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České Budějovice, July 2011

Typeset using the Springer svmono LATEX class



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Part I Predator-prey theory and optimal foraging

2 Predator-prey encounters, limited perception and optimal foraging . . 15
2.1 Predator-prey encounters and classical theory of optimal foraging . . 16
2.2 Limited perception: models and results . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Conclusions and further research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Part II Allee effects and population extinction

3 Allee threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1 From sameness to age to sex: Allee thresholds and population

structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Linking the Allee effect, sexual reproduction and temperature-

dependent sex determination via spatial dynamics . . . . . . . . . . . . . . . 69
3.3 Implications of mate search, mate choice and divorce rate for

population dynamics of sexually reproducing species . . . . . . . . . . . . . 83
3.4 Multiple Allee effects and population management . . . . . . . . . . . . . . 94
3.5 Conclusions and further research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4 Allee effects in predator-prey interactions . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.1 Caught between two Allee effects: trade-off between reproduction

and predation risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.2 Impacts of predation on dynamics of age-structured prey: Allee

effects and multi-stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.3 Does sex-selective predation stabilize or destabilize predator-prey

dynamics? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.4 Impacts of foraging facilitation among predators on predator-prey

dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.5 Conclusions and further research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

v



vi Contents

Part III Infectious diseases and pest control

5 Double impact of sterilizing pathogens: added value of increased
life expectancy on pest control effectiveness . . . . . . . . . . . . . . . . . . . . . . . 181
5.1 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.2 Model results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
5.4 Conclusions and further research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215



Chapter 1
Introduction

This thesis is about mathematical modeling of mostly animal populations. There-
fore, it dwells at the interface of two fields: mathematics and biology (or more
specifically population ecology). Coupled together, these fields provide the basis
for the scientific discipline of mathematical biology (Murray, 1993; Case, 2000;
Kot, 2001; Mangel, 2006). The primary aim of model development in population
ecology is not to predict change of specific populations, but rather to provide gen-
eral insight into how biological processes, often driven by individual behavior, af-
fect population change over time. Information on these processes, or on behavior
of individual population members, is collected through observations and carefully
planned experiments. Mathematical models of population dynamics build on this
empirical knowledge, attempt at linking such lower-level individual phenomena to
upper-level population dynamics, help formulate ecological theories, and generate
falsifiable hypotheses to be tested in the next round of empirical work (for a recent
example, see Vercken et al, 2011). For a real progress to be made, empirical and
mathematical approaches in biology have to be used complementarily.

The wealth of mathematical biology can also be seen on the journal market. A
great many of articles published in biological journals use mathematics to help ad-
dress their focal questions (e.g. Vercken et al, 2011). Conversely, a plenty of articles
published in journals on applied mathematics use biology as a source of challeng-
ing nonlinear problems to solve (e.g. Sun and Saker, 2005). These two types of
articles often meet in specialized journals on mathematical biology, such as Journal
of Theoretical Biology, Bulletin of Mathematical Biology, Journal of Mathemati-
cal Biology, Ecological Modelling, Theoretical Population Biology, Mathematical
Biosciences, Mathematical Medicine and Biology, and a recent newbie Theoreti-
cal Ecology. In addition, mathematically oriented biological papers are commonly
accepted by general biological journals such as Ecology, Evolution, American Nat-
uralist, and Oikos, and at times even by such world-leading scientific journals as
Nature, Science, and PNAS. This only strengthens the role mathematics plays in
current biology, not to speak of many textbooks and monographs on mathemati-
cal biology published by such world-leading scientific publishing houses as Oxford
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2 1 Introduction

University Press, Cambridge University Press, Springer, and Princeton University
Press.

Mathematical models of population dynamics are often expressed in terms of
differential or difference equations, which describe how populations change with
time, space, or stage of development (Murray, 1993; Case, 2000; Kot, 2001; Mangel,
2006). Biological processes are, however, inherently complex. Given that mathemat-
ical models disconnected from biological reality are of a little use, this complexity
has to show up in the models. Unfortunately, this is paid by the fact that although it
is often not that complicated to write down an adequate system of dynamical equa-
tions, frequently it is virtually impossible to analyze such equations by standard
mathematical methods, or at least not for the most part. Thus, formal analysis needs
to often be complemented with numerical simulations or use of a numerical bifur-
cation tool that exemplify and often even reveal interesting, analytically intractable
system behavior. Simulations can thus be incredibly helpful, allowing the reader to
see what the equations predict and allowing the author to obtain results from even
very complex models. On top of that, many models in current mathematical biology
are by definition simulation models, consisting of a set of rules of how individuals
behave and interact. This is in part because current ecology increasingly recognizes
impacts of individual variability on population dynamics. These rules are repeatedly
simulated for an ensemble of individuals with the aim to come up with dynamics
of the population as a whole. Such models are often referred to as individual-based
models (IBMs; e.g. Grimm and Railsback, 2005). Due to substantial complexity of
IBMs, techniques have been developed that allow for approximating IBM dynam-
ics by differential or difference equations, thus providing further insight into the
systems under study (e.g. Dieckmann et al, 2000).

Inherent interdisciplinarity of mathematical biology necessarily brings about two
contrasting approaches. On one hand, there are mathematicians that have a taste
for biology and develop analytically tractable models for the sake of the analysis
itself (e.g. Sun and Saker, 2005). On the other hand, there are theoretically inclined
biologists who use relatively simple models in support of their empirical findings
(e.g. Johnson et al, 2006) or develop very complex models, not only IBMs but
also systems of dozens of differential equations, to simulate complex biological
systems (e.g. Novák and Tyson, 2004). The niche in between these two worlds is
the playground for mathematical biologists or biomathematicians who develop and
analyze and/or numerically simulate relatively sophisticated mathematical models
to primarily address a biological question, yet with the attendant aim to get from
these models as much as possible also mathematically. I believe I belong to this
latter type of researchers.

This thesis consists of three major parts, all linked by the question of how pro-
cesses at the individual level affect the population as a whole.
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Part I: Predator-prey theory and optimal foraging

Although work in the field of population dynamics, traditionally the dominant field
of mathematical ecology, can be traced back to the end of 18th century, a milestone
of its establishment as a scientific discipline and its subsequent upswing are the
works of Alfred J. Lotka and Vito Volterra. A U.S. chemist and an Italian mathemati-
cian, respectively, these scientists independently developed a dynamical model of
predator-prey interactions (Lotka, 1926; Volterra, 1926), now known as the Lotka-
Volterra predator-prey model and taught in virtually any course on population ecol-
ogy. The model is as follows:

dN
dt

= rN −λNP

dP
dt

= eλNP−mP
(1.1)

where N and P stand for prey and predator density, respectively, r is the per capita
prey growth rate (births minus deaths per unit time) in the absence of predators, m
is the per capita predator death rate in the absence of prey, λ scales the predator
encounter rate with prey, and e is the efficiency with which consumed prey are
transformed into new predators. This model has a unique interior (i.e. coexistence)
equilibrium N∗ = m/(eλ ) and P∗ = r/λ which is neutrally stable; for any initial
state N(0) and P(0) there exists a periodic solution that circles the equilibrium in
the phase plane, the amplitude and period of which being functions of the initial state
(Fig. 1.1). This follows from two facts: first, eigenvalues of the linearized version of
the model (1.1) are purely imaginary, ±i

√
rm, and second, the first integral of the

model (1.1) is of the form

eλN +λP−m lnN − r lnP =C (1.2)

where a constant C is given by the initial state (Kot, 2001).
Beyond its structural instability, the model (1.1) is largely phenomenological,

combining simple ‘laws’ of exponential growth of populations not limited by re-
sources and of mass action kinetics borrowed from chemistry and describing an
interaction of two reactants (Murray, 1993). From this perspective, it can hardly be
considered mechanistic in that it comprises terms based on real animal behavior.
First real instances of individual behavior come with the concept of functional re-
sponse, defined as the rate at which an individual predator consumes prey as a func-
tion of prey density. This concept dates back to a Russian ecologist Georgii F. Gause
(Křivan, 2011, and references therein) and was getting fame with a Canadian ecol-
ogist Crawford S. Holling (Holling, 1959). Holling’s type II functional response,

λN
1+λhN

(1.3)
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Fig. 1.1 Dynamics of the Lotka-Volterra predator-prey model (1.1). The predator-prey coexistence
equilibrium (dot) is neutrally stable. Model solutions are periodic trajectories that circle the equi-
librium and their amplitude and period are functions of the initial state. Dashed lines represent the
model isoclines

is based on the assumption that upon a successful attack, each predator needs a
‘handling’ time h to subdue, eat and digest that prey item (Holling, 1959). The type
II functional response has since become a prototype for functional response that has
been elaborated upon many times (Jeschke et al, 2002) and, more importantly, has
been observed to apparently be the most widespread functional response in nature
(Hassell et al, 1976; Jeschke et al, 2002). With the type II functional response (1.3),
the predator-prey model (1.1) changes to

dN
dt

= rN − λN
1+λhN

P

dP
dt

= e
λN

1+λhN
P−mP

(1.4)

Another milestone in further development of predator-prey theory was the for-
mulation of optimal foraging theory (Charnov, 1976; Stephens and Krebs, 1986).
This theory considers predators facing several types (e.g. species) of prey of which
they may compose theit diet. By tracking foraging energetics, optimal foraging the-
ory prescribes what is the optimal predator diet composition. The result is critical
prey densities at which predators should instantly change their foraging behavior,
in order to maximize their food intake rate. As an example, in a homogeneous en-
vironment with two prey types, assuming that prey 1 is more profitable than prey
2 (e1/h1 > e2/h2) and that at most one prey type can be encountered at any time
instant, prey 1 is always attacked upon encounter, whereas prey 2 is attacked upon
encounter only if

N1 < Nc =
e2 +αh2

λ1(e1h2 − e2h1)
(1.5)
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and ignored upon encounter if N1 > Nc; α is the average rate at which predators
loose energy when searching (Křivan, 1996; Berec and Křivan, 2000). Note that in
this case, the optimal predator diet does not depend on the parameter λ2 scaling the
encounter rate with the less profitable prey 2.

This and other optimal foraging rules have subsequently been incorporated into
two-prey variants of several predator-prey models like (1.4), to see how adaptiv-
ity in predator foraging decisions with respect to changes in prey densities affects
predator-prey dynamics, showing that it can sometimes destabilize them, but mostly
it has a stabilizing effect (Křivan, 1996; Fryxell and Lundberg, 1998). Note that due
to the instant switches of diet composition by predators, the resulting model be-
comes a set of ordinary differential equations with discontinuous right-hand sides,
yet allowing for some formal analysis (Křivan, 1996, 2011). This ‘technical diffi-
culty’, and more importantly the actual observation of gradual rather than instant
diet shifts in a number of species led to the replacement of instant switches by
smooth transitions between any two diet composition states (Fryxell and Lundberg,
1998). Mathematically, ordinary differential equations with continuous (and even
smooth) right-hand sides are recovered, albeit now the model becomes analytically
intractable. Biologically, this has stimulated a quest for mechanisms responsible for
such gradual diet shifts. A variety of mechanisms have been proposed, ranging from
incorrect classification of prey by predators to limited memory capacity of preda-
tors, including perceptual constraints of predators that result in prey densities being
assessed only locally, not globally (Berec, 2000; Berec and Křivan, 2000). This lat-
ter mechanism forms the topic of the first part of this thesis. Specifically, we ask
how perceptual constraints of predators in their ability to assess prey densities and
the possibility that predators encounter prey sequentially (one prey type at a time)
and/or simultaneously (more prey types at a time) may affect predator attack deci-
sions, diet composition and functional response.

Part II: Allee effects and population extinction

A few years later than Lotka and Volterra formulated their predator-prey model, a
U.S. ecologist Warder C. Allee published his initial studies on undercrowding dy-
namics, more specifically on factors leading to the formation and maintenance of
animal aggregations (Allee, 1931; Allee and Bowen, 1932). At that time, it was al-
ready acknowledged that the exponential model of single species population growth,

dN
dt

= rN (1.6)

holds true only where populations are not limited by resources, such as at early
stages of an outbreak or invasion. Population ecologists have also been aware for
some time of the logistic model of single species population dynamics, due to a
Belgian mathematician Pierre F. Verhulst and a U.S. biologist Raymond Pearl,
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dN
dt

= rN
(

1− N
K

)
(1.7)

where K is the carrying capacity of the environment, i.e. the maximum popula-
tion density the environment can sustain. Unlike the exponential model (1.6) for
which the per capita population growth rate, (dN/dt)/N, does not depend on pop-
ulation density, the logistic model (1.7) states that this rate and population density
are negatively correlated (Fig. 1.2). The logistic model thus accounts for resource
limitations and decreased individual fitness at higher population densities. For high
enough population densities the per capita population growth rate becomes nega-
tive. The logistic model thus has a unique, globally stable positive equilibrium at
the carrying capacity K.

The logistic model (1.7) has become a flagship of the concept of negative density
dependence, or overcrowding, the concept that has always dominated research on
population dynamics – as populations grow resources decline so that fitness of any
population member is negatively correlated to population density. Contrary to that,
Allee demonstrated that at least in some populations opposite forces might be at
work – at low population densities, individuals can benefit from the presence of
conspecifics (Allee and Bowen, 1932; Allee and Wilder, 1938). This phenomenon
has later been given the name Allee effect. As we understand it now, an Allee effect
occurs whenever fitness of an individual in a small or sparse population decreases
as the population size or density declines (Stephens et al, 1999; Berec et al, 2007).

For many decades, the concept of Allee effects lingered on the outskirts of popu-
lation ecology, considered by many as a curiosity and not much worth of considera-
tion for general ecological theory. An interest in Allee effects was revived some 40
years ago by such works as Dennis (1989) and Widén (1993). Since then, the num-
ber of studies on Allee effects has grown virtually exponentially, identifying many
mechanisms behind this phenomenon and showing that Allee effects are ubiquitous
rather than curious, occur in plants, both marine and terrestrial invertebrates, fish,
mammals, birds, and even parasites; the most recent stocktaking is carried out in
Kramer et al (2009). Likewise, many mathematical models of population dynamics
involving Allee effects have been developed, demonstrating substantial impact of
the phenomenon on many aspects of population ecology, including applied issues
of conserving threatened species (Courchamp et al, 2000), controling invasive pest
species (Boukal and Berec, 2009), and harvesting economically important species
(Dennis, 1989) – nearly all about Allee effects is summarized in a marvelous book
by Courchamp et al (2008).

One of the simplest extensions of the logistic model (1.7) that accounts for the
Allee effect is (Boukal and Berec, 2002; Boukal et al, 2007)

dN
dt

= rN
(

1− N
K

)(
1− A+C

N +C

)
(1.8)

For A > 0 and C > −A, the model exhibits a critical population density N = A
below which the population is doomed to extinction and above which it persists
and attains the carrying capacity of the environment K (Fig. 1.2). If this is the case,
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such Allee effects are referred to as strong Allee effects and the critical population
density A is termed the Allee threshold (Berec et al, 2007). For A ≤ 0 and C >−A,
the per capita population growth rate still declines with declining density in rare
populations, but stays positive for any N > 0. As a consequence, there is no Allee
threshold in this case; one then speaks of weak Allee effects (Berec et al, 2007).
In both cases, C is an auxiliary parameter, affecting the overall shape of the per
capita population growth rate curve. As C increases, the curve becomes increasingly
‘flatter’ and reaches lower maximum values (Boukal and Berec, 2002; Boukal et al,
2007).
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Fig. 1.2 Relationships between the per capita population growth rate and either population size
or density for exponential growth (dotted), negative density dependence (light gray), and weak
(mid gray) and strong (black) Allee effects. For weak or strong Allee effects, the relationship
is positive at low population sizes or densities, where positive density-dependent (Allee effect)
mechanisms overpower negative density-dependent (intraspecific competition) ones. It is negative
at high population sizes or densities, where the converse is true

However, many population models involving Allee effects are more complex
than the model (1.8). In particular, the above model is phenomenological and does
not enable one to study how the Allee threshold responds to life history details of a
species. To allow for this, one needs to develop mechanistic models in which Allee
effects will reflect mechanisms responsible for these effects. For example, a sim-
ple population model involving an Allee effect due to enhanced difficulty of finding
mates at low population densities (Gascoigne et al, 2009) can be as follows:

dN
dt

= bN P(N)− (d +d1N)N (1.9)

Here b and d are intrinsic per capita birth and death rate, respectively, d1 scales the
strength of negative density dependence in the overall per capita death rate d +d1N
(as N increases so does the probability per unit time of each individual to die), and
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P(N) is a function standing for the probability that a female mates with a male when
population density equals N. Quite naturally, P(0) = 0 (no mating in no population),
dP/dN > 0 (the more males the higher the chance for any female to mate), and
limN→+∞ P(N) = 1 (mating virtually assured at high densities) (Courchamp et al,
2008); commonly used forms for P(N) include

P(N) = 1− exp(−N/θ) and P(N) =
N

N +θ
(1.10)

for a positive parameter θ (Boukal and Berec, 2002). Once b > d and θ is less than
a critical value θc, the model (1.9) demonstrates a strong Allee effect; the Allee
threshold increases and the carrying capacity decreases as θ increases, and the two
merge and disappear in a saddle-node bifurcation when θ = θc. Although the per
capita population growth rate defined by the model (1.10) still resembles the black
curve in Fig. 1.2, both the Allee threshold and the carrying capacity for this and
many similar models are now functions of model parameters, here b, d, d1 and θ ,
rather than independent parameters as in the phenomenological model (1.8).

But the world is still not that simple. Real populations are structured to various
extent, by age, developmental stage, size, sex, or space, and these often need to
be incorporated into population models. It turns out that the Allee threshold, a sin-
gle number in unstructured population models as in the model (1.9), is manifested
differently in variously structured population models. In the second part of this the-
sis, we are interested in how. In addition, we explore the role Allee effects play in
predator-prey systems, whether present in prey or in predators, coming around to
predator-prey models discussed above. This latter issue is actually one of the most
quickly evolving topics in the theory on Allee effects.

Part III: Infectious diseases and pest control

Population dynamics overlap with another active area of research in mathemati-
cal biology: mathematical epidemiology, the study of infectious diseases affecting
populations. Parasites appear responsible for many aspects of population ecology,
including population regulation, sexual selection, evolution of mating systems, and
maintenance of sex (e.g. Boots and Knell, 2002; Kokko et al, 2002; Knell and
Webberley, 2004). A great many mathematical models of infectious disease dynam-
ics have been proposed and analyzed (Keeling and Rohani, 2008, and references
therein), which provide invaluable results that are increasingly incorporated into
health policy decisions (e.g. Riley et al, 2003).

The field of mathematical epidemiology is generally thought to prosper following
the work of Sir Ronald Ross, a British doctor, on models of malaria, a vector-borne
disease (Ross, 1911), and the series of papers by William O. Kermack, a Scottish
mathematician, and Anderson G. McKendrick, a Scottish physician and epidemiol-
ogist, in 1920-1930’s (Kermack and McKendrick, 1927, 1932, 1933). Interestingly,
Sir Ronald Ross received the Nobel Prize for Physiology or Medicine in 1902 for
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his work on malaria, discovering that malaria was transmitted by the Anopheles
mosquitoes.

Early motivation for modeling infectious disease dynamics was human epidemi-
ology in developed countries. That is why the two basic and notoriously known
epidemiological models taught today, the epidemic SIR model and the endemic SIR
model, assume constant host population size. The endemic SIR model is as follows:

dS
dt

= bN −β (N)
SI
N

−dS

dI
dt

= β (N)
SI
N

− γI −dI

dR
dt

= γI −dR

(1.11)

It assumes that there is no mortality due to the disease and the birth rate b and the
death rate d are equal, b = d; this implies that the total population size N = S+ I+R
obeys dN/dt = 0, hence is constant. Further, β (N) is the disease transmission factor
comprising both the rate at which the susceptible (S) and infectious (I) individuals
meet each other and the probability the disease is transmitted upon such encounter,
γ is the rate at which infectious individuals recover (R). Trajectories of this model
attain a unique, globally stable, disease-free equilibrium (S∗, I∗,R∗) = (N,0,0) pro-
vided that R0 = β (N)/(γ +d), the basic reproduction number, is less than 1, and a
globally stable, endemic equilibrium

(S, I,R) = N
(

1
R0

,
d(R0 −1)

β (N)
,

γ(R0 −1)
β (N)

)
(1.12)

provided that R0 > 1; the disease-free equilibrium is in the latter case unstable
(Fig. 1.3; e.g. Keeling and Rohani, 2008).

Later on, the focus has widened to cover animal infections, at first the zoonoses
(diseases that have the potential to be transmitted from animals to humans) and the
wildlife diseases that can be transmitted to domesticated animals. With the upswing
of conservation biology, an emphasis extended to study infections (both natural and
those spilled over from domesticated animals) that threatened already endangered
wildlife populations (e.g. Kat et al, 1995). Finally, pathogens have recently started
to be considered potential regulating agents of invasive pest populations, with the
advantage of their self-spreading and thus relative cost-effectiveness of such a con-
trol technique (e.g. Deredec et al, 2008, and references therein). In the final part of
this thesis, we are going to present and analyze a mathematical model of infectious
disease dynamics that considers a pathogen as a potential regulating agent. In par-
ticular, given that non-reproducing animals might live longer than the reproducing
ones, we explore whether and to what extent does such a life expectancy prolonga-
tion due to sterilizing pathogens affect dynamics of the host population. This study
thus characterizes pathogens that are promising candidates for an effective pest con-
trol and that might possibly be engineered if not present naturally.
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Fig. 1.3 Sample trajectories of the model (1.11). The transmission factor β (N) is here assumed
constant, hence independent of population density; this is commonly referred to as standard inci-
dence. Parameter values were set such that R0 > 1
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Chapter 2
Predator-prey encounters, limited perception
and optimal foraging

All animals need food to live and reproduce. Foraging behavior thus forms a
substantial component of individual fitness. Beginning with Emlen (1966) and
MacArthur and Pianka (1966), optimal foraging theory has aimed at formalizing
such behavior in mathematical terms and at explaining the observed foraging be-
havior from the perspective of fitness maximization (Schoener, 1971; Pulliam, 1974;
Werner and Hall, 1974; Charnov, 1976; Krebs and McCleery, 1984; Stephens and
Krebs, 1986; Krebs and Davies, 1987; Schmitz, 1997). Since the 1960’s, the theory
has grown to cover plenty of aspects of foraging behavior and many experiments
have been carried out to test for its predictions. Still, the empirical support is limited
and the scientific community is split between proponents of the optimal foraging
theory and its opponents; see, e.g. Pierce and Ollason (1987) for a criticism.

Although it is naı̈ve to expect complete congruence between relatively simple
theoretical models and real observations on imperfect and variable individuals, the
fact is that little has often been done to reconcile the two. On one hand, theoretical
predictions have often been based on assumptions that are difficult to test for (e.g. as-
sumptions on animal capability to collect and process information) or rather simple
to hold in reality (e.g. assumptions on random prey encounters). On the other hand,
experimental settings have not often adhered to many assumptions of the specific
optimal foraging models and the experimental results have often been presented in
qualitative rather than quantitative terms and/or all relevant data have not always
been collected or presented.

As a way out of this dilemma, a number of mechanisms thought to better reflect
reality have been proposed and incorporated into those simple models of optimal
foraging1. As an example, a class of optimal foraging models assume that individ-
ual predators are globally omniscient, that is, they have exact knowledge of prey
population densities in the environment. In reality, however, individual predators
are presumably able to assess prey population densities only in a neighborhood of
their actual spatial location. As a consequence, because of local variations in prey
densities, different predators may estimate global prey densities differently. Local

1 See the next section for many specific examples.
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omniscience of real predators can be due to limited abilities in their perception, e.g.
a limited detection range of volatile substances released by prey, or limited visual or
auditory ranges of predators (Rice, 1983; Kindvall et al, 1998).

In this chapter, we show how perceptual constraints of predators and the pos-
sibility that predators encounter their prey sequentially (one prey type at a time)
and/or simultaneously (more prey types at a time) affect predator attack decisions,
diet composition and functional response with respect to their prey. The work on se-
quential encounters is based on Berec and Křivan (2000), while that on simultaneous
and mixed encounters on Berec (2000).

2.1 Predator-prey encounters and classical theory of optimal
foraging

Prey models of optimal foraging theory are based on the assumption that the en-
vironment in which predators search for and choose their prey is spatially homo-
geneous, i.e. not patchy. We study only prey models here, and will thus refer to
‘prey models’ simply as ‘models’; other types of optimal foraging models can be
found, e.g. in Stephens and Krebs (1986) and Krebs and Davies (1987). Assump-
tions of the classical models of optimal foraging theory are as follows (Stephens and
Krebs, 1986): prey value is measured as its net energy or another equivalent quantity
that does not vary with time, each prey type has an associated fixed handling time,
searching for prey and handling prey are mutually exclusive activities, prey are rec-
ognized instantaneously and with no errors, prey are encountered randomly at a rate
known to predators, and predators have evolved to maximize the net energy intake
rate during foraging. These models may differ in the way predator-prey encounters
are treated – these can be sequential, simultaneous, or mixed.

Sequential encounters

The first optimal foraging models assumed that predators encountered their prey
sequentially, i.e. at most one prey type at a time (Pulliam, 1975; Charnov, 1976;
Hughes, 1979; Gleeson and Wilson, 1986; McNamara and Houston, 1987; Fryx-
ell and Lundberg, 1994; Křivan, 1996). Just imagine a great tit sitting on a perch
and accepting or rejecting single mealworm pieces that pass by on a conveyor belt
(Krebs et al, 1977; Berec et al, 2003). Upon each prey encounter, predators have to
decide whether to attack that prey and invest some time in its handling or to ignore
it and go on searching for another prey that might be more valuable. Whatever the
predator strategy, its net energy intake rate is (Stephens and Charnov, 1982)

R(p1, . . . , pn) =
E

Ts +Th
=

∑n
i=1 piΛiei −α

1+∑n
i=1 piΛihi

(2.1)
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where Ts is the total time spent searching for prey, Th is the total time spent handling
prey, and E is the net amount of energy gained by the predator during the total
foraging time Ts +Th. In addition, n is the number of prey types, Λi is the encounter
rate of predators with prey i = 1, . . . ,n when searching, ei is the expected net energy
gained from handling prey i, hi is the expected handling time spent to subdue, eat and
digest prey i, pi is the probability that predators will attack prey i upon encounter,
and α is the average rate at which predators loose energy when searching.

