of a set E.
∙ For z ∈ ∂Ω, denote by nz the outer unit normal vector at z.

2 Preliminaries

We recall that, throughout the paper, we assume that μ ∈ (0, 14 ] and λμ > 0.

2.1 Eigenvalue and Eigenfunction

We recall important facts of the eigenvalue λμ of −Lμ and the associated eigenfunction φμ which can be
found in [13, 14]. If 0 < μ < 1

4 , then the minimizer φμ ∈ H1
0(Ω) of (1.4) exists and satisfies φμ ≈ δα, where α

is defined in (1.7). If μ = 1
4 , there is no minimizer of (1.4) in H1

0(Ω), but there exists a nonnegative function
φ 1

4
∈ H1

loc(Ω) such that φ 1
4
≈ δ 1

2 and it satisfies −L 1
4
φ 1

4
= λμφ 1

4
in Ω in the sense of distributions. In addition,

we have δ− 12 φ 1
4
∈ H1

0(Ω, δ).

2.2 Green Kernel and Martin Kernel

Denote by GΩ
μ and KΩ

μ the Green kernel and theMartin kernel of−Lμ inΩ respectively (see [17, 25]). The Green
operator and the Martin operator are defined as follows:

𝔾Ωμ [τ](x) := ∫
Ω

GΩ
μ (x, y) dτ(y) for every τ ∈M(Ω, δα),

𝕂Ωμ [ν](x) := ∫
∂Ω

KΩ
μ (x, z) dν(z) for every ν ∈M(∂Ω).

When there is no ambiguity, we will drop the superscript Ω, i.e. we write Gμ, Kμ, 𝔾μ, 𝕂μ instead of GΩ
μ , KΩ

μ ,
𝔾Ωμ ,𝕂Ωμ .

By [14, Theorem 4.11], it holds

Gμ(x, y) ≈ min{|x − y|2−N , δ(x)αδ(y)α|x − y|2−N−2α} for every x, y ∈ Ω, x ̸= y. (2.1)

Since (1.5) holds, by [3] and [17, Proposition 2.29], the Martin kernel Kμ exists. Moreover, it holds (see [25,
(2.7), page 76] for μ < CH(Ω) and [17, Theorem 2.30] for μ = 1

4 )

Kμ(x, y) ≈ δ(x)α|x − y|2−N−2α for every x ∈ Ω, y ∈ ∂Ω. (2.2)

For estimates on the Green kernel and the Martin kernel of a more general Schrödinger operator, we refer
to [21].

Next we recall estimates of Green kernel and Martin kernel in weak Lκ spaces. Let τ ∈M+(Ω). For κ > 1,
κ = κ

κ−1 and u ∈ L
1
loc(Ω, τ), we set

‖u‖Lκw(Ω,τ) := inf{c ∈ [0,∞] : ∫
E

|u| dτ ≤ c(∫
E

dτ)
1
κ for any Borel set E ⊂ Ω}
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and
Lκw(Ω, τ) := {u ∈ L1loc(Ω, τ) : ‖u‖Lκw(Ω,τ) <∞}.

Lκw(Ω, τ) is called weak Lκ space (or Marcinkiewicz space with exponent κ) with quasi-norm ‖ ⋅ ‖Lκw(Ω,τ).
See [29] for more details. Notice that, for every s > −1,

Lκw(Ω, δs) ⊂ Lr(Ω, δs) for every r ∈ [1, κ). (2.3)

Moreover, for any u ∈ Lκw(Ω, δs) (s > −1),

∫
{|u|≥λ}

δs dx ≤ λ−κ‖u‖κLκw(Ω,δs) for all λ > 0. (2.4)

Proposition 2.1 ([15, Proposition 2.4]). The following statements hold.
(i) Let γ ∈ (− αN

N+2α−2 ,
αN
N−2 ). There exists a constant c = c(N, μ, γ, Ω) such that

‖𝔾μ[τ]‖L
N+γ
N+α−2
w (Ω,δγ) ≤ c‖τ‖M(Ω,δα) for all τ ∈M(Ω, δα). (2.5)

(ii) Let γ > −1. Then there exists a constant c = c(N, μ, γ, Ω) such that

‖𝕂μ[ν]‖L
N+γ
N+α−2
w (Ω,δγ) ≤ c‖ν‖M(∂Ω) for all ν ∈M(∂Ω). (2.6)

Proposition 2.2 ([16, Proposition A]). The following statements hold.
(i) Let θ ∈ [0, α] and γ ∈ [0, θN

N−1 ). Then there exists a positive constant c = c(N, μ, θ, γ, Ω) such that

‖∇𝔾μ[|τ|]‖L
N+γ
N+θ−1
w (Ω,δγ) ≤ c‖τ‖M(Ω,δθ) for all τ ∈M(Ω, δθ), (2.7)

where ∇𝔾μ[τ](x) = ∫Ω ∇xGμ(x, y) dτ(y).
(ii) Let γ ≥ 0. Then there exists a positive constant c = c(N, μ, γ, Ω) such that

‖∇𝕂μ[|ν|]‖L
N+γ
N+α−1
w (Ω,δγ) ≤ c‖ν‖M(∂Ω) for all ν ∈M(∂Ω),

where ∇𝕂μ[ν](x) = ∫∂Ω ∇xKμ(x, z) dν(z).

2.3 Linear Equations

The Green kernel and the Martin kernel play an important role in the study of the boundary value problem
for the linear equation

{
−Lμu = τ in Ω,
tr(u) = ν.

(2.8)

Definition 2.3. Assume (τ, ν) ∈M(Ω, δα) ×M(∂Ω). We say that u is a weak solution of (2.8) if u ∈ L1(Ω, δα)
and

−∫
Ω

uLμζ dx = ∫
Ω

ζ dτ − ∫
Ω

𝕂μ[ν]Lμζ dx for all ζ ∈ Xμ(Ω),

where Xμ(Ω) is defined in (1.9).

Proposition 2.4 ([15, Proposition 2.11]). Assume that (τ, ν) ∈M(Ω, δα) ×M(∂Ω). Then u is a weak solution
of (2.8) if and only if u = 𝔾μ[τ] +𝕂μ[ν] in Ω. Moreover, there exists a constant C = C(N, μ, Ω) > 0 such that
‖u‖L1(Ω,δα) ≤ C(‖τ‖M(Ω,δα) + ‖ν‖M(∂Ω)).

For D ⋐ Ω, denote by GDμ and KDμ the Green kernel and the Poisson kernel of −Lμ in D. Consider the problem

{
−Lμu = φ in D,

u = η on ∂D.
(2.9)

A similar result has been established for (2.9).
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Proposition 2.5 ([17]). For any (φ, η) ∈M(D, δD) ×M(∂D) (where δD = dist( ⋅ , D)), there exists a uniqueweak
solution u = uφ,η ∈ L1(D, δD) of (2.9), i.e.

−∫
D

uLμζ dx = ∫
D

ζ dφ − ∫
D

𝕂Dμ [η]Lμζ dx for all ζ ∈ X0(D),

where X0(D) is defined similarly to Xμ(Ω) with μ = 0 and Ω = D. It holds

u = 𝔾Dμ [φ] +𝕂Dμ [η], (2.10)

and there exists a constant c = c(N, μ, D) > 0 such that ‖u‖L1(D,δD) ≤ c(‖φ‖M(Ω,δD) + ‖η‖M(∂D)).

Finally, we will need the following classical properties of C2 domains.

Proposition 2.6 ([29]). There exists a positive constant β0 such that δ ∈ C2(Ω4β0 ). Moreover, for any x ∈ Ω4β0 ,
there exists a unique ξx ∈ ∂Ω such that
(a) δ(x) = |x − ξx| and nξx = −∇δ(x) = −

x−ξx
|x−ξx | , where nξx denotes the outer unit normal vector at ξx ∈ ∂Ω,

(b) x(s) := x + s∇δ(x) ∈ Ωβ0 and δ(x(s)) = |x(s) − ξx| = δ(x) + s for any 0 < s < 4β0 − δ(x).

3 Nonlinear Equations with Subcritical Absorption

In this section, we establish the existence of a positive solution of (Pν+). The approach is based on a com-
bination of the idea in [20], estimates on the Green kernel, the Martin kernel, their gradient and the Vitali
convergence theorem.

Proof of Theorem 1.3. We divide the proof into three steps.

Step 1. In this step, we assume that

M := sup
s∈ℝ,t∈ℝ+

|g(s, t)| < +∞. (3.1)

Let D ⊂⊂ Ω be a smooth open domain, and consider the equation

− Lμv + g(v +𝕂μ[ν], |∇(v +𝕂μ[ν])|) = 0 in D. (3.2)

First we note that u1 = 0 is a supersolution of (3.2) and u2 = −𝕂μ[ν] is a solution of (3.2). Let

T(u) :=
{{{
{{{
{

0 if 0 ≤ u,
u if u2 ≤ u ≤ 0,
u2 if u ≤ u2.

(3.3)

In this step, we use the idea in [20] in order to construct a solution v ∈ W1,∞(D) of the problem

{
−Lμv + g(v +𝕂μ[ν], |∇(v +𝕂μ[ν])|) = 0 in D,

v = 0 on ∂D,
(3.4)

which satisfies
−𝕂μ[ν] ≤ v ≤ 0 for all x ∈ D. (3.5)

Let dD,Ω := dist(∂D, ∂Ω) and u ∈ W1,1(D). By the standard elliptic theory, there exists a unique solution
of the problem

{
{
{

−∆w + (d−2D,Ω − μδ
−2)w = −g(v +𝕂μ[ν], |∇(v +𝕂μ[ν])|) + d−2D,ΩT(v) in D,

w = 0 on ∂D.
(3.6)

Recall that δ = dist( ⋅ , ∂Ω).

Brought to you by | Utrecht University Library
Authenticated

Download Date | 3/5/20 9:22 PM

5. EQUATIONS WITH A GRADIENT-DEPENDENT NONLINEARITY 153



K. T. Gkikas and P.-T. Nguyen, Elliptic Equations with Hardy Potential | 11

We define an operator𝔸 as follows: to each u ∈ W1,1(D), we associate the unique solution𝔸[u] of (3.6).
Furthermore, since

d−2D,Ω − μδ(x)
−2 ≥ (1 − μ)δ(x)−2 for all x ∈ D,

by standard elliptic estimates, there exists a constant C1 = C1(N, μ, dD,Ω , D) > 0 such that

sup
x∈D
|𝔸[u](x)| ≤ C1(M + ‖ν‖M(∂Ω)) =: A1.

Also, by (3.3) and standard elliptic estimates, there exists a positive constant C2 = C2(N, μ, dD,Ω , D) such that

sup
x∈D
|∇𝔸[u](x)| ≤ C2(M + ‖ν‖M(∂Ω)) =: A2.

By using an argument similar to the proof of [16, Theorem B, Step 1], we can show that

𝔸 : W1,1(D)→ W1,1(D)

is continuous and compact. Now set K := {ξ ∈ W1,1(D) : ‖ξ‖W1,∞(D) ≤ A1 + A2}. Then K is a closed, convex
subset ofW1,1(D) and𝔸(K) ⊂ K. Thuswe can apply the Schauder fixed point theorem to obtain the existence
of a function v ∈ K such that𝔸[v] = v. Thismeans v is aweak solution of (3.6). By the standard elliptic theory,
we can easily deduce that v, u2 ∈ C2(D) ∩ C(D). Moreover, it can be seen that v ≤ 0.

Now we allege that v ≥ u2 in D by employing an argument of contradiction. Suppose by contradiction
that there exists x0 ∈ D such that infx∈D(v(x) − u2(x)) = v(x0) − u2(x0) < 0. Then we have ∇v(x0) = ∇u2(x0),
−∆(v − u2)(x0) ≤ 0, T[v](x0) = T[u2](x0) = u2(x0). But

−∆(v − u2)(x0) = −(d−2D,Ω − μδ(x0)
−2)(v(x0) − u2(x0))

− g(v(x0) +𝕂μ[ν](x0), |∇v(x0) + ∇𝕂μ[ν](x0)|)
+ g(u2(x0) +𝕂μ[ν](x0), |∇u2(x0) + ∇𝕂μ[ν](x0)|) > 0,

which is clearly a contradiction. Therefore, v ≥ u2 in D.
As a consequence, T(v) = v, and therefore v is a solution of (3.4).

Step 2. In this step, we still assume that (3.1) holds. Let {Ωn} be a smooth exhaustion of Ω, and let vn
be the solution of (3.4) in D = Ωn (constructed in Step 1) satisfying (3.5). Then there exists a constant
C = C(N, μ, Ω) > 0 such that

|vn(x)| ≤ 𝔾μ[χΩng(vn +𝕂μ[ν], |∇(vn +𝕂μ[ν])|)](x) ≤ CMδ(x)α for all x ∈ Ωn .

This implies that there exists a subsequence, still denoted by {vn}, such that vn → v inW1,p
loc (Ω) and v satisfies

{
−Lμv + g (v +𝕂μ[ν], |∇(v +𝕂μ[ν])|) = 0 in Ω,

tr(v) = 0.

Furthermore, −𝕂μ[ν] ≤ v ≤ 0 for all x ∈ Ω. Setting u = v +𝕂μ[ν], then u is a solution of (Pν+) satisfying
0 ≤ u ≤ 𝕂μ[ν] in Ω.

