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EPR            Electron Paramagnetic Resonance 

FRET        Förster Resonance Energy Transfer 

G4        G-quadruplex 

GBA                            Glycosidic Bond Angle 

NA        Nucleic Acid 

NMR    Nuclear Magnetic Resonance 

PEG                         PolyEthylene Glycol 

PELDOR   Paramagnetic Electronic Double Resonance 

RDC      Residual Dipolar Coupling 

XRD     X-Ray Diffraction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	   4	  

 

 

Table of Contents 

 

Preface 

1. Introduction                                                                                                                5 

2. DNA conformational polymorphism                                                                         6 

    2.1 Conformational polymorphism due to sequence context                                    9 

    2.2 Environmentally promoted conformational polymorphism                               14 

          2.2.1  In-cell NMR spectroscopy                                                                       18 

          2.2.2  In-cell EPR spectroscopy                                                                         21 

          2.2.3 Is the DNA inside the cells automatically in the native conformation?    22 

          2.2.4  In-cell single-particle FRET                                                                     23 

          2.2.5  Molecular basis for the modulation of the DNA structure by     

                    environmental factors                                                                               26 

    2.3 Conformational polymorphism related to the kinetic control of DNA folding  30 

3. Biological relevance of DNA conformational polymorphism                                 33 

4. Future prospects                                                                                                       34 

5. Summary                                                                                                                  35 

6. References                                                                                                                35 

 

Appendix 

List of publications included in the habilitation thesis                                                45 

 

 

 

 

 

 

 

 

 

 

 



	   5	  

Preface 

This habilitation work is a compilation of selected scientific publications to which I 

have contributed as the corresponding author or a co-author in the course of my 

independent scientific career. These articles were published between 2005 and 2015. 

A list of these publications is given on page 45. All of these publications have a 

common theme related to DNA structural polymorphisms. In particular, they are 

focused on the mechanistic understanding of the phenomenon of environmentally 

promoted structural polymorphisms of DNA, context-dependent DNA 

polymorphisms, as well as the development of novel methods to study DNA 

polymorphisms. The accompanying text highlights my contribution to the field of 

DNA structural biology and also contains a brief introduction to the topic. 

Comprehensive information on the individual topics can be found in the enclosed 

original publications. The enclosed publications also include three review articles. 
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1. Introduction 

Deoxyribonucleic acid (DNA) is an abundant biopolymer in all living entities, where 

it functions to encode, transmit, and express genetic information. The physiological 

functions of DNA are predefined by its conformational plasticity. Disturbances of the 

native DNA structure correlate with dozens of pathological human conditions, 

including cancer (1-5).  

DNA is a fundamentally attractive drug target. The essence of the “antigene” 

strategy is that it is advantageous to attack disease targets at their source, at the level 

of gene expression (6,7). A protein drug target is the product of a particular gene. At 

each stage of progression through the central dogma (DNA transcription to RNA and 

the subsequent translation to protein), the absolute number of target molecules to be 

hit by a drug inhibitor dramatically increases. A single gene makes multiple mRNA 

copies, each of which is translated to make multiple copies of the target protein. The 

number of target molecules is amplified at each stage in the process. By targeting the 

DNA, a single gene, rather than the numerous resulting protein molecules, should 

promote more selective and efficient drug action. In past two decades, various DNA 

structural motifs have become valid targets for new anticancer drugs and many 

leading compounds that target these motifs have entered pre-clinical or clinical trials 

(8). 

In addition to the biological significance of DNA, its unique nano-scale 

geometry, biocompatibility, biodegradability, and molecular recognition capacity 

have made it a promising candidate for the construction of novel functional nano-

materials and nano-devices (9-15). In addition, site-specific surface modification of 

NAs enables the presentation of bioactive compounds at defined distances and 

stochiometries, which has promoted their use in a variety of novel biomedical 

applications, such as tailored cell targeting and substance delivery on demand (10,14)  

 

DNA structure 

From a chemical perspective, DNA can be regarded as a hetero-polymer composed of 

four basic units (monomers), namely adenosine mono-phosphate (A), cytosine mono-

phosphate (C), guanosine mono-phosphate (G), and thymidine mono-phosphate (T). 

The sequence of monomeric unit defines the DNA primary structure. In terms of its 

biological function, DNA can be considered a code. While some of the DNA 

functions are coded by the DNA primary structure alone, such as coding for RNA 
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transcription, other DNA functions, such as those related to the regulation of gene 

expression or maintenance of genome integrity, are encoded in its secondary, tertiary, 

and/or quaternary structure, collectively referred to as higher-order DNA structure. 

While the primary DNA code is rather simple and comprises only four “letters”, the 

code of the higher order DNA structure is enormously complex. The complexity of 

this code is due to the inherent structural plasticity of the DNA. In addition to the 

hetero-dimeric form composed of two DNA strands (in an antiparallel orientation) 

that are held together by hydrogen bonds, known as B-DNA and the predominant 

structural arrangement of the genomic DNA, DNA can adopt a broad spectrum of 

structural motifs. Figure 1 displays some of the basic classes of DNA motifs. 

 
Figure 1. Schematic representations of basic DNA structural motifs: A) parallel and 

antiparallel duplex, B) hairpin, C) bulge, D) junction, E) pseudo-knot, F) H-DNA, G) 

kissing-hairpins, H) i-motif, and I) G-quadruplex 

 

Importantly, a number of structurally distinct patterns exist within each of the major 

classes of DNA motifs. For example, a single DNA sequence forming antiparallel 

double helix can adopt at least six distinct conformations, referred to as A-, A/B-, 

hybrid-, composite, B-, and Z-DNA (16).  

The complexity of the DNA conformational space can be well illustrated by 

the G-quadruplex motif. The G-quadruplex (also known as G4-DNA) is a four-

stranded structure formed from sequences that are rich in guanine. In G-quadruplex, 



	   8	  

four guanine bases align in a pseudo-plane through hydrogen-bond alignments 

involving the Watson–Crick edge of a guanine and the Hoogsteen edge of its partner, 

resulting in a (G:G:G:G) tetrad, as shown in Figure 2A. The quadruplex stem is 

composed of stacked tetrads, with phosphodiester backbones delimiting the cavities, 

termed grooves. The tetrads are held together by cations and interactions of the π 

orbitals of stacked aromatic bases. Even very simple G-quadruplex-forming 

sequences, such as d(G2N3)4, where N stands for an arbitrary nucleotide, can, in 

principle, adopt hundereds of distinct conformations that differ in their strand 

orientations, loop topologies, and/or disposition of the glycosidic bond angle of the 

intervening bases, which can assume either an anti or a syn orientation (Figure 2B & 

2C).  

 
Figure 2. A) Schematic representation of the G-tetrad. B) The frame of reference for 

describing quadruplex topologies. The origin, the 5’-end, sits on a strand of the 

quadruplex stem progressing towards the viewer with polarity indicated by grey 

ellipse on the sugar-pucker. Looping can be anticlockwise, as denoted by the arrow, 
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or clockwise; (-) and (+), respectively. The description of the grooves follows 

anticlockwise from first to fourth. Black and white rectangles mark G residues with 

syn- and anti- glycosidic bond angle (GBA), respectively. C) All possible 

combinations of GBA for (G:G:G:G) tetrads. In Ia, the definitions of medium (m), 

wide (w), and narrow grooves (n) according to the adjacent disposition of GBA are 

shown. D) Representations of all looping topologies possible for three loop uni-

molecular quadruplex topologies. The topologies denoted by “a” start with 

anticlockwise progressing loops, and conversely the topologies denoted by “b” start 

with clockwise progressing loops. The sub-figures B-D were adopted from reference 

(17). 