For two prey types (n = 2), maximization of (2.1) with respect to the decision
probabilities pi gives the classical zero-one rule (Krebs and Davies, 1987): as-
suming, without loss of generality, that prey 1 is more profitable than prey 2, i.e.
e1/h1 > e2/h2, prey 1 is always attacked upon encounter (p1 = 1), whereas prey 2
is attacked upon encounter (p2 = 1) only if

Λ1 < Λ seq
c =

e2 +αh2

e1h2 − e2h1
(2.2)

and ignored upon encounter (p2 = 0) if Λ1 > Λ seq
c . Note that the zero-one rule does

not depend on the encounter rate Λ2 with the less profitable prey 2; prey 2 is thus
attacked upon (each) encounter with a predator only if the predator encounters with
prey 1 are sufficiently rare. The theorem specifying the zero-one foraging strategy
for any number of prey types (n ≥ 2) does not provide any detailed insight into
the optimal predator behavior, and we refer to Charnov (1976) and McNamara and
Houston (1987) for its precise formulation and corollaries.

Among other things, the classical sequential-encounter model predicts that any
prey type is either always attacked or always ignored upon encounter with a preda-
tor. Yet partial preferences (prey type is sometimes attacked and sometimes ignored
when encountered) are rather a rule than an exception in both field and laboratory
studies (McNamara and Houston, 1987, and references therein). Partial preferences
may be seen by instantly observing food decisions of a group of predators (partial
preferences of a population of individuals) and/or by observing foraging behavior
of a single predator in a series of food decisions (partial preferences of individuals).

A variety of mechanisms have been proposed to account for this discrepancy
and make the model more realistic. In particular, all assumptions underlying the
classical sequential-encounter model have been questioned: net energy content and
handling time of prey were assumed random variables by Stephens and Charnov
(1982), searching for prey and handling prey were not mutually exclusive activi-
ties in Farnsworth and Illius (1998), non-negligible recognition time was introduced
by Hughes (1979) and Houston et al (1980), errors in recognizing prey types were
discussed by Hughes (1979) and Rechten et al (1983), non-random prey encounters
appeared in McNair (1979) and Rechten et al (1981), encounter rates with prey types
were not known to predators but rather estimated in McNamara and Houston (1987)
and Hirvonen et al (1999), and predators were supposed to optimize alternative cur-
rencies in Schoener (1971) and even multiple currencies simultaneously in Schmitz
et al (1998). Other mechanisms include nutrient constraints (Pulliam, 1975), learn-
ing and crypsis (Hughes, 1979), sampling (Rechten et al, 1983), limited memory
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capacity of predators (Bélisle and Cresswell, 1997), and perceptual constraints of
predators (Mangel and Roitberg, 1989; Berec, 2000; Berec and Křivan, 2000); see
McNamara and Houston (1987), Mitchell (1989), and Bélisle and Cresswell (1997)
for more detailed lists.

Mixed encounters

Waddington and Holden (1979) argued that simultaneous encounters, i.e. encoun-
ters with more prey types at a time, are quite common in nature due to, for example,
visual capabilities of foragers. Upon a simultaneous encounter, predators have to
decide which prey type to attack, if any; the alternatives are assumed to be mutually
exclusive choices. Just imagine bees flying over a meadow or fish hunting in a plank-
ton bloom. The idea of simultaneous encounters has been elaborated upon in several
studies (Waddington and Holden, 1979; Engen and Stenseth, 1984a; Stephens et al,
1986; Barkan and Withiam, 1989).

However, it is hard to imagine an animal that would strictly follow only simulta-
neous prey encounters. Rather, the most natural scenario seems to include possibility
of encounters with various subsets of the available prey types, thus including se-
quential and simultaneous encounters as special cases. Engen and Stenseth (1984b)
were probably the first to consider this scenario. They proposed a generalized ver-
sion of the classical sequential-encounter model and derived qualitative corollaries
that were markedly distinct from those of the classical sequential-encounter model.
Generality of the Engen and Stenseth (1984b)’s model is paid, however, by the loss
of detailed quantitative insight into specific model instances, such as for two prey
types only.

For two prey types, the net energy intake rate under mixed encounters is (Berec,
2003)

R(p1, p2, p31, p32) =
p1Λ1e1 + p2Λ2e2 + p31Λe1 + p32Λe2 −α
1+ p1Λ1h1 + p2Λ2h2 + p31Λh1 + p32Λh2

(2.3)

where pi is the probability that predators will attack prey i = 1,2 when encountered
alone, while p3i is the probability that predators will attack prey i when encoun-
tered together with the other prey type; hence, p31 + p32 ≤ 1. Maximization of (2.3)
with respect to these decision probabilities gives the following prediction (Box 2.1):
assuming that e1/h1 > e2/h2, prey 1 is always attacked when encountered alone
(p1 = 1). In addition,

p2 = 1 if Λ1 +Λ < Λ seq
c

p2 = 0 if Λ1 +Λ > Λ seq
c

p31 = 0, p32 = 1 if Λ1 +Λ2 +Λ < Λ sim
c

p31 = 1, p32 = 0 if Λ1 +Λ2 +Λ > Λ sim
c

(2.4)

where Λ seq
c is given by the formula (2.2) and
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Λ sim
c =

(e2 +αh2)− (e1 +αh1)

e1h2 − e2h1
(2.5)

Note that Λ1 +Λ is the total encounter rate of a predator with prey 1, while Λ1 +
Λ2 +Λ is the total encounter rate of a predator with prey regardless of its type and
type of encounter. Note also that

Λ sim
c = Λ seq

c − e1 +αh1

e1h2 − e2h1
< Λ seq

c

Box 2.1 Optimal diet composition under mixed encounters

Here we derive the optimal diet composition under mixed encounters, by max-
imizing the net energy intake rate (2.3),

R(p1, p2, p31, p32) =
p1Λ1e1 + p2Λ2e2 + p31Λe1 + p32Λe2 −α
1+ p1Λ1h1 + p2Λ2h2 + p31Λh1 + p32Λh2

over the decision probabilities p1, p2, p31 and p32. First note that although
p31 + p32 ≤ 1, optimality requires p31 + p32 = 1. This is because when a
predator encounters a pair of (different) prey, it has nothing to gain by ne-
glecting that pair and searching for another prey (alone or in pair)2. Since

∂R
∂ p1

=
Λ1(e1 +αh1 +(e1h2 − e2h1)(Λ2 p2 +Λ p32))

(1+ p1Λ1h1 + p2Λ2h2 + p31Λh1 + p32Λh2)2 > 0

R is an increasing function of p1 and hence reaches its maximum at p1 = 1.
Hence, prey 1 is therefore always attacked when encountered alone. Further-
more,

∂R
∂ p2

=
Λ2(e2 +αh2 − (e1h2 − e2h1)(Λ1 p1 +Λ p31))

(1+ p1Λ1h1 + p2Λ2h2 + p31Λh1 + p32Λh2)2

Since p1 = 1, this implies that ∂R/∂ p2 is positive if and only if

Λ1 +Λ p31 < Λ seq
c

and negative if the reverse inequality holds; Λ seq
c is given by (2.2). Finally,

substituting p32 = 1− p31 into R,

∂R
∂ p31

=
Λ ((e1 +αh1)− (e2 +αh2)+(e1h2 − e2h1)(Λ +Λ1 p1 +Λ2 p2))

(1+ p1Λ1h1 + p2Λ2h2 + p31Λh1 +(1− p31)Λh2)2

Since p1 = 1, this implies that ∂R/∂ p31 is positive if and only if

Λ +Λ1 +Λ2 p2 > Λ sim
c

and negative if the reverse inequality holds; Λ sim
c is given by (2.5).
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Consider now the following three cases:

1. Λ1 +Λ < Λ seq
c . This implies p2 = 1 and hence p31 = 1 if and only if Λ +

Λ1 +Λ2 > Λ sim
c and p31 = 0 if and only if Λ +Λ1 +Λ2 < Λ sim

c
2. Λ1 < Λ seq

c and Λ1 +Λ > Λ seq
c . Since Λ seq

c > Λ sim
c then Λ +Λ1 +Λ2 p2 >

Λ sim
c . This implies p31 = 1 and hence p2 = 0, as Λ1 +Λ p31 = Λ1 +Λ >

Λ seq
c

3. Λ1 > Λ seq
c (which implies Λ1 +Λ > Λ seq

c ). Again, since Λ seq
c > Λ sim

c then
Λ +Λ1 +Λ2 p2 > Λ sim

c . This implies p31 = 1 and hence p2 = 0, as Λ1 +
Λ p31 = Λ1 +Λ > Λ1 > Λ seq

c

The latter two cases can be coupled together as if Λ1 +Λ >Λ seq
c then p31 = 1

and p2 = 0. We thus get the optimal decision probabilities (2.4). In addition,
since Λ1 +Λ > Λ seq

c implies Λ1 +Λ > Λ sim
c and hence Λ +Λ1 +Λ2 > Λ sim

c
we cannot have simultaneously p2 = 0 and p31 = 0. In biological terms, when
the predator does not attack prey 2 when encountered alone, it neither attacks
it when encountered together with prey 1.

Under mixed encounters, preferences are partial in a wide range of prey en-
counter rates. Indeed, denoting the total decision probability of a predator to attack
prey i as

πi =
Λi

Λi +Λ
pi +

Λ
Λi +Λ

p3i (2.6)

partial preferences do occur quite frequently (Fig. 2.1). Still, transitions from full
to partial preferences in any of the prey types are abrupt rather than gradual. We
show below that perceptual constraints of predators, limiting their knowledge of
prey densities to a neighborhood of their actual spatial location, make these transi-
tions gradual.

Interestingly, the predator decision rules (2.4) show that a prey type may become
rarer in the optimal predator diet as a consequence of being more abundant in the
environment; this has been termed the “paradox of self-reduction” by Engen and
Stenseth (1984a,b). For example, in Fig. 2.1b, π2 drops to a lower value as soon as
Λ2 exceeds Λ sim

c −Λ1 −Λ . A necessary condition for this paradox to occur is that a
prey type is sometimes encountered alone and sometimes together with other prey
types (Engen and Stenseth, 1984a,b).

2.2 Limited perception: models and results

In this section, we develop a spatially explicit, individual-based model (IBM) of
a one-predator two-prey system. We then re-derive the above-given classical prey
choice rules within the IBM framework and derive new prey choice rules that in-
corporate a mechanism of limited perception by predators. The main advantage of
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Fig. 2.1 Partial preferences in the classical mixed-encounter model (2.3). Parameter values: e1 =
0.1, h1 = 0.2, e2 = 0.2, h2 = 0.5, α = 0.01. Dashed lines show π1, while solid lines delimit π2. (a)
Encounter rates Λ1 = 2 and Λ2 = 3 are fixed, while Λ is an independent variable. (b) Encounter
rates Λ1 = 3 and Λ = 4 are fixed, while Λ2 is an independent variable

the spatially explicit IBM is that it allows for tracking every single individual in
the environment, thus enabling us to delimit perception neighborhoods readily for
individual predators.

The spatially homogeneous environment is modeled as a lattice of square sites.
Population densities are limited by the lattice size as we allow for at most one prey
individual of one or any type and one predator individual to occupy any single site.
Let time run in discrete steps. We assume that the numbers of prey 1 individuals
(x1), prey 2 individuals (x2), and predators (y) do not change with time. This is the
standard assumption “when we want to look at the instantaneous behavior under a
range of conditions” (Murdoch and Oaten, 1975). In addition, we assume that prey
are randomly distributed across the lattice at each time step.

Sequential encounters

At most one prey individual (regardless of its type) can occupy a single site. At
each time step, any single predator may find itself in one of three situations: it can
share the site with a prey 1 individual or with a prey 2 individual or the site can
be free of prey. For either of the first two cases, the predator attacks a prey i = 1,2
individual with probability pi. If the predator decides to attack prey i, the attack is
successful with probability Pi

a. Following a successful attack, the predator handles
prey i for T i

h time steps. When handling a prey, the predator cannot attack another
prey individual. Also, the handled prey cannot be attacked by any other predator.
No interference is assumed to take place between any two predators; for an instance
of predator interference, see Stillman et al (1997). To keep prey numbers fixed, the
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handled prey is instantly replaced by a new individual of the same type, located
randomly in any prey-free site.

Consider a single predator in a long series of searching time steps. The proportion
of prey i individuals from all prey the predator captures in the series can be well
approximated by the formula

xi
S piPi

a
x1
S p1P1

a + x2
S p2P2

a
(2.7)

where S is the number of lattice sites (Box 2.2). Similarly, the formula (2.7) will
approximate the proportion of prey i individuals of all prey items that are captured
by a number ys of searching predators in a single time step if ys (and hence S and xi
such that xi/S stay constant) tends to infinity (Box 2.2).

Box 2.2 Derivation of the diet composition formula (2.7)

Given that both prey types are randomly distributed across the lattice at each
time step, with each site occupied by at most one prey individual (regardless
of its type), the probability that a searching predator shares a site with a prey
i individual is wi = xi/S. In turn, the probability that the searching predator
will successfully attack that prey is Ps = wi piPi

a, that is, the probability of en-
countering the prey times the probability of attacking it times the probability
of attacking it successfully. After Ts searching time steps, we will thus have

E [number of successful attacks |Ts] = PsTs

Var [number of successful attacks |Ts] = Ps(1−Ps)Ts

Using V = number of successful attacks/Ts to denote the proportion of suc-
cessful attacks out of Ts possibilities, we have

E [V |Ts] = Ps

Var [V |Ts] =
Ps(1−Ps)

Ts

According to the law of large numbers,

S−PsTs√
Ps(1−Ps)Ts

→ N(0,1)

in distribution as Ts grows large, where N(0,1) is the normalized Gaussian
distribution with zero mean and unit variance, and hence

V −Ps√
Ps(1−Ps)/Ts

→ N(0,1)
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in distribution as Ts grows large. Thus, for sufficiently large Ts,

V ≈ Ps +

√
Ps(1−Ps)

Ts
ε

where ε ∼ N(0,1). This all implies that, given constant prey densities, wi piPi
a

will reasonably approximate the proportion of successful attacks on prey i
by a single predator as the number of searching time steps tends to infinity.
Similarly, given constant prey densities, the proportion of searching predators
that successfully attack prey i in a fixed time step will approach wi piPi

a as
the number of searching predators ys (and, in turn, the lattice size S and prey
numbers xi such that prey densities wi stay constant) tends to infinity, given no
interference between predators. Hence, the proportion of prey i individuals of
all prey items that are captured by a single predator within its searching time or
by a number of searching predators in a single time step, is well approximated
by the formula (2.7).

The predator functional response to prey i, defined here as the number of captured
prey i individuals per predator per time step, can be analogously shown to approach

ys
xi
S piPi

a

y
(2.8)

as ys (and hence S and xi such that xi/S stay constant) tends to infinity. Let Ts and Th
be the total time an individual predator devotes to searching for prey and handling
prey, respectively, and let T = Ts +Th be the total foraging time. Obviously,

Th = Ts

(
T 1

h
x1

S
p1P1

a +T 2
h

x2

S
p2P2

a

)
(2.9)

Inserting this expression to T = Ts +Th and rearranging, we have

Ts

T
=

1
1+T 1

h
x1
S p1P1

a +T 2
h

x2
S p2P2

a
(2.10)

If the time steps in which a predator searches for prey or handles prey are ran-
domly distributed within the total foraging time T , then the mean number of actu-
ally searching predators would be ys = yTs/T . If the handling times T 1

h and T 2
h of

individual prey are small relative to the total handling time Th, we may assume this
formula to approximately hold, too. Hence, ys/y is close to Ts/T and the (approxi-
mate) predator functional response to prey i = 1,2 is

xi
S piPi

a

1+T 1
h

x1
S p1P1

a +T 2
h

x2
S p2P2

a
(2.11)
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In what follows, the optimal values for the decision probabilities pi are derived.

Omniscient predators

Classical optimal foraging theory assumes that predator fitness is proportional to the
average rate of net energy gain during foraging,

E
Ts +Th

(2.12)

In the context of our IBM formulation, Ts is the number of time steps a predator
individual spent searching for prey, Th is the number of time steps it spent handling
prey, and E is the net amount of energy it gained during the total foraging time
Ts +Th. Because of the stochastic character of the IBM, the rate (2.12) is a random
variable. For a sufficiently long foraging time and a sufficiently large lattice size,
the mean value of (2.12) approaches

R(p1, p2) =
E1

x1
S p1P1

a +E2
x2
S p2P2

a

1+T 1
h

x1
S p1P1

a +T 2
h

x2
S p2P2

a
(2.13)

whereas its variance tends to zero (Stephens and Charnov, 1982; Stephens and
Krebs, 1986); Ei is the net amount of energy predators gain from consuming one
prey i = 1,2 item. Assuming that prey 1 is more profitable than prey 2 (E1/T 1

h >
E2/T 2

h ), then by maximizing the function (2.13) with respect to the decision proba-
bilities p1 and p2 we have that the optimal strategy of a predator is to always attack
prey 1 upon encounter (p1 = 1) and to decide as

p2(x1) =

{
1 if x1 < L1
0 if x1 > L1

(2.14)

upon encounter with prey 2, where

L1 = S
E2

P1
a (E1T 2

h −E2T 1
h )

(2.15)

(see Stephens and Krebs (1986) or Křivan (1996) for a detailed derivation). The case
x1 = L1 is not considered here as the prey 1 abundance x1 can take only non-negative
integer values within the IBM framework; consequently, we can always make the
threshold value L1 different from all the admissible values of x1 by a negligible
change of parameter values3.

The effects of this optimal foraging strategy on the predator diet composition
(2.7) and the functional response (2.11) are summarized in Fig. 2.2a-c. Three obser-
vations are worth noting. First, both the prey 1 proportion in the predator diet and the

3 Within the framework of ordinary differential equations, however, population densities may ac-
quire any non-negative value and such a case has to be treated properly (Křivan, 1996).
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prey 1 consumption rate increase with prey 1 abundance x1 but decrease with prey
2 abundance x2. Also, the abrupt changes of these quantities do appear around the
prey 1 threshold abundance L1 at which the predator diet changes abruptly. Finally,
magnitudes of these abrupt changes do increase with increasing prey 2 abundance
x2.

Numerical IBM simulations are in agreement with our above-derived approxi-
mate formulas (Fig. 2.3)a-c. The simulation results were obtained by counting and
processing analogously the actual numbers of successfully attacked prey i = 1,2 in-
dividuals, for various values of prey 1 abundance. More rigorously, 100 time steps
were simulated for each prey 1 abundance (prey 2 numbers were kept constant
across these simulations) and the numbers of successfully attacked prey in the last
time step, when the number of searching predators had relatively stabilized, were
processed. We observe that the predator consumes disproportionately more prey
2 items below the prey 1 abundance threshold x1 = L1, due to higher probability
P2

a > P1
a used in the figure to successfully attack prey 2 individuals upon encounter

(Fig. 2.3b). The prey 1 proportion in the diet would coincide with the oblique line
below L1 for P1

a = P2
a .

Predators with limited perception

McNamara and Houston (1987) and Hirvonen et al (1999) explained partial prefer-
ences by letting predators estimate prey densities on the basis of actual encounters
with prey. This is one possibility of how to incorporate limited knowledge of the
environment by predators. Alternatively, we suppose here that predators know the
exact numbers of individuals of each prey type, but only within a restricted neigh-
borhood of their spatial locations (for example, a square of 5× 5 lattice sites with
the predator in its center), rather than in the environment as a whole.

Let the perception neighborhood have the same number N of sites for every
predator individual; we refer to it as an N-neighborhood further on. Let individ-
uals of both prey be randomly distributed across the lattice at each time step. This
assumption implies, among other things, that the actual form of the N-neighborhood
is not important and may vary with different predators, because the probability that
a site is occupied by a prey i individual is the same for each site. The question now
is how a predator should decide upon encountering a prey if it perceives x̃i prey
i individuals in its N-neighborhood. Obviously, these numbers vary with different
predators and may also vary for a single predator with time if the predators and/or
prey are allowed to move over the lattice.

Let us suppose that there are x̃i prey i individuals in the N-neighborhood of a
predator. If we consider this neighborhood as the effective environment of the preda-
tor, then the above derived optimal foraging rule predicts that the predator should
always attack prey 1 upon encounter (p1 = 1), whereas its decision to attack prey
2 upon encounter depends on the relation between the local abundance x̃1 of prey 1
within the N-neighborhood and the local threshold abundance
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Fig. 2.2 Effects of the optimal foraging strategy on the predator foraging behavior. The proportion
of prey 1 individuals from all prey captured by the optimally foraging predators in a single time
step (or by a single predator in a series of searching time steps) (2.7) against the prey population
abundances (panels (a) and (d)), the same quantity plotted against the proportion of prey 1 in the
environment and prey 2 abundance (panels (b) and (f)), and the functional response of optimally
foraging predators to prey 1 (the mean number of successfully attacked prey 1 individuals per
predator per time step) (2.11) against the prey population abundances (panels (c) and (f)). Panels
(a) to (c) correspond to omniscient predators, while panels (d) to (f) are for predators with limited
perception (N = 7× 7 = 49). Common parameter values: S = 16384(128×128), P1

a = 0.2, E1 =
0.06, T 1

h = 5, P2
a = 0.42, E2 = 0.05, T 2

h = 12

L′
1 = N

E2

P1
a (E1T 2

h −E2T 1
h )

(2.16)
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Fig. 2.3 Effects of the optimal foraging strategy on the predator foraging behavior when the prey
2 abundance is fixed at the value x2 = 3000. The circles represent the results of numerical IBM
simulations when prey are randomly distributed across the lattice at each time step, the solid lines
are the approximate predictions (2.7) and (2.11). Parameter values are as in Fig. 2.2, y = 6000. For
a comparison, the dotted oblique line in panels (b) and (e) indicates behavior of an opportunistic
predator consuming prey types at the proportion equal to their proportion in the environment.
All predators were initially in the searching state. As in Fig. 2.2, panels (a) to (c) correspond to
omniscient predators, while panels (d) to (f) are for predators with limited perception (N = 7×7 =
49). Dotted lines mark location of the threshold prey 1 abundance L1

This is the threshold abundance (2.15) with the size S of the whole environment
replaced by the size N of the effective environment. The predator should attack prey
2 if x̃1 < L′

1 and ignore it if x̃1 > L′
1. Note that L′

1/N = L1/S: the threshold densities
do not change with the transition from global to local scale.
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We have already noted that the local prey 1 abundance x̃1 need not be the same
for every predator individual nor for the same individual under different spatial prey
distributions4. Let a single predator share a site with a prey 2 individual. Then, the
decision probability p2 that the predator will attack that prey equals the probability
that the number of prey 1 individuals x̃1 in the N-neighborhood of this predator is
less than L′

1. Given 0 < xi < S for i = 1,2 and x1 + x2 ≤ S, there are

Dtotal =

(
S−1

x1

)(
S−1− x1

x2 −1

)
(2.17)

possibilities for the distribution of prey on the lattice, provided that the focal site
is occupied by a prey 2 individual and the predator. The number of possibilities by
which x̃1 prey 1 individuals can be located within the N-neighborhood is then

Dadmissible(x̃1) =

(
S−N
x1 − x̃1

)(
N −1

x̃1

)(
S−1− x1

x2 −1

)
(2.18)

provided that this expression is defined, i.e. max(0,x1 −S+N)≤ x̃1 ≤ min(x1,N −
1), and Dadmissible(x̃1) = 0 otherwise. Hence, the probability that the number of
prey 1 individuals in the neighborhood of size N is lower than the threshold value
L′

1 is

p2(x1) =
[L′1]

∑
x̃1=0

Dadmissible(x̃1)

Dtotal
(2.19)

where [L′
1] denotes the largest integer less than L′

1 (i.e. the whole part of L′
1). Note

that the expression (2.19) does not depend on the prey 2 abundance x2, as the respec-
tive terms in (2.17) and (2.18) cancel out. Figure 2.4 shows the decision probability
p2 as a function of prey 1 abundance x1. The zero-one step function of the om-
niscient predators changes to a gradually decreasing, sigmoid-like function (2.14).
Therefore, 0< p2(x1)< 1 for a range of prey 1 numbers. As N approaches S, the de-
cision probability (2.19) approaches the zero-one step function. Indeed, for N = S,
it is L′

1 = L1 and Dadmissible(x̃1) = 0 for any x̃1 ̸= x1. This implies p2(x1) = 1 if
x1 < L1 and p2(x1) = 0 if x1 > L1, that is, the formula (2.14).

We claim that the decision probability p2 given by the expression (2.19) and
based on temporal and/or spatial variability in x̃1 gives rise to partial preferences
on both the individual and population levels. To see the former, consider a single
predator in the course of time and observe its food decisions. As x1 is kept constant,
after m encounters with prey 2, the number of prey 2 items it has actually consumed
is binomially distributed with parameters m and p2(x1). Hence, the mean proportion
of prey 2 items the predator has consumed of those encountered is p2(x1), which is
neither 0 nor 1 for such x1 for which 0 < p2(x1) < 1. The actual proportion of
prey 2 items the predator has attacked after m encounters with prey 2 approaches
p2(x1) as m (that is, the number of food decisions) tends to infinity. To elucidate
the existence of partial preferences on the population level, consider a fixed time

4 Which may arise due to prey and/or predator movement.
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Fig. 2.4 The decision probability p2 as a function of the prey 1 population abundance x1, for
omniscient predators (dotted line) and predators with limited perception (solid line). Parameter
values are as in Fig. 2.2, x2 = 3000, N = 49(7× 7). Dotted lines mark location of the threshold
prey 1 abundance L1

step and a number of predators on the lattice. Let m out of a number of searching
predators encounter prey 2 in that time step. Then the actual number of predators that
attack prey 2 is also binomially distributed with parameters m and p2(x1). Hence,
the mean proportion of predators that attack prey 2 is p2(x1), whereas the actual
proportion approaches p2(x1) as m (that is, predator numbers and, in turn, lattice
size) tends to infinity.

Figures 2.2d-f and 2.3d-f are respectively analogous to Figs. 2.2a-c and 2.3a-c.
They show the effects of perceptual limitations of predators on their diet compo-
sition [Eq. (2.7)] and functional response to prey 1 [Eq. (2.11)], for p1 = 1 and p2
specified by the formula (2.19). The fundamental distinction in these characteris-
tics between omniscient predators and predators with limited perception is the shift
from abrupt changes around L1 characteristic of the former to gradual transitions
over this threshold value for the latter (Figs. 2.2 and 2.3). As a consequence, the
predator functional response to prey 1 takes a sigmoidal form (Fig. 2.3f) which may
in turn have implications for long-term dynamics of the whole predator–prey system
(Murdoch and Oaten, 1975).