Step 3. In this step, we drop condition (3.1). Set gn := min(g, n), and let un be a nonnegative solution (the
existence of un is guaranteed in Step 2) of

{
−Lμun + gn(un , |∇un|) = 0 in Ω,

tr(un) = ν

satisfying
0 ≤ un ≤ 𝕂μ[ν] in Ω. (3.7)

Then un satisfies

−∫
Ω

unLμζ dx + ∫
Ω

gn(un , |∇un|)ζ dx = −∫
Ω

𝕂μ[ν]Lμζ dx for all ζ ∈ Xμ(Ω), (3.8)

un +𝔾μ[gn(un , |∇un|)] = 𝕂μ[ν]. (3.9)
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Choosing ζ = φμ, where φμ is an eigenfunction associated to the first eigenvalue of−Lμ, by (3.8), we have

λμ ∫
Ω

|un|φμ dx + ∫
Ω

gn(un , |∇un|)φμ dx ≤ λμ ∫
Ω

𝕂μ[|ν|]φμ dx. (3.10)

Now, by (3.9) and Proposition 2.2, we obtain

‖∇un‖Lqμw (Ω,δα) ≤ c(N, μ, Ω)(‖gn(un , |∇un|)‖L1(Ω,δα) + ‖ν‖M(∂Ω)).

This, together with (3.10) and (2.6), implies

‖∇un‖Lqμw (Ω,δα) ≤ c(N, μ, Ω)‖ν‖M(∂Ω).

Similarly, we can show that
‖un‖Lpμw (Ω,δα) ≤ c(N, μ, Ω)‖ν‖M(∂Ω).

Next we prove that
gn(un , |∇un|)→ g(u, |∇u|) in L1(Ω, δα). (3.11)

For λ > 0 and any function w, set

Awλ := {x ∈ Ω : |w(x)| > λ}, aw(λ) := ∫
Awλ

δα dx,

Bwλ := {x ∈ Ω : |∇w(x)| > λ
pμ
qμ }, bw(λ) := ∫

Bwλ

δα dx,

Cwλ := Awλ ∩ B
w
λ , cw(λ) := ∫

Cwλ

δα dx.

(3.12)

Then, for λ > 0 and n ∈ ℕ, put
An,λ = Aunλ , an(λ) = aun (λ),
Bn,λ = Bunλ , bn(λ) = bun (λ),
Cn,λ = Cunλ , cn(λ) = cun (λ).

For any Borel set E ⊂ Ω,

∫
E

gn(un , |∇un|)δα dx = ∫
E∩Cn,λ

gn(un , |∇un|)δα dx + ∫
E∩Acn,λ∩Bn,λ

gn(un , |∇un|)δα dx

+ ∫
E∩An,λ∩Bcn,λ

gn(un , |∇un|)δα dx + ∫
E∩Acn,λ∩B

c
n,λ

gn(un , |∇un|)δα dx

≤ C
∞

∫
λ

g(s, s
pμ
qμ )s−1−pμ ds + g(λ, λ

pμ
qμ )∫

E

δα dx. (3.13)

Note that the first term on the right-hand side of (3.13) tends to 0 as λ →∞. Therefore, for any ε > 0, there
exists λ > 0 such that the first term on the right-hand side of (3.13) is smaller than ε

2 . Fix such λ, and put

η = ε

2max{g(λ, λ
pμ
qμ ), 1}

.

Then, by (3.13),
∫
E

δα dx ≤ η ⇒ ∫
E

gn(un , |∇un|)δα dx < ε.

Therefore, the sequence {gn(un , |∇un|)} is equi-integrable in L1(Ω, δα). Thus, by invoking the Vitali conver-
gence theorem, we derive (3.11).

From (3.7), we deduce that 0 ≤ un → u in L1(Ω, δα). Therefore, letting n →∞ in (3.8), we deduce that u
is a weak solution of (Pν+).
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4 Absorption g(u, |∇u|) = |u|p|∇u|q: Subcritical Case
In this section, we assume g(u, |∇u|) = |u|p|∇u|q with p ≥ 0, q > 0, p + q > 1. We recall that (see Remark 1.4)
g satisfies (1.10) if and only if (1.11) holds. Moreover, g satisfies (1.21). Therefore, by Theorem 1.3, for any
ν ∈M+(∂Ω), the problem

{
−Lμu + |u|p|∇u|q = 0 in Ω,

tr(v) = ν
(4.1)

admits a positive weak solution.
Next we prove the following regularity result.

Proposition 4.1. Assume p ≥ 0 and 0 < q < N
N−1 . If u is a nonnegative solution of

− Lμu + |u|p|∇u|q = 0 in Ω, (4.2)

then u ∈ C2(Ω).

Proof. Let D ⊂⊂ Ω be a smooth open domain. Since u is a nonnegative solution of (4.1), by (2.10), we can eas-
ily obtain 0 ≤ u(x) ≤ 𝕂μ[ν](x) ≤ CD for all x ∈ D. Consequently, |u|p|∇u|q ≤ CpD|∇u|q in D. Hence, by invoking
[16, Lemma 4.2], we can derive the desired result.

4.1 Comparison Principle

Lemma 4.2. Let u ∈ C2(Ω) be a nonnegative solution of (4.2). If there exists x0 ∈ Ω such that u(x0) = 0, then
u ≡ 0.

Proof. By Young’s inequality, |u|p|∇u|q ≤ |u|p+q + |∇u|p+q in Ω. As a consequence, u satisfies

− Lμu + |u|p+q + |∇u|p+q ≥ 0 in Ω. (4.3)

Now set a(x) := |∇u(x)|p+q−2∇u(x) and b(x) := |u(x)|p+q−1. Let β ∈ (0, β0) be small enough such that x0 ∈ Dβ.
Since u ∈ C2(Ω), there exists a constant Cβ such that supx∈Dβ |a(x)| + supx∈Dβ b(x) ≤ Cβ. From (4.3),wededuce
−∆u + a ⋅ ∇u + bu ≥ μ

δ2 u ≥ 0 in Dβ. Since b(x) ≥ 0, by themaximumprinciple, u cannot achieve a nonpositive
minimum in Dβ. Thus the result follows straightforward.

Next we state the comparison principle for (4.2).

Lemma 4.3. Let p ≥ 0, q ≥ 1 and D ⊂ Ω. We assume that u1, u2 ∈ C2(D) are respectively nonnegative subsolu-
tion and positive supersolution of (4.2) in D such that

lim sup
x→∂D

u1(x)
u2(x)
< 1. (4.4)

Then u1 ≤ u2 in D.

Proof. Suppose by contradiction that
m := sup

x∈D

u1(x)
u2(x)
> 1.

By (4.4), we deduce that there exists x0 ∈ D such that

u1(x0)
u2(x0)
= sup
x∈D

u1(x)
u2(x)
= m.

Let r > 0 be such that B(x0, r) ⊂ D. Then we see that

− ∆(m−1u1 − u2) + (m−1u1)p|m−1∇u1|q − up2|∇u2|
q ≤

μ
δ2
(m−1u1 − u2) ≤ 0 in B(x0,

r
2). (4.5)
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Now note that

(m−1u1)p|m−1∇u1|q − u
p
2|∇u2|

q = (m−1u1)p|m−1∇u1|q − (m−1u1)p|∇u2|q

+ (m−1u1)p|∇u2|q − u
p
2|∇u2|

q

= ã(x)(m−1∇u1 − ∇u2) + b̃(x)(m−1u1 − u2), (4.6)

where
ã(x) = (m−1u1)p

|m−1∇u1|q − |∇u2|q

|m−1∇u1 − ∇u2|2
(m−1∇u1 − ∇u2)

and

b̃(x) := |∇u2|q(
(m−1u1)p − u

p
2

m−1u1 − u2
) ≥ 0.

Since u1, u2 ∈ C2(D), u2(x) > 0 for any x ∈ D and q ≥ 1, there exists a positive constant C > 0 such that

sup
x∈B(x0 , r2 )

|ã(x)| + sup
x∈B(x0 , r2 )

b̃(x) < C.

Combining (4.5) and (4.6), we have

−∆(m−1u1 − u2) + ã ⋅ ∇(m−1u1 − u2) + b̃(m−1u1 − u2) ≤ 0 in B(x0,
r
2).

Hence, by the maximum principle, m−1u1 − u2 cannot achieve a nonnegative maximum in B(x0, r2 ). This is
a contradiction. Thus u1 ≤ u2 in D.

In order to prove the comparison principle for (4.1), we need the following result.

Lemma 4.4. [16, Lemma 4.5] Let τ ∈M(Ω, δα), and v ≥ 0 satisfies

{
−Lμv ≤ τ in Ω,
tr(v) = 0.

Then, for any 1 < κ < qμ, there exists a constant c = c(N, Ω, μ) such that ‖∇v‖Lκ(Ω,δα) ≤ c‖τ‖M(Ω,δα).

Proof of Theorem 1.5. Since ui is a nonnegative solution of (4.1), |ui|p|∇ui|q ∈ L1(Ω, δα), i = 1, 2. Moreover,
from Propositions 2.1 and 2.2, we deduce that

‖ui‖Lp1 (Ω,δα) + ‖∇ui‖Lq1 (Ω,δα) ≤ c1(‖|ui|p|∇ui|q‖L1(Ω,δα) + ‖νi‖M(∂Ω))

for any 1 < p1 < pμ, 1 < q1 < qμ and i = 1, 2.
Without loss of generality, we assume that ν2 ̸= 0; thus, by Lemma 4.2, u2 > 0 in Ω. In addition, by

Proposition 4.1, ui ∈ C2(Ω) for i = 1, 2. Finally, by the representation formula, we have

ui +𝔾μ[|ui|p|∇ui|q] = 𝕂μ[νi], i = 1, 2.

Let 0 < ε ≤ 1. Then

(εu1 − u2)+ ≤ (𝔾μ[|u2|p ∇u2|q] − ε𝔾μ[|u1|p|∇u1|q])+ ≤ 𝔾μ[
|u2|

p|∇u2|q − |εu1|p|∇u1|q] =: v,

which implies tr((εu1 − u2)+) ≤ tr(v) = 0. Hence tr((εu1 − u2)+) = 0.
Note that εu1 is a subsolution of (4.2). Also, since ui ∈ C2(Ω) and u2 > 0 in Ω, it follows that, for small

enough β > 0,
Cβ := sup

x∈Dβ

u1
u2
<∞.

Without loss of generality, we assume that Cβ > 1. Set εβ = 1
Cβ < 1. Then εβu1 − u2 ≤ 0 in Dβ. Moreover, in

view of the proof of Lemma 4.3, we derive that

εβu1 − u2 < 0 in Dβ . (4.7)
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Put Eβ := {x ∈ Ω : εβu1 − u2 > 0}. Due to Kato’s inequality [29], we get

− Lμ(εβu1 − u2)+ ≤ (u
p
2|∇u2|

q − (εu1)p|ε∇u1|q)χEβ ≤ ((εu1)p(|∇u2|q − |ε∇u1|q))χEβ . (4.8)

By (4.7), we derive that Eβ ⊂ Ωβ.
Let κ > 1 and

max{1, N + α
N + α − p(N + α − 2)} < κ <

N + α
q(N + α − 1) .

Note that, for this choice of κ, we have
κ

κ − 1p < pμ and κq < qμ .

Using (4.8), Lemma 4.4 and Hölder’s inequality, we get

∫
Ω

|∇(εβu1 − u2)+|κqδα dx

≤ c(∫
Ω

(εβu1)p|∇u2|
q − |εβ∇u1|qχEβδ

α dx)
κq

≤ c(∫
Eβ

(εβu1)p(ε
q−1
β |∇u1|

q−1 + |∇u2|q−1)|∇(εβu1 − u2)|δα dx)
κq

≤ c(∫
Eβ

(εβu1)
κ
κ−1 pδα dx)

q(κ−1)
(∫
Eβ

((εq−1β |∇u1|
q−1 + |∇u2|q−1)|∇(εβu1 − u2)|)κδα dx)

q

≤ c(∫
Eβ

(εβu1)
κ
κ−1 pδα dx)

q(κ−1)
(∫
Eβ

(|∇u1|κq + |∇u2|κq)δα dx)
q−1
(∫
Eβ

(|∇(εβu1 − u2)|)κqδα dx). (4.9)

Since Eβ ⊂ Ωβ, u1 ∈ L
κ
κ−1 p(Ω, δα) and |∇ui| ∈ Lκq(Ω, δα), we can choose β∗ small enough such that

c( ∫
Eβ∗

(εβ∗u1)
κ
κ−1 pδα dx)

q(κ−1)
( ∫
Eβ∗

(|∇u1|κq + |∇u2|κq)δα dx)
q−1
<
1
4 .

By the above inequality and (4.9), we obtain

∇(εβ∗u1 − u2)+ = 0 ⇒ (εβ∗u1 − u2)+ = c∗

for some constant c∗ ≥ 0, and since (εβ∗u1 − u2)+ = 0 on Dβ∗ , we have c∗ = 0, namely εβ∗u1 ≤ u2 in Ω. As
a consequence,

sup
x∈Ω

u1(x)
u2(x)
= sup
x∈Dβ∗

u1(x)
u2(x)
= sup
x∈∂Dβ∗

u1(x)
u2(x)
= ε−1β∗ > 1. (4.10)

This implies the existence of x∗ ∈ ∂Dβ∗ such that

(εβ∗u1 − u2)(x∗) = 0. (4.11)

Next we take β < β∗; then εβ ≤ εβ∗ . On the other hand, we infer from (4.10) that εβ ≥ εβ∗ and hence εβ = εβ∗ .
Therefore, (4.11) contradicts (4.7). The proof is complete.