 

2. DNA conformational polymorphism 

Conformational polymorphism is an inherent property of DNA. DNA conformational 

polymorphism (CP) refers to the ability of a specific DNA sequence to exist in more 

than one conformation. In structural biochemistry and biophysics, we distinguish 

three main classes of conformational polymorphisms: i) sequence context-promoted 

CP, ii) environmentally promoted CP, and iii) CP arising from kinetic partitioning in 

the course of DNA folding. The borderlines between the individual classes are not 

strictly defined and a number of DNA sequences display behavior that falls into all 

three classes. It needs to be mentioned that the classes are primarily defined by the 

limitations imposed by the experimental procedures used to explore the DNA 

structure. The individual classes of CP and their implications for fields of structural 

biology, molecular engineering and DNA drug design are discussed below.     

2.1 Conformational polymorphisms due to sequence context 

In eukaryotic cells, the DNA is localized in the cell nucleus and mitochondria. At 

present, there is no available experimental technique that provides high-resolution 

information on the DNA structure and dynamics in the context of unperturbed 

genomic/mitochondrial DNA. Essentially all information on structure of biologically 

interesting regions from the genomic/mitochondrial DNA comes either from X-ray 

diffraction studies or solution NMR investigations conducted on model 

oligonucleotides (18). The use of short model oligonucleotides presumes the 

“excision” of the sequence to be studied out of the genomic context. The concept of 

excision implicitly assumes that structure and dynamics of the model oligonucleotide 
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are identical to that of corresponding sequences in the genome; in other words, the 

structure and dynamics of the model oligonucleotide are independent of the flanking 

sequence/structural context. However, a number of examples exist, where two 

oligonucleotides with marginal difference in sequence (differing typically by virtue of 

one or two extra flanking nucleotides) show notably different structural properties. In 

this respect, we define sequence context-promoted CP as the situation when two or 

more distinct “excisions” of an identical structural segment from the 

genomic/mitochondrial DNA display distinct structural properties.  

One of the most studied cases of sequence context-promoted CP is provided 

by a DNA sequence corresponding to the 3’-G-rich single-stranded overhang (G-

overhang) from human telomeric DNA. The 50- to 200-nucleotide-long G-overhang 

consists of repeating d(GGGTTA) elements (19).  The G-overhang was observed to 

adopt G-quadruplex (G4) structures in vitro and in vivo (20-22). A number of studies 

suggested that the G-telomeric overhang consists of multiple G4 units (each unit 

comprises four telomeric repeats) that are arranged in a “bead-on-the-string” fashion 

(reviewed in, e.g., (22)). Folding of the G-overhang into a four-stranded G-

quadruplex has been demonstrated to inhibit telomerase, an enzyme that is activated 

in more than 80% of cancers (reviewed in, e.g., (23)). As several small molecular 

weight ligands that stabilize telomeric G-quadruplex structures have displayed 

promising anticancer activity in tumor xenograft models, it has been proposed that 

stabilization of telomeric G-quadruplexes might be applicable to the treatment of a 

wide range of human cancers (reviewed in, e.g., (24,25)). However, in vivo, all of 

these small molecules failed to selectively target telomeric G4-DNA relative to other 

G4-forming regions in the genome (26,27). Significant interest in improving the 

selectivity of small molecular weight ligands towards telomeric G4 prompted 

structural studies to characterize the physiologically relevant conformation of the G4 

unit within the G-overhang.  

However, numerous studies using short telomeric constructs demonstrated that 

the G4 conformation strongly depends on the 5’- and 3’-flanking residues 

immediately adjacent to the core G4 forming sequence, namely d(GGG(TTAGGG)3) 

(28). Thus far, the short oligonucleotides based on four telomeric repeat segments 

were found to be capable of adopting at least four folding topologies in presence of 

potassium, namely hybrid 1, hybrid 2, parallel and an anti-parallel two tetrad G4 

(Figure 3), depending on the nucleotides flanking the basic G4 core (22,28-31). These 
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observations raised concerns about whether the structural behavior of the G4 units 

within the telomeric G-overhang might be realistically assessed in studies of short, 

model telomeric sequences forming single G4 units. 

 
Figure 3. Schematic representation of G4-DNA folding topologies observed for short 

human telomeric DNA model constructs in presence of potassium, namely parallel 

(32), hybrid-1 (33), hybrid-2 (34), and an anti-parallel two tetrad basket (29). 

To gain insight into the conformational properties of individual G4 units 

within the context of the telomeric G-overhang, we investigated site-specifically 

labeled extended constructs spanning 8 and 12 telomeric repeats using high-resolution 

NMR spectroscopy (35). While site-specific labeling of the construct based on 8 

telomeric repeats, hereafter referred to as the double core construct, was tailored to 

identify the conformation of the 3’-terminal G4 unit in the G-overhang, the specific 

labeling of the construct based on 12 telomeric repeats, hereafter referred to as the 

triple core construct, was adopted to provide structural information about the 

conformation of the internal G4 unit(s) in the G-overhang. With this experimental 

setup, we were able to show that the addition of 3’-nucleotides and the whole 5’-G4 

unit to the double core construct had no significant influence on the folding topology 

of the internal G4 unit.  In other words, our data suggest that the 5’- and 3’-flanking-

dependent conformational polymorphisms observed for single-core G4 sequences are 

diminished in long telomeric sequences that form multiple units. In addition, detailed 

NMR investigations revealed that the G4 units in the G-overhang sequences coexist in 

2-tetrad antiparallel basket and hybrid-2 conformations. Our investigations identified 

the 2-tetrad antiparallel basket and hybrid-2 topologies as structural targets for the 

development of telomere-specific ligands, while marking parallel and hybrid-1 

conformations as “artifacts of the experimental design”(35). The example given above 

illustrates a situation when marginal sequence variations give rise to dramatic 

structural rearrangements and bias the assessment of the biological relevance of 
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individual conformations within the studied DNA. In this particular case, the observed 

flanking nucleotide-dependent CP for telomeric sequences forming a single G4 unit 

can essentially be regarded as an artificial problem of the “inappropriate” design of 

the model oligonucleotide.   

Although, as demonstrated above, the sensitivity of the DNA structure to 

sequence variation might impose a problem in assessing the biological relevance of 

the structural data, we recently showed that it could be positively exploited to 

interrogate the relationships between the DNA structure and its function, with a 

number of advantages. While the precise knowledge of the G4 topology in the 

telomeric G-overhang is of crucial importance for rational drug design applications, 

the question is whether the physiological function of the G4 units within the G-

overhang requires a particular G4-topology. We set to address this issue by “tracing” 

the phylogenetically conserved structural properties of the telomeric G-rich DNA in 

the course of the evolution of eukaryotic species (36). While the function of telomeric 

DNA is conserved among eukaryotes, the sequences of the telomeric DNA differ 

between species. We based our analysis on the assumption that only functionally 

relevant structural features are subject to evolutionary selection pressure (and are 

evolutionarily conserved), while other functionally silent properties manifest 

themselves as phylogenetic variables. We found that the telomeric DNA from 

Caernohabditis elegans is based on a fold-back-based structure, while the telomeric 

DNA from other species is based on a G4 structure. These data indicate that only the 

formation of the secondary structure is required for function of telomeric DNA, but 

not a particular structural type. From the point of view of biomedical applications, our 

data suggest that the function of (human) telomeric DNA is not connected with any 

specific G4 topology (36).  