Mixed encounters

Under mixed encounters, the philosophy of calculating the optimal foraging behav-
ior for both omniscient predators and predators with limited perception is analogous
to that under sequential encounters. Obviously, things become a bit more compli-
cated technically due to more possibilities that may occur, but conceptually every-
thing stays the same and our treatment will thus be more concise here. At most one
individual of each type (prey 1, prey 2, predator) is allowed to occupy each site
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at any one time; one may think, for example, of territorial, monogamous birds in
which at most one male (prey 1) and one female (prey 2) occupy a single territory
(site). As a consequence, any predator may encounter either a prey individual alone
(sequential encounter) or a pair of individuals of different prey types (simultaneous
encounter).

Every time step, any single predator may find itself in one of four situations: it
can share the lattice site with a prey 1 individual alone, a prey 2 individual alone,
with a pair of different prey individuals, or the site is free of prey. If the predator
shares the site with a prey i = 1,2 individual alone, it decides to attack that prey
with probability pi. If the predator encounters individuals of both prey types, it
decides to attack the prey 1 individual with probability p31, whereas it strikes the
prey 2 individual with probability p32; we assume that at most one individual may
be attacked at a time so that p31 + p32 ≤ 1.

Before we derive optimal values for the decision probabilities pi and p3i, we give
formulas for the predator diet composition and the functional response. Consider a
single predator, making decisions in a series of time steps. For a sufficiently long
foraging time, the proportion of prey i individuals from those it captures is well
approximated by the expression (Box 2.3)

xi
S πiPi

a
x1
S π1P1

a + x2
S π2P2

a
(2.20)

where
π1 =

(
1− x2

S

)
p1 +

x2

S
p31 (2.21)

π2 =
(

1− x1

S

)
p2 +

x1

S
p32 (2.22)

For a sufficiently large lattice size S, the formula (2.20) can also be derived by
observing all predators searching for prey i in a single time step (Box 2.3). Similarly,
if we define the predator functional response to prey i as the number of captured prey
i individuals per predator per time step, we (approximately) get

ys
xi
S πiPi

a

y
(2.23)

where ys is the number of searching predators and y the total (fixed) number of
predators. Analogously to the case of sequential encounters, the term ys/y can be
well approximated by the expression 1/(1+T 1

h
x1
S π1P1

a +T 2
h

x2
S π2P2

a ). The (approx-
imate) predator functional response to prey i is thus

xi
S πiPi

a

1+T 1
h

x1
S π1P1

a +T 2
h

x2
S π2P2

a
(2.24)

The total decision probabilities πi, given by the expressions (2.21) and (2.22), are
the probabilities that a predator will attack prey i upon encounter, averaged over the
frequencies with which prey i is encountered alone or together with the alternative.
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These probabilities are just the ones that are estimated from experimental observa-
tions. Recall that the expressions formalizing the predator diet composition and the
functional response in the case of sequential encounters, (2.7) and (2.11), have the
same form as derived here, with πi replaced by pi.

Box 2.3 Derivation of the diet composition formula (2.20)

Consider a fixed time step and a searching predator. Provided that both prey
types are randomly distributed across the lattice, with each site occupied by
at most one item of each prey type, the probability that the predator shares its
site with a prey 1 item alone is w1(1−w2), where we denote by wi = xi/S the
prey i population density. As a consequence, the probability that the predator
attacks that prey successfully is w1(1−w2)p1P1

a , that is, the probability to
encounter the prey times the probability to decide to attack it times the prob-
ability to attack it successfully. Hence, using the analogous arguments as in
Box 2.2, the proportion of time steps spent searching in which the predator en-
counters prey 1 alone and attacks it successfully approaches w1(1−w2)p1P1

a
as the total searching time Ts goes to infinity. Likewise, in a single time step,
the proportion of searching predators that encounter prey 1 alone and attack
it successfully approaches w1(1−w2)p1P1

a as the number of predators and
hence the lattice size approach infinity.

The probability that the predator shares its site with both prey types is
w1w2. Therefore, the probability that the predator encounters a pair of prey
and successfully attacks prey 1 out of it is w1w2 p31P1

a . Analogous expressions
can be derived for prey 2. Under the assumption Ts → ∞ or ys → ∞ (and so
S → ∞), the same arguments as above are valid to these subcases. Altogether,
the expected proportion of prey i = 1,2 individuals of all prey captured by a
single predator in a series of searching time steps (or by a number of searching
predators in a single time step) is given by the expression (2.20).

Omniscient predators

Following Stephens and Krebs (1986), and assuming a sufficiently long foraging
time or a sufficiently large lattice size, fitness maximization is equivalent to maxi-
mization of the expression

R(p1, p2, p31, p32) =
E

Ts +Th
=

E1
x1
S π1(p1, p31)P1

a +E2
x2
S π2(p2, p32)P2

a −α
1+T 1

h
x1
S π1(p1, p31)P1

a +T 2
h

x2
S π2(p2, p32)P2

a
(2.25)

where the total decision probabilities πi are given by the expressions (2.21) and
(2.22), Ei is the net energy gained from consuming prey i = 1,2, and α is the
amount of energy lost by a predator per one time step searching. The expression
(2.25) is maximized over the partial decision probabilities pi and p3i, subject to the
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constraints 0 ≤ pi ≤ 1, 0 ≤ p3i ≤ 1, p31+ p32 ≤ 1. Assuming, without loss of gener-
ality, that prey 1 is more profitable than prey 2 (E1/T 1

h > E2/T 2
h ), prey 1 is predicted

to be always attacked by predators when encountered alone (p1 = 1), whereas

p2 = 1 if x1 < L1
p2 = 0 if x1 > L1
p31 = 0, p32 = 1 if x1 + x2 − x1x2/S < L2
p31 = 1, p32 = 0 if x1 + x2 − x1x2/S > L2

(2.26)

where

L1 = S
E2 +αT 2

h

P1
a (E1T 2

h −E2T 1
h )

(2.27)

and

L2 = S
(E2 +αT 2

h )−
P1

a
P2

a
(E1 +αT 1

h )

P1
a (E1T 2

h −E2T 1
h )

< L1 (2.28)

These expressions can be derived by analogous reasoning as used in Box 2.1. Also
here, we do not consider the singular cases x1 = L1 and x1 + x2 − x1x2/S = L2 be-
cause the prey abundances xi can take only non-negative integer values (bounded
from above by S) within our IBM framework; therefore, one can always make the
threshold values L1 and L2 different from the values of x1 and x1 + x2 − x1x2/S, re-
spectively, by a negligible change of parameter values. The values L1 and L2 are in
units of individuals; dividing them by S gives them the meaning of densities.

We make a remark concerning the formulas (2.27) and (2.28). The net energy
gained from consuming prey i can be expressed as Ei = E i

g −α i
hT i

h , where E i
g is the

gross energy gained from prey i and α i
h is the energy a forager looses per one time

step spent handling prey i. Let α = α1
h = α2

h . In other words, let searching for prey
and handling prey be equally energy-consuming activities, and let E2

g = cE1
g for a

constant value c > 0, i.e. let the prey types be perfect substitutes (the gross energy
gained from consuming an individual of prey 2 is proportional to that gained from
consuming an individual of prey 1). Then,

L1 = S
c

P1
a (T 2

h − cT 1
h )

(2.29)

L2 = S
c−P1

a /P2
a

P1
a (T 2

h − cT 1
h )

< L1 (2.30)

The same simplifications could be achieved if the rate α of energy loss during
searching is assumed to be negligible with respect to the other terms in the nu-
merator of (2.25), and E2 = cE1 for a c > 0. These assumptions are rather standard
in the optimal foraging literature (Krebs et al, 1977; Houston et al, 1980; Stephens
et al, 1986; Schmidt, 1998), since measurements of energy gains and losses are very
difficult to perform. We use these simplified expressions further on. We also note
that the inequality E1/T 1

h > E2/T 2
h now implies T 2

h > cT 1
h .
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Now, consider the prey 2 abundance fixed at a value 0 < x2 < S. The abundances
of prey 1 at which predators change their diet are then x∗1 ≡ L1 and x∗∗1 ≡ (L2 −
x2)/(1− x2/S). A necessary and sufficient condition for the inequality x∗∗1 ≥ x∗1 to
hold is L1 > S, L2 > S and x2 ≥ (L1 −L2)/(L1/S−1) which implies x∗∗1 ≥ x∗1 > S.
Hence, both prey 1 thresholds x∗1 and x∗∗1 are greater than the lattice size which makes
this case behaviorally uninteresting. If x∗∗1 ≥ S, p32 = 1 for all 0 < x1 < S. If x∗∗1 ≤ 0,
on the other hand, p31 = 1 for all the admissible values of x1, and similarly for x∗1.
The most interesting case occurs when both of the prey 1 thresholds are ‘active’,
that is, when x∗∗1 > 0 and x∗1 < S. Figure 2.5 gives an idea of how the space of prey
population sizes is divided into regions with different predator foraging strategies.

0 S
0

S

0 S
0

S

x1

L1 = x∗1

L2

x∗∗1

x2

L2

Prey 1 generalist

Prey 2
generalist

Prey 1
specialist

Fig. 2.5 Division of the space of prey population sizes into regions with different optimal forag-
ing strategies of omniscient predators. Parameter values: S = 128× 128, P1

a = 0.3, T 1
h = 2, P2

a =
0.85, T 2

h = 8, c = 1.2. Prey 1 generalist: p1 = p31 = p2 = 1, p32 = 0; prey 2 generalist: p1 = p32 =
p2 = 1, p31 = 0; prey 1 specialist: p1 = p31 = 1, p2 = p32 = 0

The expression

x1 + x2 − x1x2/S = S
[x1

S

(
1− x2

S

)
+

x2

S

(
1− x1

S

)
+

x1

S
x2

S

]
(2.31)

used to decide which prey out of the pair encountered should be attacked [Eq. (2.26)],
is the mean number of sites occupied by prey, given that xi individuals of prey
i = 1,2 are randomly distributed on the lattice. Moreover, by rewriting this expres-
sion as

x1 + x2 − x1x2/S = x1 + x2

(
1− x1

S

)
(2.32)

the paradox of self-reduction (Engen and Stenseth, 1984a,b) can be demonstrated
via increasing the prey 2 abundance x2, for a fixed prey 1 abundance x1: if the prey
abundances are initially such that p2 = 1, p31 = 0, p32 = 1, then an increase in the
prey 2 abundance x2 makes this prey rarer in the predator diet if conditions change
for p2 = 1, p31 = 1, p32 = 0 to be optimal [Eq. (2.26)]. These expressions also imply
that when a predator encounters a pair of (different) prey individuals it does not
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necessarily attack the more profitable one. Instead, somewhat counterintuitively at
a glance, it may attack the less profitable prey; see also Stephens et al (1986) and
Barkan and Withiam (1989).

Figure 2.6a shows the total decision probabilities π1 (2.21) and π2 (2.22) for the
optimally foraging predators, as functions of prey 1 abundance x1, for a fixed prey
2 abundance x2 and for a particular set of parameters ensuring that both the prey 1
thresholds x∗1 and x∗∗1 are active. The interesting observation is not only an appear-
ance of partial preferences for (less profitable) prey 2 when prey 1 abundance lies
in between the values x∗∗1 and x∗1, but also an appearance of partial preferences for
(more profitable) prey 1 when its abundance is below the value x∗∗1 . Moreover, since
x∗∗1 is a function of x2, the optimal diet choice depends on the prey 2 abundance,
too. These facts, first qualitatively recognized by Engen and Stenseth (1984a), were
made quantitative for a system with two prey types here. The effects of the optimal
foraging strategy on the predator diet composition and the functional response, for
a fixed prey 2 abundance x2, are summarized in Fig. 2.7a-c.
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Fig. 2.6 Total decision probabilities for (more profitable) prey 1 (dashed line) and (less profitable)
prey 2 (solid line) for (a) omniscient predators and (b) predators with limited perception, experienc-
ing mixed encounters, as functions of prey 1 abundance x1. Prey 2 abundance is fixed at the value
x2 = 2000. Other parameter values: S = 16384(128× 128), P1

a = 0.3, T 1
h = 2, P2

a = 0.85, T 2
h =

8, c = 1, for limited perception N = 49(7×7). In each panel, dotted lines mark location of the
threshold prey 1 abundances x∗∗1 and x∗1, with x∗∗1 < x∗1

Predators with limited perception

Although we observe partial preferences for both prey types, the predator diet com-
position and the functional response change abruptly around the prey 1 thresholds
x∗1 and x∗∗1 , since all predators change their diet at the same moment (Fig. 2.7a-c).
Such synchrony is unlikely to occur in natural systems; moreover, the assumption on
predator omniscience does not seem entirely realistic, particularly when the lattice
size is large.
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Fig. 2.7 Effects of the optimal foraging strategy under mixed encounters on the predator diet com-
position and the functional response. The proportion of prey 1 individuals from all prey captured by
an optimally foraging predator in a series of time steps (or by more predators in a single time step)
against the prey 1 population abundance (panels (a) and (d)), the same quantity plotted against the
proportion of prey 1 in the environment (panels (b) and (e)), and the functional response of opti-
mally foraging predators to prey 1 (the mean number of successfully attacked prey 1 individuals
per predator per time step) against the prey 1 population abundance (panels (c) and (f)). Panels
(a) to (c) correspond to omniscient predators, while (d) to (f) to predators with limited perception.
Prey 2 abundance is fixed at the value x2 = 2000. Parameter values are as in Fig. 2.6. In each panel,
dotted lines mark location of the threshold prey 1 abundances x∗∗1 and x∗1, with x∗∗1 < x∗1

As we have already mentioned above, McNamara and Houston (1987) and Hirvo-
nen et al (1999) removed the assumption on predator omniscience by letting preda-
tors estimate prey densities on the basis of actual time sequence of encounters with



36 2 Predator-prey encounters, limited perception and optimal foraging

prey. Bélisle and Cresswell (1997) assumed that the forager could memorize only a
number of recently consumed prey items; if all these items are of the same type the
forager forgets the relative values of the prey types and consumes prey indiscrimi-
nately, until both prey types are again present in the predator memory window. In
the models with sequential prey encounters, both these mechanisms predicted partial
preferences for the less profitable prey. Although they could possibly be extended
to the models with mixed encounters, we instead assume that predators know exact
numbers of individuals of each prey type only within a neighborhood of their actual
spatial location.

Again, let us consider the N-neighborhood of a predator. The optimal foraging
rule (2.26) predicts that the predator should always attack prey 1 encountered alone.
Moreover, the predator decision to attack prey 2 encountered alone depends on the
threshold value (2.29) with the size S of the whole environment replaced by the local
(or effective) environment size N, i.e. always attack prey 2 if x̃1 < L′

1 and always
ignore it if the reverse inequality holds, where x̃1 is the prey 1 abundance in the
N-neighborhood, and

L′
1 = N

c
P1

a (T 2
h − cT 1

h )
(2.33)

In addition, the predator decision of which prey to attack when encountered in a pair
of different types should depend on the threshold value (2.30) with S replaced by
N, i.e. always attack prey 2 if x̃1 + x̃2 − x̃1x̃2/N < L′

2 and always attack prey 1 if the
reverse inequality holds, where x̃2 is the prey 2 abundance in the N-neighborhood,
and

L′
2 = N

c−P1
a /P2

a

P1
a (T 2

h − cT 1
h )

(2.34)

Since L′
i/N = Li/S, the critical densities do not change upon the transition from

global to local scale.
Now, recalling that even for fixed total prey i = 1,2 densities xi, the local abun-

dances x̃i need not be the same for every predator individual, nor for the same in-
dividual in different time steps (as the spatial distribution of prey may change with
time and/or the predator may move to another site), consider a single predator indi-
vidual that shares its site with a prey 2 individual alone, and compute the (partial)
decision probability p2 that the predator will attack that prey. Clearly, p2 is the prob-
ability that the number x̃1 of prey 1 individuals in the predator N-neighborhood is
below the threshold value L′

1. Let the total prey abundances on the lattice be fixed at
0 < xi < S. There are (

S−1
x1

)(
S−1
x2 −1

)
(2.35)

possibilities for the distribution of prey individuals on the lattice composed of S
sites, conditioned on the event that the focal site is occupied by a prey 2 individual,
no prey 1 individual, and the predator. The number of ways in which x̃1 prey 1
individuals can be arranged in the N-neighborhood is
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N −1

x̃1

)(
S−N
x1 − x̃1

)(
S−1
x2 −1

)
(2.36)

provided that x1 − (S−N) ≤ x̃1 ≤ min{x1,N − 1}; it is zero otherwise. As a con-
sequence, the probability P2(x̃1,x1) that x̃1 out of x1 prey 1 individuals are located
within the N-neighborhood of the predator, sharing the lattice site with a prey 2
individual alone, defines the hypergeometric distribution

P2 (x̃1,x1) =


(N−1

x̃1

)( S−N
x1−x̃1

)(S−1
x1

) if x1 − (S−N)≤ x̃1 ≤ min{x1,N −1}

0 otherwise

(2.37)

Finally, the required probability p2 that the number of (more profitable) prey 1 in-
dividuals within the N-neighborhood is lower than the threshold value L′

1 is

p2(x1) =
[L′1]

∑
x̃1=0

P2(x̃1,x1) (2.38)

where [L′
1] denotes the largest integer less than L′

1
5. As N approaches S, so p2(x1)

approaches the zero-one step function (2.26); indeed, N = S implies L′
1 = L1,

P2(x̃1,x1) = 1 if x̃1 = x1, and zero otherwise. In turn, p2(x1) = 1 if x1 < L1, and
p2(x1) = 0 if x1 > L1.

Analogously, consider a single predator individual that shares its site with a pair
of (different) prey individuals, and compute the partial decision probability p32 of
attacking prey 2 out of this pair. Obviously, p32 is the probability that the condition
x̃1 + x̃2 − x̃1x̃2/N < L′

2 is satisfied. For fixed total prey abundances 0 < xi < S, there
are (

S−1
x1 −1

)(
S−1
x2 −1

)
(2.39)

possibilities for the distribution of prey individuals on the lattice containing S sites,
conditioned on the event that the focal site is occupied by one prey 1 individual,
one prey 2 individual, and the predator. The number of ways in which x̃1 prey 1
individuals and x̃2 prey 2 individuals can be arranged in the N-neighborhood is(

N −1
x̃1 −1

)(
S−N
x1 − x̃1

)(
N −1
x̃2 −1

)(
S−N
x2 − x̃2

)
(2.40)

if max{1,xi−(S−N)}≤ x̃i ≤min{xi,N}, i= 1,2; it is zero otherwise. The probabil-
ity P32(x̃1, x̃2, x1, x2) that x̃1 prey 1 individuals and x̃2 prey 2 individuals are located
in the predator N-neighborhood thus defines the multihypergeometric distribution

5 Analogously to L1, we assume that neither L′
1 takes an integer value.



38 2 Predator-prey encounters, limited perception and optimal foraging

P32(x̃1, x̃2, x1, x2) =



(N−1
x̃1−1

)( S−N
x1−x̃1

)(N−1
x̃2−1

)( S−N
x2−x̃2

)( S−1
x1−1

)( S−1
x2−1

)
if max{1,xi − (S−N)} ≤ x̃i ≤ min{xi,N}

0 otherwise

(2.41)

Finally, the probability p32 that x̃1 + x̃2 − x̃1x̃2/N < L′
2 is

p32(x1, x2) = ∑
A

P32(x̃1, x̃2, x1, x2) (2.42)

where the summation is performed over the set A= {x̃1, x̃2 : x̃1+ x̃2− x̃1x̃2/N < L′
2}.

Moreover,
p31(x1, x2) = 1− p32(x1, x2) (2.43)

As N approaches S, p32(x1,x2) approaches the zero-one step function; indeed, for
N = S, it is L′

2 = L2, P32(x̃1, x̃2,x1,x2) = 1 if x̃1 = x1 and x̃2 = x2, and zero otherwise.
In turn, p32(x1,x2) = 1 if x1 + x2 − x1x2/S < L2, and p32(x1,x2) = 0 if x1 + x2 −
x1x2/S > L2.

Figure 2.6b shows the total decision probabilities π1 (2.21) and π2 (2.22) as
functions of x1, for a fixed value of x2 and for predators with limited perception,
i.e. for the partial decision probabilities p1 = 1, p2 given by the expression (2.38),
p31 = 1− p32, and p32 given by the expression (2.42). The abrupt changes observed
in Fig. 2.6a are now replaced by gradual transitions over the prey 1 threshold values
x∗1 and x∗∗1 in Fig. 2.6b, and the range of x1 in which partial preferences appear has
increased a bit. Panels (d) to (f) of Fig. 2.7 are analogous to Fig. 2.7a-c, with the
total decision probabilities of Fig. 2.6a replaced by those of Fig. 2.6b. Also here, the
abrupt changes observed in Fig. 2.7a-c were replaced by gradual transitions over the
prey 1 threshold values x∗1 and x∗∗1 in Fig. 2.7d-f.

2.3 Conclusions and further research

In this chapter, we have developed a spatially explicit, individual-based model for
one predator population feeding on two prey types, and used it to search for the
optimal predator behavior with respect to the type of predator-prey encounters
(sequential vs. mixed) and degree of predator omniscience (omniscient predators
vs. predators with limited perception). We have shown that:

1. Because of local variations in prey densities, probability of acceptance of the
less profitable prey under sequential encounters shifts from the zero-one rule to
a gradually decreasing function (for which an explicit formula has been derived)
giving rise to partial preferences. The corresponding predator functional response
to the more profitable prey has a sigmoid-like form.
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2. For omniscient predators, the zero-one rule optimal under sequential encounters
shifts to abruptly changing partial preferences for both prey types when encoun-
ters become mixed.

3. The latter, in turn, become gradually changing partial preferences when predators
are limited in their perception. Predators demonstrate gradually changing partial
preferences for both prey types. In addition, these partial preferences depend on
the population densities of both prey.

The corresponding formulas are summarized in Table 2.1. Note the distinction be-
tween the ‘local’ vs. ‘average’ rule: any predator considered in our article behaves
optimally within its local perception range, whereas it behaves suboptimally when
seen from the perspective of average predator behavior over the whole lattice where
the zero-one rule is the optimal one. Our results thus contribute to the optimal forag-
ing theory, as the majority of its models assume sequential encounters of omniscient
predators with their prey (Schoener, 1971; Pulliam, 1974; Werner and Hall, 1974;
Charnov, 1976).

Whether animals are omniscient or not may depend on the spatial scale. On the
scale which corresponds to the range of animal perception, the assumption of omni-
science is reasonable. As the spatial scale increases, predators rather become limited
by their perception capabilities. Due to a variation in prey distribution across time
and the environment, individual predators will face different prey densities in their
respective perception ranges. Although all predators still change their diet at the
same threshold abundances (formulas (2.16), and (2.27) and (2.28) for sequential
and mixed encounters, respectively), these changes are no longer synchronized.

Another mechanism accounting for incomplete knowledge of predators on prey
densities was presented by McNamara and Houston (1987) and Hirvonen et al
(1999). These authors assumed that predators perceive their environment through
encounters with prey, and also derived an analytical formula for partial preferences.
These partial preferences were due to a variation in estimates of the encounter rate
with more profitable prey. Both these studies and our work replace the assumption
of predator omniscience by a weaker one, and reveal partial preferences within the
classical optimal foraging framework. That said, and recognizing ubiquity of par-
tial preferences in nature, perceptual limitations of predators achieve an appreciable
increase in the realism of system description.

Consideration of a spatially explicit, individual-based model proves to be a good
tool for our purposes, as it allows us to treat each individual separately and naturally
define and work with its perception neighborhood. Within this IBM framework, our
predator decision rule can be further extended to situations in which the neighbor-
hood size varies with different predators. This would make the threshold values L′

1
and L′

2 individual-dependent. These threshold values and also L1 and L2 may also be
made individual-dependent by separating the predator population into a number of
groups, each having different parameters, e.g. the probability of successfully attack-
ing more profitable prey, P1

a . Both these extensions may be motivated by and made
dependent on, e.g. predator age (gaining experience when aging), sex or variability
in predator body size.
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The predator decision rule based on local prey abundances x̃1 and x̃2 and specified
by the quantities L′

1 and L′
2, though derived for a homogeneous system in which prey

individuals are randomly distributed across the lattice, seems to be justified for prey
individuals that disperse at a limited rate, too. For individual-based models involving
demographic processes (i.e. births and deaths), spatial patterns occur on the lattice
at low dispersal rates (de Roos et al, 1991; McCauley et al, 1993; Wilson et al,
1993). Yet there is a so-called characteristic spatial scale such that if one observes
such a system in a window of a smaller scale, its dynamics are reminiscent of those
of the system in which individuals are randomly distributed across the lattice. The
characteristic spatial scale depends on the lattice size and the population dispersal
rates, and is closely related to the area visited by individuals during their lifetime
(de Roos et al, 1991). Hence, the limited-perception-based decision rule might be
used even when prey individuals disperse at a limited rate, provided that the size of
predator N-neighborhood is smaller than the characteristic spatial scale.

Predator-prey dynamics with mixed prey encounters

Population dynamical implications of mixed encounters of predators with their prey
have not been explored yet. Rather, all the existing population dynamical studies
coupled the classical predator–prey models with the classical sequential-encounter
prey model of optimal foraging. Recall that for two prey types, the latter model
predicts that either only more profitable prey is always attacked by predators upon
encounter, or both prey types (always) are, with an abrupt change between these two
strategies at a critical density of the more profitable prey. Empirical observations
largely falsified these predictions and suggested that if these pure strategies exist at
all, transition between them is rather gradual than abrupt. Whereas Křivan (1996)
and Křivan and Sikder (1999) explored population dynamical implications of the
abrupt change, Fryxell and Lundberg (1994), Fryxell and Lundberg (1998), and van
Baalen et al (2001) focused on the effects of gradual transition. Gleeson and Wilson
(1986) also considered the abrupt change, with an additional effect of inter-prey
competition.