Lemma 4.5. Let p ≥ 0, 1 < q < N
N−1 and p + q > 1. If u is a nonnegative solution of (4.2), then

u(x) ≤ Cδ(x)−
2−q
q+p−1 +Mβ0 for all x ∈ Ω, (4.12)

|∇u(x)| ≤ Cδ(x)−
1+p
p+q−1 for all x ∈ Ω, (4.13)

where Mβ0 := supDβ0 u, C = C(N, μ, q, p, β0,Mβ0 ) and C = C(N, μ, q, p, β0,Mβ0 ).

Proof. The proof is similar to that of [16, Lemma 4.6], and hence we omit it.

Brought to you by | Utrecht University Library
Authenticated

Download Date | 3/5/20 9:22 PM

158 5. EQUATIONS WITH A GRADIENT-DEPENDENT NONLINEARITY



16 | K. T. Gkikas and P.-T. Nguyen, Elliptic Equations with Hardy Potential

4.2 Isolated Singularities

In this section, we assume the origin 0 ∈ ∂Ω and study the behavior near 0 of solutions of (4.2) which vanish
on ∂Ω \ {0}. We first establish pointwise a priori estimates for solutions with an isolated singularity at 0, as
well as their gradient.

Proposition 4.6. Assume 0 ∈ ∂Ω, p ≥ 0, q ≥ 1, p + q > 1 and p and q satisfy (1.11). Let u be a positive solution
of (4.2) in Ω such that

lim
x∈Ω, x→ξ

u(x)
W(x)
= 0 for all ξ ∈ ∂Ω \ {0}, (4.14)

locally uniformly in ∂Ω \ {0}. HereW is defined in (1.17). Then there exists a constant C = C(N, μ, q, p, Ω) > 0
such that

u(x) ≤ Cδ(x)α|x|−
2−q
p+q−1−α for all x ∈ Ω, (4.15)

|∇u(x)| ≤ Cδ(x)α−1|x|−
2−q
p+q−1−α for all x ∈ Ω.

Proof. We split the proof into two steps.

Step 1. Let β0 be the constant in Proposition 2.6. Let xi ∈ ∂Ω be such that |xi| ≥ β0
16 ,

∂Ω ⊂ B(0, β04 ) ∪
n
⋃
i=1
B(xi ,

β0
32) =

: A for some n ∈ ℕ.

Notice that there exists a constant ε0 = ε0(β0) > 0 such that dist(∂A, ∂Ω) > ε0.
Let wi be the function constructed in Proposition A.1 in B(xi , β016 ) for R =

β0
16 , i = 1, . . . , n. Then, by the

maximum principle (see [17, Propositions 2.13 and 2.14]), we have

u(x) ≤ wi(x) for all x ∈ B(xi ,
β0
16), i = 1, . . . , n.

As a consequence, there is a constant C0 = C0(N, μ, q, p, Ω, β0) > 1 such that

u(x) ≤ C0 for all x ∈
n
⋃
i=1
B(xi ,

β0
32).

Set

v(x) := C1(|x| −
β0
4 )
− 2−q
p+q−1

,

where C1 > 0 will be chosen later. We will show that v(x) ≥ u(x) for every x ∈ Ω \A. Indeed, by a direct
computation, we can show that there is a constant C1 > 0 such that, for all x ∈ Ω \A,

−∆v = 2 − q
q + p − 1((N − 1)|x|

−1(|x| − β04 )
−1
−

p + 1
p + q − 1(|x| −

β0
4 )
−2
)v

≥ −C1
(2 − q)(1 + p)
(p + q − 1)2

(|x| − β04 )
− 2p+q
p+q−1

, (4.16)

|∇v|q = Cq1(
2 − q

p + q − 1)
q
(|x| − β04 )

− q(1+p)p+q−1
, (4.17)

μ v(x)
δ(x)2
≤ C1ε−20 (sup

x∈Ω
|x|)2(|x| − β04 )

− 2p+q
p+q−1

. (4.18)

Gathering estimates (4.16)–(4.18) leads to, for C1 = C1(N, μ, p, q, β0, Ω) > 0 large enough,

−Lμv + vp|∇v|q ≥ (|x| −
β0
4 )
− 2p+q
p+q−1
[−C1
(2 − q)(1 + p)
(p + q − 1)2

− C1ε−20 (sup
x∈Ω
|x|)2 + Cp+q1 (

2 − q
p + q − 1)

q
]

≥ 0 for all x ∈ Ω \A.
Moreover,we can choose C1 = C1(C0, N, μ, q, p, Ω, β0) large enough such that lim supx→∂(Ω\A)(u− v)< 0.

By Lemma 4.3, we deduce that u ≤ v in Ω \A, which implies that u ≤ C2 in Dβ0 for some positive constant
C2 = C2(N, μ, q, p, Ω, β0). Thus, by Lemma 4.5, there exists C3 = C3(Ω, N, μ, q, p, β0) > 0 such that

u(x) ≤ C3δ(x)−
2−q
p+q−1 for all x ∈ Ω.
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Step 2. For ℓ > 0, put
Tℓ[u](x) := ℓ

2−q
p+q−1 u(ℓx), x ∈ Ωℓ := ℓ−1Ω. (4.19)

Let ξ ∈ ∂Ω \ {0}, and put d = d(ξ) := 1
2 |ξ|. We assume that d ≤ 1. Denote ud := Td[u]. Then ud is a solution

of (4.2) in Ωd = 1
dΩ. Let R0 =

β0
16 , where β0 is the constant in Proposition 2.6. Then the solution wξ, 3R04 men-

tioned in Proposition A.1 satisfies ud(y) ≤ wξ, 3R04 (y) for all y ∈ B 3R0
4
(ξ) ∩ Ωd. Thus ud is bounded above in

B 3R0
5
(ξ) ∩ Ωd by a constant C > 0 depending only on N, μ, p, q and the C2 characteristic of Ωd (see [29] for

the definition of the C2 characteristic of Ω). As d ≤ 1, a C2 characteristic of Ω is also a C2 characteristic of
Ωd; therefore, the constant C can be taken to be independent of ξ . We note here that the constant R0 ∈ (0, 1)
depends on the C2 characteristic of Ω. The rest of the proof can proceed similarly to the proof of [16, Propo-
sition E], and we omit it.

4.3 Weak Singularities

Proof of Theorem 1.6. We use the same idea as in the proof of [16, Theorem F]. Let u = uΩ0,k be the positive
solution of (1.13). By Theorem 1.3 and Lemma 4.2, 0 < u ≤ kKμ( ⋅ , 0) in Ω. Moreover,

u +𝔾μ[up|∇u|q] = kKμ( ⋅ , 0). (4.20)

This and (2.2) imply that

u(x) ≤ kKμ(x, 0) ≤ ckδ(x)α|x|2−N−2α for all x ∈ Ω. (4.21)

By proceeding as in the proof of (4.13), we obtain

|∇u(x)| ≤ ckδ(x)α−1|x|2−N−2α for all x ∈ Ω. (4.22)

It follows from (2.1), (4.21) and (4.22) that

𝔾μ[up|∇u|q](x) ≤ ckp+q ∫
Ω

δ(y)αp+(α−1)qGμ(x, y)|y|(2−N−2α)(p+q) dy. (4.23)

Case 1: α + αp + (α − 1)q ≥ 0. By the assumption and (2.1), we have

𝔾μ[up|∇u|q](x) ≤ ckp+qδ(x)α ∫
Ω

|x − y|2−N−2α|y|α−(N+α−2)p−(N+α−1)q dy. (4.24)

Since p and q satisfy (1.11), it follows that

∫
Ω

|x − y|2−N−2α|y|α−(N+α−2)p−(N+α−1)q dy ≤ c|x|2−α−(N+α−2)p−(N−1+α)q . (4.25)

Combining (4.24), (4.25) and (2.2) yields

𝔾μ[up|∇u|q](x) ≤ ckp+q|x|N+α−(N+α−2)p−(N+α−1)qKμ(x, 0).

As a consequence,

lim
|x|→0

𝔾μ[up|∇u|q](x)
Kμ(x, 0)

= 0. (4.26)

Case 2: −1 + α < α + αp + (α − 1)q < 0. By (4.23) and (2.1), we have

𝔾μ[up|∇u|q](x) ≤ ckp+q ∫
Ω

δ(y)αp+(α−1)qFμ(x, y)|y|(2−N−2α)(p+q) dy,

where
Fμ(x, y) := |x − y|2−N min{1, δ(x)αδ(y)α|x − y|−2α} for all x, y ∈ Ω, x ̸= y. (4.27)

Brought to you by | Utrecht University Library
Authenticated

Download Date | 3/5/20 9:22 PM

160 5. EQUATIONS WITH A GRADIENT-DEPENDENT NONLINEARITY



18 | K. T. Gkikas and P.-T. Nguyen, Elliptic Equations with Hardy Potential

Let β ∈ (0, β0) be such that δ ∈ C2(Ωβ).We consider the cut-off functionϕ ∈ C∞(Ω β
2
) such that 0 ≤ ϕ ≤ 1,

ϕ = 1 in Ω β
4
and ϕ = 0 in Ω \ Ω β

2
. Then

∫
Ω

δ(y)αp+(α−1)qFμ(x, y)|y|−(N+2α−2)(p+q) dy

= ∫
Ω

δ(y)αp+(α−1)qFμ(x, y)|y|−(N+2α−2)(p+q)ϕ(y) dy

+ ∫
Ω

δ(y)αp+(α−1)qFμ(x, y)|y|−(N+2α−2)(p+q)(1 − ϕ(y)) dy. (4.28)

We first deal with the first term on the right-hand side of (4.28). By the definition of ϕ and the inequality
(which follows from (4.27))

Fμ(x, y) ≤ δ(x)α|x − y|2−N−α ,

we deduce that there exists C = C(N, μ, p, q, Ω, β) such that

∫
Ω

δ(y)αp+(α−1)qFμ(x, y)|y|−(N+2α−2)(p+q)(1 − ϕ(y)) dy ≤ Cδ(x)α . (4.29)

Nowwe deal with the second term on the right-hand side of (4.28). Let β̃ ∈ (0, β4 ) be such that |x − y| > r0 > 0
for any y ∈ Ωβ̃ and some r0 > 0. Let ε > 0 be such that

(N + α − 2)p + (N + α − 1)q = N + α − ε,

and let ̃ε ∈ (0, ε) be such that αp + (α − 1)q + 1 − ̃ε > 0. Then, by (4.27), we have

∫
Σβ̃

δ(y)αp+(α−1)q+1Fμ(x, y)|y|−(N+2α−2)(p+q) dS(y) ≤ δ(x)αr2−N−2α0 ∫
Σβ̃

δ(y) ̃ε|y|−N+1+(ε− ̃ε) dS(y).

Note that, by the choice of ̃ε, N − 2 − N + 1 + (ε − ̃ε) > −1, which implies

sup
β̃∈(0, β4 )
∫
Σβ̃

|y|−N+1+(ε− ̃ε) dS(y) < C.

Combining the above estimates, we deduce

lim
β̃→0
∫
Σβ̃

δ(y)αp+(α−1)q+1Fμ(x, y)|y|−(N+2α−2)(p+q) dS(y) = 0. (4.30)

Now note that

− ∫
Ωβ

∇δ(y)∇yFμ(x, y)δ(y)αp+(α−1)q+1|y|−(N+2α−2)(p+q)ϕ(y) dy

= (N − 2) ∫
Ωβ

∇δ(y) ⋅ (x − y)
|x − y|N

min{1, δ(x)
αδ(y)α

|x − y|2α
}δ(y)αp+(α−1)q+1|y|−(N+2α−2)(p+q)ϕ(y) dy

− ∫
Ωβ

∇δ(y)∇y(min{1, δ(x)
αδ(y)α

|x − y|2α
})δ(y)αp+(α−1)q+1|x − y|2−N |y|−(N+2α−2)(p+q)ϕ(y) dy.

On the other hand,

−∇δ(y)∇y(min{1, δ(x)αδ(y)α|x − y|−2α}) ≤ 2α|x − y|−1min{1, δ(x)αδ(y)α|x − y|−2α} a.e. in Ω.

By collecting the above estimates, we obtain

− ∫
Ωβ

∇δ(y)∇Fμ(x, y)δ(y)αp+(α−1)q+1|y|−(N+2α−2)(p+q)ϕ(y) dy

≤ Cδ(x)α ∫
Ω

|x − y|−(N+α−1)|y|−(N+α−2)p−(N+α−1)q+1 dy. (4.31)
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It follows from integration by parts, (4.30) and (4.31) that

∫
Ωβ

δ(y)αp+(α−1)qFμ(x, y)|y|−(N+2α−2)(p+q)ϕ(y) dy

=
1

αp + (α − 1)q + 1 ∫
Ωβ

∇(δ(y)αp+(α−1)q+1)∇δ(y)Fμ(x, y)|y|−(N+2α−2)(p+q)ϕ(y) dy

≤ Cδ(x)α ∫
Ω

|x − y|−(N+2α−2)|y|−(N+α−2)p−(N+α−1)q+α dy

+ Cδ(x)α ∫
Ω

|x − y|−(N+α−1)|y|−(N+α−2)p−(N+α−1)q+1 dy

=: M(x) + N(x). (4.32)

Since 0 < α < 1, N ≥ 3 and p and q satisfy (1.11), we infer from (2.2) that

max{M(x), N(x)} ≤ C|x|N+α−(N+α−2)p−(N+α−1)qKμ(x, 0). (4.33)

Combining (4.23), (4.28), (4.29), (4.32) and (4.33) implies that there exists a positive constant

C = C(N, μ, p, q, Ω) > 0

such that

𝔾μ[up|∇u|q](x) ≤ Ckq|x|N+α−(N+α−2)p−(N+α−1)qKμ(x, 0) for all x ∈ Ω. (4.34)

Since p and q satisfy (1.11), we deduce (4.26) from (4.34).
Thus, from (4.26) and (4.20), we obtain (1.14). Finally, the monotonicity comes from the comparison

principle.