From the stereo-chemical point of view, the telomeric DNA from C. elegans 

itself represents an important example of context-dependent CP. The G-rich telomeric 

DNA from C. elegans, emulated by the d(GGCTTA)3GG oligonucleotide, was 

previously shown to preferentially fold into a G4-quadruplex structure stabilized by 

Hoogsteen base-pairs (37). However, we demonstrated that the extension of the 

construct by a single 3’ nucleotide leads to the complete remodeling of the 

conformation space towards the formation of the fold-back structure stabilized by 

Watson-Crick base pairs (36). We could show that this fold-back structure remains in 

the preferred folded topology in the extended telomeric constructs. This example also 
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well illustrates problems with design of model DNA constructs: the addition/deletion 

of the single nucleotide to the model construct might promote a transition between the 

different structural classes. 

The specific category within this class is context-dependent CP promoted by 

(epigenetic) modifications of the DNA-constituting moieties, such as nucleic acid 

bases or the sugar-phosphate backbone. Typical examples of such modifications are 

5-methylation of cytosine residues, deamination of adenosines, or formation of abasic 

sites in the polynucleotide chain (38-40). Depending on the sequence context, the 

individual modifications may display a notably distinct impact on the conformational 

behavior of DNA. For example, we recently showed that the generation of abasic sites 

within the G4-forming sequences from human telomeric DNA are connected with the 

promotion of the G4 polymorphism (41). In contrast, 5-methylation of the cytosine 

residues in i-motif-forming sequences were not found to promote the polymorphisms, 

but instead modulate the thermodynamic stability of the basic i-motif scaffold (42) 

Together, the provided examples indicate that the basic assumption of the 

excision concept in structural biology is not universally valid and that transmitting the 

information on the oligonucleotide structure to its behavior in the context of the 

genomic DNA needs to be done with caution. Arguably, the disregard for the context-

dependent CP is currently one of most frequent artifacts in structural biological 

analysis of DNA. On a positive note, context-dependent CP can be exploited for not 

only molecular engineering for the rational design of various DNA nano-machines 

and devices, but also for identification of the relationships between the DNA structure 

and its function. 

 

The following articles of the applicant are related to the above topic: 
(K marks article corresponding author) 

1: Hänsel R, Löhr F, Trantirek L, Dötsch V. High-resolution insight into G-overhang 
architecture. J Am Chem Soc. 2013 135(7):2816-24.                                         IF=12.1 
 
2K: Školáková P, Foldynová-Trantírková S, Bednářová K, Fiala R, Vorlíčková M, 
Trantírek L. Unique C. elegans telomeric overhang structures reveal the 
evolutionarily conserved properties of telomeric DNA. Nucleic Acids Res. 2015 
43(9):4733-45.                                                                                                      IF=9.1 
 
3: Konvalinová H, Dvořáková Z, Renčiuk D, Bednářová K, Kejnovská I, Trantírek L, 
Vorlíčková M, Sagi J. Diverse effects of naturally occurring base lesions on the 
structure and stability of the human telomere DNA quadruplex. Biochimie. 2015 
118:15-25.                                                                                                           IF = 3.0 
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2.2 Environmentally promoted conformational polymorphisms 
Due to the importance of DNA in living systems and materials science, the structures 

of DNA have been the subjects of intense biophysical investigations for the last 60 

years, including high-resolution methods such as x-ray diffraction (XRD) and nuclear 

magnetic resonance (NMR) spectroscopy. However, instead of revealing the unique 

3D structural motifs for specific DNA sequences, in many cases, these studies 

provided a puzzling picture of the DNA conformational polymorphisms that appeared 

to be promoted by the DNA sequence and the experimental conditions used in the 

structural investigations (28,43-48). 

A common property among the broad spectrum of DNA motifs that emerged 

from structural investigations was the inherent sensitivity of the DNA structure and 

dynamics to non-specific physical/chemical environmental factors. A number of 

studies demonstrated that the stability, local DNA dynamics and the folding topology 

of DNA might strongly depend on the water activity, nucleic acid concentration, 

molecular crowding, pH, temperature, viscosity, or nature and concentration of the 

counter ion(s) (21,28,43,45,46,48-61). The folding of the DNA G-quadruplex motifs 

represents a textbook example of this type of behavior. The DNA G-quadruplexes 

formed by human telomeric repeats adopt at least three distinct folding topologies and 

differ in their strand polarities, loop orientations, and the orientation of the guanine 

bases with respect to the sugar moiety, depending on the environmental conditions 

and experimental conditions employed for their investigations (28). Hydration-

dependent A- to B-DNA helix transitions (43,55) are among the other well-known 

examples of chemical/physical control over the DNA structure. Typical examples of 

environmentally controlled DNA structural polymorphisms are shown in Figure 4. 
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Figure 4. Example of environmentally controlled polymorphism of NA structures. A)   

concentration dependent hairpin to helix transitions (61), B) pH dependent 

rearrangements of i-motifs in human centromeric DNA (45,62), C) ion type, 

molecular crowding, and water activity dependent polymorphism of G-quadruplex 

structure (reviewed in (28)), D) Hydration-dependent A to B DNA helix transitions 

(55).  

 

From a practical point of view, we define the environmentally promoted structural 

polymorphisms of DNA as DNA structural rearrangements (shifts in conformational 

equilibriums) that are induced by perturbation of one or more non-specific physical-

chemical parameters in environment.  

As already mentioned above and as evidenced from the structural database statistics, 

essentially all of the available high-resolution information on the DNA structure 

comes either from XRD or solution NMR investigations 

(http://www.rcsb.org/pdb/statistics/holdings.do). It needs to be stressed that the vast 

majority of these studies have been motivated by the biological relevance of the 

investigated DNA motifs. However, the observation that the structural behavior of 

DNA might strongly depend on the subjective choice of experimental conditions and 

procedures indicates that the conventional XRD and/or NMR techniques (in fact any 

in vitro spectroscopic technique) must be used with caution when addressing the 

question of the physiologically relevant structure of DNA molecules. Both XRD and 

NMR examine the structural properties of the isolated DNA under unnatural and 

rather simplistic conditions. The environmental conditions in XRD studies are 

constrained to conditions that support mono-crystal growth. In the majority of cases, 

these conditions are rather artificial and involve crystallization at non-physiological 

pH or in the presence of additives that facilitate the DNA crystallization process. In 

addition, the crystallization process itself exposes the DNA to notable degree of 

dehydration.  

Considering the specifics of the XRD experimental procedure, it is of no 

surprise that the DNA structures derived using XRD are often found to be distinct 

from structures detected by spectroscopic methods in diluted solutions (48,52,55,61). 

Nonetheless, it needs to be stressed that analyzing the DNA structure/dynamics in 

solution does not necessarily ensure the physiological relevancy of the acquired 

structural/dynamical information, as the choice of solution conditions is limited by the 
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fact that not all of the relevant factors that can modulate the DNA structure in vivo are 

known.  

Influence of counter ions 

A statistical analysis of the conditions used in solution NMR spectroscopy over last 

30 years to determine DNA structures revealed that more than 85% of the available 

structural information on DNA in solution currently comes from analyses in sodium-

based buffers (63) (Note: Sodium is a prevalent ion in the extracellular space, where 

no DNA is present, while potassium is the prevalent ion in intracellular space (64)). 