The generic model used by all the authors is

ẋ1 = x1g1(x1,x2)−
p1λ1x1

1+ p1h1λ1x1 + p2h2λ2x2
y

ẋ2 = x2g2(x1,x2)−
p2λ2x2

1+ p1h1λ1x1 + p2h2λ2x2
y

ẏ =−my+
e1 p1λ1x1 + e2 p2λ2x2

1+ p1h1λ1x1 + p2h2λ2x2
y

(2.44)

In addition to the symbols introduced earlier, gi(x1,x2) is the prey i per capita growth
rate in the absence of predation and m is the predator per capita death rate. Expo-
nential, logistic, as well as Lotka-Volterra competition growth rates were used for
gi. Note that because of the ordinary differential equations framework, as opposed
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to the IBMs studied above, xi and y cannot be here interpreted as numbers of prey i
and predator individuals, respectively, but rather as densities (numbers per area) of
these populations. In this formulation, the critical prey 1 density for changing preda-
tor diet is x∗1 = e2/[λ1(e1h2 − e2h1)]. The formulas used to approximate gradually
decreasing partial preferences for prey 2 were

p2 =
x∗z

1
xz

1 + x∗z
1

and p2 =
1

1+ ez(x1−x∗1)
(2.45)

where z is a positive parameter.
The big picture emerging from these studies is as follows. Optimal diet choice of

predators may both (partially) stabilize and destabilize dynamics of predator-prey
systems, when compared to systems in which predators specialize on the more prof-
itable prey type or have fixed preferences for both. Also, optimal foraging behavior
of predators may promote coexistence of predators and prey as well as of compet-
ing prey types provided that superior competitor is at the same time more profitable.
‘Suboptimal’ predators with gradual changes in their diet have been shown to sta-
bilize predator-prey systems to a larger extent than those with the abrupt change
scenario. Moreover, these population dynamical studies demonstrated that the more
gradual is the change, the larger is the region in parameter space in which stabi-
lization is observed. This is due to the fact that the Holling type II functional re-
sponse used in the population models and the gradually changing diet preferences
of predators combine to give a sigmoid (Holling type III) functional response, which
is known to have stabilizing effects in predator-prey models (Murdoch and Oaten,
1975). However, as the range of parameter values for which these stabilizing ef-
fects are observed is relatively narrow, optimal diet choice is unlikely to be the only
stabilizing factor in trophic interactions.

Given the distinction between the diet choice rules derived under sequential and
mixed predator-prey encounters, an interesting question is whether this distinction
projects itself into dynamics of predator-prey systems. Whether proper considera-
tion of mixed encounters in a model parallel to (2.44) modifies the predictions listed
in the previous paragraph thus remains an open question. No doubt worth of further
exploration, given that mixed encounters are likely to be much more common in
nature than the sequential ones.

Food webs

A predator and a bunch of its prey is rarely an isolated unit. Rather, it is just a piece
in a complex ecological network describing, in the simplest case, who eats whom
in a species community. Such network is commonly referred to as a food web. Re-
cently, Berec et al (2010) have shown that stability of such food webs, defined as
the number or proportion of species surviving in the food web in a long run, can
be significantly affected by the way predators choose their diet. Moreover, adaptive
foraging was shown not to always lead to more complex food webs, contrary to
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invariable predictions of recent modeling studies exploring the effect of consumer
adaptivity in diet composition on food web complexity that adaptivity in foraging
decisions of consumers makes food webs more complex (Berec et al, 2010, and ref-
erences therein). Of the diet choice rules explored in this chapter, the considered
food web model used only sequential encounters of predators with their prey. Not
aware of whether mixed encounters enhance stability of predator-prey systems rel-
ative to sequential encounters (see the previous paragraph), we cannot say anything
about how mixed encounters could affect complex food webs. So, addressing suc-
cessfully the question posed in the previous paragraph is a necessary first step in
throwing more light onto some more subtle issues of food web dynamics.





Part II
Allee effects and population extinction
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When a population is small, or at low density, the classical view of population
dynamics is that individuals are released from the constraints of intraspecific com-
petition (Case, 2000). The fewer we are, the more each of us has, and the better
we will prosper. However, this view, termed negative density dependence, lacks a
crucial component: cooperation. Individuals of many species join forces to hunt,
repel predators, survive unfavorable abiotic conditions, or overcome host defence
mechanisms (Berec et al, 2007). Also, at higher densities, they have a better chance
to locate or attract mates (Gascoigne et al, 2009). When there are too few of them,
it may be that the individuals will each benefit from more resources, but in many
cases they will also suffer from a lack of conspecifics. If the costs of being rare ex-
ceed the benefits, then the individuals may be less likely to reproduce and/or survive
when rare – their fitness may be reduced. If this happens, we have an Allee effect
(Courchamp et al, 2008).

Conceptually, we distinguish component-demographic and weak-strong Allee ef-
fects. Component Allee effects designate a positive relationship between any measur-
able component of individual fitness and either numbers or density of conspecifics
(Stephens et al, 1999; Berec et al, 2007). For example, plants occurring at low den-
sities can receive a reduced amount of pollen and hence suffer a lowered seed set,
as observed in many plant taxa ranging from herbaceous temperate plants to trop-
ical trees (Courchamp et al, 1999). By contrast, demographic Allee effects refer to
a positive density dependence at the overall fitness level, traditionally measured by
the per capita population growth rate (Stephens et al, 1999; Berec et al, 2007). For
example, rare populations of the Glanville fritillary butterfly Melitaea cinxia grow
at a reduced rate owing to reduced ability of females to find mates (Kuussaari et al,
1988). Although component Allee effects need not always result in demographic
Allee effects, due to strong negative density dependence, observation of a demo-
graphic Allee effect is, by definition, always evidence of an underlying component
Allee effect, though often hard to identify.

Whether a demographic Allee effect is weak or strong depends on the oppos-
ing strengths of positive density dependence (i.e. an Allee effect mechanism) and
negative density dependence (i.e. intraspecific competition). As we have already
accentuated in the introductory chapter, demographic Allee effects are character-
ized by a hump-shaped relationship between the per capita population growth rate
and population size or density (Fig. 1.2). Provided that the growth rate gets negative
when the population becomes rare, we speak of a strong Allee effect. The population
size or density at which this happens is termed the Allee threshold; populations that
drop below this threshold are declining and eventually go extinct. Allee thresholds
have been observed in a number of species, including the gypsy moth Lymantria
dispar, an invasive pest causing extensive defoliation of North American forests
(Tobin et al, 2009). When the per capita population growth rate remains positive in
rare populations (yet still hump-shaped) we say the Allee effect is weak, and there is
no Allee threshold. A weak Allee effect was reported, e.g. for the wind-pollinated
smooth cordgrass Spartina alterniflora, a plant species invading estuaries of the
U.S. Pacific coast (Davis et al, 2004; Taylor et al, 2004). A comprehensive review of
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the available evidence for Allee effects and their causative mechanisms has recently
been conducted (Kramer et al, 2009).

Since demographic Allee effects (especially the strong ones) negatively affect
rare populations, they have broad ramifications for applied ecology, be it conserva-
tion of endangered species, management of invasive pest species, or harvesting of
economically important species (Berec et al, 2007; Courchamp et al, 2008). While
a nightmare for conservation biologists, demographic Allee effects are a daydream
for pest managers. Allee threshold is always a threat to endangered species. For ex-
ample, a rescue operation of a population supposedly subject to an Allee effect was
successfully attempted for the Hawaiian goose Branta sandvicensis, where nearly
all scattered living individuals were collected and bred in captivity until the pop-
ulation had again reached a viable size (Kear and Berger, 1980). Conservation bi-
ologists thus attempt to minimize impacts of Allee effects so that extinctions are
less likely. On the contrary, pest managers should consider Allee effects as a benefit
in limiting establishment success or subsequent spread of an invasive species. For
example, Liebhold and Bascompte (2003) suggested, using a mathematical model
and data collected on the gypsy moth, that to eradicate its isolated populations it
would suffice to remove slightly more than 80% of individuals as long as popula-
tions were relatively small; the nature does the rest. Allee effects are also discussed
in relation to animal (re)introductions (Deredec and Courchamp, 2007), including
releases of pest biocontrol agents (Hopper and Roush, 1993; Grevstad, 1999), for
similar reasons. As regards harvesting of economically important species, mathe-
matical models have convincingly demonstrated that species subject to strong de-
mographic Allee effects might easily come to troubles and be easily extirpated if
harvesting tactics do not take these Allee effects into account (Dennis, 1989; Kot,
2001). Examples of overharvesting abound, characterized by a lack of population
recovery when harvesting is banned, and include species which presumably have an
Allee effect, such as the Atlantic cod Gadus morhua (Hutchings, 2001; Courchamp
et al, 2008).

This part consists of two chapters. In the first one, we study how Allee thresh-
olds look like in models that incorporate diverse population structure. This en-
deavor is motivated by the prolific view and presentation of Allee thresholds as
one-dimensional quantities (i.e. single-number population sizes or densities), obvi-
ous even from a swift fly over the existing literature on Allee effects and discussions
with many researchers. This markedly deficient view stems from an overuse of un-
structured population models, models that have also become an essence of the Allee
effects theory. In the second chapter of this part, we explore various ways in which
Allee effects in prey or predator populations may affect predator-prey dynamics.
This latter issue is actually one of the most quickly evolving topics in the theory on
Allee effects (Boukal et al, 2007; van Voorn et al, 2007; Boukal et al, 2008; Aguir-
rea et al, 2009; Berec, 2010; Pavlova et al, 2010; Verdy, 2010; McLellan et al, 2010;
Wang et al, 2011)



Chapter 3
Allee threshold

Strong demographic Allee effects, triggered by sufficiently strong component Allee
effects, give rise to a threshold population size or density, below which the popu-
lation is most likely doomed to extinction and above which it most likely persists
and approaches a system attractor. This threshold population size or density is com-
monly referred to as the Allee threshold. View and presentation of Allee thresh-
olds as one-dimensional quantities (i.e. single-number population sizes or densi-
ties), almost exclusive in the literature on Allee effects, is deficient and stems from
an overuse of unstructured population models, models that have also become an
essence of the Allee effects theory. In this chapter, we are going to dispel this view
and show how Allee thresholds look like in models that incorporate diverse popu-
lation structure. We are also interested in what implications for population manage-
ment this may have.

3.1 From sameness to age to sex: Allee thresholds and population
structure

When attempting to model dynamics of any population, one of the first decisions
we need to make is what structure the model population should have. Should we
structure it by age, developmental stage, sex, space, genotype, or anything else, if
any? The answer obviously depends on the system we are to model, scientific ques-
tions being asked, available information on the system, and the detail we require
for the answers. Here we mainly focus on continuous-time deterministic population
models, first the unstructured ones, and then population models structured by age
and/or sex. Allee thresholds in some discrete-time deterministic population mod-
els, stochastic population models and models structured with respect to some other
criteria are briefly discussed at the end of this chapter.

49
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Unstructured population models

The simplest (and classical) situation arises when we assume that the only state
variable of interest is the total population density. Models of this kind are often
referred to as unstructured, since the population is not structured in any obvious
way. Assuming the population to grow logistically when large and decline due to a
mate-finding Allee effect when small, a population model that fits these assumptions
might be as follows:

dN
dt

= bN
N

N +θ
− (d +d1N)N (3.1)

Here b and d are intrinsic per capita birth and death rate, respectively, and θ and d1
scale the strength of mate-finding Allee effect and negative density dependence, re-
spectively. Indeed, with all parameters positive, the per capita birth rate bN/(N+θ)
declines with decreasing population density N (mate-finding Allee effect = posi-
tive density dependence in reproduction due to enhanced difficulty to find mates
at low population densities) while the per capita mortality rate d + d1N increases
with increasing population density N (negative density dependence in survival due
to overcrowding), with the overall per capita population growth rate demonstrating
a hump-shaped form on the interval (−θ ,∞); see Box 3.1. Although the per capita
birth rate bN/(N + θ) can be thought of as a phenomenological model of a mate-
finding Allee effect, there is a clear mechanistic rationale behind it (Box 3.2).

Box 3.1 Shape of the per capita growth rate of the model (3.1)

Denoting

g(N) =
1
N

(
dN
dt

)
= b

N
N +θ

−d −d1N

we have g′′(N)< 0 on the interval (−θ ,∞), and

lim
N→−θ+

g(N) = lim
N→∞

g(N) =−∞

So the per capita population growth rate of the model (3.1) is hump-shaped
on the interval (−θ ,∞). In addition, on this interval, it attains its maximum at

Nmax =−θ +

√
bθ
d1

The model (3.1) has no or two positive equilibria if θ > 0. These two cases corre-
spond to population extinction from any initial density and to a strong demographic
Allee effect, respectively. Indeed, positive equilibria are solutions of the quadratic
equation

N2 −
(

b−d
d1

−θ
)

N +
dθ
d1

= 0 (3.2)
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As dθ/d1 > 0, the situation with one positive and one negative solution cannot
occur. Standard phase-line analysis shows that the extinction equilibrium N∗ = 0
is locally stable if θ > 0, and if the two positive equilibria exist, the low-density
equilibrium

N∗ ≡ A =
(b−d −d1θ)−

√
(b−d −d1θ)2 −4d1dθ
2d1

(3.3)

is unstable and the high-density equilibrium

N∗ ≡ K =
(b−d −d1θ)+

√
(b−d −d1θ)2 −4d1dθ
2d1

(3.4)

is locally stable. Moreover, the low-density equilibrium A divides the phase-line into
the areas of attraction of the extinction equilibrium (below A) and the high-density
equilibrium K (above A). Thus, the low-density equilibrium A corresponds to the
Allee threshold of the model (3.1) and the high-density equilibrium K corresponds
to the environmental carrying capacity of the model (3.1). In unstructured popula-
tion models, Allee thresholds are thus single numbers.

Box 3.2 A mechanistic derivation of the per capita birth rate bN/(N +θ)

Mate-finding Allee effects concern the core process of sexual reproduction
– mating, and so it is only natural to consider mate-finding Allee effects
within the context of two-sex population models. Consider the following age-
and sex-structured population, with a simplified reproduction phase: juveniles
have to mature to become adults and mate, males and females that are ready to
mate have to search for each other, form a pair and, upon successful mating,
split and rest for some time, to give birth (females), and search again. We note
that appropriate models can be developed for more complex life histories, too.
We distinguish six state variables: juveniles J, searching male Ms and female
Fs adults, mating couples C, and resting male Mr and female Fr adults. These
may change dynamically as follows:

dJ
dt

= b
1
tF

Fr −dJJ−mJ

dMs

dt
=−αMsFs −dMMs +dFC+

1
tM

Mr +µmJ

dFs

dt
=−αMsFs −dF Fs +dMC+

1
tF

Fr +(1−µ)mJ

dC
dt

= αMsFs −dMC−dFC− 1
tC

C

dMr

dt
=

1
tC

C− 1
tM

Mr −dMMr

dFr

dt
=

1
tC

C− 1
tF

Fr −dF Fr

(3.5)
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Model parameters are summarized in the following table:

Parameter Meaning
b Clutch size
dJ Mortality rate of juveniles
dM Mortality rate of adult males
dF Mortality rate of adult females
α Rate at which a male and a female meet and mate
m Maturation rate of juveniles
µ Sex ratio at birth (proportion males)
tC Mean time spent in a couple
tM Mean time spent as resting male
tF Mean time spent as resting female

Let us now assume that maturation is very fast relative to the mortality rate
dJ of juveniles. Introducing the dimensionless time τ , τ = dJt, and dividing
the first equation of the model (3.5) by the maturation rate m, we obtain

ε
dJ
dτ

=
b

mtF
Fr − εJ− J

where we have denoted ε = dJ/m. Our assumption can now be rephrased as
m ≫ dJ or 0 < ε ≪ 1. Setting ε = 0 and solving for J, we get

J =
b

mtF
Fr

Substituting this into the model (3.5) and returning to the unscaled time, we
obtain the following reduced system

dMs

dt
=−αMsFs −dMMs +dFC+

1
tM

Mr +µb
1
tF

Fr

dFs

dt
=−αMsFs −dF Fs +dMC+

1
tF

Fr +(1−µ)b
1
tF

Fr

dC
dt

= αMsFs −dMC−dFC− 1
tC

C

dMr

dt
=

1
tC

C− 1
tM

Mr −dMMr

dFr

dt
=

1
tC

C− 1
tF

Fr −dF Fr

(3.6)

solutions of which approximate those of the original system (3.5). This tech-
nique of multiple (slow and fast) time scales is based on singular perturbation
theory (Hoppensteadt, 1974; O’Malley, 1991; Kooi et al, 2002, and references
therein).
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Similarly, assuming fast mating implies C/tC =αMsFs and the system (3.6)
reduces to four equations:

dMs

dt
=−αMsFs −dMMs +

1
tM

Mr +µb
1
tF

Fr

dFs

dt
=−αMsFs −dF Fs +

1
tF

Fr +(1−µ)b
1
tF

Fr

dMr

dt
= αMsFs −

1
tM

Mr −dMMr

dFr

dt
= αMsFs −

1
tF

Fr −dF Fr

(3.7)

Adding equations for males (M = Ms +Mr) and for females (F = Fs +Fr),
one gets two equations:

dM
dt

= µb
1
tF

Fr −dMM

dF
dt

= (1−µ)b
1
tF

Fr −dF F
(3.8)

To close the system (3.8), we need to express Fr as a function of M and F .
To do that, we assume that females divide their reproductive time T into time
for searching for males Ts and time for resting Tr (which includes pregnancy,
oviposition, etc.). Then, the number of matings ϕT per T per female can be
expressed as

ϕT = αMs(T −Tr) = αMs(T −ϕT tF)

where αMs is the rate at which a female meets males, and Tr = ϕT tF . Solving
this equation for ϕT/T , the female mating rate or the number of matings per
unit time, gives

ϕT

T
=

αMs

1+αMstF
If the female mean resting time tF is small relative to the total resting time Tr,
the probability that an average female is currently in its resting stage can be
approximated as Tr/T . Hence, approximately, Fr = FTr/T = FtF ϕF/T which
in turn implies

Fr

tF
= F

ϕT

T
= F

αMs

1+αMstF
In addition, if we assume virtually no resting time for males, then M ≈ Ms and
we have

Fr

tF
= F

αM
1+αMtF

=
1
tF

F
M

M+θ
(3.9)

where we denoted θ = 1/(αtF). Incorporating the formula (3.9) into the
model (3.8), we get
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dM
dt

= µ b̃F
M

M+θ
−dMM

dF
dt

= (1−µ)b̃F
M

M+θ
−dF F

(3.10)

where we assigned b̃ = b/tF . Interestingly and correctly, b̃ has units of clutch
size / mean resting time of a female and hence has the meaning of the maxi-
mum birth rate the female can achieve (when permanently mated).

Finally, assuming µ = 0.5, dM = dF = d, and M(0) = F(0), it is M(t) =
F(t) for any t > 0, since

d(M−F)

dt
=−d(M−F) (3.11)

and hence
M(t)−F(t) = [M(0)−F(0)]e−dt , t > 0 (3.12)

This implies that M = F = N/2 where N = M + F , and the model (3.10)
eventually reduces to a single equation

dN
dt

= b̄N
N

N + θ̄
−dN (3.13)

where we denoted b̄ = b̃/2 and θ̄ = 2θ . We note that we did not consider
any negative density dependence in mortality rate in this derivation, but by
replacing dX , X = M or F , with dX +d1N in any relevant above equation we
eventually get the model (3.1).

The two positive equilibria A and K merge and cease to exist in a saddle-node
bifurcation when the discriminant of the quadratic equation (3.2) equals zero, which
happens at

θc =
(
√

b−
√

d)2

d1
(3.14)

The extinction equilibrium N∗ = 0 becomes globally stable beyond this critical
mate-finding Allee effect strength, i.e. for θ > θc. For θ < θc, as θ increases in
the model (3.1), the Allee threshold increases since ∂A/∂θ > 0, the environmental
carrying capacity decreases since ∂K/∂θ < 0, and the population resilience (maxi-
mum perturbation from the locally stable equilibrium K that subsequently vanishes,
here distance between K and A) thus declines (see also Fig. 3.1). This paragraph
thus suggests that Allee effects destabilize population dynamics.

Our choice of the model (3.1) as a tool to explore Allee thresholds in unstruc-
tured population models is just one of the many that can be developed for the same
purpose. But even though alternative model formulations can be structurally quite
different and involve component Allee effects other than those due to mate finding
(Courchamp et al, 2008), their properties remain analogous to what we present here.
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Fig. 3.1 Many unstructured population models with a strong demographic Allee effect share the
property that changes in the Allee threshold and the environmental carrying capacity implied by
changes in a model parameter are negatively correlated (a; arrows indicate how population densi-
ties dynamically change in time). This is because in those models an increase in the component
Allee effect strength results in a decrease in the per capita population growth rate over the whole
range of population densities (b; component Allee effect strength increases in the arrow direction).
Parameter values of the model (3.1): b = 2, d = 0.6, d1 = 0.1, hence θc = 4.09; in panel (b), θ = 1
(black line) and θ = 3 (gray line)

In addition, although our model (3.1) demonstrated a strong demographic Allee ef-
fect for any positive value of θ , unstructured population models have been formu-
lated that produce weak demographic Allee effects once the underlying component
Allee effect is relatively weak and strong demographic Allee effects once it is strong
enough; for an example, see Berec et al (2007). Still, the absence of any population
structure in these models is quite a simplification and we now consider some more
detailed population models to see what other forms the Allee threshold might adopt.

Age

Age is presumably the first structural element ever considered in population models,
largely as a consequence of human demography and its early interest in life tables,
recognizing that both the per capita birth and death rates are more often than not
age-dependent (Caswell, 2001; Iannelli et al, 2005, and references therein). If an
age-structured model contains a finite number of groups and these groups rather
correspond to some well-defined developmental stages of an individual, such as
eggs, larvae, pupae, and adults, we sometimes speak of stage-structured models.

We consider here the simplest extension of the model (3.1) that considers an age
structure, namely two age (or stage) classes corresponding to juveniles and adults:
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dJ
dt

= bA
A

A+θ
−mJ− (d +d1N)J

dA
dt

= mJ− (d +d1N)A
(3.15)

Here A is the density of adults, J is the density of juveniles, and m is the maturation
rate; N = J +A is the total population density. Again, we assume a mate-finding
Allee effect and a negative density dependence in survival. We note that the model
(3.15) can be further modified in a number of ways, including age-specific mortality
rates, density dependence in the maturation rate, etc.

Standard analysis of the model (3.15) reveals that the extinction equilibrium
A∗ = J∗ = 0 is locally stable for any θ > 0. In addition, extensive numerical simu-
lations show that if θ > 0 is not too large, there are two positive equilibria, of which
the one closer to the extinction equilibrium is unstable (saddle point) and the more
distant one is locally stable. As θ increases, the two positive equilibria approach one
another, merge and cease to exist in a saddle-node bifurcation at a critical value θc.
The Poincaré-Bendixson theorem can be used to show that the extinction equilib-
rium becomes globally stable as soon as θ > θc.

So up to now no real difference from the unstructured model (3.1). But whereas
the locally stable positive equilibrium (if it exists) is an attractor (corresponding to
the environmental carrying capacity) for any sufficiently large population, the con-
cept of Allee threshold is not that straightforward here as it was for the unstructured
model (3.1). As the state space is now two-dimensional, we cannot speak of what
lies below the unstable positive equilibrium and what lies above it. But the unsta-
ble equilibrium of the age-structured model (3.15) is a saddle point. So a promising
candidate for the Allee threshold might here be its stable manifold. If it divides the
state space into an attraction area for the extinction equilibrium and an attraction
area for the locally stable positive equilibrium, and the union of these areas and the
stable manifold equals the whole state space, then the stable manifold is a natural
way of how to define the Allee threshold for the age-structured model (3.15). This
is indeed the case (Fig. 3.2 and Box 3.3).

What does this Allee threshold imply for the risk of population extinction? Note
first that it is compact, i.e. closed and bounded (see also Fig. 3.3). This implies that
a sufficiently high density of juveniles or adults (one can even be zero) ensures
population persistence. On the other hand, too low densities of both juveniles and
adults bring about population extinction. As Figs. 3.2 and 3.3 suggest, the population
can go extinct even if either the juvenile density or the adult density lies above the
respective component of the unstable positive equilibrium, provided that the other
density is well below the other component.

The existence and compactness of the Allee threshold has been rigorously proven
for a wide class of structured population models with any finite number of compart-
ments (Schreiber, 2004). Writing a generic continuous-time population model as
dx/dt = xG(x) where G(x) are k × k matrices, one requires, among other things,
that exp(G(0)) is primitive and that any entry gi j(x) of G(x) is either density-
independent or positively density-dependent, i.e. that no negative density depen-
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Fig. 3.2 Allee threshold in an age-structured population. A compact extinction boundary delimits
the areas of population extinction (below) and persistence (above) in the state space of juvenile
and adult densities in the age-structured population model (3.15) with a mate-finding Allee effect.
Parameter values: b = 3, d = 0.3, θ = 1, d1 = 0.35, m = 1

dence acts and the system is subject to at least one component Allee effect. Schreiber
(2004) applied his theorem to a model of an age-structured population preyed upon
by a generalist predator with a type II functional response. This type of predation
creates a component Allee effect in prey survival (Gascoigne and Lipcius, 2004;
Berec et al, 2007, see also Chapter 4). Interestingly, for our model (3.16) with a
mate-finding Allee effect the matrix exp(G(0)) is not primitive (Box 3.3). Leaving
out negative density dependence, this suggests that the class of structured population
models for which the Allee threshold exists and is compact can be much wider.