4.4 Strong Singularities

Let SN−1 be the unit sphere inℝN andℝN+ = {x = (x1, . . . , xN) = (x, xN) : xN > 0}. We denote by

x = (r, σ) ∈ ℝ+ × SN−1 with r = |x| and σ = r−1x

the spherical coordinates inℝN , and we recall the representation

∇u = ure +
1
r
∇u, ∆u = urr +

N − 1
r

ur +
1
r2
∆u,

where ∇ denotes the covariant derivative on SN−1 identified with the tangential derivative and ∆ is the
Laplace–Beltrami operator on SN−1.

We look for a particular positive solution of

{
−Lμu + |u|p|∇u|q = 0 inℝN+ ,

u = 0 on ∂ℝN+ \ {0} = ℝN−1 \ {0},

under the separable form

u(x) = u(r, σ) = r−
2−q
p+q−1ω(σ) (r, σ) ∈ (0,∞) × SN−1+ .

It follows from a straightforward computation that ω > 0 satisfies

{
−Lμω − ℓN,p,qω + J(ω, ∇ω) = 0 in SN−1+ ,

ω = 0 on ∂SN−1+ ,
(4.35)
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where
Lμω := ∆ω + μ

(eN ⋅ σ)2
w, ℓN,p,q :=

2 − q
p + q − 1(

2p + q
p + q − 1 − N),

J(s, ξ) := sp(( 2 − q
p + q − 1)

2
s2 + |ξ|2)

q
2
, (s, ξ) ∈ ℝ+ ×ℝN .

Let κμ be the first eigenvalue of −Lμ in SN−1+ and ϕμ the corresponding eigenfunction ϕμ(σ) = (eN ⋅ σ)α
for σ ∈ SN−1+ , where eN is the unit vector pointing toward the north pole.

Notice that the eigenvalue κμ is explicitly determined by

κμ = α(N + α − 2),

and the corresponding eigenfunction ϕμ(σ) = ( xN|x|
SN−1+
)α = (eN ⋅ σ)α solves

{
−Lμϕμ = κμϕμ in SN−1+ ,

ϕμ = 0 on ∂SN−1+ .
(4.36)

Notice that equation (4.36) admits a unique positive solution with supremum 1, and if μ = 0, then α = 1,
which means that ϕ0(σ) = eN ⋅ σ is the first eigenfunction of −∆ in H1

0(S
N−1
+ ).

We could have defined the first eigenvalue κμ of the operator Lμ by

κμ = inf{
∫SN−1+
(|∇w|2 − μ(eN ⋅ σ)−2w2) dS

∫SN−1+
w2 dS

: w ∈ H1
0(S

N−1
+ ), w ̸= 0}.

By [12, Theorem 6.1], the infimum exists since ϕ0(σ) = eN ⋅ σ is the first eigenfunction of −∆ in H1
0(S

N−1
+ ).

The minimizer ϕμ belongs to H1
0(S

N−1
+ ) only if 1 < μ < 1

4 .
By (4.36), the following expression holds:

|∇ϕ0(σ)|2 = 1 − ϕ0(σ)2 for all σ ∈ SN−1+ . (4.37)

Indeed, since ϕ 1
4
= ϕ

1
2
0 , we have

−∆ϕ
1
2
0 =

1
4ϕ
− 32
0 |∇
ϕ0|2 +

N − 1
2 ϕ

1
2
0 =

1
4ϕ
− 32
0 + κ 1

4
ϕ

1
2
0 .

Taking into account that κ 1
4
− N−12 = −

1
4 , from the above equalities, we obtain (4.37).

Denote
Yμ(SN−1+ ) := {ϕ ∈ H1

loc(S
N−1) : ϕ−α0 ϕ ∈ H

1(SN−1+ , ϕ2α
0 )}.

It is asserted below that condition (1.11) is sharp for the existence of a positive solution of (4.35).

Theorem 4.7. Assume p ≥ 0, q ≥ 0 and p + q > 1.
(i) If (1.11) does not hold, then there exists no positive solution of (4.35).
(ii) If (1.11) holds and q ≥ 1, then problem (4.35) admits a unique positive solution ω ∈ Yμ(SN−1+ ). Moreover,

there exists a positive constant C = C(N, μ, p, q) such that

ω(σ) ≤ (
ℓN,p,q − κμ

αq )
1

p+q−1
ϕμ(σ) for all σ ∈ SN−1+ ,

|∇ω(σ)| ≤ Cϕμ(σ)
α−1
α for all σ ∈ SN−1+ .

Proof. (i) By multiplying (4.35) by ϕμ, we obtain

(κμ − ℓN,p,q) ∫
SN−1+

ωϕμ dσ + ∫
SN−1+

J(ω, ∇ω))ϕμ dσ = 0. (4.38)

Note that the second term on the left-hand side of (4.38) is nonnegative. Thus, if (1.11) does not hold, or
equivalently ℓN,p,q ≤ κμ, then no positive solution of (4.35) exists.
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(ii) The proof is split into two steps.

Step 1: Existence. Set

γ1 := (
ℓN,p,q − κμ

αq )
1

p+q−1
.

Then the function ω = γ1ϕμ is a supersolution of (4.35). Indeed, by (4.36) and (4.37),

−Lμω − ℓN,p,qω + J(ω, ∇ω) = γ1(κμ − ℓN,p,q)ϕμ + γp+q1 ϕpμ((
2 − q

p + q − 1)
2
ϕ2
μ + |∇

ϕμ|2)
q
2

= γ1(κμ − ℓN,p,q)ϕα0 + γ
p+q
1 ϕαp0 (((

2 − q
p + q − 1)

2
− α2)ϕ2α

0 + α
2ϕ2(α−1)

0 )
q
2

≥ γ1(κμ − ℓN,p,q)ϕα0 + α
qγp+q1 ϕαp+q(α−1)0

≥ [γ1(κμ − ℓN,p,q) + αqγ
p+q
1 ]ϕ

α
0 = 0.

In the above estimates, we note that (1.11) implies 2−q
p+q−1 > α.

Let α0 ∈ (α, 1) be such that
q < N + α0

N + α0 − 1
< qμ .

We note that ϕμ0 = ϕ
α0
0 , where μ0 = 1

4 − (α0 −
1
2 )

2 < μ.
We allege that there exists a positive constant γ2 = γ2(N, q, μ, μ0) ≤ γ1 such that the function ω = γ2ϕμ0

is a subsolution of (4.35). Indeed, since q ≥ 1, by (4.36) and (4.37), we have

− Lμω − ℓN,p,qω + J(ω, ∇ω)

= γ2(μ0 − μ)
ϕμ0
(eN ⋅ σ)2

+ γ2(κμ0 − ℓN,p,q)ϕμ0 + γ
p+q
2 ϕpμ0((

2 − q
p + q − 1)

2
ϕ2
μ0 + |∇

ϕμ0 |2)
q
2

≤ (γ2(μ0 − μ) + γ
q+p
2 αq0)ϕ

α0−2
0 + (γ2(κμ0 − ℓN,p,q) + γ

q+p
2

(

2 − q
p + q − 1)

2
− α20


q
2
)ϕα00 ≤ 0,

provided γ2 is small enough. Notice that we can choose γ2 ≤ γ1.
For t ∈ (0, 1), set St := {σ ∈ SN−1+ : ϕ0(σ) < t}, S̃t := SN−1+ \ St. In view of the proof of [20, Theorem 6.5],

there exists a solution ωt ∈ W2,p(S̃t) to (4.35) such that

ω(σ) ≤ ωt(σ) ≤ ω(σ) for all σ ∈ S̃t . (4.39)

Therefore, by the standard elliptic theory, there exist a function w̃ and a sequence tn ↘ 0 such that ωtn → ω̃
locally uniformly in C1(SN−1+ ) and ω̃ satisfies−Lμω̃ − ℓN,p,qω̃ + J(ω̃, ∇ω̃) = 0 in SN−1+ . Furthermore, by (4.39),
we have ω(σ) ≤ ω̃(σ) ≤ ω(σ) for all σ ∈ SN−1+ .

Set ̃u(x) = |x|−
2−q
p+q−1 ω̃(σ). Then ̃u satisfies −Lμ ̃u + ̃up|∇ ̃u|q = 0 inℝN+ and

| ̃u(x)| ≤ (
ℓN,p,q − κμ

αq )
1

p+q−1
xαN |x|
− 2−q
p+q−1−α for all x ∈ ℝN+ .

Let x0 = (x0, 0) be such that |x0|= 1. Then, in view of the proof of (4.13), there exists a constant C1 = C(N, μ, q)
such that |∇ ̃u(x)| ≤ C1xα−1N for all x ∈ B(x0, 12 ). This implies

|∇ω̃(σ)| ≤ Cϕ0(σ)α−1 for all σ ∈ SN−1+ . (4.40)

Step 2: Uniqueness. Let ωi ∈ Yμ(SN−1+ ), i = 1, 2, be two positive solutions of (4.35). Let x0 = (x0, 0) be such
that |x0| = 1. Put ui(x) = |x|−

2−q
p+q−1ωi. Then ui ∈ H1(B(x0, 23 ), x

2α
N ), and it satisfies −Lμui + u

p
i |∇ui|

q = 0 inℝN+ ,
which implies −Lμui ≤ 0 inℝN+ .

Since 0 < vi := x−αN ui ∈ H1(B(x0, 12 ), x
2α
N ), and it satisfies −div(x

2α
N ∇v) ≤ 0 inℝ

N
+ , by [14, Theorem 2.12],

there exists a positive constant Ci > 0 such that ui(x) ≤ CixαN for all x ∈ B(x0, 12 ). Therefore, in view of the
proof of (4.40), there exists a positive constant C0 such that

wi(σ) ≤ C0ϕ0(σ)α for all σ ∈ SN−1+ , i = 1, 2, (4.41)
|∇wi(σ)| ≤ C0ϕ0(σ)α−1 for all σ ∈ SN−1+ , i = 1, 2. (4.42)
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Set bt := infc>1{c : cω1 ≥ ω2, σ ∈ S̃t} <∞. Without loss of generality, we may assume that bt0 > 1 for
some t0 ∈ (0, 1); thus, by (4.41), we have

1 < bt0 ≤ bt for all t ∈ (0, t0).

In the sequel, we consider t ∈ (0, t0).
Put ψ := ϕα0 − 1

2ϕ
α+ε
0 , where ε ∈ (0, 1 − α) is a parameter that will be determined later. Then we have

1
2ϕ

α
0 ≤ ψ ≤ ϕ

α
0.We recall thatϕα0 = ϕμ andϕ

α+ε
0 = ϕμε , where με := 1

4 − (α + ε −
1
2 )

2. From the definition ofψ,
it is easy to check that

− Lμψ =
μ − με
2 ϕα+ε−20 + ϕα0(κμ −

κμε
2 ϕε0). (4.43)

Now let ωt = b−1t ω2. We remark that ωt is a subsolution of (4.35) and ωt − ω1 ≤ 0 in S̃t. Also, we have

− Lμ(ωt − ω1)+ ≤

−(
ω1
ωt
)
p
J(ωt , ∇ωt) + J(ω1, ∇ω1)


+ ℓN,p,q|ωt − ω1|. (4.44)

Since 1 ≤ q < 2, the following inequality holds for any nonnegative number h1, h2, k1, k2:

− (h21 + h
2
2)

q
2 + (k21 + k

2
2)

q
2 ≤ (hq−11 + h

q−1
2 + k

q−1
1 + k

q−1
2 )(|h1 − k1| + |h2 − k2|). (4.45)

By applying (4.45) with h1 = ( 2−q
p+q−1 )ωt, h2 = |∇

ωt|, k1 = ( 2−q
p+q−1 )ω1 and k2 = |∇ω1| and keeping in mind

estimates (4.41) and (4.42), we obtain

− (
ω1
ωt
)
p
J(ωt , ∇ωt) + J(ω1, ∇ω1) ≤ C(q, C0)ϕαp+(q−1)(α−1)0 (|ωt − ω1| + |∇(ωt − ω1)|). (4.46)

Now setVt := ψ−1(ωt − ω1)+. By (4.44), (4.46) and the definition ofψ, we can easily deduce the existence
of a positive constant C = C(N, μ, q, C0) such that

−div(ψ2∇Vt) + ψVt(−Lμψ) ≤ C(ϕ
αp+q(α−1)+α
0 |ψ−1(ωt − ω1)| + ϕ

αp+(q−1)(α−1)+2α
0 |∇(ψ−1(ωt − ω1))|).