This analysis highlights one of the most commonly applied assumptions in solution 

NMR studies that presume that the nature of the counter ion has no influence on DNA 

structure and dynamics. However, shortcomings stemming from this assumption are 

only now beginning to be recognized. For example, the DNA G-quadruplexes were 

shown to adopt different folding topologies in the presence of sodium and potassium 

(28). Ion type-dependent bending of double-stranded DNA polyA/polyT sequences 

represents another known example (65). Although in a number of cases the overall 

DNA structure, particularly double-stranded DNA, might be essentially identical in 

both Na+ and K+-based solutions, we recently demonstrated that the local DNA 

dynamics in the presence of Na+ are notably distinct from those in the presence of K+ 

(66). 

Molecular crowding 

There have been ongoing attempts to assess the physiologically relevant DNA 

structure in vitro by emulating the composition of the intracellular space using 

adjusted buffer compositions. In addition to salts and small molecular weight 

compounds, the milieu that surrounds the chromosomes, the inter-chromatine 

compartment (67), is crowded by the presence of (macro)-molecules up to ~ 

100mg/ml (68). A simulation of the so-called molecular crowding effect with organic 

additives showed that the DNA structure is notably sensitive to crowding. The 

simulated crowding effect, mostly using polyethylene glycol (PEG) 200-400, was 

shown to affect the equilibrium between the DNA duplex and G-quadruplex/i-motif, 

promote the inter-conversion between various G-quadruplex topologies, strengthen 

the interaction between DNA and small molecular weight ligands, or promote 

stabilization of DNA triplex (59,69). However, we have recently demonstrated that 

the molecular crowding DNA experiences inside cells and/or in crude cellular 
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homogenates is notably distinct from the conditions DNA experiences in PEG-

supplemented solutions (21,70,71). It was only recently revealed that the majority of 

the observed structural phenotypes in the simulated crowded environment were due to 

a direct interaction of the PEG molecules with the DNA rather than due to the 

influence of molecular crowding itself (51).  

Together, the experimental observations demonstrating that the folding of 

NAs depends on environmental factors strongly suggest that the quantitative 

characterization of physiologically relevant NA structures and dynamics should 

ideally be performed either under native conditions in vivo or under in vitro 

conditions that realistically emulate the complex environment of living cells. This 

consideration has recently sparked interest in the development of novel tools that 

allow the structural characterization of NAs in the complex cellular context. 

 

Inception of structural analysis of NAs in living cells 

The introduction of the concept of in-cell spectroscopic analysis, namely in-cell NMR 

spectroscopy, in-cell EPR spectroscopy, and in-cell single particle FRET, was the first 

important step towards high-resolution structural analysis of NAs in their native 

environment (72-74). All of the mentioned methods are based on a similar underlying 

principle, which is outlined in Figure 5. In all of the techniques, the exogenous NA 

fragments are introduced into living cells, followed by the respective spectroscopic 

investigations. Despite the illusion that the in vivo measurements are directly 

analogous to the conventional in vitro NMR/EPR/FRET experiments, in-cell 

spectroscopic analysis has developed into a separate field. The established techniques 

for in vitro NMR/EPR/FRET structural analysis of NAs generally fail to provide an 

expected readout under in vivo conditions due to the limited resolution and reduced 

sensitivity of in-cell spectra, as well as due to the limitations imposed by biological 

factors, such as cell death, accidental NA leakage from the cells, the NA cellular 

localization, or degradation - for details, see (70-72). As a result, in-cell spectroscopic 

analysis requires the application of unconventional approaches not only for sample 

preparation and in-cell spectra acquisition but also for the interpretation of the in-cell 

spectroscopic data. While in-cell spectroscopic analysis of NA structure and/or 

dynamics in the native, complex cellular environment is feasible and provides 

structural insights that are impossible to envision using the conventional isolated in 

vitro methods, its general application remains limited due to various technical 
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reasons. The limitations and application potential of the individual methods are 

discussed in detail below. 

 
Figure 5. Schematic representation of general in-cell spectroscopic setup. 

 

2.2.1 In-cell NMR spectroscopy 

Initially, in-cell NMR spectroscopy was devised to selectively observe overexpressed 
13C/15N-labeled proteins in bacterial cells (75,76). Labeling with 13C/15N isotopes was 

shown to be indispensable to resolve the NMR signals from the protein of interest 

from the signals originating from the cellular background and to enhance the 

sensitivity of the in-cell NMR detection (71,75-79). However, this approach is limited 

by the requirement for high levels of the overexpressed proteins. In 2006, this concept 

was extended to allow observations of proteins in eukaryotic cells, namely in Xenopus 

laevis oocytes (79,80). The original and new concepts differ in the way in which the 

investigated protein is deposited in the living cells. In the original approach, the 

isotopically labeled protein is directly produced within the bacteria, which grows in 

isotopically labeled medium. In the latter approach, the isotopically labeled protein is 

not produced in oocytes, but is delivered into oocytes via microinjection. The 

microinjection delivers several advantages over endogenous overexpression of the 

protein. First, the deposition of the isotopically labeled protein into the isotopic label-

free cellular background allows us to monitor the introduced protein without 

interference from the cellular background. Second, in contrast to the original method 

based on protein overexpression, this approach can be applied to biomolecules other 

than proteins.  

In 2009, our group adapted the method of in-cell NMR spectroscopy to 

investigate polymorphisms of nucleic acids (NAs) in the complex environment of 

injected X. laevis oocytes (73).  In an in-cell NMR experiment, the unlabeled or 

isotopically labeled DNA fragment, which is prepared either by enzymatic or 

chemical synthesis, is mechanically introduced into X. laevis oocytes via 

microinjection. The intracellular concentration of the introduced DNA typically needs 
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to be in the 50-250 µM range to observe and characterize the DNA structure inside a 

cell. Approximately 200 oocytes need to be injected for one in-cell NMR sample. The 

injected oocytes are then transferred to an NMR tube, submerged in a buffer 

mimicking the composition of the extra-cellular environment and subjected to NMR 

investigations (73).  

In contrast to its application to proteins, the in-cell NMR of NA has identified 

specific problems, such as the degradation of nucleic acids inside the living cell 

(70,71,73). The DNA is exposed to nucleases when it is introduced into the cells. The 

nucleolytic activity results in the relatively fast depletion of the studied NA fragment 

inside the cell. The “life-span” of the DNA in vivo strongly depends on its primary 

sequence and folding topology. In addition to DNA degradation, there are also other 

factors that might impose additional “time” restrictions, such as leakage of introduced 

DNA from cells or cell death. In general, due to the limitations arising from DNA 

degradation, leakage of the DNA from cells, and/or cell death, the time-window 

accessible for routine DNA exploration under in vivo conditions is typically less than 

6 hours (70,71,73). This time restriction dictates the type of NMR experiments than 

can be used for in vivo NA structure investigations.  

Another source of restrictions in applications of in-cell NMR spectroscopy of 

nucleic acids stems from the heterogeneous nature and viscosity of the intracellular 

environment, as well as the heterogeneity of the NMR sample composed of stacked 

oocytes.  All of these factors are responsible for the generally low resolution and S/N 

ratio of in-cell NMR spectra. Typically, the signals observed in the in-cell NMR 

spectra are significantly broader than the signals from purified samples (70,71,73).  

In general, the quantitative structure determinations using NMR spectroscopy 

presume the use of isotopically labeled samples coupled with the exploitation of an 

elaborate suite of hetero-nuclear NMR experiments. While there was one reported 

successful protein structure determination in vivo using in-cell NMR spectroscopy 

(81,82), for nucleic acids, de novo structure determination in vivo appears impractical, 

although, in principle, it is feasible. The main obstacle is low in vivo stability of the 

nucleic acids coupled with a prohibitively high cost for isotopically labeled samples. 