Box 3.3 Analysis of a density-independent version of the model (3.15)

The model (3.15) is hardly tractable analytically. Therefore, we analyze here
its density-independent version

dJ
dt

= bA
A

A+θ
−mJ−dJJ

dA
dt

= mJ−dAA
(3.16)

in which we moreover consider age-dependent mortality rates. Denoting D =
dA(1+dJ/m), the model (3.16) has a unique interior equilibrium

A∗ =
Dθ

b−D
and J∗ =

dA

m
A∗ (3.17)
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provided that b > D. The Jacobian J of the model (3.16), evaluated at the
extinction equilibrium J = A = 0 (which always exists), is

J =

(
−m−dJ 0

m −dA

)
(3.18)

Hence the extinction equilibrium is always locally stable, due to the mate-
finding Allee effect. For the interior equilibrium (J∗,A∗), we have

J =

(
−m−dJ D(2−D/b)

m −dA

)
(3.19)

Since detJ=mD(D/b−1)< 0, the interior equilibrium, if it exists, is a saddle
point – both eigenvalues of J are real, one positive,

λ1 =
1
2

[
−(m+dJ +dA)+

√
(m+dJ +dA)2 −4mD(D/b−1)

]
(3.20)

and one negative,

λ2 =
1
2

[
−(m+dJ +dA)−

√
(m+dJ +dA)2 −4mD(D/b−1)

]
(3.21)

The right eigenvector corresponding to the eigenvalue λi (i = 1,2) is

vi =

 1

m
dA +λi

 (3.22)

Since the eigenvectors v1 and v2 are respectively tangent to the unstable and
stable manifolds of the interior equilibrium (J∗,A∗) at this equilibrium, they
can be used to approximate these manifolds, e.g. using the technique proposed
by van Voorn et al (2007): for a small ε > 0, the model (3.16) is run forward in
time from (J∗,A∗)±εv1 to get an approximation of the unstable manifold and
backward in time from (J∗,A∗)± εv2 to get an approximation of the stable
manifold. Figure 3.3 exemplifies this, for the same parameter values as in
Fig. 3.2.

Numerical simulations show that these results stay unchanged once a neg-
ative density dependence is added, as is the case of our model (3.15).

Finally, writing the model (3.16) as dx/dt = xG(x), where x = (J,A), the
matrix G becomes

G(J,A) =
(
−m−dJ bA/(A+θ)

m −dA

)
(3.23)
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Fig. 3.3 Allee threshold in an age-structured population. The stable manifold of the unstable equi-
librium (solid line) delimits the areas of population extinction (below) and persistence (above) in
the state space of juvenile and adult densities in the age-structured population model (3.16) with a
mate-finding Allee effect; dashed line is the unstable manifold of the unstable equilibrium. Param-
eter values: b = 3, dJ = dA = 0.3, θ = 1, m = 1

For this matrix,

exp(G(0,0)) = exp
((

−m−dJ 0
m −dA

))
=

=

 exp(−m−dJ) 0

m
exp(−m−dJ)− exp(−dA)

(−m−dJ)− (−dA)
exp(−dA)

 (3.24)

Although exp(G(0,0)) is non-negative, there is no integer n for which
[exp(G(0,0))]n is positive. This implies that exp(G(0,0)) is not primitive, as
required by the Schreiber (2004)’s theorem to hold.

Sex

Sex is ubiquitous – virtually all higher organisms, as well as many lower organisms,
reproduce sexually. Since sex brings about a variety of dimorphisms in behavior
and demography (often related to mate-finding via sexual selection) that might pro-
foundly affect population dynamics, it needs to be considered when appropriate.
These dimorphisms include differences between males and females in survivorship
(Miller et al, 2007; Boukal et al, 2008) and dispersal (Wickman and Rutowski, 1999;
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Perrin and Mazalov, 2000), and biases in the sex ratio at birth (Ewen et al, 2001).
In addition, males and females have to seek for one another to mate, in the sea of
diverse mating systems (Shuster and Wade, 2003), so mate-finding Allee effects are
intimately tied to mating (Gascoigne et al, 2009).

Here we examine the simplest extension of the model (3.1) that accounts for sex
structure and considers male and female populations only. The core of this model
goes back to Kendall (1949) and Goodman (1953), and the model we are going to
present is derived in Box 3.2:

dM
dt

= µbF
M

M+θ
− (d +d1N)M

dF
dt

= (1−µ)bF
M

M+θ
− (d +d1N)F

(3.25)

Here M is the density of males, F is the density of females, and µ is the sex ratio at
birth (proportion males); N = M +F is the total population density. Again, we as-
sume a mate-finding Allee effect and a negative density dependence in survival. We
note that the model (3.25) can further be modified in a number of ways, including
sex-specific mortality, density dependence in µ , etc.

As in the previous two cases, standard analysis of the model (3.25) shows that
the extinction equilibrium M∗ = F∗ = 0 is locally stable for any θ > 0. In addition,
extensive numerical simulations show that if θ > 0 is not too large, there are two
positive equilibria, of which the one closer to the extinction equilibrium is unstable
(saddle point) and the more distant one is locally stable. As θ increases, the two
positive equilibria approach one another, merge and cease to exist in a saddle-node
bifurcation at a critical value θc. The Poincaré-Bendixson theorem can be used to
show that the extinction equilibrium becomes globally stable as soon as θ > θc.

Whereas the locally stable positive equilibrium is again an attractor (correspond-
ing to the environmental carrying capacity) for any population comprising suffi-
ciently large numbers of males and females, the concept of Allee threshold can in
principle be explored here in the same way as in the case of age-structured models,
that is, via exploring the stable manifold of the unstable positive equilibrium. Nu-
merical simulations suggest that the stable manifold is not compact here (Fig. 3.4).
This makes perfect sense as zero density of males or females necessarily means no
mating and hence inevitable extinction of the other sex. Note that the hyperbolic
Allee threshold contrasts with the straight line that arises if the Allee threshold of
the corresponding unstructured model

dN
dt

=
b
2

N
N

N +2θ
− (d +d1N)N (3.26)

is projected on the male-female state space (Fig. 3.4). This unstructured model has
been gained by adding two equations of the model (3.25), assuming µ = 0.5 and
M(0) = F(0) and hence M = F = N/2 for any t > 0. The Allee threshold of the
unstructured model (3.26) is
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Au =
(b/2−d −2d1θ)−

√
(b−d −2d1θ)2 −8d1dθ
2d1

(3.27)
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Fig. 3.4 Allee threshold in a sex-structured population. A hyperbolic extinction boundary delimits
the areas of population extinction (below) and persistence (above) in the state space of male and
female densities in the sex-structured population model (3.25) with a mate-finding Allee effect.
The dashed line corresponds to the Allee threshold of the unstructured model (3.26), projected
on the male-female state space; it is the straight line M +F = Au connecting points (0,Au) and
(Au,0), where Au is the Allee threshold of the unstructured model (3.26). Common parameter
values: µ = 0.5, b = 3, d = 0.1, θ = 1, d1 = 0.35

There is currently no result equivalent to that of the Schreiber (2004)’s theorem
for non-compact Allee thresholds. So the question of how the Allee threshold gen-
erally looks like in sex-structured models is still open. But before any such attempt
is made, one needs to think of what constitutes here more than two model classes,
the question of no difficulty in age-structured models. We show in Section 3.2 how
the Allee threshold (hyperbolic boundary) in the male-female state space varies with
diverse mate-finding strategies; although qualitatively the same as here, its location
varies. Also, we show in Section 3.3 how the Allee threshold looks like when males
and females are allowed to form long-time pair bonds, the situation not considered
here as here males and females are just assumed to meet, mate, and say goodbye.
But none of these extensions addresses the question of more than two sex classes.

Box 3.4 Analysis of a density-independent version of the model (3.25)

The model (3.25) is hardly tractable analytically. Therefore, we analyze here
its density-independent version
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dM
dt

= µbF
M

M+θ
−dMM

dF
dt

= (1−µ)bF
M

M+θ
−dF F

(3.28)

in which we moreover consider sex-dependent mortality rates. Denoting D =
dF/[(1−µ)b], the model (3.28) has a unique interior equilibrium

M∗ =
Dθ

1−D
and F∗ =

(1−µ)dM

µdF
M∗ (3.29)

provided that D < 1, i.e. (1−µ)b > dF . The Jacobian J of the model (3.28),
evaluated at the extinction equilibrium M = F = 0 (which always exists), is

J =

(
−dM 0

0 −dF

)
(3.30)

Hence the extinction equilibrium is always locally stable, due to the mate-
finding Allee effect. For the interior equilibrium (M∗,F∗), we have

J =

(
−dM +dMb2(1−D) dF µ/(1−µ)

dMb2(1−D)(1−µ)/µ 0

)
(3.31)

Since detJ = −dF dMb2(1−D) < 0, the interior equilibrium, if it exists, is a
saddle point – both eigenvalues of J are real, one positive,

λ1 =
1
2

[
−dM +dMb2(1−D)+

√
(−dM +dMb2(1−D))2 +4dF dMb2(1−D)

]
(3.32)

and one negative,

λ2 =
1
2

[
−dM +dMb2(1−D)−

√
(−dM +dMb2(1−D))2 +4dF dMb2(1−D)

]
(3.33)

The right eigenvector corresponding to the eigenvalue λi (i = 1,2) is

vi =

 1

dMb2(1−D)(1−µ)/µ
λi

 (3.34)

Since the eigenvectors v1 and v2 are respectively tangent to the unstable
and stable manifolds of the interior equilibrium (M∗,F∗) at this equilibrium,
they can be used to approximate these manifolds, e.g. using the technique
proposed by van Voorn et al (2007): for a small ε > 0, the model (3.28) is run
forward in time from (M∗,F∗)± εv1 to get an approximation of the unstable
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manifold and backward in time from (M∗,F∗)± εv2 to get an approximation
of the stable manifold. Figure 3.5 exemplifies this, for the same parameter
values as in Fig. 3.4.

Numerical simulations show that these results stay unchanged once a neg-
ative density dependence is added, as is the case of our model (3.25).
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Fig. 3.5 Allee threshold in a sex-structured population. The stable manifold of the unstable equi-
librium (solid line) delimits the areas of population extinction (below) and persistence (above) in
the state space of male and female densities in the sex-structured population model (3.25) with a
mate-finding Allee effect; dashed line is the unstable manifold. Parameter values: µ = 0.5, b = 3,
dM = dF = 0.1, θ = 1

A really simple extension in this direction is to consider two male types, a low-
fitness one and a high-fitness one, and only one female type. Low-fitness males
and high-fitness males are assumed to die at rates dL

M and dH
M , respectively, with

dL
M > dH

M; females are assumed to die at rate dF . Upon mating, females give birth at
rates bL and bH , depending on the male type. Any offspring becomes male or female
with probability µ and 1−µ , respectively. If a low-fitness male fathers the offspring,
male offspring become of the low-fitness type with probability β and of high-fitness
type with probability 1−β ; the converse probabilities are applied to male progeny
fathered by high-fitness males. The population model is then as follows:
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dML

dt
= µ

(
βbL ML

ML +MH +θ
+(1−β )bH MH

ML +MH +θ

)
F − (dL

M +d1N)ML

dMH

dt
= µ

(
βbH MH

ML +MH +θ
+(1−β )bL ML

ML +MH +θ

)
F − (dH

M +d1N)MH

dF
dt

= (1−µ)
(

bH MH

ML +MH +θ
+bL ML

ML +MH +θ

)
F − (dF +d1N)F

(3.35)
where N = ML +MH +F and d1 denotes the strength of negative density depen-
dence, for simplicity the same for all three model classes. We do not carry out any
detailed analysis of this model here. Instead, we just exemplify the resulting Allee
threshold in Fig. 3.6. As might be expected, this Allee threshold is just a 3D exten-
sion of the 2D case studied above; indeed, both the side projections with one or the
other male type absent correspond to Fig. 3.4.
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Fig. 3.6 Allee threshold in a sex-structured population. A hypersurface delimits the areas of popu-
lation extinction (below) and persistence (above) in the three-dimensional space of densities of two
male types and one female type in the sex-structured population model (3.35) with a mate-finding
Allee effect. Parameter values: µ = 0.5, bL = 1.5, bH = 2, dL

M = 0.12, dH
M = 0.1, dF = 0.1, θ = 0.5,

d1 = 0.35, β = 0.95

The model (3.25) can also be used to show that it is impossible to rank pest
control tactics in any absolute manner (i.e. dependent only on the total population
density); rather, pest control tactics can be tailored to the actual (ratio of) male and
female densities (Boukal and Berec, 2009). To see this, consider the following two-
sex model:
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dM
dt

= µbF
M

M+S+θ
− (dM +dC)M

dF
dt

= (1−µ)bF
M

M+S+θ
−dF F

(3.36)

Here dC denotes an additional male mortality rate due to a density-independent
culling, such as when sex pheromone-baited traps are deployed en mass to attract
and kill males of some insect species (Yamanaka, 2007). In addition, S represents a
constant level of sterile males released into the population, assuming that they are
as competitive as the fertile males in the mating process. Proposed many decades
ago (Knipling, 1955), the tactic of releasing sterile individuals is a classic among
all tactics that exploit the presence of and accentuate the mate-finding Allee effect
(Krafsur, 1998; Boukal and Berec, 2009); it even creates an additional component
Allee effect in the controlled population (Barclay and Mackauer, 1980; Boukal and
Berec, 2009) and its efficiency has frequently been assessed via mathematical mod-
els (Lewis and van den Driessche, 1993; Maiti et al, 2006). Figure 3.7 shows that,
economical and practical aspects notwithstanding, the release of sterile males might
be a better strategy if the pest sex ratio is female-biased, while increasing the male
mortality should be preferred in pest populations with an excess of males (Boukal
and Berec, 2009). In addition, the two tactics act in synergy (we assume here that
the extra mortality does not affect the sterile males, e.g. sterile males are kept at
the fixed level S irrespectively of dC), i.e. the effect of their co-occurrence is much
stronger than a ‘sum’ of their effects when they act in isolation; see also Berec et al
(2007).

Finally, the risk of suffering from mate-finding Allee effects might have been
a significant evolutionary driver for different mate-finding adaptations and even
mating systems. Adaptations for finding a mate are widespread, ranging from sex
pheromones to bird songs, to ability to move faster or more efficiently. A common
mechanism behind these adaptations is to allow mate-finding at low density (e.g.,
long-distance attractants such as calling and sex pheromones). These need to be dis-
tinguished from adaptations which reduce the likelihood of low density per se (e.g.,
mass spawning or reproductive aggregations). Although both types of adaptation
may have a similar purpose, in the context of populations reduced by anthropogenic
impacts their effects can be diametrically opposed. Species with the former types
of adaptation are less likely to suffer from mate-finding Allee effects, since they are
already adapted to cope with low density – see Gascoigne et al (2009) for a deeper
discussion on this issue and a number of specific examples.

One of the mechanisms that may mitigate mate-finding Allee effects (although
it could evolve due to other selection pressures) is haplodiploidy, a mating system
whereby mated females produce offspring of both sexes while unmated female pro-
duce just sons. The simplest model of this system may look like

dM
dt

= µbF
M

M+θ
+bF

(
1− M

M+θ

)
−dMM

dF
dt

= (1−µ)bF
M

M+θ
−dF F

(3.37)
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Fig. 3.7 Unstable equilibria (circles) and Allee thresholds (lines) corresponding to the sex-
structured population model (3.36) with a mate-finding Allee effect and two control tactics. Popu-
lation before control: S = 0 and dC = 0 (dotted line); only sterile male released: S = 10 and dC = 0
(dashed line); only culling applied: S = 0 and dC = 0.625 (dash-dot line); both sterile male released
and culling applied: S = 10 and dC = 0.625 (solid line). Both tactics have the same relative effi-
ciency, i.e. the same ratio of the distances of the control-affected and original unstable equilibria
from the origin. Parameter values common to all three scenarios: µ = 0.5, b = 1, dM = dF = 0.2,
θ = 5

Standard analysis of the model (3.37) shows that a unique interior equilibrium oc-
curs at

M∗ =
θD

1−D
and F∗ =

θD
1−D

dM

b−dF
(3.38)

where D = dF/[(1 − µ)b]. Obviously, this equilibrium is feasible provided that
D < 1, which translates to (1 − µ)b > dF , and it is quite natural to assume this
condition to hold as otherwise the population would go extinct from any density
even in the absence of Allee effects (i.e. for θ = 0). Also, it is easy to show that both
eigenvalues of the Jacobian of the model (3.37) evaluated at the extinction equi-
librium are negative (they equal −dM and −dF ); hence, the extinction equilibrium
is always locally stable. This implies that haplodiploidy cannot by itself remove
the mate-finding Allee effect. Actually, keeping the same parameter values for the
diploid model (3.28) studied in Box 3.4 and for the haplodiploid model (3.37) ana-
lyzed here, the equilibrium male density stays the same, but the equilibrium female
density is higher for the diploid model for which it is

F∗ =
θD

1−D
(1−µ)dM

µdF

In addition, the stable manifold of the interior equilibrium corresponding to the
haplodiploid model (3.37) lies below that of the diploid model (3.28) (Fig. 3.8).
Moreover, starting with only females need not lead to population extinction as they
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produce just males and hence partners for themselves in the next round of matings
– hence the Allee threshold is no more a hyperbolic curve as for the diploid species.
But beware, this is because we assume populations with overlapping generations.
For populations with non-overlapping generations this cannot happen as males pro-
duced by such females have no one to mate in the next generation; hence the Allee
threshold is again in this case a hyperbolic curve. In any case, haplodiploidy miti-
gates the mate-finding Allee effect relative to diploidy (provided that both models
have the same parameter values).
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Fig. 3.8 Unstable equilibria (circles) and Allee thresholds (lines) corresponding to the sex-
structured population model with a mate-finding Allee effect and haplodiploidy (solid line) or
diploidy (dashed line). Parameter values common to both models: µ = 0.5, b = 3, dM = dF = 0.1,
θ = 1

Age and sex

Finally, we combine the models (3.15) and (3.25) so as to explore how is the Allee
threshold represented in models that combine both age and sex structure. Of the
many ways of how to combine these models, a straightforward one is as follows
(see also Box 3.2):

dJ
dt

= bF
M

M+θ
−mJ− (d +d1N)J

dM
dt

= µmJ− (d +d1N)M

dF
dt

= (1−µ)mJ− (d +d1N)F

(3.39)
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Note that as the maturation rate becomes very high, m → ∞, the model (3.39) re-
duces to the sex-structured model (3.25), while for µ = 0.5 (balanced sex ratio at
birth) and M(0) = F(0) (identical initial densities of males and females), it reduces
to the age-structured model (3.15).

Again, the model (3.39) has two interior equilibria for not too large θ > 0 (and
no interior equilibrium for too large θ > 0), of which the one closer to the origin is
again unstable (saddle point) and the other one is again locally stable. In addition,
the extinction equilibrium is always locally stable for θ > 0. Whereas the upper
interior equilibrium is again an attractor (corresponding to the environmental carry-
ing capacity) for any population composed of sufficiently large numbers of (adult)
males and females, or of juveniles, the concept of Allee threshold can in principle be
explored here in the same way as in the case of age- or sex-structured models, that
is, via examination of the stable manifold of the unstable interior equilibrium. Nu-
merical simulations suggest that the stable manifold is not compact here (Fig. 3.9).
This makes perfect sense, as zero density of males or females necessarily means no
mating and hence inevitable extinction of the other sex. On the other hand, there is a
critical density of juveniles, above which the population persists no matter how large
the adult population is (it need not even exist at that time) – adults are in this case
soon replenished (Fig. 3.9). We do not carry out any formal analysis of the model
(3.39) here.
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Fig. 3.9 Allee threshold in an age- and sex-structured population. An extinction boundary delimits
the areas of population extinction (below) and persistence (above) in the state space of juvenile,
male and female densities in the age-structured, two-sex population model (3.39) with a mate-
finding Allee effect. Parameter values: µ = 0.5, b = 4, d = 0.1, θ = 1, d1 = 0.35, m = 1
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3.2 Linking the Allee effect, sexual reproduction and
temperature-dependent sex determination via spatial
dynamics

Population models like (3.25) are non-spatial, that is, they assume that all popula-
tion members mix homogeneously and any individual can equally interact with any
other. This also applies to the mate-finding Allee effect – the decisive quantity for
any female to find a mate and get fertilized is the total male density. A corollary
of this is that individuals can perceive any mating partner however far it is and can
instantly mate with it, thus dispersing at virtually an infinite rate. Real mate search
strategies may differ, however. Rather than with all members of the population indi-
viduals usually interact only with their close neighbors, and rather than dispersing
infinitely quickly they disperse only locally.

In what follows, we are going to explore Allee thresholds under such more re-
alistic dispersal strategies, including local diffusive movement (i.e. passive search)
and active (but still local) search. We show that for both strategies there is still a
hyperbolic extinction boundary in the male-female state space, and examine in de-
tail how the position of this extinction boundary (i.e. Allee threshold) responds to
population demography and adopted mate search strategies. We do that by develop-
ing and analyzing a spatially explicit, individual-based model in which males and
females search one for another explicitly.

To demonstrate a potential application of the developed models, we predict the
impact of environmental temperature changes on two turtle species with temperature-
dependent sex determination (TSD). The sex ratio at birth depends on the incuba-
tion temperature of eggs in a number of reptiles (Paukstis and Janzen, 1990; Janzen
and Paukstis, 1991; Girondot, 1999). Environmental temperature changes could thus
profoundly affect reptile populations subject to a combination of the mate-finding
Allee effect and TSD.

Model development

Consideration of mate search strategies requires explicit modeling of both sex and
space. We thus develop a spatially explicit, individual-based model that keeps track
of every single male and female in a spatial habitat during their entire lifetime. We
also derive its spatially homogeneous counterpart that permits a more detailed anal-
ysis and comparison with known models. Parameters used in the developed models
are summarized in Table 3.1 and explained below.
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Parameter Meaning

S Lattice size (128×128 sites)
pr Probability of reproduction per reproductive event
µ Sex ratio at birth
pM

m (pF
m) Probability that a male (female) dies in a time step

dM (dF ) Neighborhood size of males (females) with diffusive movement
sM (sF ) Size of perception neighborhood of males (females) actively searching for mates
nM (nF ) Number of males (females) on the lattice in a time step
xM (xF ) Male (female) density in a time step
x′M (x′F ) Male (female) density in the next time step with respect to xM (xF )

Table 3.1 Parameters used in the developed models

Two-sex spatially explicit, individual-based model

A square lattice of 128× 128 uniform sites approximates the homogeneous spa-
tial habitat, with each site occupied by at most one male and one female. Periodic
boundary conditions are used to mimic an unbounded environment so that the left
and right edges and the top and bottom edges of the lattice are joined together. Time
runs in discrete steps in which all sites are simultaneously updated. Initially, indi-
viduals are (uniformly) randomly scattered over the lattice, with males and females
distributed independently. Two sorts of processes are repeatedly applied in a sequen-
tial way: demographic processes (reproduction and mortality) and mate search.

Reproduction. At every time step, each pair (male and female sharing a site)
gives birth to one offspring with non-zero probability pr. The conceived offspring
becomes a male with probability 0 < µ < 1 (primary sex-ratio) and a female with
probability 1− µ . It is placed into a randomly selected nearest neighbor of its par-
ents’ site (north, west, south, east) if the selected site is free of an adult of the same
sex. If two or more offspring of the same sex attempt to recruit to the same site at
the same time step, one of them is randomly chosen and allowed to do it, and the
rest is discarded. Thus, reproduction is density-dependent. Maturation time of each
offspring is one time step.

Mortality. At every time step, each male and female die with probability pM
m

and pF
m, respectively (background mortality). No other components of mortality are

assumed, so that we may concentrate solely on the effects of mate search.
Reproduction and mortality act concurrently (McCauley et al, 1993). This means

that newborns cannot die in the same time step and adults that are marked as dead
have the full opportunity to reproduce in that step. Once the demographic processes
are accomplished, mate search is initiated. We consider two mate search strategies.

Diffusive movement. An individual with this strategy moves independently of
the others to a randomly selected site in a square neighborhood of side 2d + 1,
d = 0,1,2, . . . (d = 0 models sedentary individuals), centered on its location; if it
is occupied by the same sex, the individual does not move. The neighborhood size
may differ for males (dM) and females (dF ) to allow for a range of movement rates.
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Active mate search. Any searching individual is assumed to have a square per-
ception neighborhood of side 2s+1, s = 1,2, . . . , around its location due to, e.g. de-
tection of pheromones (insects, reptiles, rodents), advertisement calls (amphibians),
or songs (birds) by the other sex. Let us consider a particular, actively searching
male (the same rules apply to females). If a sole and partner-free female is present
in his perception neighborhood, the male moves to her site. If he locates two or more
unmated females, one of them is randomly selected. If no such female is found, the
male moves to a randomly selected site inside his perception neighborhood unless
it is occupied by another male, and does not move otherwise. The perception neigh-
borhood size may differ for males (sM) and females (sF ).

If a pair is formed during the mate search process, individuals of that pair no
longer move in that time step. Moreover, males and females paired in the previ-
ous time step move independently, and irrespectively of their previous reproductive
success or failure. This rule corresponds to a monogamous mating system with no
fidelity. To apply any of the two mate search rules, all individuals are randomly or-
dered and move one by one. As a consequence, contests for mates do not occur. The
reader is referred to McCauley et al (1993) and Berec (2002) for further technical
issues on discrete-time, discrete-space, individual-based models.

Non-spatial model

The spatially homogeneous counterpart of the above-defined individual-based model,
also known as the mean-field approximation, is derived under the assumption that
individuals of each sex are randomly distributed on a sufficiently large lattice at
each time step (among other things, this assumption implies random mating). With
this assumption, system dynamics are sufficiently approximated by the following
system of coupled difference equations (see Box 3.5 for its derivation),

x′M = xM(1− pM
m )+µ prxMxF(1− xM)

x′F = xF(1− pF
m)+(1−µ)prxF xM(1− xF)

(3.40)

In this model, xM (xF ) and x′M (x′F ) denote mean male (female) density in a time step
and the time step next to it, respectively. We will refer to the model (3.40) as the
non-spatial model further on.

Box 3.5 Derivation of the non-spatial model (3.40)

Assume that individuals are randomly distributed on a sufficiently large lat-
tice in each time step. The probability that a male survives to the next time
step is 1− pM

m ; hence, the proportion of males that survive to the next time
step approaches 1− pM

m for the lattice size S tending to infinity and the male
density xM = nM/S kept constant. Reproduction and mortality are indepen-
dent events due to their concurrent ordering. There are S−nM male-free sites
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at the beginning of a time step. The probability that a particular male-free
site will become occupied by a male offspring coming from a given nearest
neighbor equals the probability that the neighbor contains both male and fe-
male (nM/S× nF/S) times the probability that the pair gives birth to a male
offspring (µ × pr) times the probability that this offspring is placed to this
particular male-free site (1/4). Reproductive events from various neighbors
are independent; hence, the probability that the male-free site remains empty
at the end of the time step is (

1−µ
nM

S
nF

S
pr

4

)4

The proportion of currently male-free sites that is occupied by males in the
next time step thus tends to

1−
(

1−µ
nM

S
nF

S
pr

4

)4

for S going to infinity and the male and female densities kept constant. Anal-
ogous expressions hold for females. The mean number of males and females
in the next time step may thus be approximated as

nM(1− pM
m )+(S−nM)

[
1−
(

1−µ
nM

S
nF

S
pr

4

)4
]

and

nF(1− pF
m)+(S−nF)

[
1−
(

1− (1−µ)
nF

S
nM

S
pr

4

)4
]

respectively. Given that (1−w)4 ≈ 1−4w for sufficiently small w, then after
dividing both expressions by S and setting xM(F) = nM(F)/S we have for the
mean male and female densities in the next time step that

x′M = xM(1− pM
m )+µ prxMxF(1− xM)

x′F = xF(1− pF
m)+(1−µ)prxF xM(1− xF)

(3.41)

These equations guarantee 0 ≤ x′M,x′F ≤ 1 provided that xM and xF satisfy the
same constraint. The neglected higher-order terms could become significant
only when the population approaches the environmental carrying capacity. As
we are primarily interested in what happens at lower population densities, it
is sufficient to analyze the model (3.41).
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Model results

Non-spatial model

We start by examining the non-spatial model (3.40). Results are derived analytically
unless stated otherwise (details on the underlying analysis are given in Boxes 3.6
and 3.7).