Now, since ψVt ∈ Yμ(SN−1+ ) and Vt(σ) ≤ 0 for any σ ∈ S̃t, multiplying the above inequality by (Vt)+ and inte-
grating over SN−1+ , we get

∫
St

|∇(Vt)+|2ψ2 dS(σ) + ∫
St

ψ(Vt)2+(−Lμψ) dS(σ)

≤ C(∫
St

ϕαp+q(α−1)+α0 (Vt)2+ dS(σ) + ∫
St

ϕαp+(q−1)(α−1)+2α0 |∇(Vt)+|(Vt)+ dS(σ)). (4.47)

By the definition of ψ and (4.43), we have

∫
St

|∇(Vt)+|2ψ2 dS(σ) + ∫
St

ψ(Vt)2+(−Lμψ) dS(σ)

≥
1
4 ∫
St

|∇(Vt)+|2ϕ2α
0 dS(σ) + μ − με4 ∫

St

(Vt)2+ϕ2α+ε−2
0 dS(σ) − N − 12 ∫

St

(Vt)2+ϕ2α
0 dS(σ). (4.48)

Here we note that if ε < 1 − α, then q < 2 < 2−α−ε
1−α . This leads to

2 − α − ε − q(1 − α) > 0 and 4 − 2α − ε − 2q(1 − α) > 0. (4.49)

By Young’s inequality, we deduce that

C∫
St

ϕαp+(q−1)(α−1)+2α0 |∇(Vt)+|(Vt)+ dS(σ)

≤
1
8 ∫
St

ϕ2α
0 |∇
(Vt)+|2 dS(σ) + Ĉ∫

St

ϕ2αp+2(q−1)(α−1)+2α
0 (Vt)2+ dS(σ), (4.50)

where C is the constant in (4.47) and Ĉ = Ĉ(N, μ, p, q).
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Gathering (4.47), (4.48) and (4.50) yields

1
8 ∫
St

ϕ2α
0 |∇
(Vt)+|2 dS(σ)

≤ −
μ − με
4 ∫

St

ϕ2α+ε−2
0 (Vt)2+ dS(σ) + C1 ∫

St

(ϕαp+q(α−1)+α0 + ϕ2αp+2(q−1)(α−1)+2α
0 + ϕ2α

0 )(Vt)
2
+ dS(σ)

≤ ∫
St

ϕ2α+ε−2
0 (

με − μ
4 + C1(t

2+αp−α−ε−q(1−α) + t4+2αp−2α−ε−2q(1−α) + t2−ε))(Vt)2+ dS(σ),

where C1 = C(N, μ, p, q). By (4.49) and the above inequality, we can find a positive constant

t1 = t1(N, q, μ, ε, C0) such that 1
8 ∫
St1

ϕ2α
0 |∇
(Vt1 )+|2 dS(σ) ≤ 0,

which implies (Vt1 )+ = 0 in St1 since (Vt1 )+ = 0 on {σ ∈ SN−1+ : ϕ0(σ) = t1}. Hence b−1t1 ω2 ≤ ω1 for all σ ∈ St1 .
Thus we have proved that

bt1 = infc>1
{c : cω1 ≥ ω2, σ ∈ S̃t1 } = infc>1

{c : cω1 ≥ ω2, σ ∈ SN−1+ }.

This means that (ω1 − ωt1 )(σ) ≥ 0 for any σ ∈ SN−1+ and

ω1(σ0) − ωt1 (σ0) = 0 for some σ0 ∈ S̃t1 . (4.51)

But −Lμ(ω1 − ωt1 ) − ℓN,q(ω1 − ωt1 ) + J(ω1, ∇ω1) − J(ωt1 , ∇ωt1 ) ≥ 0, which implies

−∆(ω1 − ωt1 ) + J(ω1, ∇ω1) − J(ωt , ∇ω1) + J(ωt , ∇ω1) − J(ωt1 , ∇ωt1 ) ≥ 0.

By the above inequality, the fact that min(ω1, ωt) > 0 in S̃ t1
2
and the mean value theorem, there exists Λ̄ > 0

such that

−∆(ω1 − ωt1 ) +
∂J(s, ξ )
∂ξ
(∇ω1 − ∇ωt1 ) + Λ̄(ω1 − ωt1 ) ≥ 0 in S̃ t1

2
,

where s and ξ are functions of σ ∈ S̃ t1
2
such that ∂J(s,ξ)∂ξ ∈ L

∞(S̃ t1
2
). By themaximumprinciple,ω1 − ωt1 cannot

achieve a nonpositive minimum in S̃ t1
2
\ ∂S̃ t1

2
, which clearly contradicts (4.51).

The result follows by exchanging the role of ω1 and ω2.

5 Absorption g(u, |∇u|) = |u|p|∇u|q: Supercritical Case
Let us recall the following result in [16, 25].

Proposition 5.1. Let ν ∈M+(∂Ω), and let β0 be the constant in Proposition 2.6. Then the following inequalities
hold:

sup
0<β≤β0

βα−1 ∫
Σβ

𝕂μ[ν] dS ≤ C(β0, α, Ω)‖ν‖M(∂Ω) if μ < 14 ,

sup
0<β≤β0
(β|log β|2)−

1
2 ∫
Σβ

𝕂μ[ν] dS ≤ C(β0, α, Ω)‖ν‖M(∂Ω) if μ = 14 .

Lemma 5.2. Assume ν ∈M+(∂Ω), p ≥ 0, 1 ≤ q < 2, and let u ∈ C2(Ω) be a nonnegative solution of (4.1).
(i) If q ̸= α + 1, then there exists a constant β1 = β1(N, μ, p, q, Ω) > 0 such that

∫
Ω

δα−qup+q dx ≤ C(∫
Ω

δαup|∇u|q dx + 1), (5.1)

where C depends only on N, μ, p, q, Ω and supΣβ1 (𝕂μ[ν])
p+q.
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(ii) If q = α + 1, then, for any ε > 0 small enough, there exists a constant β1 = β1(N, μ, p, Ω, ε) > 0 such that

∫
Ω

δε−1up+α+1 dx ≤ C(∫
Ω

δαup|∇u|α+1 dx + 1), (5.2)

where C depends only on N, μ, p, Ω, ε and supΣβ1 (𝕂μ[ν])
p+α+1.

Proof. Since u is a nonnegative solution of (4.1) we have u
p
q |∇u| ∈ Lq(Ω, δα). Let β1 ∈ (0, β0), where β0 is the

constant in Proposition 2.6.
(i) First we assume that q > 1, q ̸= α + 1, and let γ ̸= −1. Then, for β ∈ (0, β1),

∫
Dβ\Dβ1

δγup+q dx = (γ + 1)−1 ∫
Dβ\Dβ1

∇δγ+1∇δup+q dx

= (γ + 1)−1(− ∫
Dβ\Dβ1

δγ+1∆δup+q dx − (p + q) ∫
Dβ\Dβ1

δγ+1up+q−1∇δ∇u dx

+ ∫
Σβ1

δγ+1 ∂δ
∂nβ1

up+q dx + ∫
Σβ

δγ+1 ∂δ
∂nβ

up+q dx)

≤ C|γ + 1|−1( ∫
Dβ\Dβ1

δγ+1up+q dx + ∫
Dβ\Dβ1

δγ+1up+q−1|∇u| dx

+ βγ+11 sup
Σβ1
(𝕂μ[ν])p+q + ∫

Σβ

δγ+1up+q dx).

Observe that, for any γ ∈ (α − q,max{ α−1−q2 , 2(α − q) + 1}), we have |γ + 1|−1 < 2|α + 1 − q|−1. Therefore, for
such γ, we can choose β1 = β1(N, q, μ, Ω) such that

C|γ + 1|−1 ∫
Dβ\Dβ1

δγ+1up+q dx ≤ 2C|α + 1 − q|−1 ∫
Dβ\Dβ1

δγ+1up+q dx ≤ 14 ∫
Dβ\Dβ1

δγup+q dx.

Consequently, by Young’s inequality, we can find a constant C1 = C1(N, μ, p, q, Ω) such that

C|γ + 1|−1 ∫
Dβ\Dβ1

δγ+1up+q−1|∇u| dx = C|γ + 1|−1 ∫
Dβ\Dβ1

δγ+1up+q−1−
p
q u

p
q |∇u| dx

≤
1
4 ∫
Dβ\Dβ1

δγup+q dx + C1 ∫
Dβ\Dβ1

δγ+qup|∇u|q dx.

By the above estimates, there is a positive constant C2 = C2(N, μ, p, q, Ω) such that

∫
Dβ\Dβ1

δγup+q dx ≤ C2( ∫
Dβ\Dβ1

δγ+qup|∇u|q dx + βγ+11 sup
Σβ1
(𝕂μ[ν])q + ∫

Σβ

δγ+1up+q dx). (5.3)

By (4.12), Proposition 5.1 and taking into account that γ + q − 1 > α − 1, we obtain

∫
Σβ

δγ+1up+q dS ≤ Cβγ+q−1 ∫
Σβ

u dS ≤ Cβγ+q−1 ∫
Σβ

𝕂μ[ν] dS → 0 as β → 0.

Therefore, by letting β → 0 in (5.3), we obtain

∫
Ωβ1

δγup+q dx ≤ C2( ∫
Ωβ1

δγ+qup|∇u|q dx + βγ+11 sup
Σβ1
(𝕂μ[ν])p+q). (5.4)

By the dominated convergence theorem, we can send γ → α − q in (5.4) to obtain

∫
Ωβ1

δα−qup+q dx ≤ C2( ∫
Ωβ1

δαup|∇u|q dx + βα−q+11 sup
Σβ1
(𝕂μ[ν])p+q).

This implies (5.1).
The proof of (5.2) follows by arguments similar to the proof of (5.1) (with γ = ε − 1) with some modifica-

tions, and we omit it.
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We recall below some notations concerning the Besov space (see e.g. [1, 33]). For σ > 0, 1 ≤ κ <∞, we
denote by Wσ,κ(ℝd) the Sobolev space over ℝd. If σ is not an integer, the Besov space Bσ,κ(ℝd) coincides
withWσ,κ(ℝd). When σ is an integer, we denote ∆x,y f := f(x + y) + f(x − y) − 2f(x) and

B1,κ(ℝd) := {f ∈ Lκ(ℝd) :
∆x,y f
|y|1+ dκ
∈ Lκ(ℝd ×ℝd)}

with norm

‖f‖B1,κ := (‖f‖κLκ + ∫ ∫
ℝd×ℝd

|∆x,y f|κ

|y|κ+d
dx dy)

1
κ
.

Then
Bm,κ(ℝd) := {f ∈ Wm−1,κ(ℝd) : Dθx f ∈ B1,κ(ℝd) for all θ ∈ ℕd , |θ| = m − 1}

with norm

‖f‖Bm,κ := (‖f‖κWm−1,κ + ∑
|θ|=m−1
∫ ∫

ℝd×ℝd

|Dθx∆x,y f|κ

|y|κ+d
dx dy)

1
κ
.

These spaces are fundamental because they are stable under the real interpolation method developed by
Lions and Petree. For s ∈ ℝ, we defined the Bessel kernel of order s by Gs(ξ) = F−1(1 + | ⋅ |2)−

s
2F(ξ), where F

is the Fourier transform of moderate distributions inℝd. The Bessel space Ls,κ(ℝd) is defined by

Ls,κ(ℝd) := {f = Gs ∗ g : g ∈ Lκ(ℝd)}

with norm ‖f‖Ls,κ := ‖g‖Lκ = ‖G−s ∗ f‖Lκ . It is known that if 1 < κ <∞ and s > 0, Ls,κ(ℝd) = W s,κ(ℝd) if s ∈ ℕ,
and Ls,κ(ℝd) = Bs,κ(ℝd) if s ∉ ℕ, always with equivalent norms. The Bessel capacity is defined for compact
subsets K ⊂ ℝd by

Cℝds,κ(K) := inf{‖f‖κLs,κ , f ∈ S
(ℝd), f ≥ χK}.

It is extended to open sets and then Borel sets by the fact that it is an outer measure.

Proof of Theorem 1.7. Let ε ≥ 0, and let u ∈ C2(Ω) be the solution of (4.1). Put Σ = ∂Ω. If

η ∈ L∞(∂Ω) ∩ B1−α+
α+1−q
p+q +

ε
p+q ,(p+q)


(∂Ω),

we denote by H := H[η] the solution of

{
{
{

∂H
∂s
+ ∆ΣH = 0 in (0,∞) × ∂Ω,

H(0, ⋅ ) = η on ∂Ω.

Let h ∈ C∞(ℝ+) be such that 0 ≤ h ≤ 1, h ≤ 0, h ≡ 1 on [0, β02 ], h ≡ 0 on [β0,∞]. The lifting we consider is
expressed by

R[η](x) :=
{
{
{

H[η](δ2, σ(x))h(δ) if x ∈ Ωβ0 ,
0 if x ∈ Dβ0 ,

(5.5)

with x = (δ, σ) = (δ(x), σ(x)).