An additional obstacle might be toxicity. We have observed that some NA fragments 

were toxic to the injected cells at the standard concentrations required for in-cell 

NMR investigations (70,71,73). Although reducing the effective concentration of the 

injected NA usually diminishes toxicity, it is inherently connected with a decreased 
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sensitivity of the in-cell NMR experiment. As a result, the interpretation of the in-cell 

NMR data adopted thus far has been primarily based on comparisons of the in vitro 

and in vivo spectral fingerprints, rather than ab initio structure determination (70,71). 

Comparing the spectral fingerprints of NA sequences under various in vitro 

conditions that promote miscellaneous structural arrangements within the studied NA 

fragments with in/ex vivo spectral patterns serves two primary purposes: i) to identify 

defined in vitro conditions, mostly a specific buffer composition, to be employed for a 

detailed characterization of the physiologically relevant structures using conventional 

in vitro NMR spectroscopy; and ii) to identify the property of the intracellular 

environment that is responsible for defining the effective conformation of the nucleic 

acid in vivo. While the in vivo and ex vivo spectral patterns are recorded in living X. 

laevis oocytes and/or X. laevis egg extracts, respectively, the reference in vitro data 

are individually recorded at conditions simulating various degrees of molecular 

crowding, viscosity, miscellaneous pH and temperature, or different compositions of a 

buffer in terms of low-molecular weight compounds (21,70). In general, this approach 

benefits from the high sensitivity of NMR chemical shifts to both local and global 

structural changes of the nucleic acids. In principle, each NA folding topology is 

marked by a unique pattern of NMR signals. As a result, an agreement between the 

in/ex vivo and in vitro spectral patterns is a reliable indication of the representative in 

vitro conditions under which the nucleic acid fragment adopts the same folding 

arrangement as in a cell. A schematic representation of the interpretation process 

based on the comparison of NMR spectral fingerprints is outlined in Figure 6.  

In contrast to conventional in vitro NMR, the in-cell NMR experiment is 

extremely technically challenging. The approach used to interpret the in-cell NMR 

data based on comparisons between the spectral fingerprints of the NA sequences 

acquired in vivo and those acquired in vitro completely fails when none of the 

considered in vitro conditions provide a spectrum identical to that recorded under 

native conditions in vivo. Unfortunately, these cases are biologically the most 

interesting. This approach also becomes quite problematic when the in vivo and in 

vitro spectra share some degree of similarity but are not entirely identical. In this case, 

a philosophical problem arises in terms of the meaning of the in vitro structural data. 

While the degree of spectral similarity will somehow reflect the accuracy of the 

derived structural information, the precision of in the vitro-derived structure will 

become meaningless in this case (please note that in XRD and in vitro NMR analyses, 
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the structural precision is the only measure of the structural quality). For a detailed 

discussion of the application potential and limitations of in-cell NMR spectroscopy, 

please refer to our recent review (70,71). Undoubtedly, the development of techniques 

allowing ab initio NA structural determination in vivo is an essential prerequisite for 

the general applicability of this approach and future development of the field. 

 
Figure 6. A) and B) Outline of the interpretational process of in-cell NMR spectra 

based on comparison of spectral fingerprints between in vivo and various in vitro 

conditions. The in vitro conditions are employed to generate different structural 

arrangements of NA fragment under the study. The figure was reproduced from our 

recent review (70). 

 

2.2.2 In-cell EPR spectroscopy 

In-cell EPR spectroscopy of DNA was introduced in 2011 by Prof. Prisner and 

colleagues (74). In terms of sample preparation, the in-cell EPR procedure is directly 

analogous to the in-cell NMR experiment. Whereas NMR spectroscopy makes use of 

the magnetic properties of the nuclear spin, EPR spectroscopy is based on the 

magnetic moment of unpaired electrons. Of particular interest is a technique called 

PELDOR (or DEER), which measures the dipolar coupling between unpaired 

electrons that are separated by distances of 1.5–10 nm. The primary components of 

nucleic acids are devoid of paramagnetic electrons; therefore, the target of interest 
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must be labeled with a stable paramagnetic probe. Site-directed spin labeling (SDSL) 

is routinely used to attach small nitroxides, such as 3-maleimido-2,2,5,5-tetramethyl-

1-pyrrolidinyloxy (3-maleimido-PROXYL, 5-MSL) or 2,2,5,5-tetramethyl-1-oxyl-3-

methyl methanethiosulfonate (MTSL), to the NA base, sugar, or phosphate-backbone 

moiety during or after chemical synthesis (50,71,74,83,84). In contrast to liquid-state 

in-cell NMR spectroscopy, which is carried out at physiological temperatures, the fast 

relaxation of the nitroxide spin labels at room temperature requires that the PELDOR 

experiments are conducted at cryogenic temperatures (50 K), and the cells are shock-

frozen in liquid nitrogen prior to the experiment (71,85).  

EPR spectroscopy cannot provide the same amount of detailed information 

about the conformational and dynamic state of a macromolecule as NMR 

spectroscopy. However, the advantages of in-cell EPR spectroscopy are the lack of 

cellular background signals, and the possibility of measuring distances by the 

PELDOR EPR method independent of the tumbling rate, and, therefore, the molecular 

weight of the macromolecule (85). Instead of 200 oocytes, as required for in-cell 

NMR experiments, only 30–50 injected oocytes are needed to occupy the active 

volume of the EPR resonator. Thus, injection and loading can be performed within 

10–15 min, while the injection of the 200 oocytes required for in-cell NMR analysis 

usually takes hours.  

Undoubtedly, the biggest challenge for in-cell EPR spectroscopy is the rapid 

reduction of the currently available spin labels in the cellular environment, which 

limits the measurement time. Igarashi et al. observed that the nitroxide spin label 

attached to the target under study was quickly reduced once present in the cellular 

environment, with an estimated half-life of 1 h. (86). More sterically protected spin 

labels are currently being developed and will have a major impact on the application 

of EPR spectroscopy in cellular systems (87) . 

 

2.2.3 Is the DNA inside the cells automatically in the native conformation? 

The “Catch-22” of all of the in vivo techniques for nucleic acid structural 

characterization, including in-cell NMR and in-cell EPR, is that while these 

techniques were devised for biomolecular structure analysis under native conditions, 

their implementations are always connected with various degrees of disturbance of the 

native environment (71,78). Without any doubt, the introduction of high 
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concentrations of exogenous DNA into a living cell is inherently connected with 

alterations of the physico-chemical properties of the intracellular environment, which 

might bias the structural readout.  

While the deposition of large quantities of DNA into cells is an inherent 

attribute of in-cell NMR and in-cell EPR, the cells appear to be able to diminish the 

adverse effects and restore the homeostasis of their intracellular environment. There 

are two options to confirm the integrity of the manipulated cells. The first is based on 

a comparison of the cell viability injected with a buffer versus cells injected with a 

buffer containing the DNA (70,71). The second uses the addition of progesterone to 

injected oocytes and determines whether the oocytes can be driven from a G2/M 

arrested oocyte to metaphase of meiosis II, i.e., to the stage of a mature egg (70,71). 

As the enzymatic activities required for the transition from an oocyte to a matured egg 

are sensitive to disturbances in the environment, this simple test provides a good 

indication that the injected cells were able to restore the homeostasis of the 

intracellular environment. A dramatic disturbance of the intracellular environment is 

typically recognized within 30 minutes of the injection and is marked by increased 

cell mortality.  