For all parameter combinations, populations with sufficiently small initial male
and female densities go extinct. Moreover, there are either zero, one, or two interior
steady states. To map parameter regions corresponding to each of these three cases
(Fig. 3.10), we introduce compound, dimensionless parameters

AM =
pM

m

µ pr
and AF =

pF
m

(1−µ)pr
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Fig. 3.10 Compound-parameter space with regions of zero, one, and two interior equilibria of the
non-spatial model (3.40). The dashed line corresponds to the compound parameters AM and AF
with pr = 0.1, pM

m = 0.01, pF
m = 0.008, and primary sex-ratio µ varying from zero to one. Points

on the bold line satisfy
√

AM +
√

AF = 1

If
√

AM +
√

AF > 1, there are no interior steady states. On the other hand, if√
AM +

√
AF < 1, two distinct interior equilibria exist. As we were unable to re-

solve stability of the interior equilibria analytically, we performed extensive nu-
merical simulations of the non-spatial model (3.40) for 0 < AM,AF < 1. We also
varied demographic parameters for some fixed values of AM and AF . For each set of
parameters, we chose a set of initial conditions that sufficiently covered the male-
female state space. These simulations suggest that if no interior steady state exists,
the origin E0 is globally stable and the population always dies out regardless of ini-
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tial male and female population densities. If two interior equilibria exist, we claim
that the equilibrium closer to the origin, denoted Eu = (xu

M,xu
F), is unstable (saddle

point), and that the more distant steady state Es = (xs
M,xs

F) is locally stable. Numer-
ical simulations also showed that the system either approaches E0 or Es depending
on initial conditions. Hence, we observe the bistable regime typical of the Allee
effect, and recover the hyperbolic Allee threshold typical of the dioecious species
(Fig. 3.11). Note that a sharp decline in one sex or even in the total population size
may not necessarily mean an ultimate population extinction.

Box 3.6 Analysis of the non-spatial model (3.40)

The eigenvalues of the non-spatial model (3.40) linearized at E0 are λ1 =
1− pM

m and λ2 = 1− pF
m, and E0 is thus locally asymptotically stable. Two

distinct interior equilibria,

Eu = (xu
M,xu

F) =
( 1

2 (1−AM +AF −
√

D), 1
2 (1+AM −AF −

√
D)
)

Es = (xs
M,xs

F) =
( 1

2 (1−AM +AF +
√

D), 1
2 (1+AM −AF +

√
D)
)

where D = (1−AM +AF)
2 − 4AF , exist if and only if D > 0. Note that for

AM ≥ 1 or AF ≥ 1, the population driven by the model (3.41) goes extinct,
as x′M < xM or x′F < xF , respectively. Assume now that AM < 1 and AF < 1.
Under these conditions, D > 0 is equivalent to

√
AM +

√
AF < 1. The model

(3.41) thus has two distinct interior equilibria if and only if√
AM +

√
AF < 1

and no interior equilibrium once the opposite inequality holds. Note that√
AM +

√
AF < 1 implies AM + AF < 1. The singular case of one interior

equilibrium E⋆ = (x⋆M,x⋆F) = (1−
√

AM,
√

AM) occurs if and only if D = 0 ⇔√
AM +

√
AF = 1. It is structurally unstable and thus biologically irrelevant.

Although the number and location of equilibria are fully described by the com-
pound parameters AM and AF , we would have to take all demographic parameters
into account if we needed to (numerically) locate the extinction boundary and to
study transient dynamics of the non-spatial model (3.40). Despite that, the areas of
initial conditions leading to extinction and persistence can be partially characterized
by the distance of Eu from the other two equilibria. The extinction (persistence) area
is positively related to the distance of Eu from E0 (Es) and enlarges (shrinks) with
increasing AM and/or AF .

What are the effects of changing the primary sex-ratio µ on the system dynamics
when mortality and reproduction parameters pM

m , pF
m and pr are kept fixed? Such

a dependence may play a crucial role in species for which changing environmental
conditions affect sex determination much more than other life history characteristics
(Charnov and Bull, 1977). If reproductive rates are relatively low,
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Fig. 3.11 Sample trajectories of the non-spatial model (3.40) in the male-female state space, show-
ing equilibria (filled circles = stable, empty circle = unstable) and extinction boundary (Allee
threshold; dashed line). All trajectories starting below (above) the Allee threshold approach the
extinction equilibrium (carrying capacity) as time goes to infinity. Parameter values: µ = 0.4,
pr = 0.1, pM

m = 0.013, pF
m = 0.01

3
√

pM
m + 3

√
pF

m > 3
√

pr (3.42)

then all trajectories of the non-spatial model (3.40) approach the extinction equilib-
rium E0 for all µ ∈ (0,1); different values of µ can only slow down or speed up the
inevitable population extinction. For high reproductive rates,

3
√

pM
m + 3

√
pF

m < 3
√

pr (3.43)

critical values 0 < µ1 < µ2 < 1 exist such that extreme values of µ lying outside the
interval (µ1,µ2) drive the system to extinction whereas µ ∈ (µ1,µ2) induce a strong
Allee effect.

If male and female mortalities are equal (pM
m = pF

m), the conditions (3.42) and
(3.43) reduce to P > 1/8 and P < 1/8, respectively, where P = pM

m /pr = pF
m/pr and

the critical values µ1 and µ2 can be derived analytically. They are symmetric with
respect to the unbiased primary sex-ratio µ = 0.5,

µ1,2 =
1
2
± 1

2

√
1−4P−8P2 −8P

√
P(1+P) (3.44)

The interval (µ1,µ2) becomes larger with decreasing P, i.e. with increasing repro-
duction pr and/or decreasing mortality pM

m = pF
m. We observed analogous qualitative

dependence also for different male and female mortalities pM
m ̸= pF

m.
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Box 3.7 Role of the primary sex-ratio

The sum
√

AM +
√

AF is a convex function of µ as ∂ 2
(√

AM +
√

AF
)
/∂ µ2 >

0. Moreover,
√

AM +
√

AF → ∞ for µ → 0 or 1. The sum attains its global
minimum

min
0<µ<1

(√
AM +

√
AF

)
=

(
3
√

pM
m + 3

√
pF

m
3
√

pr

) 3
2

at

µ = µ⋆ =
3
√

pM
m

3
√

pM
m + 3

√
pF

m

If the inequality (3.43) holds, then the primary sex-ratios µ1 < µ⋆ < µ2 exist
such that

√
AM +

√
AF = 1 for µ = µ1 and µ = µ2. the non-spatial model

(3.40) thus possesses two distinct interior equilibria for µ ∈ (µ1,µ2), one
interior equilibrium for µ = µ1 or µ = µ2, and only the extinction equilib-
rium E0 for µ < µ1 or µ > µ2. In addition, E0 is the only steady state of the
non-spatial model (3.40) for all µ ∈ (0,1) if the inequality (3.42) holds, as
then

√
AM +

√
AF > 1 for all µ ∈ (0,1). For 3

√
pM

m + 3
√

pF
m = 3

√
pr, the non-

spatial model (3.40) possesses a unique interior equilibrium for µ = µ⋆, due to√
AM +

√
AF = 1, but the system is in this singular case structurally unstable.

Solving the equality
√

AM +
√

AF = 1 with respect to µ in the spe-
cial case pM

m = pF
m, we get the formula (3.44); the distance µ2 − µ1 =√

1−4P−8P2 −8P
√

P(1+P) increases with decreasing ratio P= pM
m /pr =

pF
m/pr because

∂ (µ2 −µ1)

∂P
= −

2
(√

1+P(1+4P)+
√

P(3+4P)
)

(µ2 −µ1)
√

1+P
< 0

Application to temperature-dependent sex determination (TSD)

We now use the non-spatial model (3.40) and available data to predict the combined
impact of TSD and the mate-finding Allee effect on the snapping turtle Chelydra
serpentina and the European pond turtle Emys orbicularis. For both species, demo-
graphic characteristics have been quantitatively studied (Christiansen and Burken,
1979; Obst, 1986; Paukstis and Janzen, 1990; Iverson, 1991; Girondot and Pieau,
1993). In Ch. serpentina, only females are produced at low as well as high egg incu-
bation temperatures and only males are produced at intermediate temperatures, with
two transitional ranges between these extremes; we found the original polynomial fit
in Janzen and Paukstis (1991) unsatisfactory and replaced it by an exponential func-
tion (Table 3.2 and Fig. 3.12a). In E. orbicularis, only males are produced at low egg
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incubation temperatures and only females at high temperatures, with a transitional
range in which both sexes are produced; Girondot (1999) gives the exponential fit
(Table 3.2 and Fig. 3.12b).

We transform the field data (Table 3.2) to fit our model using several compro-
mising assumptions. The number of eggs per year is multiplied by the fraction of
individuals achieving maturity to get the number of new adults each year, and this
number is then divided into “single-individual reproductive events” by rescaling the
time step (i.e. we assume that each female gives birth to one offspring per repro-
ductive event with probability pr = 1 and this offspring maturates in one time step).
Both assumptions in fact mean that we neglect possible effects of time lags in pop-
ulation dynamics; similar arguments have been adopted by Veit and Lewis (1996).
The annual adult mortality is recomputed to the per time step adult mortality; as
there is no distinction in the literature between male and female adult mortalities,
we use pM

m = pF
m.

Species Annual adult Clutches Fraction (∼number) pr pM
m = pF

m µ1 µ2
mortality (eggs) achieving maturity

Chelydra serpentina 0.04 1 (30) 0.133 (∼4) 1.0 0.01 0.01 0.99
Emys orbicularis 0.10 2 (6) 0.206 (∼2.5) 1.0 0.033 0.05 0.95

Table 3.2 Demographic data, reproduction and mortality probabilities, and critical values of the
primary sex-ratio for the snapping turtle Ch. serpentina and the European pond turtle E. orbicularis

The last two columns of Table 3.2 give the critical values µ1 and µ2 of the pri-
mary sex-ratio that are evaluated by the formula (3.44). Figure 3.12 shows the de-
pendence of the primary sex-ratio on incubation temperature together with the tem-
perature intervals leading to strong Allee effects. It follows that for Ch. serpentina
(E. orbicularis), hatchling sex ratios as biased as 1:99 (1:19) can prevent inevitable
population extinction. This translates into two egg incubation temperature intervals
of about 2oC width and a single, about 1oC wide interval that enable persistence of
Ch. serpentina and E. orbicularis, respectively.

We apply our non-spatial model (3.40) to the two turtle species not to provide
reliable quantitative predictions but to illustrate the potential strategic use of models
developed in this section. The fundamental message is that the Allee effect further
narrows temperature ranges under which population persistence is possible. How-
ever, knowledge of appropriate spatial and temporal scales, mate search strategies,
variations in the egg incubation temperature between nesting sites and years, and
further life history details of the examined species would be instrumental in adopt-
ing any control measure.
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Fig. 3.12 Dependence of the primary sex-ratio µ on the egg incubation temperature for (a) the
snapping turtle Chelydra serpentina and (b) the European pond turtle Emys orbicularis, combined
with the primary sex-ratio interval (µ1,µ2) for which the non-spatial model (3.40) induces a strong
Allee effect. Solid lines denote the best fits of the original data (squares) taken from Paukstis and
Janzen (1990). Parameter values and data fits: Ch. serpentina: pr = 1.0, pM

m = pF
m = 0.01, µ =

exp(−(t −24.3)8/2177.3), fitted by the MATLAB procedure lsqcurvefit; E. orbicularis: pr = 1.0,
pM

m = pF
m = 0.033, µ = 1/(1+ exp(−(28.51− t)/0.196)), taken from Girondot (1999). Values of

µ1 and µ2 are given in Table 3.2

Mate search strategies

In nature, many organisms do not mate at random but rely on more or less elaborate
mate search strategies. What consequences do they have for population persistence
and resistance to adverse conditions? To shed more light on this issue, we use the
above-defined individual-based model to explore some consequences of the diffu-
sive movement and active mate search defined above.

Both males and females move diffusively. Among all combinations of dM and
dF , the case dM = dF = 1 deviates most from the non-spatial model (3.40). On
the other hand, the non-spatial model and the individual-based model with diffusive
movement and high enough values of d virtually coincide. Figure 3.13 demonstrates
a shift of the Allee threshold towards lower population densities; all Allee thresholds
corresponding to higher values of d lie in between the one for the non-spatial model
and the one for the individual-based model with dM = dF = 1.

Both males and females use active mate search strategy. Individual-based model
simulations show that mutual active mate search lowers extinction thresholds even
more. Figure 3.14 shows an extinction/persistence diagram for a population (with
the same initial number of males and females) with various sizes of perception
neighborhoods (equal for both sexes). We note that the minimum viable population
size decreases non-linearly with increasing the perception neighborhood.

As the individual-based model is inherently stochastic, there is always a non-zero
probability that a population of any size will go extinct in a finite time. This stochas-
ticity is due to both demography (variation in numbers of births and deaths over var-
ious realizations) and environment (variation in spatial distribution of individuals on
the lattice over various realizations). For each combination of the initial population
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Fig. 3.13 Space of initial male and female population densities divided into the persistence (cir-
cles) and extinction (asterisks) parts as determined by the individual-based model with diffusive
movement, dM = dF = 1. Circles filled by asterisks show the area where the non-spatial model
(3.40) predicts extinction whereas the individual-based model with dM = dF = 1 predicts persis-
tence. Other parameter values: µ = 0.4, pr = 0.1, pM

m = 0.013, pF
m = 0.01

size and size of the perception neighborhood, we performed ten simulation repli-
cates. While some combinations gave only extinction (asterisks) or persistence (cir-
cles), some led to both extinction and persistence within the ten runs (squares): the
squares thus estimate the “region of strong stochasticity,” defined here as a range of
initial conditions for which the probability of extinction lies in the interval [0.1,0.9].
Clearly, this probability decreases with increasing initial population size.
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Fig. 3.14 Division of space formed by the initial population size and size of the perception
neighborhood into the persistence (circles) and extinction (asterisks) parts as determined by the
individual-based model with active mate search strategy. Squares show the region of strong
stochasticity where at least one out of ten simulation replicates leads to persistence and at least
one to extinction. Other parameter values: µ = 0.4, pr = 0.1, pM

m = 0.013, pF
m = 0.01

Sedentary males and actively searching females. In many frogs, males are terri-
torial, do not move during the mating period, and attract females by advertisement
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calls (Duellman and Trueb, 1986). We model the immobility of males by the diffu-
sive strategy with dM = 0 and let the distance sF for females to hear the male calls
vary; we use the same initial number of males and females (Fig. 3.15). Two principal
changes occur compared to Fig. 3.14: the extinction boundary shifts towards higher
population sizes and the region of strong stochasticity widens.
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Fig. 3.15 Division of space formed by the initial population size and size of the perception neigh-
borhood of females into the persistence (circles) and extinction (asterisks) parts as determined by
the individual-based model with sedentary males (dM = 0) and actively searching females. Squares
show the region of strong stochasticity where at least one out of ten simulation replicates leads to
persistence and at least one to extinction. Other parameter values: µ = 0.4, pr = 0.1, pM

m = 0.013,
pF

m = 0.01

Three generic phases of population dynamics are observed around the region of
strong stochasticity (Fig. 3.16). Starting from a random distribution of individuals
on the lattice, abundances of both sexes first decrease since male-female encoun-
ters are rare and mortality outnumbers reproductive events. This phase is the real
demonstration of scarcity in reproductive possibilities and, if too long, may result
in population extinction; this is what happens when we start well below the region
of strong stochasticity. During the second phase, males and females start to meet
each other with a greater frequency as clusters of individuals begin to form. This
increase in pair formation more or less balances mortality and keeps the population
relatively constant. Finally, when the clusters become more pronounced, the prob-
ability of finding a mate after a recent encounter steadily increases. The population
starts to grow, clusters expand radially and fill the lattice, and densities approach
the environmental carrying capacity. The first two phases are negligible if the initial
numbers of both sexes are high.

Summary

We show in this section that the initial numbers of males and females sufficing
for the population persistence may decrease significantly when changing the mate
search strategy from random mating to diffusive movement of both sexes to one
actively searching sex to both sexes active in searching for mates (Figs. 3.13, 3.14
and 3.15). The Allee threshold preserves its hyperbolic shape; its shift towards the
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Fig. 3.16 Typical spatio-temporal dynamics of the individual-based model around the region of
strong stochasticity: snapshots of the spatial pattern of males (empty circles) and females (full
circles) at times 0 (a), 500 (b), 2000 (c), and 5000 (d), and corresponding temporal evolution (e;
lower curve = number of males, upper curve = number of females). Parameter values: sedentary
males (dM = 0), actively searching females (sF = 1), µ = 0.4, pr = 0.1, pM

m = 0.013, pF
m = 0.01

origin may be explained as follows. If random mating is replaced by diffusive move-
ment, successful pair formation enhances mating probability of the paired individu-
als in the next time step due to cluster formation. The probability that a successfully
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mated individual encounters the same or another partner (e.g. a recent newborn)
in the next time step increases – for the same population sizes – with decreasing
diffusion range, and is higher than the probability nM/S (nF/S) of encountering a
male (female) in the non-spatial model. Hence, the increase in pair formation com-
pensates for mortality in at least some populations that become extinct according
to the non-spatial model. If at least one sex uses active mate search, the formation
of successfully breeding clusters is further enhanced by the ability of individuals to
much more effectively find their mates. If both sexes actively search for partners,
an individual without a partner may incidentally approach an individual of the op-
posite sex that still has the possibility to move and mate with it in the same time
step. On the other hand, if the other sex is sedentary, they cannot meet before the
next time step. This results in a narrower region of strong stochasticity and lower
Allee thresholds if both sexes use active search relative to when males are sedentary
and females active. Some of our results were later corroborated by Preece and Mao
(2009).

If one or both sexes actively search for mates, an increased perception neighbor-
hood facilitates population persistence. Using an example with equal initial abun-
dances of both sexes, we show that the Allee threshold is more or less inversely
dependent on size of the perception neighborhood (Figs. 3.14 and 3.15). This result
agrees well with predictions of the reaction-diffusion model of a sexually reproduc-
ing population studied by Hopper and Roush (1993). Indirect experimental evidence
of this dependence is provided by Kindvall et al (1998) in their field study of the
bush cricket Metrioptera roeseli. They found that the crickets tend to move more at
lower population densities and thus probably increase size of the effective percep-
tion neighborhood. Such behavior could be an adaptive response of organisms to
alleviate Allee effects at low population sizes or densities; see also Gascoigne et al
(2009).

Both reaction-diffusion models and observations of real populations suggest
that Allee effects impose slower rates of spread and growth of populations in the
early stages of invasion or (re)introduction which is followed by a rapid expansion
through the environment (Hopper and Roush, 1993; Lewis and Kareiva, 1993; Kot
et al, 1996; Veit and Lewis, 1996). We observed similar behavior in individual-based
model simulations – before successful establishment, populations starting at lower
densities invariably passed through three successive stages (Fig. 3.16). Knowledge
of these stages may help to better understand mechanisms regulating spread or ex-
tinction of natural populations. Also, it emphasizes differences between local and
global densities and shows the importance of scale when assessing the impact of
Allee effect.
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3.3 Implications of mate search, mate choice and divorce rate for
population dynamics of sexually reproducing species

In this section, we consider yet another aspect of sexual reproduction: formation of
long-time male-female pairs. The pairs are created when a male and a female meet
and choose to establish a bond and cease to exist by death of one member of a pair
or by divorce. In many animals, successful reproduction requires paired individuals
and there exist numerous ways pairs are being formed and maintained. Three major
processes play a significant role in pair dynamics: mate search, mate choice, and
breakup of established pairs. Different taxa use different ways to locate mates; in
this section we use random search, local passive (i.e. diffusive) search, and local ac-
tive search as three generic examples (that is, the same mate search strategies as in
the previous section). Many animals are known to avoid or reduce reproduction with
mates belonging to incompatible or non-preferred phenotypes; this phenomenon is
known as mate choice (Andersson, 1994; Møller and Legendre, 2001). Also, ani-
mals vary widely in their fidelity (i.e. pair bond duration; Choudhury, 1995; Dubois
et al, 1998). In some species, such as the wandering albatross Diomedea exulans,
individuals tend to maintain life-long pair bonds, whereas in others, such as the
grey heron Ardea cinerea, birds experience many partners during their reproductive
lifespan.

Mate search, mate choice and divorce behavior are apparently intertwined. It
is now believed and partly supported by observational evidence that divorce is an
adaptive strategy of an individual to improve its reproductive success; “divorce may
simply be an extension of the mate-choice process, where birds continue to sample
mates and improve on their breeding situation after initial pairing” (Choudhury,
1995). Mate choice is also tightly related to mate search efficiency. For example,
actively searching individuals may locate many more potential mates than passive or
random searchers in a given time interval, and thus secure a better mate. Last but not
least, intuition suggests that the lower is divorce rate of an individual, i.e. the fewer
partners it has during its lifetime, the more carefully it should choose these partners
in order to secure that its genes pass to the future generations. Needless to say,
these processes have certainly evolved together and strongly shaped the currently
observed mating strategies.

Tightly coupled with these processes, there is an ongoing debate in the literature
about the relationship between longevity and mate fidelity (Saether, 1986; Choud-
hury, 1995; McNamara and Forslund, 1996). So far the evidence provided by theo-
retical models is ambivalent and competing hypotheses do exist: some authors have
argued that selection may not favor mate fidelity in species with high mortality rates,
yet the others have suggested that divorce should be expected mainly in long-lived
species, since they gain more in terms of improving lifetime reproductive success
(Choudhury, 1995). Recently, Jeschke and Kokko (2008) have demonstrated that
among birds, species with a high divorce rate tend to have a high mortality rate.
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Model development

We study population dynamics of sexually reproducing species by means of a
spatially explicit, individual-based model and its mean-field (i.e. spatially homo-
geneous) approximation (further referred to as the non-spatial model). We repre-
sent two-dimensional, physically homogeneous environment as a regular lattice of
200×200 identical square sites, with periodic boundary conditions. Time runs con-
tinuously. At any time instant, each site represents a ‘territory’ that can be vacant or
occupied by a single (i.e. unpaired) individual or pair, i.e. the environment can host
up to 80,000 individuals. Simulations are initialized with a given number of sin-
gle males, single females, and pairs, all randomly distributed over the lattice. The
following life history processes determine the fate of each individual. Due to con-
tinuous time, process ordering is determined by the actual occurrence of particular
events. Further technicalities of this approach are discussed in Box 3.8 and Berec
(2002).

Males and females die at rates dm and d f , respectively, regardless of their paired
status. Dead individuals are instantly removed from the lattice. Pairs give birth to
one offspring at rate b. The offspring becomes male or female with probability µ or
1− µ , respectively. Respecting boundary conditions, it instantly and equiprobably
disperses to a parents’ nearest neighbor site and becomes an adult capable of repro-
duction. If the chosen site is already occupied, the offspring dies. If the chosen site
is vacant, the offspring settles there. Pairs separate at rate mp, and we assume that
divorce (i.e. the act of leaving the pair) is pursued by males and females equally.
The terminal site of the leaving individual is determined by a mate search strategy
described below. Divorce is withdrawn if the leaving individual would step on a site
with a pair or a same-sex single. As a consequence, contests for mates do not occur.
If it would step on a site occupied by a single of the other sex, there is probability ps
of a successful pair formation; this probability may quantify, e.g. female choosiness
with respect to males. If the new pair is not formed divorce is also withdrawn.

Single males and females move at rates mm and m f , respectively. Again, the ter-
minal site of the disperser is determined by its mate search strategy. Dispersal is dis-
carded if a pair or individual of the same sex occupies the site to which the disperser
intends to move. Upon male and female encounter, a pair is formed with probability
ps. If the pair formation is not successful, the disperser does not move. We dis-
tinguish two local mate search strategies which may differ for males and females,
identical to those of the previous section. First, single individuals are expected to
search for their mates passively by moving or leaving divorcing pairs equiprobably
to any site in a square neighborhood of side length 2r+1 sites, r = 0,1,2, . . . (r = 0
models sedentary individuals), centered on their current location. Side length of the
neighborhood may differ for males (rm) and females (r f ). Second, individuals are
assumed to be active searchers through perceiving other conspecifics in a square
neighborhood of side length 2s+ 1 sites, s = 1,2, . . ., centered on their current lo-
cation. A male perceiving only one single female moves directly to her site. If two
or more unpaired females are perceived, one is chosen equiprobably. If no single
female is detected, the male moves to a randomly chosen site in the neighborhood
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unless it is occupied by a single male or pair, and stays in the current site otherwise.
Analogous rules apply to females. Neighborhood side length may differ for males
(sm) and females (s f ).

The non-spatial model is extracted from the above spatially explicit, individual-
based model by assuming an infinite lattice, random initial condition, and random
search strategy (i.e. dispersal of all individuals, including offspring, equiprobably to
any site on the lattice). Then, densities of single males (vm), single females (v f ), and
pairs (vp) obey the following system of ordinary differential equations (Box 3.8 and
Berec (2002)):

dvm

dt
=−dmvm − ps(mm +m f )vmv f +d f vp +(mp +bµ)(1− vm − v f − vp)vp ,

dv f

dt
=−d f v f − ps(mm +m f )vmv f +dmvp +[mp +b(1−µ)](1− vm − v f − vp)vp ,

dvp

dt
= ps(mm +m f )vmv f − (dm +d f )vp −mp(1− vm − v f − vp)vp .