Case 1: q ̸= α + 1. Set ε = 0 and ζ = φμR[η](p+q)
 , where φμ is the eigenfunction associated to the first eigen-

value λμ of −Lμ inΩ (see Subsection 2.1). By proceeding as in the proof of [17, Lemma3.8, (3.46)], we deduce
that there exists C0 = C0(N, μ, Ω, ‖ν‖M(∂Ω)) such that

C0(∫
∂Ω

η dν)
(p+q)

≤ ∫
Ω

up|∇u|qζ dx + λμ ∫
Ω

uζ dx

+ (p + q)(∫
Ω

up+qφ−
q
α

μ ζ dx)
1
p+q
(∫
Ω

L[η](p+q) dx)
1

(p+q) , (5.6)

where
L[η] := (2φ

q
α(p+q)−

1
p+q

μ |∇φμ ⋅ ∇R[η]| + φ
1+ q

α(p+q)−
1
p+q

μ |∆R[η]|).
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Following the arguments of the proof of [17, Lemma 3.9, (3.48)], we can obtain

∫
Ω

L[η](p+q) dx ≤ c‖η‖(p+q)
−1

L∞(∂Ω) ‖η‖B1−α+
α+1−q
p+q ,(p+q) (∂Ω). (5.7)

We infer from (5.1) that

∫
Ω

up+qφ−
q
α

μ ζ dx ≤ C‖η‖(p+q)


L∞(∂Ω) ∫
Ω

δα−qup+q dx ≤ C‖η‖(p+q)


L∞(∂Ω)(1 + ∫
Ω

up|∇u|qδα dx), (5.8)

where the constant C depends on N, μ, p, q and Ω. Combining (5.6), (5.7) and (5.8), we obtain

C0(∫
∂Ω

η dν)
(p+q)

≤ ∫
Ω

up|∇u|qζ dx + λμ ∫
Ω

uζ dx

+ C‖η‖
(p+q)
p+q
L∞(∂Ω)(1 + ∫

Ω

up|∇u|qδα dx)
1
p+q
(‖η‖(p+q)

−1
L∞(∂Ω) ‖η‖B1−α+

α+1−q
p+q ,(p+q) (∂Ω))

1
(p+q) . (5.9)

Let K ⊂ ∂Ω be a compact set. Since (N + α − 2)p + (N + α − 1)q ≥ N + α, if

CℝN−11−α+ α+1−qp+q ,(p+q) (K) = 0,

then there exists a sequence {ηn} in C20(∂Ω) with the following properties:

0 ≤ ηn ≤ 1, ηn = 1 in a neighborhood of K and lim
n→∞

ηn = 0 in B1−α+
α+1−q
p+q ,(p+q) (∂Ω). (5.10)

This implies that 0 ≤ R[ηn] ≤ 1 and limn→∞ R[ηn] = 0 a.e. in Ω. Put ζn = φμR[ηn](p+q)
 . Then

lim
n→∞
∫
Ω

up|∇u|qζn dx = 0 and lim
n→∞
∫
Ω

uζn dx = 0. (5.11)

From (5.9)–(5.11), we obtain
ν(K) ≤ ∫

∂Ω

ηndν → 0 as n →∞.

This implies that ν(K) = 0. Thus ν is absolutely continuous with respect to CℝN−11−α+ α+1−qp+q ,(p+q) .

Case 2: q = α + 1. Let 0 < ε < α + 1 and ζ = φμR[η](p+α+1)
 . Proceeding as in the proof of (5.6), we can prove

C0(∫
∂Ω

η dν)
(p+α+1)

≤ ∫
Ω

up|∇u|α+1ζ dx + λμ ∫
Ω

uζ dx

+ (p + α + 1)(∫
Ω

up+α+1φ−
α+1−ε
α

μ ζ dx)
1

p+α+1
(∫
Ω

L[η](p+α+1) dx)
(p+1+α)

,

where
L[η] = (2φ

α+1−ε
α(p+α+1)−

1
p+α+1

μ |∇φμ ⋅ ∇R[η]| + φ
1+ α+1−ε

α(p+α+1)−
1

p+α+1
μ |∆R[η]|) .

Using (5.2) and the ideas of the proof of (5.9), we can obtain the inequality

C0(∫
∂Ω

η dν)
(p+α+1)

≤ ∫
Ω

up|∇u|α+1ζ dx + λμ ∫
Ω

uζ dx

+ C‖η‖
(p+α+1)
p+α+1
L∞(∂Ω)(1 + ∫

Ω

up|∇u|α+1δα dx)
1

p+α+1

× (‖η‖(p+α+1)
−1

L∞(∂Ω) ‖η‖B1−α+ ε
p+α+1 ,(p+α+1)

(∂Ω))
1

(p+α+1) ,

where the constant C depends on N, μ, p, Ω and ε.
The rest of the proof follows by using an argument similar to the first case.
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Proposition 5.3. Let u ∈ C2(Ω)be a positive solution of (1.19). If up|∇u| ∈ Lq(Ω, δα), then u possesses a bound-
ary trace ν ∈M+(∂Ω), i.e. u is the solution of boundary value problem (4.1) with boundary trace ν.

Proof. If v := 𝔾μ[up|∇u|q], then v ∈ L1(Ω, δα) and u + v is a positive Lμ-harmonic function. Hence we have
u + v ∈ L1(Ω, δα), and there exists a measure ν ∈M+(∂Ω) such that u + v = 𝕂μ[ν]. By [16, Proposition 2.2],
we obtain the result.

Proof of Theorem 1.8. In view of the proof of [17, Proposition A.2], we can obtain the estimates

|u(x)| ≤ Cδ(x)α dist(x, K)−
2−q
p+q−1−α for all x ∈ Ω,

|∇u(x)| ≤ Cδ(x)α−1 dist(x, K)−
2−q
p+q−1−α for all x ∈ Ω,

where C depends on N, μ, p, q, Ω and supΣβ0 u.

Case 1. Assume that
q ̸= α + 1 and CℝN−11−α+ α+1−qp+q ,(p+q) (K) = 0.

Then there exists a sequence {ηn} in C20(∂Ω) satisfying (5.10). In particular, there exists a decreasing sequence
{On} of relatively open subsets of ∂Ω, containing K such that ηn = 1 on On, and thus ηn = 1 on Kn := On.
We set

̃ηn = 1 − ηn and ̃ζ n = φμR[ ̃ηn]2(p+q)
 ,

where R is defined by (5.5). Then 0 ≤ ̃ηn ≤ 1 and ̃ηn = 0 on Kn. Therefore,

̃ζ n(x) ≤ ϕμmin{1, cδ(x)1−Ne−(4δ(x))−2(dist(x,Kcn))2 } for all x ∈ Ω.

Furthermore,
|∇R[ ̃ηn]| ≤ cmin{1, δ(x)−2−Ne−(4δ(x))−2(dist(x,Kcn))2 } for all x ∈ Ω,

|∆R[ ̃ηn]| ≤ cmin{1, δ(x)−4−Ne−(4δ(x))−2(dist(x,Kcn))2 } for all x ∈ Ω.

Proceeding as in the proof of [17, Theorem 3.10, (3.65)], we have

∫
Ω

(uLμ ̃ζ n + up|∇u|q ̃ζ n) dx = 0. (5.12)

Using the expression of Lμ ̃ζ n, we derive from (5.12) that

∫
Ω

up|∇u|q ̃ζ n dx = ∫
Ω

(−λμφμR[ ̃ηn]2(p+q)


+ 4(p + q)R[ ̃ηn]2(p+q)
−1∇φμ ⋅ ∇R[ ̃ηn]

+ 2(p + q)R[ ̃ηn]2(p+q)
−2φμ(R[ ̃ηn]∆R[ ̃ηn] + (2(p + q) − 1)|∇R[ ̃ηn]|2))u dx

≤ c(∫
Ω

up+qφ−
q
α

μ ̃ζ n dx)
1
p+q
(∫
Ω

L̃[ηn](p+q)
 dx)

1
(p+q) ,

where
L̃[η] = φ

q
α(p+q)−

1
p+q

μ |∇φμ ⋅ ∇R[ηn]| + φ
1+ q

α(p+q)−
1
p+q

μ |∆R[ ̃ηn]| + φ
1+ q

α(p+q)−
1
p+q

μ |∇R[ ̃ηn]|2.

By proceeding as in the proof of [17, Theorem 3.10, (3.75)], we can prove

∫
Ω

|u|p|∇u|qφμR[ ̃ηn]2(p+q)
 dx ≤ C‖ηn‖B1−α+

α+1−q
p+q ,(p+q) (∂Ω)(∫

Ω

δα−quqR[ ̃ηn]2q
 dx)

1
q
.

The rest of the proof is similar to the proof of [16, Theorem J], and we omit it.

Case 2. Assume that
q = α + 1 and CℝN−11−α+ ε

p+α+1 ,(p+α+1)
 (K) = 0

for ε as in statement (ii). Then we can obtain the desired result by combining the ideas in Case 1 of this
theorem and in Case 2 of Theorem 1.7.

Brought to you by | Utrecht University Library
Authenticated

Download Date | 3/5/20 9:22 PM

170 5. EQUATIONS WITH A GRADIENT-DEPENDENT NONLINEARITY



28 | K. T. Gkikas and P.-T. Nguyen, Elliptic Equations with Hardy Potential

6 Nonlinear Equations with Subcritical Source

In this section, we prove Theorem 1.9. We first establish an existence result for the case when g is smooth
and bounded.

Lemma 6.1. Let ν ∈M+(∂Ω) with ‖ν‖M(∂Ω) = 1 and g ∈ C1(ℝ ×ℝ+) ∩ L∞(ℝ ×ℝ+). Assume (1.10) and (1.21)
are satisfied. Then there exists ϱ0 > 0 depending on N, μ, Ω, Λg , k̃ such that, for every ϱ ∈ (0, ϱ0), the problem

{
−Lμv = g(v + ϱ𝕂μ[ν], |∇(v + ϱ𝕂μ[ν])|) in Ω,
tr(v) = 0

(6.1)

admits a positive weak solution v satisfying

‖v‖Lpμw (Ω,δα) + ‖∇v‖Lqμw (Ω,δα) ≤ t0,

where t0 > 0 depends on N, μ, Ω, Λg , k̃, ̃p, ̃q. Here Λg is defined in (1.10) and k̃, ̃p, ̃q are as in (1.21).

Proof. We shall use the Schauder fixed point theorem to show the existence of a positive weak solution of
(6.1). Define the operator 𝕊 by

𝕊(v) := 𝔾μ[g(v + ϱ𝕂μ[ν], |∇(v + ϱ𝕂μ[ν])|)], v ∈ W1,1(Ω, δα).

Fix 1 < κ < min{ ̃p, ̃q, qμ},

Q1(v) := ‖v‖Lpμw (Ω,δα) for v ∈ Lpμw (Ω, δα),

Q2(v) := ‖∇v‖Lqμw (Ω,δα) for |∇v| ∈ Lqμw (Ω, δα),
Q3(v) := ‖v‖Lκ(Ω,δα) for v ∈ Lκ(Ω, δα),
Q4(v) := ‖∇v‖Lκ(Ω,δα) for |∇v| ∈ Lκ(Ω, δα)

and
Q(v) := Q1(v) + Q2(v) + Q3(v) + Q4(v).

Step 1: Estimate the L1(Ω, δα)-norm of g(v + ϱ𝕂μ[ν], |∇(v + ϱ𝕂μ[ν])|). For λ > 0 and any function w, we use
the notation as in (3.12). For the sake of simplicity, when w = v + ϱ𝕂μ[ν], we drop the superscript v + ϱ𝕂μ[ν]
in the above notations. For instance, we use the notations Aλ and a(λ) instead of Av+ϱ𝕂μ[ν]λ and av+ϱ𝕂μ[ν](λ).

Then, by (2.4), we have

a(λ) ≤ λ−pμ‖v + ϱ𝕂μ[ν]‖
pμ
Lpμw (Ω,δα)

,

b(λ) ≤ λ−pμ‖∇(v + ϱ𝕂μ[ν])‖
qμ
Lqμw (Ω,δα)

,

c(λ) ≤ λ−pμ min{‖v + ϱ𝕂μ[ν]‖pμLpμw (Ω,δα)
, ‖∇(v + ϱ𝕂μ[ν])‖qμLqμw (Ω,δα)

}.

With the above notations, we split

‖g(v + ϱ𝕂μ[ν], |∇(v + ϱ𝕂μ[ν])|)‖L1(Ω,δα) ≤ ∫
C1

g(v + ϱ𝕂μ[ν], |∇(v + ϱ𝕂μ[ν])|)δα dx

+ ∫
Ac1∩B1

g(v + ϱ𝕂μ[ν], |∇(v + ϱ𝕂μ[ν])|)δα dx

+ ∫
Ac1∩B

c
1

g(v + ϱ𝕂μ[ν], |∇(v + ϱ𝕂μ[ν])|)δα dx

+ ∫
A1∩Bc1

g(v + ϱ𝕂μ[ν], |∇(v + ϱ𝕂μ[ν])|)δα dx

=: I1 + I2 + I3 + I4. (6.2)
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First we estimate I3. Since |v + ϱ𝕂μ[ν]| ≤ 1 and |∇(v + ϱ𝕂μ[ν])| ≤ 1 in Ac1 ∩ B
c
1 and 1 < κ < min{ ̃p, ̃q, qμ},

we obtain
I3 ≤ k̃(‖v + ϱ𝕂μ[ν]‖κLκ(Ω,δα) + ‖∇(v + ϱ𝕂μ[ν])‖

κ
Lκ(Ω,δα))g(1, 1). (6.3)

Next I1 is estimated as follows:

I1 ≤ −
∞

∫
1

g(λ, λ
pμ
qμ ) dc(λ) = g(1, 1)c(1) +

∞

∫
1

c(λ) dg(λ, λ
pμ
qμ )

≤ pμmin{‖v + ϱ𝕂μ[ν]‖pμLpμw (Ω,δα)
, ‖∇(v + ϱ𝕂μ[ν])‖qμLqμw (Ω,δα)

}
∞

∫
1

g(λ, λ
pμ
qμ )λ−1−pμ dλ. (6.4)

We bound I4 from above as follows:

I4 ≤ −
∞

∫
1

g(λ, 1) da(λ) ≤ pμ‖v + ϱ𝕂μ[ν]‖pμLpμw (Ω,δα)

∞

∫
1

g(λ, λ
pμ
qμ )λ−1−pμ dλ. (6.5)

Similarly, we can estimate I2 as follows:

I2 ≤ pμ‖∇(v + ϱ𝕂μ[ν])‖
qμ
Lqμw (Ω,δα)

∞

∫
1

g(λ, λ
pμ
qμ )λ−1−pμ dλ. (6.6)

By combining (6.2)–(6.6), we obtain (assuming ϱ ≤ 1)

‖g(v + ϱ𝕂μ[ν], |∇(v + ϱ𝕂μ[ν])|)‖L1(Ω,δα) ≤ C(Q1(v)pμ + Q2(v)qμ + Q3(v)κ + Q4(v)κ + ϱκ), (6.7)

where C = C(N, μ, Ω, k̃, Λg).