 

 2.2.4 In-cell single particle FRET  

For both the in-cell NMR and EPR investigations, there are three principal issues that 

stem from the requirement to deposit ultra-high concentrations of exogenous DNA 

into the cells (73,74,84). First, as mentioned above, the introduction of high 

concentrations of exogenous DNA into a living cell is inherently connected with 

alterations of the physico-chemical properties of the intracellular environment, which 

might bias the structural/physiologically relevant readout (78). Second, it is not only 

likely that there is possible disturbance of the intracellular environment, but also the 

inability to ensure that the entire introduced DNA is localized to its native, namely the 

cell nucleus. Although, it was shown that small DNA fragments accumulate in the 

nucleus after injection into the cytoplasm of eukaryotic cells, the localization is not 

quantitative, and ~10% of the introduced DNA remains in the cell cytosol (70). Third, 

our inability to deliver these high concentrations of exogenous material into bacterial 

and mammalian cells limits (at the present) the in-cell NMR/EPR analysis to a single 

cell type, namely X. laevis oocytes. 
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To resolve all of these issues, we have devised the concept of in-cell single 

particle FRET of nucleic acids to allow us to characterize the DNA structure in the 

complex environment of living cells at the single molecule level (72). The method is 

based on the common principle of all in-cell methods: exogenous DNA is introduced 

into the living cells, and, in this case, it is labeled with fluorophore tags. Quantitative 

FRET analysis is then employed to convey the required structural information about 

the nucleic acid fragment. The principle difference between the in-cell EPR/NMR 

method and in-cell spFRET is that in in-cell spFRET, the required information on the 

DNA structure is derived from measurements from a single molecule (a single 

emitted photon). As the single molecule can be delivered into almost any type of 

mammalian and/or bacterial cell, this method is not limited to large cells that can be 

mechanically injected, such as X laevis oocytes, in contrast to in-cell NMR/EPR. The 

delivery of a single molecule (or only a few molecules) into the cells has no toxic 

effect (which is often observed with in-cell NMR/EPR applications), and the 

disturbance of the native environment is diminished. Last, but not least, the 

fluorescence from the studied molecule provides a means of verifying the DNA 

localization inside the cell, and only the fluorescence from the DNA localized in the 

cell nucleus can be used to quantitatively assess the DNA structure (72).  

However, in terms of the data interpretation procedures, the in-cell spFRET 

and in-cell EPR are essentially identical (72). The current approaches for the 

interpretation of the in-cell FRET/EPR data require the existence of reference 3D 

structural models. This model-based interpretation presumes that all of the possible 

structural arrangements of the NAs can either be predicted or determined prior to in-

cell data interpretation using conventional approaches, such as XRD and/or NMR. 

The interpretation of the EPR/FRET data is then essentially reduced to a statistical 

evaluation of the closest match between the distances estimated from the set of 

reference structures and the in vivo distances between either paramagnetic or 

fluorescent tags acquired by in-cell EPR or in-cell FRET, respectively. This approach 

has two principle weaknesses. i) It presumes the existence of accurate and precise 

structural representations for the studied NA. When this requirement, which cannot be 

guaranteed a priori, is not fulfilled, the procedure, which is based on an evaluation of 

the closest match, will provide a “false positive” identification of the “physiological” 

structure. ii) Most importantly, due to the notable uncertainty in the 

paramagnetic/fluorescent tag location with respect to the NA and the altered spectral 
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properties of the tag in the intracellular environment (72), this approach might fail to 

unambiguously discriminate even quite distinct structural motifs.   

For a detail comparison of the application potential and limitations of the 

individual in-cell spectroscopic techniques see (71,72). 

 

Concluding remarks on in-cell spectroscopic methods: The development of in-cell 

spectroscopic methods allowed us to characterize the DNA structure within its native 

environment.  The reported applications of these methods provided important insights 

into the role of the intracellular environment in modulating the DNA 

structure/function, and it is also important information for formulating the 

composition of the buffers that are being used to emulate the parameters of the 

intracellular space in in vitro spectroscopic studies. The importance of in-cell 

spectroscopic methods can also be illustrated in a recent in-cell NMR study by 

Selgado et al. (88), which showed that the DNA-drug interactions (drug binding 

mode) observed in vivo might be distinct from those observed under artificial in vitro 

conditions. This observation has profound implications for the field of drug 

development, particularly for rational drug design, which entirely relies on the 

knowledge of DNA structure and the DNA-drug binding modes. 

However, at the same time, it needs to be stressed that the in-cell 

NMR/EPR/spFRET analysis is far from being routine. The applications of these 

methods are primarily hampered by technical difficulties in preparing the in-cell 

samples, the high costs of the labeled material, and the limitations stemming from 

problems with the acquisition and interpretation of the in-cell spectroscopic data. 

Currently, only a few laboratories around the globe (less than ten) are capable of 

producing and interpreting the in-cell data. It is clear than more methods should be 

developed to make these techniques available to the research community. The 

construction of advanced bioreactors to keep the cells alive under the harsh 

experimental conditions, the development of ultra-fast schemes for the acquisition of 

the in-cell NMR data, the development of interpretational schemes that allow the 

determination of the ab initio structure from the in-cell NMR/EPR/spFRET data, 

development of stable spin tags, development of novel approaches for geometry-

defined attachment of spin/fluorophore tags to DNA, and the development of efficient 

and novel methods for the delivery of exogenous DNA into cells, among others, will 

be essential. 
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2.2.5 Molecular basis for the modulation of the DNA structure by environmental 
factors 
 
The majority of studies dealing with environmentally promoted conformational 

polymorphisms are primarily descriptive and limited to the identification of the 

phenomena for particular DNA sequence. Only a small fraction of these studies 

provides insight into the molecular mechanism by which the environmental factors 

transmit their effects into the DNA structure and dynamics. Conceptually, the impact 

of the water exclusion effect due to molecular crowding/confinement is well 

understood: the DNA prefers to adopt conformation(s) generally marked by the 

smallest hydrodynamic radius (the smaller/smallest active area for interactions with 

water molecules) in environments with reduced water activity (50,53,54,56-58,89-95). 

In addition to the water exclusion effect, the entropic effect is cumulative, and the 

DNA disfavors extended conformations in a spatially confined environment to 

minimize the collisions of the DNA with the internal surface of elastic “nano-cavity” 

(60,95,96).  

The DNA-ion interactions are the most problematic to study and as result the 

least understood. The major impediment to the characterization of the DNA-ion 

interactions, which are transient and weak in nature, is a general lack of unbiased 

techniques that allow their investigation. High-resolution information on DNA-ion 

interactions usually comes from either X-ray crystallography or solution NMR or 

EPR analysis (97-101). In XRD studies, a low degree of hydration in the crystalline 

state has been shown to change the nature of the DNA-ion interactions, favoring 

direct interactions between DNA and ions over the water-mediated DNA-ion 

interactions observed in solution (55). In contrast to XRD studies, NMR and EPR 

measurements can be performed in a physiologically relevant hydration state. 