(3.45)
The male and female equations consist of five terms. From left to right, these corre-
spond to the death of a single individual, formation of a pair when two singles meet,
death of a paired individual, divorce, and birth of an offspring. Pair dynamics are
driven by formations of new pairs, deaths of pair members, and divorces.

Box 3.8 Derivation of the non-spatial model (3.45)

To understand how model rules describing individual behavior translate into
the non-spatial model (3.45), we give a brief outline of how simulations of
the individual-based model formally run; see also Berec (2002). Events are
said to occur at rate a if the event occurrence times are described by a Pois-
son process with the parameter a. The model rules require that a number of
Poisson processes run for each individual (mortality, reproduction, divorce,
and dispersal). Fortunately, a ‘thinning’ technique exists that keeps one back-
ground Poisson process only (Durrett, 1995). This single process generates
time instants at which events may occur. Let S be the number of lattice sites
and let the background Poisson process generate time instants at rate cS, with
c ≥ max

{
dm +mm,d f +m f ,dm +d f +mp +b

}
. Upon each generated time

instant, a site is randomly chosen. Thus, each site is independently trying
to change at rate c, as cS × 1/S = c, with 1/S being the probability that a
particular site is randomly chosen. If the chosen site is occupied by a single
male [female], the male [female] dies with probability dm/c [d f /c] and at-
tempts to move with probability mm/c [m f /c]. If the chosen site is occupied
by a pair, a pair member dies with probability (dm+d f )/c, divorce is initiated
with probability mp/c, and birth takes place with probability b/c.

To derive a mean-field approximation of the spatially explicit, individual-
based model, we assume an infinite lattice, random initial conditions, and dis-
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persal of all individuals, including offspring, equiprobably into any site on
the lattice (these conditions are often referred to as the mass action law or
the homogeneous mixing conditions). Now, we need to consider one by one
all processes corresponding to single males, single females, and pairs, and
calculate how they affect current population size. As an example, consider
single male population. Its size may be decreased by death of a single male
or formation of a new pair, and increased by death of a paired female, divorce
or production of a male offspring. Consider a sufficiently small time inter-
val h, and let xm, x f , and xp denote current numbers of males, females, and
pairs, respectively. By definition, probability that just one event time is gen-
erated within h is cSh+ o(h) as h → 0, while probability that two or more
event times are generated within h is negligible (it is o(h) as h → 0). Proba-
bility that a single-male-occupied site is randomly chosen is xm/S. The event
of death of that male takes place with probability dm/c, while a new pair is
formed due to movement of that male with probability (mm/c)(x f /S)ps – the
male has to move, step on a single-female-occupied site, and be accepted by
that female. Probability that a single-female-occupied site is randomly cho-
sen is x f /S. A new pair is formed due to movement of this female with prob-
ability (m f /c)(xm/S)ps. A pair is chosen with probability xp/S. Female of
that pair dies with probability d f /c, and divorce with the leaving individual
ending up in a vacant site takes place with probability (mp/c)(x0/S), where
x0 = S− xm − x f − xp is the number of currently vacant sites. Finally, birth
and consequent successful establishment of a male offspring by that pair oc-
curs with probability µ(b/c)(x0/S). Other events do not affect single male
population size. To sum up, the mean change in the number of single males in
a small time interval h is

E[Xm(t +h)|Xm(t) = xm,X f (t) = x f ,Xp(t) = xp]− xm =

= E[Xm(t +h)− xm|Xm(t) = xm,X f (t) = x f ,Xp(t) = xp] =

= (−1)×
[

cSh
xm

S

(
dm

c
+

mm

c
x f

S
ps

)]
+(−1)×

[
cSh

x f

S

(m f

c
xm

S
ps

)]
+

+(+1)×
[

cSh
xp

S

(
d f

c
+

mp

c
x0

S
+µ

b
c

x0

S

)]
+

+0× (terms due to the other events)+o(h) =

=
(
−dmxm − psmm

x f

S
xm − psm f

xm

S
x f +d f xp +(mp +µb)

x0

S
xp

)
h+o(h)

(3.46)
as h → 0. For the single male population density, denoting V [v]• = X [x]•/S (•
stands for m, f , or p), we thus have
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E[Vm(t +h)|Vm(t) = vm,Vf (t) = v f ,Vp(t) = vp]− vm =

= 1
S

(
E[Xm(t +h)|Xm(t) = xm,X f (t) = x f ,Xp(t) = xp]− xm

)
=[

−dmvm − ps(mm +m f )vmv f +d f vp +(mp +bµ)(1− vm − v f − vp)vp
]

h+o(h)
(3.47)

Letting S → ∞ and x• → ∞ so that v• = x•/S is constant (• also here stands for
m, f , or p), it is a straightforward but tedious exercise to show that variance
in the single male density Var[Vm(t + h)|Vm(t) = vm,Vf (t) = v f ,Vp(t) = vp]
tends to zero as h → 0. As a consequence, as h → 0, dynamics of the single
male density vm converge to the solution of the ordinary differential equation

dvm

dt
=−dmvm − ps(mm +m f )vmv f +d f vp +(mp +bµ)(1− vm − v f − vp)vp

(3.48)
Equations for single female and pair densities follow an analogous derivation.

The non-spatial model (3.45) was analysed using the software package Content
(Kuznetsov, 1998). We examined a number of scenarios differing in values of pair
divorce rate mp and probability of successful pair formation ps. For stochastic sim-
ulations of the spatially explicit, individual-based model, one replicate run (5,000
time units) was conducted for each parameter combination, with densities during
the last 200 time units averaged to get an equilibrium estimate. For each parameter
combination, population dynamics were summarized into three single numbers: to-
tal population sizes in the two interior equilibria (or 0 if the equilibria did not exist),
and time to extinction (time at which the total population density falls below a small
predefined value ε). We could not locate the interior unstable equilibria in simula-
tions of the spatially explicit model; hence, we compared these simulations to the
behavior of the model (3.45), using only total population sizes in the interior locally
stable equilibria.

Model results

Non-spatial model

The origin E0 =(0,0,0) is always a locally stable equilibrium of the model (3.45); if
the male, female and pair densities are sufficiently close to zero, the population will
inevitably go extinct. This is an obvious manifestation of the Allee effect due to lack
of mating possibilities in a sexually reproducing population. Moreover, the model
(3.45) has zero, one or two interior equilibria depending on parameter values. If two
interior equilibria exist, the equilibrium Eu that is closer to the origin is unstable,
while the more distant equilibrium Es is locally stable; we already know that such a
bistable regime is typical of strong Allee effects.
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The locally stable equilibria E0 and Es are separated by a hypersurface corre-
sponding to the Allee threshold (Fig. 3.17); populations starting below it go extinct,
while those starting above it persist and equilibrate at Es. If no pairs are initially
present, sufficient numbers of single males and single females are required for the
population to persist. On the other hand, if singles are absent a minimum number of
breeding pairs is required to secure population persistence. Figure 3.17 shows that
the minimum number of breeding pairs necessary for population persistence is lower
than the minimum number of single males plus single females: paired individuals
need not search for mates and may immediately begin to reproduce.
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Fig. 3.17 The hypersurface characterizing the Allee threshold and separating the areas of attraction
of the extinction and interior locally stable equilibria of the model (3.45). Parameters: dm = 0.01,
d f = 0.02, b = 0.2, µ = 0.5, mm = 0.2, m f = 0.2, ps = 0.6, mp = 0.15. We run the model for
10,000 time units and considered the population extinct if the total population density at the end of
simulation decreased below ε = 0.001

The shape of the Allee threshold boundary leads to a somewhat counterintuitive
result: for a specific range in the number of pairs (pair density around 0.1), and no
or very few single males, a population goes extinct if there are either few (female
density less than about 0.2) or many (female density around 0.85) single females
(Fig. 3.17). In the former case, the population dies out due to low chances of singles
to find mates. If the number of single females is sufficiently high, there are nearly no
vacant sites to place newborns and male population thus cannot increase; minimum
number of pairs needed for the population to persist thus has to be higher than for
intermediate densities of single females (Fig. 3.17, female densities around 0.3-0.8).
Analogous reasoning holds for males and females interchanged.

To assess population dynamical implications of the degree of mate choice and
the degree of mate fidelity, we plot selected ecological characteristics of the model
(3.45) as functions of the probability of successful pairing ps and the divorce
rate mp (Fig. 3.18). While total population sizes in the interior model equilibria
(Fig. 3.18a,b) give insight into the bistable Allee dynamics (small populations go
extinct, large ones persist), time to extinction (Fig. 3.18c) sheds light on system dy-
namics under parameter combinations for which the Allee effect is too strong (i.e.
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the origin is globally stable) and populations go extinct from any initial condition.
Figure 3.18 shows that the degree of mate choice and the degree of mate fidelity are
strongly correlated. For a population to persist, the room for mate choosiness de-
creases with increasing divorce rate, while the room for divorce rate increases with
decreasing mate choosiness (i.e. increasing ps). The boundary separating the pa-
rameter region with bistable regime from that with globally stable origin (we call it
the bifurcation boundary further on) intersects the axes mp = 0 and ps = 1 in points
ps = p⋆s and mp = m⋆

p, respectively. These points represent the minimum mate ac-
ceptance and the maximum divorce rate under which populations can persist. The
initial condition used in Fig. 3.18c (lattice initially full of pairs) implies the slowest
extinction rates. Other initial conditions generate similar results; in general, the far-
ther we are from the bifurcation boundary and the smaller are the initial conditions,
the faster is extinction.
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Fig. 3.18 Three currencies characterizing population dynamics of the model (3.45) as functions
of the probability of successful pairing ps and the divorce rate mp. (a) Total population size in the
interior locally stable equilibrium. (b) Total population size in the interior unstable equilibrium.
(c) Time to extinction for a specific initial condition: lattice full of pairs. We run the model for
5,000 time units and considered the population extinct if the total population density at the end of
simulation decreased below ε = 0.001. Other parameters as in Fig. 3.17
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Local mate search strategies

Simulations show that on the population level, behavior of the spatially explicit,
individual-based model does not differ qualitatively from that of the non-spatial
model (3.45). Quantitative differences, however, do exist. Figure 3.19 compares
results obtained with all three mate search strategies. In Fig. 3.19a, the divorce
rate is set to mp = 0.05, and the total population size in the interior locally sta-
ble (quasi)equilibrium (recall the intrinsic stochasticity of the spatially explicit,
individual-based model) is calculated for various values of the successful pairing
probability ps. Relative to random searchers, we observe that the equilibrium popu-
lation size increases and the bifurcation point (i.e. the point at which the global pop-
ulation extinction is replaced by the bistable Allee dynamics) shifts towards lower
values of ps if active mate searchers form the population. The active searchers thus
persist at higher degrees of mate choice compared to the random searchers. An op-
posite result is observed for the passive mate search strategy: the room for mate
choosiness shrinks for the passive searchers compared to the random ones. Results
for the passive searchers approach those of the random searchers with increasing the
maximal distance r of passive search (not shown). Figure 3.19b fixes the degree of
mate choice to ps = 0.8 and varies the divorce rate mp. As a result, populations com-
posed of the active searchers persist at much higher divorce rates than populations
composed of individuals that use random or passive search to locate mates.
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Fig. 3.19 Comparison of all three mate search strategies using total population size in the interior
locally stable equilibrium as a currency. (a) mp = 0.05, (b) ps = 0.8. Symbols: bold line – random
search, circles – active search (sm = s f = 3), upper triangles – active search (sm = s f = 1), squares
– passive search (rm = r f = 3), lower triangles – passive search (rm = r f = 1). Other parameters as
in Fig. 3.17
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Longevity and mating strategies

Obviously, life history constraints are different in short-lived and long-lived animals.
The role of longevity is summarized in Fig. 3.20 that shows the total population size
in the interior locally stable equilibrium under the random search strategy. There is
a limit on longevity such that populations composed of very short-lived individuals
go extinct from any initial condition. Besides the birth rate b, this limit is affected
by both the successful pairing probability ps (Fig. 3.20a) and the divorce rate mp
(Fig. 3.20b). Figure 3.20a shows that all else being equal, a long-lived species per-
sists (and reaches the same equilibrium population size) with more stringent mate
choice than the short-lived one. In the same vein, Fig. 3.20b shows that all else being
equal, a long-lived species survives (and reaches the same equilibrium population
size) at higher divorce rates than the short-lived one. We observed the same trends
for the two local mate search strategies (not shown).
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Fig. 3.20 Effects of longevity on population dynamics. Total population size in the interior locally
stable equilibrium is plotted for the random search strategy. (a) mp = 0.05, (b) ps = 0.8. Other
parameters: dm = d f (varied), the remaining parameters as in Fig. 3.17

Summary

In this section, we examine how the process of mate search, degree of mate choice
and degree of mate fidelity may interact to affect long-term population dynamics
of sexually reproducing species. In particular, we address the following questions:
Are degree of mate choice and degree of mate fidelity correlated? How does mate
search shape this relationship? How does longevity affect mating behavior? To re-
solve these questions, we develop a spatially explicit, individual-based model of
a sexually reproducing population with single (i.e. unpaired) males, single females,
and pairs as focal units. Both this model and its mean-field approximation are shown
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to give rise to a mate-finding Allee effect due to lack of mating possibilities – our
models thus set ecological constraints for possible (co)evolution of mate choice and
pair maintenance behavior. Our models also suggest that long-lived species persist
at higher degrees of mate choice and lower degrees of mate fidelity relative to the
short-lived ones.

Interplay between mate fidelity and mate choosiness

As the main result of this section, we demonstrate how population dynamics put
(quantifiable) constraints on mate choice and mate fidelity. More precisely, we show
that some trait combinations cannot exist because they would lead to population
extinction. In addition, we show that the degree of mate choice and the degree of
mate fidelity are strongly correlated. All else being equal, populations composed of
individuals with longer pair-bonds (lower divorce rates) persist at higher degrees of
mate choosiness compared to those that keep shorter pair-bonds; i.e. the room for
mate choosiness decreases with increasing divorce rate for a population to persist
under given life history. Put the other way round, individuals with higher acceptance
of potential mates can still form a viable population, while maintaining shorter pair
bonds.

In a monomorphic population described by our models, lifetime reproductive
success of an individual is likely to be determined by the proportion of lifespan
the individual spends paired. Thus, the link between the degree of mate choice and
the degree of mate fidelity is mediated by a third factor: search costs. As an exam-
ple, let females both initiate divorce and choose males. Increased divorce rate as
well as increased female choosiness (i.e. decreased probability of successful pair-
ing) increase the time female spends searching as a single and decrease its lifetime
reproductive success. If, moreover, an increased mortality rate is associated with its
single (i.e. searching) status, or a temporarily decreased reproductive output follows
shortly after establishment of a new pair (Choudhury, 1995), the female’s lifetime
reproductive success decreases even more.

Effects of longevity

There is an ongoing debate in the literature about the relationship between longevity
and mate fidelity (Saether, 1986; Choudhury, 1995; McNamara and Forslund, 1996).
The evidence provided by theoretical models is ambivalent and competing hypothe-
ses do exist. For example, it has been hypothesized that “in short-lived [migratory]
species with high mortality rates, the probability that both pair members will sur-
vive to the following season will be low; selection may therefore not favor mate
fidelity, since the costs of waiting for a mate that will not return are likely to be
high” (Choudhury, 1995). On the other hand, “some authors have argued that di-
vorce should be expected mainly in long-lived species, since they gain more in
terms of improving lifetime reproductive success” (Choudhury, 1995). It seems that
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longevity may shape the subtle relationship between mate choice and mate fidelity
in various ways. Recently, Jeschke and Kokko (2008) have demonstrated that among
birds, species with a high divorce rate tend to have a high mortality rate.

We add to this discussion by showing that all else being equal, long-lived species
can persist with a more stringent mate choice and shorter pair bonds than short-lived
ones. This result is, however, in contradiction with the findings of Saether (1986),
who showed in a very simple model based on lifetime reproductive success that a
promiscuous mating system (i.e. system with a high divorce rate) is more likely to
evolve when the adult male mortality is high (i.e. in a short-lived species). McNa-
mara and Forslund (1996) modeled divorce decisions of a single female over her
lifetime and showed how different costs determine divorce rate in long-lived and
short-lived species. Their arguments point to both directions: longevity and mate
fidelity may be both positively and negatively correlated. Among other things, Mc-
Namara and Forslund (1996) showed that “a long-lived female can afford to be more
discriminating in her choice of a lifetime mate because she will typically spend a
long time with him once he has been chosen (female choosiness increases with
longevity)”. Our approach provides a mechanistic basis for this result.

Effects of mate search

All three mate search strategies we have studied preserve the qualitative results sum-
marized in the previous paragraphs. However, they affect the exact location of both
the Allee threshold in the state space and the bifurcation boundary in the parameter
space. Active mate search by both sexes makes populations much less extinction-
prone compared to passive search, and the random search strategy yields intermedi-
ate results. This ‘ranking’ follows from the complex interplay of mate search, pair
maintenance, and offspring placement on the lattice. Spatial clumping, as a result
of local mate search and local interactions, plays an important role in the spatio-
temporal dynamics (Tilman et al, 1997; Berec et al, 2001) and hence in the strat-
egy ranking. It increases chances of an individual to find a mate relative to random
search, with the active mate searchers being most successful. On the other hand,
due to local overcrowding, spatial clumping decreases chances of local searchers to
place newborns into parents’ neighbor sites. Relative to local passive search, local
active search leads to faster pair formation and in turn to faster appearance of vacant
sites.

Dubois et al (1998) hypothesized that opportunities for finding a better mate are
likely to increase with the colony size and density because close proximity with
conspecifics makes it easier for individuals to assess the quality of more potential
partners, and showed that waterbird species forming large and dense colonies had on
average higher divorce rates compared to species forming small or loose aggrega-
tions. Our results are consistent with these observations since colonial birds usually
employ active mate search (visual contact, songs). For a fixed degree of mate choice,
we showed that actively searching, clustered animals persist at higher divorce rates
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than animals searching randomly for mates that are randomly distributed in the en-
vironment.

3.4 Multiple Allee effects and population management

Although not yet widely recognized, two or more Allee effects can occur simultane-
ously in the same population. Berec et al (2007) reviewed the evidence for multiple
Allee effects, demonstrating their ubiquity, with examples from terrestrial and ma-
rine ecosystems, from plants, invertebrates and vertebrates, and from natural and ex-
ploited populations. Multiple Allee effects can be simultaneous, affecting the same
life stage, or sequential, affecting different life stages within a generation or even
affecting different generations. In addition, not all involved Allee effects need to be
‘natural’. Instead, some might be created artificially, such as a mate-finding Allee
effect imposed by a release of sterile males or a predation-driven Allee effect due to
a release of generalist predators (Tobin et al, 2011). Mathematical modeling shows
that Allee effects can also be created if species rarity enhances a price people are
willing to pay for any remaining individual (Courchamp et al, 2006).

Implications of multiple Allee effects for population growth are also not yet un-
derstood. Given that the most distinctive feature of strong Allee effects is the occur-
rence of an Allee threshold, we focus on the magnitude of the Allee threshold that
results from the interacting component Allee effects. For example, if each single
Allee effect were to yield different extinction thresholds, what would be the value
of the threshold resulting from the simultaneous presence of several Allee effects?
Although there is currently no answer, an interaction is likely and potential conse-
quences for the concerned populations are sufficient to warrant careful considera-
tion by ecologists. Indirect evidence comes from the rare marsh gentian Gentiana
pneumonanthe (Oostermeijer, 2000). In this species, lowered fecundity caused by a
pollen-limitation Allee effect had little influence on the population viability, whereas
increased inbreeding in small populations had a small yet significant effect; a strong
reduction in population viability was found when the two acted simultaneously.

It is difficult to imagine cases in which the combined effect of multiple Allee
effects is less than that of any single Allee effect. Therefore, we propose that the
overall Allee threshold is equal or greater than the largest of the individual Allee
thresholds. To be more specific, we develop and analyze a simple population model,
so as to illustrate some of the possible outcomes of an interaction of two component
Allee effects. The model population is subject to two component Allee effects, one
linked to reproduction and the other to survival:

dN
dt

= σ [1− (1−θ)exp(−εN)]N −δ
(

1+
N
K

)
N − αN

1+βN
(3.49)

where N is population density. Divided by N, all terms are per capita, and the
three terms on the right-hand side of the model (3.49) represent, in sequence, pos-
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itively density-dependent birth rate (mate-finding Allee effect), negatively density-
dependent intrinsic survival rate, and positively density-dependent survival rate ow-
ing to predation (predation-driven Allee effect). Positive constants θ < 1 and ε de-
fine intensity of the mate-finding Allee effect, σ is the maximum birth rate, δ is
the mortality rate at low densities and in the absence of predation, K > 0 scales
the carrying capacity of the environment, and positive constants α and β scale the
predation rate given by the type II functional response1. Because setting θ = 1 and
α = 0 switches off the component Allee effect in reproduction and survival, respec-
tively, we can assess the effects of both component Allee effects both in isolation
and simultaneously.

A straightforward analysis of the model (3.49) shows that the extinction equi-
librium N∗ = 0 is unstable provided that δ + α < σθ , and locally stable if the
opposite inequality holds. In the former case, there is one globally stable posi-
tive equilibrium corresponding to the environmental carrying capacity of the pop-
ulation. In addition, the population is subject to a weak Allee effect provided
that σ(1 − θ)ε − δ/K + αβ > 0, and there is no demographic Allee effect if
σ(1−θ)ε −δ/K+αβ < 0. If the origin N∗ = 0 is locally stable, there can be either
no or two positive equilibria depending on actual parameter values. In the former
case, the origin is globally stable. In the latter, the lower positive equilibrium (Allee
threshold) is unstable and the higher positive equilibrium (environmental carrying
capacity) is locally stable. We failed to derive any analytical expression that would
distinguish these two cases in the parameter space.

The ways in which the two component Allee effects interact are far from trivial.
The outcomes of the model (3.49) vary depending on parameter values determining
the strength of the individual component Allee effects (Fig. 3.21). To distinguish
weak and strong interaction, the outcomes were classified according to whether the
overall Allee threshold is higher or lower than the sum of the two individual Allee
thresholds. We call these cases superadditive and subadditive Allee effects, respec-
tively2. Of special interest are the cases in which none of the single Allee effects
is strong, yet the double Allee effect is strong; we then speak of dormant Allee ef-
fects. A dormant Allee effect also occurs when only one of the single Allee effects
is strong but the Allee threshold owing to the double Allee effect is higher than that
of the single strong Allee effect. We use the word ‘dormant’ here to point out that
although a weak Allee effect is rarely a reason for concern when alone, it may sig-
nificantly increase the threat of population extinction when interacting with another
demographic Allee effect, weak or strong. An implication of an occurrence of dor-
mancy is that even a weak Allee effect represents a risk that should be accounted
for: should another Allee effect occur, for example through human activities (Cour-
champ et al, 2006), it could cause the population to go extinct much faster than
would be expected from the disturbance alone.

1 Which implies positively density-dependent probability of an individual escaping predation.
2 Note that superadditivity is in fact a synergistic interaction and that subadditivity represents a
form of interference.
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Fig. 3.21 Distribution of patterns in a section of the parameter space of how two component Allee
effects interact in the model (3.49). The fixed parameters of σ = 0.5, ε = 2, δ = 0.2, K = 10
and β = 4 were chosen to represent a wide spectrum of possible interaction outcomes. Panels
(a) to (d) demonstrate how the per capita population growth rate depends on population size or
density in the vicinity of Allee thresholds corresponding to single and double Allee effects, for
specific parameter combinations shown in panel (e); dotted line, no Allee effect; dashed line, Allee
effect in reproduction; dash-dot line, Allee effect in survival; solid line, double Allee effect. ATR,
ATS and ATR+S represent the Allee threshold owing to Allee effects in reproduction, survival and
both components, respectively. In (e), small dots represent the combinations where there is only
either a single or no component Allee effect. Six different patterns of how the two Allee effects
(predation driven and mate finding) interact were observed for the parameter values examined,
four of which are of particular importance here [corresponding to (a)–(d)]: superadditivity (white),
ATR+S > ATR +ATS; dormancy (light gray), either no ATR or no ATS, ATR+S > ATS or ATR+S > ATR;
double dormancy (mid gray), neither ATR nor ATS, ATR+S > 0; subadditivity (dark gray), ATR+S <
ATR + ATS. The remaining two patterns correspond to the cases where two weak Allee effects
combine to produce a joint weak Allee effect, and where a weak Allee effect and a strong Allee
effect combine such that the overall Allee threshold equals that of the strong Allee effect (black)
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As the model (3.49) does not allow for any detailed analysis of interaction be-
tween the mate-finding and predation-driven Allee effects, we are going to analyze
its simpler version here:

dN
dt

= bN
N

N +θ
−dN − αN

1+βN
(3.50)

In the absence of predation (α = 0), the unique positive equilibrium (Allee thresh-
old),

Aθ =
dθ

b−d
(3.51)

exist if b > d which we further assume to hold. In the absence of mate-finding Allee
effect (θ = 0), we have the Allee threshold

Aα =

(
α

b−d
−1
)/

β (3.52)

which is positive when α > b−d, that is, when predation is strong enough. If both
Allee effects co-occur, the Allee threshold is a solution of the quadratic equation

β (b−d)N2 +(b−d −dβθ −α)N −θ(d +α) = 0 (3.53)

Since the absolute term of this equation is negative and the quadratic term positive
(recall we assume b > d), there will always be a solution to this equation, with one
root negative and one root positive. The positive root,

Aθα =
−(b−d −dβθ −α)+

√
(b−d −dβθ −α)2 +4β (b−d)θ(d +α)

2β (b−d)
(3.54)

is then the Allee threshold for the double Allee effect. This double Allee effect will
be superadditive provided that

Aθα > Aθ +Aα

which can be shown to always happen. Hence, for the model (3.50), the double Allee
effect is always superadditive (Fig. 3.22).