Step 2: Estimate Q1, Q2, Q3, Q4 and Q. By (2.5), we have

Q1(𝕊(v)) ≤ c‖g(v + ϱ𝕂μ[ν], |∇(v + ϱ𝕂μ[ν])|)‖L1(Ω,δα).

This and (6.7) imply that

Q1(𝕊(v)) ≤ C(Q1(v)pμ + Q2(v)qμ + Q3(v)κ + Q4(v)κ + ϱκ),

where C = C(N, μ, Ω, k̃, Λg). Next we deduce from (2.7) that

Q2(𝕊(v)) ≤ c‖g(v + ϱ𝕂μ[ν], |∇(v + ϱ𝕂μ[ν])|)‖L1(Ω,δα),

which in turn implies

Q2(𝕊(v)) ≤ C(Q1(v)pμ + Q2(v)qμ + Q3(v)κ + Q4(v)κ + ϱκ),

where C = C(N, μ, Ω, k̃, Λg). By (2.3), (2.5) and (2.7), we can easily deduce that

Q3(𝕊(v)) ≤ c‖g(v + ϱ𝕂μ[ν], |∇(v + ϱ𝕂μ[ν])|)‖L1(Ω,δα),
Q4(𝕊(v)) ≤ c‖g(v + ϱ𝕂μ[ν], |∇(v + ϱ𝕂μ[ν])|)‖L1(Ω,δα).

Thus,
Q3(𝕊(v)) + Q4(𝕊(v)) ≤ C(Q1(v)pμ + Q2(v)qμ + Q3(v)κ + Q4(v)κ + ϱκ),

where C(N, μ, Ω, k̃, Λg). Consequently,

Q(𝕊(v)) ≤ C (Q1(v)pμ + Q2(v)qμ + Q3(v)κ + Q4(v)κ + ϱκ) .

Therefore, if Q(v) ≤ t, then
Q(𝕊(v)) ≤ C(tpμ + tqμ + 2tκ + ϱκ).

Since pμ > qμ > κ > 1, there exists ϱ0 > 0depending onN, μ, Ω, k̃, Λg such that, for any ϱ ∈ (0, ϱ0), the equa-
tion C(tpμ + tqμ + 2tκ + ϱκ) = t admits a largest root t0 > 0 which depends on N, μ, Ω, Λg , k̃. Therefore,

Q(v) ≤ t0 ⇒ Q(𝕊(v)) ≤ t0. (6.8)
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Step 3. We apply the Schauder fixed point theorem to our setting. By a standard argument, we can show that
𝕊 : W1,1(Ω, δα)→ W1,1(Ω, δα) is continuous and compact. Set

O := {ξ ∈ W1,1(Ω, δα) : Q(u) ≤ t0}. (6.9)

Then O is a closed, convex subset of W1,1(Ω, δα), and by (6.8), 𝕊(O) ⊂ O. Thus we can apply the Schauder
fixed point theorem to obtain the existence of a function v ∈ O such that 𝕊(v) = v. This means that v is a non-
negative solution of (6.1), and hence it holds

−∫
Ω

vLμζ dx = ∫
Ω

g(v + ϱ𝕂μ[ν], |∇(v + ϱ𝕂μ[ν])|)ζ dx for every ζ ∈ Xμ(Ω).

Proof of Theorem 1.9. Let {gn} be a sequence of C1 nonnegative functions defined onℝ2+ such that

gn(0, 0) = g(0, 0) = 0, gn ≤ gn+1 ≤ g, sup
ℝ×ℝ+

gn = n and lim
n→∞
‖gn − g‖L∞loc(ℝ×ℝ+)=0.

Weobserve thatΛgn ≤ Λg <∞, whereΛgn is definedas in (1.10)with g replacedby gn. Therefore, the constant
ϱ0 in Lemma 6.1 can be chosen to depend on Λg (and N, μ, Ω, k̃, ̃p, ̃q), but independent of n. Similarly, the
constant t0 in Lemma 6.1 can be chosen to depend on Λg (and also N, μ, Ω, k̃, ̃p, ̃q), but independent of n.
By Lemma 6.1, for any ϱ ∈ (0, ϱ0) and n ∈ ℕ, there exists a solution vn ∈ O (where O is defined in (6.9)) of

{
−Lμvn = gn(vn + ϱ𝕂μ[ν], |∇(vn + ϱ𝕂μ[ν])|) in Ω,
tr(vn) = 0.

Set un = vn + ϱ𝕂μ[ν]. Then tr(un) = ϱν and

− ∫
Ω

unLμζ dx = ∫
Ω

gn(un , |∇un|)ζ dx − ϱ∫
Ω

𝕂μ[ν]Lμζ dx for every ζ ∈ Xμ(Ω). (6.10)

Since {vn} ⊂ O, the sequence {gn(vn + ϱ𝕂μ[ν], |∇(vn + ϱ𝕂μ[ν])|)} is uniformly bounded in L1(Ω, δα), and the
sequence { μδ2 vn} is uniformly bounded in Lp1 (G) for every compact subset G ⊂ Ω for some p1 > 0. As a con-
sequence, {∆vn} is uniformly bounded in L1(G). By a standard regularity result for elliptic equations, {vn}
is uniformly bounded in W1,p2 (G) for some p2 > 1. Consequently, there exists a subsequence, still denoted
by {vn}, and a function v such that vn → v a.e. in Ω and ∇vn → ∇v a.e. in Ω. Therefore, un → u a.e. in Ω,
where u = v + ϱ𝕂μ[ν] and gn(un , |∇un|)→ g(u, |∇u|) a.e. in Ω.

We show that un → u in L1(Ω, δα). Since {vn} is uniformly bounded in Lp(Ω, δα), by (2.6), we derive that
{un} is uniformly bounded in Lp(Ω, δα). Due to Hölder’s inequality, {un} is equi-integrable in L1(Ω, δα). We
invoke Vitali’s convergence theorem to derive that un → u in L1(Ω, δα).

Next proceeding as in the proof of (3.11), we obtain that gn(un , |∇un|)→ g(u, |∇u|) in L1(Ω, δα). There-
fore, by sending n →∞ in each term of (6.10), we obtain

−∫
Ω

uLμζ dx = ∫
Ω

g(u, |∇u|)ζ dx − ϱ∫
Ω

𝕂μ[ν]Lμζ dx for every ζ ∈ Xμ(Ω).

This means u is a nonnegative weak solution of (Pϱν− ). Therefore,

u = 𝔾μ[g(u, |∇u|)] + ϱ𝕂μ[ν] in Ω,

which implies that u ≥ ϱ𝕂μ[ν] in Ω.

7 Nonlinear Equations with Supercritical Source

7.1 Capacities and Existence Results

In this subsection, we introduce the definition of some capacities and provide related results which will be
employed to prove Theorem 1.11 in the next subsection.
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For 0 ≤ θ ≤ β < N, set

Nθ,β(x, y) :=
1

|x − y|N−βmax{|x − y|, δ(x), δ(y)}θ
for all (x, y) ∈ Ω × Ω, x ̸= y, (7.1)

ℕθ,β[τ](x) := ∫
Ω

Nθ,β(x, y) dτ(y) for all τ ∈M+(Ω). (7.2)

For a > −1, 0 ≤ θ ≤ β < N and s > 1, define Capaℕθ,β ,s by

Capaℕθ,β ,s(E) := inf{∫
Ω

δaϕs dx : ϕ ≥ 0, ℕθ,β[δaϕ] ≥ χE} for any Borel set E ⊂ Ω.

Here χE denotes the indicator function of E.
Let Z be a metric space and ω ∈M+(Z). Let J : Z × Z→ (0,∞] be a Borel positive kernel such that J is

symmetric and J−1 satisfies a quasi-metric inequality, i.e. there is a constant C > 1 such that, for all x, y, z, ∈ Z,
1

J(x, y) ≤ C(
1

J(x, z) +
1

J(z, y)).

Under these conditions, one can define the quasi-metric d by

d(x, y) := 1
J(x, y)

and denote byBr(x) := {y ∈ Z : d(x, y) < r} the open d-ball of radius r > 0 and center x. Note that this set can
be empty.

For ω ∈M+(Z), we define the potentials 𝕁[ω] and 𝕁[ϕ, ω] by

𝕁[ω](x) := ∫
Z

J(x, y) dω(y) and 𝕁[ϕ, ω](x) := ∫
Z

J(x, y)ϕ(y) dω(y).

For t > 1, the capacity Capω𝕁,t in Z is defined by

Capω𝕁,t(E) := inf{∫
Z

ϕ(x)t dω(x) : ϕ ≥ 0, 𝕁[ϕ, ω] ≥ χE} for any Borel E ⊂ Z.

Proposition 7.1 ([19]). Let p > 1 and τ, ω ∈M+(Z) such that
2r

∫
0

ω(Bs(x))
s2

ds ≤ C
r

∫
0

ω(Bs(x))
s2

ds, (7.3)

sup
y∈Br(x)

r

∫
0

ω(Bs(y))
s2

ds ≤ C
r

∫
0

ω(Bs(x))
s2

ds (7.4)

for any r > 0, x ∈ Z, where C > 0 is a constant. Then the following statements are equivalent.
(1) The equation u = 𝕁[up , ω] + σ𝕁[τ] has a solution for σ > 0 small.
(2) For any Borel set E ⊂ Z, it holds ∫E 𝕁[τE]

p dω ≤ Cτ(E), where τE = χEτ.
(3) For any Borel set E ⊂ Z, it holds τ(E) ≤ C Capω𝕁,p (E).
(4) The inequality 𝕁[𝕁[τ]p , ω] ≤ C𝕁[τ] <∞ holds ω-a.e.

We point out below thatℕθ,β defined in (7.2) satisfies all assumptions of 𝕁 in Proposition 7.1.

Proposition 7.2 ([9, Lemma 2.2]). Nθ,β is symmetric and satisfies the quasi-metric inequality.

Next we give sufficient conditions for (7.3), (7.4) to hold.

Proposition 7.3. Let ω = δ(x)aχΩ(x) dx with a > −1. Then (7.3) and (7.4) hold.

Proof. If a ≥ 0, then the statement follows from [9, Lemma 2.3]. We now treat the case −1 < a < 0. We claim
that, for any 0 < s < 8diam(Ω) and any x ∈ Ω, we have

ω(Bs(x)) ≈ max{δ(x), s}asN . (7.5)

Indeed, in order to obtain (7.5), we consider four cases.
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Case 1: 4s ≤ δ(x). Then δ(x) ≈ δ(y) for any y ∈ Bs(x), and the proof of (7.5) can be obtained easily.

Case 2: s > δ(x)4 . Then δ(y) ≤ 5s; thus

∫

Bs(x)∩Ω

δ(y)a dy ≥ Csa+N ≥ Cmax{δ(x), s}asN .

Case 3: δ(x)4 ≤ s ≤ 4δ(x). Since Ω is smooth, there exists r∗ > 0 such that

∫

Br0 (xi)∩Ω

δ(y)a dy ≤ C
a + 1 r

a+N
0 for all r0 ≤

r∗

8 and δ(xi) <
r∗

4 . (7.6)

Set
r0 := r∗

δ(x)
32diam(Ω)

.

Then there exist xi ∈ Bs(x), i = 1, . . . , k, such that Bs(x) ⊂ ⋃ki=1 Br0 (xi). We note that k does depend neither
on x, nor on δ(x). Thus we have

∫

Bs(x)∩Ω

δ(y)a dy ≤
k
∑
i=1
∫

Br0 (xi)∩Ω

δ(y)a dy.

Now, by (7.6), we get

∫

Br0 (xi)∩Ω

δ(y)a dy ≤ Cδ(x)a+N ≤ Cmax{δ(x), s}asN if δ(xi) <
r∗

4 ,

∫

Br0 (xi)∩Ω

δ(y)a dy ≤ C(r∗)aδ(x)N ≤ Cmax{δ(x), s}asN if δ(xi) ≥
r∗

4 ,

and hence (7.5) follows.

Case 4: s ≥ 4δ(x). Set
r0 := r∗

s
32diam(Ω)

.

Then the proof of (7.5) follows due to an argument similar to Case 3.
The rest of the proof can proceed as in the proof of [9, Lemma 2.3], and we omit it.

We recall below the definition of the capacity associated toℕθ,β (see [19]).

Definition 7.4. Let a > −1, 0 ≤ θ ≤ β < N and s > 1. For any Borel set E ⊂ Ω, define Capaℕθ,β ,s by

Capaℕθ,β ,s(E) := inf{∫
Ω

δaϕs dy : ϕ ≥ 0, ℕθ,β[δaϕ] ≥ χE}.