Unfortunately, the NMR and EPR properties of the physiologically relevant counter 

ions (e.g., Na+, K+, Mg2+) do not allow the application of standard techniques to 

identify their interaction sites. These limitations are usually overcome by the 

application of mimicking systems, referred to as “substitutionary ions” (e.g., NH4
+ for 

monovalent ions or Mn2+ for Mg2+) (99-101). However, the use of the substitutionary 

ions brings about possible source of bias due to the differences between properties of 

the native and mimicking ions. To avoid the use of the substitutionary ions, we 

developed a simple approach based on monitoring the NMR cross-correlated 

relaxation rates (Γ) between the aromatic carbon chemical shift anisotropy (CSA) and 
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the proton–carbon dipolar interaction to identify the binding sites between the 

physiologically relevant counter ions and the DNA (66). The technique proved to be 

extremely sensitive and can be used to detect very weak and transient interactions on 

a time scale much shorter than the DNA correlation time (τc). Such interactions are 

virtually invisible to conventional NMR techniques, such as chemical shift mapping 

and NOESY-based techniques, which are not likely to detect ions with occupancy less 

than 10% (102).  Our study revealed that Na+ and K+ have distinct preferential 

binding sites on DNA and that the ion binding to DNA distinctly affects the local 

intra-molecular dynamics in the vicinity of the ion-coordination site(s) (66). 

However, it is not just the transient and weak character of the water/ion-DNA 

interactions that makes them difficult to study. As demonstrated by our studies, the 

structural manifestations of the DNA water/ion interactions are often well below the 

resolution of conventional NMR methods and/or schemes used to interpret the NMR 

data (66,103-107).  For many years, the hetero-aromatic bases, a constituent unit of 

DNA, were considered to be planar and conformationally rigid (108). In 2009, our 

group demonstrated that in reality, the nucleic acid bases are non-planar systems 

(104). In our subsequent study, we showed that the degree of the non-planarity is fine-

tuned by the interaction of the DNA bases with the environment, represented by 

networks of water molecules and ions interacting with the individual bases (106). At 

the same time, our data indicated that the non-planarity is strongly correlated with the 

conformation of the glycosidic bond (104,106). These data suggested that the 

environment modulated the flexibility of the hetero-aromatic bases and may transmit 

information about the DNA environment into the arrangement of the DNA helix 

(106).  

Our database study based on an inspection of the ultra-high resolution XRD 

structures of DNA that revealed the details of the localized water molecules and 

interacting ions indicated that the structural manifestation of the interactions between 

the DNA and its environment, particularly the non-planarity of nucleic acid bases, are, 

in fact, reflected in the number of observable NMR parameters, such as direct and 

indirect spin-spin interactions or the NMR relaxation parameters related to local DNA 

dynamics (103,105,107). However, a re-examination of the number of primary 

experimental NMR data points on DNA accompanied by a series of QM calculations 

revealed that the information on the environmentally dependent structural variations 

is “canceled” and “spoiled” by the approximations employed in the course of the 
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NMR data interpretation. For example, information about glycosidic nitrogen 

pyramidalization, a quantitative measure of the non-planarity of a nucleic acid base, is 

canceled by inappropriate parameterization of the Karplus equation used to interpret 

3JH1’-C6/8 or 3JH1’-C2/4; the corresponding parameters implicitly presume an 

idealized sp2 hybridization at the glycosidic nitrogen (107). This presumption results 

in over/underestimation of the glycosidic torsion angle. A similar situation holds true 

for other primary NMR parameters, such as the cross-correlation relaxation rates 

between glycosidic nitrogen CSA and C1’-H1’ dipole-dipole or NMR relaxation data 

that depend on C6/8 and/or C1’ CSA (103,105). 

The assumption of planarity of the nucleic acid bases that is implicitly 

embedded in NMR data interpretational schemes not only “destroys” the information 

about the interactions of individual DNA bases with the local environment but also 

biases the entire structure determination process. The situation is further complicated 

by errors in the empirical parameterization of the current generation of the force fields 

employed in the (restrained)-MD simulations used to determine the DNA structure 

from the NMR data. While the current generations of the force fields correctly 

emulated the degree of nonplanarity of the nucleic acid bases, they fail to correctly 

assess the chirality at the individual atoms of DNA bases (104). 

Thus far, our understanding of the DNA-ion/water interactions remains 

limited.  The major obstacle to the characterization of the DNA-ion interactions is a 

general lack of unbiased experimental techniques that allow their investigation at a 

sufficient resolution.  
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2.3 Conformational polymorphisms related to the kinetic control of DNA folding 

CP arising due to kinetic partitioning in the course of DNA folding account for a 

situation(s) when a single DNA sequence adopts two or more folding topologies, 

whose populations do change over time. While this definition is general enough to 

account for a simple transition from an unfolded to a folded state, the term is being 

employed to denote a DNA folding process that operates on very long time scales 

(hours, days, months) and along a very complex conformational surface that is 

rugged, with deep competing basins of attractions.  

 This type of CP is characteristic for the folding of G-quadruplex-forming 

sequences (44,47,109-111). In NMR, this type of CP is typically experimentally 

manifested by the i) time-dependence of the NMR spectra and ii) high sensitivity of 

spectral pattern to experimental (environmental) conditions including sample storage 

(112). Regarding the time-dependence of the NMR spectra, the spectrum recorded 

one day is notably different from the spectrum recorded on the same sample several 

hours (days) later. Even for samples that were “stabilized” by so called annealing, the 

procedure serves to shift the conformational equilibriums towards the most 

thermodynamically stable state, and the NMR spectra are often found to change over 

time. Regarding the sensitivity of the spectra to the environment, perturbations in 

buffer composition have a pronounced effect on the appearance of the NMR spectra 

in terms of the number of species present and their relative populations (44-

46,49,109-111,113). 

This kind of behavior seems to suggest that DNA G4 folding is fundamentally 

different from the funnel-like folding of small RNAs or proteins, which fold on the 

time-scale of µs to ms (114,115). The folding of small proteins (or RNAs) is directed 

by the formation of native, local secondary structure contacts (116). This contrasts 

with the G4 DNA, where the most critical part of the folding may involve the 

formation of the native, consecutive, ion-stabilized quartets. The quartets are based on 

non-local interactions and, in a given fold, must have a specific combination of syn 

and anti nucleotides (17,117). A decisive role of the local contacts (which would 

include formation of the loop topologies) for the complete G4 fold is also not 

consistent with the fact that many G4 structures fold to diverse topologies upon 

changes in the environment or flanking sequences (21,44,46,49,110,113,118). In fact, 

this indicates the presence of several (or even many, depending on the time 
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resolution) competing basins of attractions. It is likely that only a small fraction of the 

molecules directly attain the most thermodynamically stable ensemble. The remaining 

molecules would be first trapped in competing sub-states, i.e., misfolded states, 

resulting in a multiple pathway folding process. The native and most significant 

competing basins of attraction may be interchanged upon changing the experimental 

conditions, which may explain why the dominant folding topology in the final 

thermodynamic equilibrium is so sensitive to subtle changes in the folding conditions. 

Most molecules likely initially attempt different (competing) folds and may need to 

unfold to attempt another fold (112). This is entirely consistent with our simulation 

studies identifying numerous highly stable potential intermediates (119,120). This has 

already been visualized experimentally for the folding of the human telomeric hybrid-

1 type GQ, for which the hybrid-2 structure has been shown as a major competing 

sub-state (basin of attraction) with respect to the global minimum (112). Of note, the 

study by Bessi et al. (112) showed that the transition between the two folds appears to 

be realized via the unfolded ensemble. It cannot be ruled out that the folding has also 

been affected by other sub-states, which are already below the resolution of the 

experiment. A very long time is definitely required for the most thermodynamically 

stable structure (under given conditions) to be observed in the experiment.  

 

Figure 6. Proposed mechanism for interconversion between hybrid-1 and hybrid-2 

G4-DNA model constructs based on human telomeric DNA (112). 

 

In protein or RNA structural biology, it is implicitly presumed that the biological 

function is related to the lowest energy conformation. In this case, the folding times 

are comparable or even below the time scale of the related biological process. 

However, this assumption might not be valid for the G4 structures. Considering the 

extremely slow time scale of G4 folding, which requires hours (days) to reach the 
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most thermodynamically stable state, it is much more likely that kinetically favored 

states, which can be considered as folding intermediates, are responsible for the 

biological function. This consideration implies that the G4 folding intermediates 

might represent more efficient drug targets compared to the G4 thermodynamically 

controlled states (121). 

To gain insight into the folding pathway of the telomeric G4 structures, we 

have used an MD simulation to assess the stabilities of the plausible folding 

intermediates, namely G-hairpins and G-triplexes (119,120). The investigation of G-

hairpins is relevant not only to the earliest stages of the folding pathways (the hairpins 

were suggested to fold on the ms time scale), but also to various later phases of 

folding, as the G-hairpins may be important parts of the ensembles during the inter-

conversions among different triplex and quadruplex arrangements. Our identified 

structural arrangements of G-hairpins and G-triplexes are stable enough to contribute 

to the G4 folding pathways (119,120).  

To date, GQ folding remains elusive, despite the intense experimental efforts 

to understand the process. The basic limitation of the experimental studies is that most 

of them do not allow a confident determination of the structures that are populated in 

time; they are limited in terms of time, structural resolution and/or sensitivity to the 

low populated species. The most recent data suggest that it may be feasible to target 

the G4 folding intermediates, such as G-hairpins, G-triplexes, or kinetically controlled 

G-quadruplexes, for anticancer drug designs that target G-rich regions. 

 

The following articles are related to the above topic: 

1: Stadlbauer P, Trantírek L, Cheatham TE 3rd, Koča J, Sponer J. Triplex 
intermediates in folding of human telomeric quadruplexes probed by microsecond-
scale molecular dynamics simulations. Biochimie 2014 105:22-35.                    IF=3.1 
 
2: Stadlbauer P, Kuhrova P, Banas P, Koca J, Bussi G., Trantírek L, Otyepka M, 
Sponer J. Hairpins participating in folding of human telomeric sequence quadruplexes 
studied by standard and T-REMD simulations. Nucleic Acids Res. 2015, in 
press(gkv994).                                                                                                      IF=9.1 
 

 

 

 

 



	   33	  

3. Biological relevance of environmentally controlled DNA polymorphisms 

The sensitivity of the DNA structure and dynamics to non-specific physical/chemical 

factors is an inherent property of DNA.  While this phenomenon is being heavily 

exploited in molecular engineering to construct dynamic DNA assemblies, such as 

logical gates, conformational switches, nano-machines, and/or biosensors (122-124), 

it remains unclear whether this phenomenon is, in fact, biologically relevant. 

Although a number of DNA related processes, such as those connected to changes in 

gene/ncRNA expression, are accompanied by natively occurring fluctuations in the 

composition and properties of the intracellular space, such as pH, [Ca2+], [K+]/[Na+] 

fluctuations in the course of cell- cycle, stress responses like hypoxia or hyperthermia, 

apoptosis, or the degree of molecular crowding/confinement in the course of 

chromatin remodeling (68,125-129), the direct link between environmentally 

controlled DNA polymorphisms and these environmental changes/biological process 

has not yet been demonstrated. One of the plausible explanations might be that within 

the ranges of the environmental conditions tolerated by the mechanisms controlling 

cellular homeostasis, the phenomenon of environmentally controlled DNA 

polymorphisms does not manifest itself and/or is simply functionally silent in vivo.  

Similar considerations do apply to the DNA structural polymorphisms that 

arise from kinetic control of DNA folding. As shown for the G-quadruplexes formed 

from human telomeric DNA repeats, certain G4 topologies are kinetically favored 

over the topology corresponding to the lowest energy conformation (111,112). 

However, in this case, the manifested polymorphism is “temporary”. In the initial 

stages of the folding process, the polymorphic mixture consists of a small fraction of 

the slowly formed, most thermodynamically stable species and a predominant fraction 

of the (multiplex) kinetically favored ones. The ratio between the kinetically and 

thermodynamically favored species changes over time. In thermodynamic 

equilibrium, the polymorphism is essentially diminished and G4 adopts a topology 

corresponding to the most thermodynamically stable conformation. The kinetically 

promoted polymorphism needs to be considered because G4 folding operates on an 

extremely slow time scale, which, in certain cases, may take months or even years. 

However, what is the biological relevance of this kinetically induced polymorphism? 

Biological processes take place at millisecond-to-second time scales. As result, the 

thermodynamically favored structure is unlikely to participate in the related biological 
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process. The complexity of the folding pathway indicates that a number of 

conformationally distinct species co-exist, even in the initial stage of the folding 

process. It is still an open question whether any particular conformation from the 

kinetically controlled mixture bears the function, or whether an equilibrium among 

the co-existing species is important for the function. 

 

4. Future prospects 

Most of the current research interest about DNA relates to its conformational 

polymorphisms. In materials science, the DNA conformational polymorphisms are 

being exploited for the construction of a controllable assembly of static structures, 

such as one-dimensional nanowires and 3D nano-structures (DNA origami); macro-

sized materials, such as DNA hydrogels; or the construction of dynamic assemblies, 

including molecular motors, biosensors, fabricated nano-containers for controlled 

release (smart drug delivery systems), molecular logic gates, unidirectional DNA-

walkers, surfaces for reversible cell adhesion; and reversible systems for the 

aggregation and dispersion of carbon nano-materials or hydrophobic dendrimers. In 

addition to the nano-technology applications, DNA has also recently regained 

attention as an attractive drug target in a wide variety of human pathological 

conditions, particularly due to the increasing functional importance of G4 structures 

for the regulation of gene expression and/or maintenance of genome integrity.  

Development in these fields strongly relies on our understanding of the DNA 

structure/dynamics. 

Despite all of these intense efforts, our understating of some of the 

fundamental DNA properties, particularly DNA folding and its response to non-

specific physical-chemical factors, remains limited. Undoubtedly, the major 

impediment to our understanding is a general lack of unbiased techniques that allow 

their investigation at a sufficient temporal resolution and in the complex environments 

of living cells. However, recent advances and the development of novel tools and 

methods for studying the DNA structure, such as in-cell spectroscopic techniques that 

allow us to investigate DNA structure and its interaction with drug-like molecules in 

the physiological environment, holds promise for the future. 
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5. Summary 

Deoxyribonucleic acid (DNA) is abundant biopolymer in all living entities. In terms 

of biological function, DNA can be considered a code. While some of the DNA 

functions are coded by the DNA primary structure alone, such as RNA transcription, 

other DNA functions, such as those related to the regulation of gene expression or the 

maintenance of genome integrity, are encoded in its secondary, tertiary, and/or 

quaternary structure. While the primary DNA code, is rather simple and comprises 

only four “letters”, the code of the higher order DNA structure is enormously 

complex. The complexity of this code is due to the inherent structural plasticity of the 

DNA that is finely tuned by a variety of non-specific environmental factors and/or 

specific interactions, such as those between DNA and DNA-binding proteins. In this 

habilitation thesis, I outline a role for non-specific physical-chemical factors in 

remodeling the DNA conformational space. The habilitation thesis summarizes my 

contribution to the field of DNA structural biology. In particular, the thesis 

recapitulates my contribution to the mechanistic understanding of the phenomenon of 

environmentally promoted and context-dependent structural polymorphisms of DNA 

and also recaps my contribution to the development of methods to investigate the 

DNA structure in the complex environment of living cells.  
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