Clearly, for any Borel set E ⊂ Ω, we have

Capaℕθ,β ,s(E) = inf{∫
Ω

δ−a(s−1)ϕs dy : ϕ ≥ 0, ℕθ,β[ϕ] ≥ χE}.

Furthermore, by [1, Theorem 2.5.1], we have

(Capaℕθ,β ,s(E))
1
s = inf{ω(E) : ω ∈M+b(Ω), ‖ℕθ,β[ω]‖Ls (Ω;δa) ≤ 1}

for any compact set E ⊂ Ω, where s is the conjugate exponent of s.
Thanks to Propositions 7.2 and 7.3, we can apply Proposition 7.1 to obtain the following result.

Proposition 7.5. Let τ ∈M+(Ω), a > −1, 0 ≤ θ ≤ β < N, p > 1. Then the following statements are equivalent.
(1) For any Borel set E ⊂ Ω, it holds τ(E) ≤ C Capaℕθ,β ,p (E).
(2) The inequalityℕθ,β[δaℕθ,β[τ]p] ≤ Cℕθ,β[τ] <∞ holds a.e. in Ω.
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Recall the capacity Cap∂Ωθ,s introduced in [9] which is used to deal with boundarymeasures. Let θ ∈ (0, N − 1),
and denote byBθ the Bessel kernel inℝN−1 with order θ. For s > 1, define

CapBθ ,s(F) := inf{ ∫
ℝN−1

δs dy : ϕ ≥ 0, Bθ ∗ ϕ ≥ χF} for any Borel set F ⊂ ℝN−1.

Since Ω is a bounded smooth domain in ℝN , there exist open sets O1, . . . , Om in ℝN , diffeomorphisms
Ti : Oi → B1(0) and compact sets K1, . . . , Km in ∂Ω such that
(i) Ki ⊂ Oi, 1 ≤ i ≤ m, and ∂Ω ⊂ ⋃mi=1 Ki,
(ii) Ti(Oi ∩ ∂Ω) = B1(0) ∩ {xN = 0}, Ti(Oi ∩ Ω) = B1(0) ∩ {xN > 0},
(iii) for any x ∈ Oi ∩ Ω, there exists y ∈ Oi ∩ ∂Ω such that δ(x) = |x − y|.
We then define the Cap∂Ωθ,s-capacity of a compact set F ⊂ ∂Ω by

Cap∂Ωθ,s(F) :=
m
∑
i=1

CapBθ ,s( ̃T i(F ∩ Ki)),

where Ti(F ∩ Ki) = ̃T i(F ∩ Ki) × {xN = 0}.
The following result is obtained by the same argument as in the proof of [9, Proposition 2.9].

Proposition 7.6. Let a > −1,0 ≤ θ ≤ β < N and s > 1. Assume that−1 + s(1 + θ − β) < a < −1 + s(N + θ − β).
Then it holds

Capaℕθ,β ,s(E) ≈ Cap
∂Ω
β−θ+ a+1

s
−1,s(E) for any Borel E ⊂ ∂Ω.

7.2 Case g(u, |∇u|) = |u|p|∇u|q
Proof of Theorem 1.11. We see that, under the assumption on p and q, from Proposition 7.5 and Propo-
sition 7.6, conditions (i) and (ii) are equivalent. Therefore, we will prove the existence of a solution by
assuming (ii). For u ∈ W1,1

loc (Ω), put

ℍ[u](x) := 𝔾μ[|u|p|∇u|q](x) +𝕂μ[ϱν](x) a.e. in Ω.

From (2.1), (2.2) and (7.1), we have

Gμ(x, y) ≤ C1δ(x)αδ(y)αN2α,2(x, y) ≤ C1δ(x)αδ(y)αN2α−1,1(x, y) for all x, y ∈ Ω, x ̸= y,
Kμ(x, y) ≤ C1δ(x)αN2α−1,1(x, y) for all x ∈ Ω, y ∈ ∂Ω,

(7.7)

and
|∇xGμ(x, y)| ≤ C1δ(x)α−1δ(y)αN2α−1,1(x, y) for all x, y ∈ Ω, x ̸= y,
|∇xKμ(x, y)| ≤ C1δ(x)α−1N2α−1,1(x, y) for all x ∈ Ω, y ∈ ∂Ω.

(7.8)

From (7.7) and (7.8), we obtain

|ℍ[u]| ≤ C1δαℕ2α−1,1[δα|u|p|∇u|q] + C1δαℕ2α−1,1[ϱν],
|∇ℍ[u]| ≤ C1δα−1ℕ2α−1,1[δα|u|p|∇u|q] + C1δα−1ℕ2α−1,1[ϱν].

Put
E := {u ∈ W1,1

loc (Ω) : |u| ≤ 2C1δ
αℕ2α−1,1[ϱν], |∇u| ≤ 2C1δα−1ℕ2α−1,1[ϱν]}.

Then, by using (1.22), we deduce that there exists ϱ0 = ϱ0(p, q, C1, C) > 0 such that if ϱ ∈ (0, ϱ0), then
ℍ(E) ⊂ E.

Define V the space of functions v ∈ W1,1
loc (Ω) with the norm

‖v‖V = ‖v‖Lp+q(Ω,δ−q+α) + ‖∇v‖Lp+q(Ω,δp+α).

We can see that E ⊂ V and E is convex and closed under the strong topology ofV. Moreover, it can be justified
thatℍ is a continuous and compact operator. Therefore, by invoking the Schauder fixed point theorem, we
conclude that there exists u ∈ E such thatℍ[u] = u. Therefore, u is aweak solution of problem (Pϱν− ) satisfying
(1.23) with C = 2C1.
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A Barrier

In this section, we will provide a barrier which plays an important role. This barrier will have the same
properties as the barrier in [17, Proposition 6.1]. Let β0 be the constant in Proposition 2.6.

Proposition A.1. Let Ω ⊂ ℝN be a C2 domain, 0 < μ ≤ 1
4 , q > 0 and p + q > 1. Then, for any z ∈ ∂Ω and

0 < R ≤ β0
16 , there exists a supersolution w := wz,R of (4.2) in Ω ∩ BR(z) such that w ∈ C(Ω ∩ BR(z)), w(x)→∞

when dist(x, K)→ 0, for any compact subset K ⊂ Ω ∩ ∂BR(z), and w vanishes on ∂Ω ∩ BR(z). More precisely,

w(x) =
{
{
{

c(R2 − |x − z|2)−bδ(x)γ for all γ ∈ (1 − α, α) if 0 < μ < 1
4 ,

c(R2 − |x − z|2)−bδ(x) 12 (ln diam(Ω)
δ(x) )

1
2 if μ = 1

4 ,

where b is a constant such that b ≥ max{4−q−pq+p−1 + γ,
N−2
2 , 1} and c = c(N, μ, p, q, b, γ).

Proof. The proof is similar to that of [17, Proposition 6.1] with someminormodifications, and hence we omit
it.

B Case g(u, |∇u|) = |u|p + |∇u|q
In this section,weassume that g(u, |∇u|) = |u|p + |∇u|q with p > 1and1 < q < 2.Wewill statemain results for
this casewithout proving since theproofs are similar, even simpler, to those for the case g(u, |∇u|) = |u|p|∇u|q.

B.1 Absorption Case

This subsection is devoted to the study of the equation

− Lμu + |u|p + |∇u|q = 0 in Ω. (B.1)

When g(u, |∇u|) = |u|p + |∇u|q with p, q > 1, then g satisfies (1.10) if p and q satisfy (1.12). Moreover, g
satisfies (1.21). Hence, if p and q satisfy (1.12), then, for any ν ∈M+(∂Ω), the problem

{
−Lμu + |u|p + |∇u|q = 0 in Ω,

tr(v) = ν
(B.2)

admits a positive weak solution.

Theorem B.1. Assume p and q satisfy (1.12). Let νi ∈M+(∂Ω), i = 1, 2, and let ui be a nonnegative solution
of (B.2) with ν = νi. If ν1 ≤ ν2, then u1 ≤ u2 in Ω.

Set
mp,q := max{p, q

2 − q}.

Lemma B.2. Let p > 1 and 1 < q < N
N−1 . If u is a nonnegative solution of (B.1), then

u(x) ≤ Cδ(x)−
2

mp,q−1 for all x ∈ Ω,

|∇u(x)| ≤ Cδ(x)−
2

mp,q−1−1 for all x ∈ Ω.

Lemma B.3. Let p and q satisfy (1.12). Assume u is a positive solution of (B.1) in Ω such that (4.14) holds
locally uniformly in ∂Ω \ {0}. Then there exists a constant C = C(N, μ, p, q, Ω) such that

u(x) ≤ Cδ(x)α|x|−
2

mp,q−1−α for all x ∈ Ω,

|∇u(x)| ≤ Cδ(x)α−1|x|−
2

mp,q−1−α for all x ∈ Ω.

Brought to you by | Utrecht University Library
Authenticated

Download Date | 3/5/20 9:22 PM

5. EQUATIONS WITH A GRADIENT-DEPENDENT NONLINEARITY 177



K. T. Gkikas and P.-T. Nguyen, Elliptic Equations with Hardy Potential | 35

Theorem B.4. Assume g(u, |∇u|) = |u|p + |∇u|q with p and q satisfying (1.12).
(I) Weak singularity. For any k > 0, let uΩ0,k be the solution of (1.13). Then (1.14) holds. Furthermore, the

mapping k → uΩ0,k is increasing.
(II) Strong singularity. Put uΩ0,∞ := limk→∞ uΩ0,k. Then u

Ω
0,∞ is a solution of (1.15). Then there exists a constant

c = c(N, μ, p, q, Ω) > 0 such that

c−1δ(x)α|x|−
2

mp,q−1 ≤ uΩ0,∞(x) ≤ cδ(x)
α|x|−

2
mp,q−1 for all x ∈ Ω,

|∇uΩ0,∞(x)| ≤ cδ(x)
α−1|x|−

2
mp,q−1−α for all x ∈ Ω.

Moreover,
lim

Ω∋x→0
x
|x|=σ∈S

N−1
+

|x|
2

mp,q−1 uΩ0,∞(x) = ω̃(σ)

locally uniformly on upper hemisphere SN−1+ = ℝN+ ∩ SN . Here ω̃ is the unique positive solution of

{
−Lμω − ℓN,p,qω + J(ω, ∇ω) = 0 in SN−1+ ,

ω = 0 on ∂SN−1+ ,

where
Lμω := ∆ω + μ

(eN ⋅ σ)2
ω, ℓN,p,q :=

2
mp,q
(

2
mp,q
+ 2 − N),

J(s, ξ) :=

{{{{{{{{{
{{{{{{{{{
{

((
2
mp,q
)
2
s2 + |ξ|2)

q
2

if p < q
2 − q , (s, ξ) ∈ ℝ+ ×ℝ

N ,

sp + (( 2
mp,q
)
2
s2 + |ξ|2)

q
2

if p = q
2 − q , (s, ξ) ∈ ℝ+ ×ℝ

N ,

sp if p > q
2 − q , (s, ξ) ∈ ℝ+ ×ℝ

N .

Theorem B.5. Let ν ∈M+(∂Ω), p ≥ pμ or qμ ≤ q < 2. Assume problem (B.2) admits a weak solution.
(I) If p ≥ pμ, then ν is absolutely continuous with respect to Cℝ

N−1

2− 1+α
p

,p .
(II) If qμ ≤ q < 2, then the following occurs.

(i) If q ̸= α + 1, then ν is absolutely continuous with respect to CℝN−1α+1
q −α,q

.
(ii) If q = α + 1, then, for any ε ∈ (0,min{α + 1, (N−1)αα+1 − (1 − α)}), ν is absolutely continuous with respect

to CℝN−1ε+1−α, α+1α
.

Theorem B.6. Assume p ≥ pμ or qμ ≤ q < 2. Let K ⊂ ∂Ω be compact such that one of the following holds:

CℝN−12− 1+α
p

,p (K) = 0 if p ≥ pμ ,

CℝN−1α+1
q −α,q
(K) = 0 if qμ ≤ q < 2 and q ̸= α + 1,

CℝN−1ε+1−α,q (K) = 0 if q = α + 1 for some ε ∈ (0,min{α + 1, (N − 1)αα + 1 − (1 − α)}).

Then any nonnegative solution u ∈ C2(Ω) ∩ C(Ω \ K) of equation (B.1) satisfying (1.20) is identically zero.

B.2 Source Case

Theorem B.7. Assume g(u, |∇u|) = |u|p + |∇u|q with p > 1 and α+1
N+α−1 < q <

1+α
α . Assume one of the following

conditions holds.
(i) There exists a constant C > 0 such that, for every Borel set E ⊂ ∂Ω,

ν(E) ≤ Cmin{Cap∂Ω1−α+ α+1p ,p (E), Cap
∂Ω
−α+ α+1q ,q (E)}.

(ii) There exists a positive constant C > 0 such that

ℕ2α,2[δα(p+1)ℕ2α,2[ν]p] ≤ Cℕ2α,2[ν] <∞ a.e. in Ω,
ℕ2α−1,1[δ(α−1)q+αℕ2α−1,1[ν]q] ≤ Cℕ2α−1,1[ν] <∞ a.e. in Ω.
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Then there exists ϱ0 = ϱ0(N, μ, p, q, C, Ω) > 0 such that if ϱ ∈ (0, ϱ0), then problem (Pϱν− ) admits a weak solu-
tion u satisfying (1.23).
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