Interactions of two or more component Allee effects cannot be disregarded in
population management (Berec et al, 2007). Just on the contrary, management ef-
forts can be optimized by considering multiple Allee effects, and can be negated by
overlooking them. The consequences of failure to recognize all component Allee
effects will largely be determined by the way in which these Allee effects interact.
If only one component Allee effect is taken into account when two or more exist,
the interaction of Allee effects can raise the overall Allee threshold to such an extent
that conservation measures taken to cope with the recognized Allee effect will be
inadequate. For example, introducing individuals so as to reach a given population
size or density might prove insufficient if overlooked Allee effects raise the value
of the extinction threshold. Mooring et al (2004) proposed the release of more than
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Fig. 3.22 Interaction of two component Allee effects in the model (3.50). (a) Allee threshold. (b)
Degree of superadditivity: Aθα − (Aθ +Aα ). Parameter values: b = 3, d = 0.1, β = 1

five individual desert bighorn sheep at any one time to overcome the Allee thresh-
old owing to predation; however, managers might consider increasing this number to
overcome safely its interaction with the anthropogenic Allee effect owing to trophy
hunting (Courchamp et al, 2006).

To eradicate a pest population with a strong Allee effect, it is, in theory, sufficient
to bring it below its Allee threshold (Liebhold and Bascompte, 2003). The higher
this extinction threshold is, the less effort might be needed to achieve this goal.
Several control tactics can artificially induce an Allee effect, by disrupting fertil-
ization through the release of sterile males or sex pheromones (mate-finding Allee
effect), by introducing a predator or parasitoid with a proper functional response
(predation-driven Allee effect), or by removing individuals at a fixed rate (Allee ef-
fect owing to constant yield exploitation) (Dennis, 1989; Boukal and Berec, 2009;
Tobin et al, 2011). If there were two or more Allee effects interacting in the pest
population, the overall Allee threshold might disproportionately increase, and ef-
fort could be saved accordingly. Not all interactions can be superadditive, however.
Imagine, for example, a release of sterile males together with a release of natural
enemies. As the latter may also feed on the released sterile males, their interaction
cannot be foreseen without careful modeling. As to our knowledge there is currently
no documented example in the field, the plausibility of the idea of significant Allee
threshold enhancement calls for both theoretical and empirical investigations of the
conditions under which multiple Allee effects could help optimize pest control.

Some exploitation strategies can themselves be a source of a component Allee
effect, as explained earlier. If a natural Allee effect acts in the same population, the
overall Allee threshold might increase owing to an interaction of the two, and there
is a significant risk of overexploitation if that interaction is not recognized or if the
Allee threshold owing to the natural Allee effect is considered the safety limit for the
stock size. Even if eventually halted, exploitation can bring the population close to
or even below the Allee threshold corresponding to the natural Allee effect. Several



3.5 Conclusions and further research 99

species of California abalones could be a typical example of stocks being unable
to bounce back even after complete cessation of fishing, because of an unsuspected
Allee effect acting in concert with overexploitation (Hobday et al, 2001). More than
ten years after closing the fishery, it appears that an overlooked mating-related Allee
effect – abalones as broadcast spawners need to exceed a critical density for an
efficient fertilization (Babcock and Keesing, 1999; Gascoigne and Lipcius, 2004) –
might have combined with an anthropogenic Allee effect (Courchamp et al, 2006) to
drive the population below the levels that were then considered safe for exploitation.

In conclusion, interactions between component Allee effects can take several
forms, many of which are far from inconsequential. As a consequence, more re-
search is needed to assess the prevalence and interactions of multiple Allee effects,
as failing to take them into account could have adverse consequences for the man-
agement of threatened, unwanted or exploited populations. On top of that, as it is
impossible to estimate accurately the Allee threshold from a given component Allee
effect, and to fine-tune management around this value, management of populations
with Allee effects should be risk averse.

3.5 Conclusions and further research

In this chapter, we showed that the Allee threshold is generally not a single number,
as frequently presented in the literature and various scientific discussions. Rather, its
dimension and complexity is driven by an interaction between the examined compo-
nent Allee effect and the adopted model structure. Thus, the Allee threshold due to
a mate-finding Allee effects is a single number in unstructured population models,
a compact curve in populations structured into juveniles and adults, a hyperbolic
curve in populations structured into males and females, and a two-dimensional sur-
face in population models comprising three model classes (juveniles, adult males,
and adult females, or single males, single females, and male-female pairs). In ad-
dition, the exact location of such Allee threshold in the state space may delicately
depend on details of any specific model, and help in decision making as regards op-
timal population management (our model with sterile males and culling and models
of double Allee effects).

They are many more population models than presented here that are of an in-
terest from the Allee threshold perspective. For example, unstructured, determinis-
tic, discrete-time population models may demonstrate periodic solutions and even
chaotic behavior (May, 1974; Case, 2000). Under (not too) strong Allee effects, an
unstable equilibrium likewise appears and plays the role equivalent to the one in
their continuous-time cousins. However, the high-density equilibrium, correspond-
ing to the environmental carrying capacity in the unstructured, continuous-time
models, need not be stable in their discrete-time counterparts. In the latter models,
Allee effects may cause the so-called essential extinction where for almost every
initial density population extinction occurs – the essential extinction happens once
the amplitude of chaotic oscillations falls below the Allee threshold, even if it can
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be preceded by long-term chaotic transients (Scheuring, 1999; Fowler and Ruxton,
2002; Schreiber, 2003). Interestingly, in such models, populations may avoid es-
sential extinction when subject to relatively strong Allee effects (Fig. 3.23). Hence,
contrary to the predominant view of Allee effects as a destabilizing force, in de-
terministic, discrete-time models Allee effects may sometimes stabilize population
dynamics. The reason for this is that Allee effects reduce the maximum (per capita)
population growth rate and hence the stronger they are the smaller are the ampli-
tudes of population oscillations (Fig. 3.23).
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Fig. 3.23 In some deterministic, discrete-time population models with a strong Allee effect,
chaotic behavior gets stabilized as the Allee effect strength increases. On the other hand, decreas-
ing Allee effect strength can cause the population to go ‘essentially’ extinct (leftmost part of the
figure). Model used to draw this figure: Nt+1 = Nt exp[r(1−Nt/K)]ANt/(1+ANt), with r = 4.5
and K = 1

In deterministic population models, essential extinction notwithstanding, Allee
thresholds divide the state space into two parts, one in which the population goes
extinct and one in which it persists. We can express this also by saying that below
the Allee threshold the probability or population extinction is one and above the
Allee threshold it is zero. In stochastic population models, however, we need to in-
terpret population fates entirely in terms of population (quasi)extinction probability.
In the absence of (demographic) Allee effects, this extinction probability is an expo-
nentially decreasing function of population size or density (Courchamp et al, 2008,
and references therein). This is also the case for weak Allee effects although the
exponential decrease is then much slower (Courchamp et al, 2008, and references
therein). For strong Allee effects, the probability of population extinction becomes
a sigmoidally decreasing function of increasing population size or density; popula-
tions are most likely to go extinct when rare, most likely to persist when abundant,
but any outcome is similarly likely in a range of population sizes or densities (Cour-
champ et al, 2008, and references therein). In addition, the range of population sizes
or densities for which the extinction probability is neither close to 1 nor 0 widens as
the intensity of stochastic noise increases. As a consequence, in the stochastic world,
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any population which drops below the Allee threshold may still grow and persist,
while any population which starts above it may nonetheless eventually go extinct.
Populations which escape extinction tend to fluctuate around the environmental car-
rying capacity given by the underlying deterministic model. More importantly from
our perspective, Dennis (1989, 2002) showed that the Allee threshold in a deter-
ministic population model corresponded to the inflection point of the sigmoidally
decreasing extinction probability curve of an equivalent stochastic model.

These predictions are rather robust to the way deterministic models are trans-
formed into stochastic ones (branching process or stochastic equation), type of
stochasticity (demographic, environmental, or both), and life history details (con-
tinuous or pulsed reproduction, overlapping or non-overlapping generations, polyg-
amous or monogamous mating system) (Dennis, 1989, 2002; Lamberson et al,
1992; Stephan and Wissel, 1994; Engen et al, 2003; Liebhold and Bascompte, 2003;
Drake, 2004; Allen et al, 2005; Drake and Lodge, 2006). Many simulation models,
including the individual-based models of Sections 3.2 and 3.3, are in fact complex
branching processes whose predictions only corroborate conclusions drawn from
their simpler cousins (Berec et al, 2001; Berec and Boukal, 2004).

Last but not least, virtually all of our models were non-spatial. Real populations
are spatially extended and spatial population models have already become a com-
mon tool in population ecology. Recall that spatially explicit, individual-based mod-
els described in Sections 3.2 and 3.3 were developed to study the effects of spatial
variation within (local) populations occupying a relatively homogeneous patch of
habitat. Scaling one level up, there are models which describe the dynamics of spa-
tially separated, local populations connected by dispersal. In this respect, an issue
of immense practical importance is species invasion, a spatial phenomenon which
usually consists of a localized appearance of a small number of plants or animals, es-
tablishment of an initial population, and spatial spread out of its initially small area
of occurrence. Allee effects, together with demographic and environmental stochas-
ticity, hamper successful establishment of invaders.

Models predominantly used to explore the implications of Allee effects for dy-
namics of invasive species treat space as a continuous entity, although discrete-space
models also exist (e.g. Hadjiavgousti and Ichtiaroglou, 2004). The former include
discrete-time, integro-difference equations (Kot et al, 1996; Veit and Lewis, 1996;
Wang et al, 2002) and continuous-time, reaction-diffusion or reaction-diffusion-
advection models (Lewis and Kareiva, 1993; Lewis and van den Driessche, 1993;
Wang and Kot, 2001; Petrovskii and Li, 2003).

For passive dispersers, dispersal works to dilute the population at any given lo-
cation, thereby requiring higher initial densities to overcome the Allee effect than in
the counterpart non-spatial models (Taylor and Hastings, 2005). In other words, a
founder population subject to a strong Allee effect may fail to establish, even when
initially at levels which exceed the Allee threshold, because its growth may not be
sufficient to offset the decline in local population density through dispersal. The
success of a founder population in invasion will thus depend not only on the initial
population density, but also on the shape and size of the area that the founder pop-
ulation initially occupies (Lewis and Kareiva, 1993; Kot et al, 1996). Generally, the
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larger is the initially occupied area, the lower is the threshold density of local pop-
ulations. The ability of a founder population to grow and spread will also depend
on the habitat size (Shi and Shivaji, 2006; Courchamp et al, 2008) and the intensity
of advection to which the population might be exposed (Petrovskii and Li, 2003;
Almeida et al, 2006).

Currently unresolved questions surrounding Allee thresholds include interactions
between structured population models and stochasticity or space. In fact, virtually
all stochastic or spatial models with an Allee effect are unstructured, and those that
consider a population structure do not study Allee thresholds in detail. So, how
will the probability of population extinction look like in two-sex models? And how
will Allee thresholds look like in spatial, age-structured models? Similarly, multiple
Allee effects have so far been only studied in the deterministic, non-spatial frame-
work. So, how will the probabilities of population extinction compose for a double
Allee effect? And how will two critical spatial ranges corresponding to two Allee
effects interact when these Allee effects co-occur? And how will speeds of the cor-
responding traveling waves combine? Also, one might be interested in the effects of
stochasticity in discrete-time population models with Allee effect and prone to es-
sential extinction. Last but not least, we have already mentioned above that it would
be extremely useful to classify various interactions of specific Allee effects as re-
gards their superadditivity or subadditivity, if such a classification is possible at all.
These and other questions will inevitably throw more light onto dynamics of extinc-
tion, and can be addressed only through analyzing carefully developed mathematical
models of population dynamics.

Finally, up to now, population models with Allee effects have assumed that the
strength of these Allee effects does not vary with time, space, and/or individuals.
This is unlikely to be the case in nature, as some studies start to demonstrate (Tobin
et al, 2007). Therefore, a highly interesting avenue for further exploration of dy-
namics of populations subject to Allee effects considers exploration of the impacts
of heterogeneity in the Allee effect strength across time, space, and/or individuals.
We are currently working on some of these issues.



Chapter 4
Allee effects in predator-prey interactions

Most mathematical models used to study Allee effects are single-species popula-
tion models. But even though these models have been very useful for understanding
Allee effects, their failure to account for interspecific relationships is in many cases
an oversimplification. The next step is to include the external ecological drivers of
population dynamics of many species – predation, competition, parasitism, mutual-
ism, or any combination of these. Any of these interactions can be affected by Allee
effects and demonstrate dynamics which are different from those observed in the
absence of Allee effects anywhere in the community.

In this chapter, we discuss some investigations on how Allee effects influence
predator-prey interactions. In the first two sections, we consider predator popula-
tions that do not respond numerically to the target prey species; these are referred to
as generalist predators further on, since this situation best fits a predator which is in
a dynamic association with another, primary prey, and consumes the focal prey as a
secondary resource. Then, in the other two sections, we consider specialist preda-
tors, i.e. interactions between a predator and its primary prey, assuming that either
the prey or the predator are subject to an Allee effect.

Allee effects and generalist predators

Predators cause an extra mortality to their prey. A common framework to explore
prey dynamics in the presence of generalist predators is

dN
dt

= N g(N)− f (N,P)P (4.1)

where N and P are prey and (constant) predator densities, respectively, g(N) is
the per capita growth rate of prey in the absence of predation, and f (N,P) is a
predator functional response. We already know from the previous chapter that if
g(N) = bN/(N + θ)− (d + d1N), for example, the prey population in the absence
of predation demonstrates an Allee effect. We also know from Section 3.4 on dou-

103



104 4 Allee effects in predator-prey interactions

ble Allee effects that predation (and exploitation) can create component Allee ef-
fects in prey (Gascoigne and Lipcius, 2004; Berec et al, 2007). This requires that
the ability of prey to escape predation increases as prey density increases. Denot-
ing p(N) = f (N,P)P, the probability that a prey individual escapes predation in a
(small) time interval ∆ t equals

F(N) = 1− [p(N)/N]∆ t (4.2)

Hence, for a predation-driven component Allee effect to occur, we require dF/dN >
0 for all N > 0. This implies

∂ f (N,P)
∂N

<
f (N,P)

N
for all N ≥ 0 and any fixed P ≥ 0 (4.3)

or that the per capita consumption rate of generalist predators (i.e. predator func-
tional response) increases at a decelerating rate as a function of prey density. From
the perspective of classical, predator-density-independent functional response types,
this inequality holds true for type II and type IV functional responses, but not for
type I and type III functional responses. For example, the type II functional response
f (N,P) = αN/(β +N), which is the most frequently observed one (Hassell et al,
1976; Jeschke et al, 2002), is a hyperbolic curve that rises from zero to an asymptote
(Fig. 4.1a). This means that although there is an increase in predator consumption
rate with prey density, this increase is not enough to offset the rate of increase in
prey density. As a consequence, as prey density increases, there are more prey in-
dividuals per predator attack, and thus a lower probability that any prey individual
will be captured by a predator – a predation-driven Allee effect (Fig. 4.1b). Note that
type III (sigmoid) functional responses can impose an equilibrium known as preda-
tor pit – rare prey populations do not go extinct but rather approach a locally stable,
low-density equilibrium maintained by predation which is potentially far below the
environmental carrying capacity of prey (Fig. 4.1b; May, 1977).

In some species, it is prey behavior rather than predator consumption of prey
which is a mechanism for an Allee effect in prey. Consider a herding, flocking, or
schooling prey species in which efficiency of anti-predator behavior decreases with
declining prey abundance, and consider a predator with a linear functional response
f (N) = aN, with a positive attack rate a. Since the efficiency of anti-predator be-
havior increases with increasing prey abundance N, the predator attack rate may be
described, e.g. as a = α/(β +N). This implies f (N) = αN/(β +N), i.e. a type
II functional response. Similarly, we can get a type IV functional responses when
a = α/(β +N2). Hence, models of predation-driven component Allee effects may,
at least in some cases, be used to describe component Allee effects due to reduced
efficiency of anti-predator behavior in low-density prey populations.
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Fig. 4.1 Predator per capita consumption rates (a) and the corresponding per capita prey growth
rates (b) for the model (4.1) with logistic prey growth and type II, type III, and type IV func-
tional responses. Population densities for which the per capita growth rates equal zero in (b) define
positive system equilibria

Allee effects and specialist predators

The standard framework mathematical modelers use to explore predator-prey dy-
namics involving specialist predators is the pair of ordinary differential equations,
one for the prey population and the other for the predator population:

dN
dt

= N g(N)− f (N,P)P

dP
dt

= e f (N,P)P−mP
(4.4)

Here, in addition to the model (4.1), we have a dynamic equation for predators in
which m is the predator per capita mortality rate and e is an efficiency with which
energy obtained from consuming prey is transformed into predator offspring. Other
frameworks for exploring predator-prey dynamics also exist (e.g. Murray, 1993).

Allee effects may occur both in prey (in term g(N)) and in predators (in term
f (N,P)). In both cases, Allee effects generally destabilize predator-prey dynamics
(Courchamp et al, 2008, and references therein). In particular, strong Allee effects
may (i) cause a coexistence equilibrium to change from stable to unstable, (ii) extend
the time needed to reach the stable coexistence equilibrium, (iii) reduce the equilib-
rium density of the affected species, and (iv) enlarge the range of parameter values
for which prey and predators cannot coexist. In addition, weak Allee effects in prey
cause the predator-prey systems to cycle for a wider range of parameter values than
systems without Allee effects, provided that predators have a type II or weakly sig-
moidal functional response (Boukal et al, 2007). In the latter two sections of this
chapter, we present and analyze mathematical models of two specific predator-prey
systems in which Allee effects occur respectively in prey and predator populations.
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4.1 Caught between two Allee effects: trade-off between
reproduction and predation risk

Reproductive activities are often associated with conspicuous morphology or behav-
ior that could be exploited by predators. Individuals can therefore face a trade-off
between reproduction and predation risk. Indeed, many species have evolved anti-
predator behavior during which they stop mating and perform an escape manoeu-
vre (Svensson et al, 2004, 2007). Higher levels and/or prolonged periods of spatial
movement (Anholt and Werner, 1995; Kotiaho et al, 1998) or sexual signalling (Zuk
and Kolluru, 1998) during mate search help find a mate or choose a better one but
can also attract predators. Predation risk may also be high during copulation, preg-
nancy, spawning and breeding period when the individuals are often less motile
or easier to detect (Trochine et al, 2005; Svensson, 1997; Winfield and Townsend,
1983). Both reproductive success and probability of avoiding predation, involved
in the reproduction-predation risk trade-off, may be positively related to population
size or density and therefore subject to a component Allee effect (Courchamp et al,
1999, 2008; Stephens and Sutherland, 1999). In this section, we use simple models
to explore population-dynamical consequences of such a trade-off for populations
subject to a mate-finding Allee effect and an Allee effect due to predation. We dis-
tinguish several qualitative scenarios characterized by the shape and strength of the
trade-off and, in particular, identify conditions for which the populations survive or
go extinct. Although the literature offers no quantitative data on possible trade-off
shapes in any taxa, indirect evidence suggests that the trade-off and both Allee ef-
fects can occur simultaneously, e.g. in the golden egg bug Phyllomorpha laciniata.

To quantify the extinction risk we use population resilience, defined as the max-
imum disturbance the population in a stable state may sustain to avoid extinction
(Beisner et al, 2003), and relative population resilience, by which we mean a rel-
ative change in the resilience of the population after a predator removal/addition.
When measuring relative resilience, we also distinguish prey with flexible and in-
flexible reproductive behavior. We assume that flexible reproductive behavior (de-
termining strength of the mate-finding Allee effect) can be instantly changed after
predator removal or addition, whereas inflexible reproductive behavior cannot re-
spond to predator presence or absence. They represent extreme but useful approx-
imations of real reproductive behavior, which can involve both morphological and
behavioral traits. Most morphological traits such as bright coloration of males in
many birds and many types of behavior such as lekking displays of various birds
and flies (Andersson, 1994) are hardwired characteristics that individuals cannot
change and therefore correspond to the inflexible behavior. On the other hand, quite
a number of behavioral traits such as mating calls in some orthopteroid insects are
plastic. They can be adjusted to the perceived predation risk (Zuk and Kolluru, 1998)
and we represent them by the flexible behavior in our model. We ask the following
questions: When do the two component Allee effects lead to extinction of the popu-
lation? How are the results affected by the shape of the reproduction-predation risk
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trade-off? And finally, do the results for prey with flexible and inflexible reproduc-
tive behavior differ?

Model development

We use several simplifying assumptions on the life histories and population densities
of males and females: identical mortalities, balanced sex ratio at birth and equal
initial densities. This allows us to follow changes of the total population density N
in time without discerning between males and females (Box 4.2):

dN
dt

= bN
N

N +θ
−dN

(
1+

N
K

)
− f (N)P (4.5)

We thus use a variant of the generic model (4.1) for which we assume a mate-
finding Allee effect (the first term on the right-hand side), negative density depen-
dence in the prey mortality rate (the second term) and no predator interference in
prey consumption (the third term); b is the per capita birth rate, d is the intrin-
sic mortality rate at low densities, K scales the environmental carrying capacity, θ
represents strength of the mate-finding Allee effect, and P is a constant predator
population density. In addition, we assume the predator functional response f (N) to
be of type II, and use two alternative descriptions for it, f (N) = αN/(1+N/β ) and
f (N) = λN/(1+λhN). The latter form is the standard formulation due to Holling
(1959), in which λ scales the predator-prey encounter rate and h is the handling time
of one prey individual, and represents an Allee effect due to predator satiation (Gas-
coigne and Lipcius, 2004; Berec et al, 2007; Courchamp et al, 2008). The former
expression can be interpreted as a predation-driven Allee effect invoked by a be-
havioral response of prey (e.g. herding or mobbing) to predators with an otherwise
linear functional response: the behavioral response is more efficient at higher pop-
ulation densities and reduces the (linear) attack rate α by a factor of 1/(1+N/β ).
Note that β scales the maximum per capita attack rate (= αβ ) but also defines the
population density at which f (N) declines to 50% of its maximum value, and we
refer to β as prey vulnerability in this section.

We rescale models due to both versions of the type II functional response to
reduce the number of parameters from seven to five. In the model with α and β , we
rescale the state variable as x = N/K and time as τ = td and define new parameters
Θ = θ/K (relative strength of the mate-finding Allee effect), B= β/K (relative prey
vulnerability), g = b/d and δ = P/d, to obtain

dx
dτ

= gx
x

x+Θ
− x(1+ x)− αxδ

1+ x/B
(4.6)

Rescaling the model with λ analogously, we get
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dx
dτ

= gx
x

x+Θ
− x(1+ x)− λxδ

1+λHx
(4.7)

where H = hK (relative handling time) and the other parameters are as above. The
parameters α , B and λ scale the strength of Allee effect due to predation: predation
mortality in the models (4.6) and (4.7) increases with increasing α , B and λ . Only
the parameter Θ scales the strength of mate-finding Allee effect in these models,
and reproductive success declines with increasing Θ . We skip the adjective ‘relative’
when further referring to parameters Θ , B and H.

Reproduction-predation risk trade-off

Trade-off shapes can strongly influence evolutionary dynamics and endpoints (Bell,
1980; Rueffler et al, 2004; Hoyle et al, 2008). We thus consider a range of trade-
off shapes that cover varying costs of reproduction in terms of predation risk, and
investigate two trade-offs for the model (4.6),

α = αmax

(
1−
(

Θ
Θmax

)z)1/z

(4.8)

and

B = Bmax

(
1−
(

Θ
Θmax

)z)1/z

(4.9)

and one trade-off for the model (4.7),

λ = λmax

(
1−
(

Θ
Θmax

)z)1/z

(4.10)

These three trade-offs can describe a range of situations in which increasing repro-
ductive success of the population (i.e. decreasing Θ ) leads to increasing attack rate
(α increases, e.g. since individuals become less vigilant or unable to escape), in-
creasing prey vulnerability (B increases, e.g. since individuals devote less time to
herding or chasing away predators), or increasing encounter rate (λ increases, e.g.
since individuals become more conspicuous). Further on, we refer to the model (4.6)
with the trade-off (4.8) as the attack rate model, abbreviated as AR, to the model
(4.6) with the trade-off (4.9) as the prey vulnerability model, abbreviated as PV, and
to the model (4.7) with the trade-off (4.10) as the encounter rate model, abbreviated
as ER.

Maximum predation pressure (α = αmax, B = Bmax and λ = λmax) occurs for
Θ = 0 when there is no mate-finding Allee effect, and predation ceases (α = 0,
B = 0, and λ = 0) for Θ ≥Θmax when reproductive activities become so suppressed
that predators can no longer exploit the prey. The parameter z quantifies the overall
predation risk associated with reproduction. Values of z < 1 (convex trade-offs) cor-
respond to ‘cheap’ reproductive activities, for which the predation risk remains low
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until Θ is relatively small, i.e. until the mate-finding Allee effect is relatively weak
due to efficient prey reproductive activities. On the other hand, values of z > 1 (con-
cave trade-offs) correspond to ‘costly’ reproduction, for which the predation risk
remains elevated for a wide range of effort associated with reproductive activities,
e.g. because courting or gravid individuals are more conspicuous (Fig. 4.2).
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Fig. 4.2 Trade-offs (4.8) to (4.10) as they vary with the shape parameter z

Analysis

The models (4.6) and (4.7) can have, in addition to the extinction equilibrium x0 =
0, either no positive equilibrium or a unique positive equilibrium that is stable or
two positive equilibria, of which the higher (labelled S) is stable and the lower (U)
unstable (see below for the exact results). We focus here only on the difference
R = S−U and call it population resilience. It can be interpreted as the maximum
disturbance after which the population can still return back to the stable equilibrium
without going extinct. If there is only a unique positive equilibrium that is stable,
we set U = 0.

We start with standard viability analysis of the models (4.6) and (4.7) and search
for the stable and unstable equilibria and conditions for their existence. In the sim-
plest cases when Θ and/or α or λ are zero or B infinitely small (that is, one or both
component Allee effects are absent), the equilibria can be calculated analytically.
We use Matlab 7 (The MathWorks, Inc.) to find the equilibria numerically when
both Allee effects are present.

To investigate the role of reproduction-predation risk trade-off, we examine the
impact of changes in the strength of mate-finding Allee effect Θ on the popula-
tion resilience R along the trade-off in the AR, PV and ER models. In addition, we
explore relative population resilience along the trade-off for prey with flexible and
inflexible reproductive behavior. In line with the general considerations above, by
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‘flexible’ we mean that prey reproductive behavior can be changed instantly such
that there is no mate-finding Allee effect (Θ = 0) in the absence of predators and
there is some (Θ > 0) in their presence, while prey with inflexible reproductive
behavior are assumed to keep the same Θ > 0 regardless of predators. For prey
with flexible behavior, we therefore measure the relative population resilience as
ρ f = (S−U)/(S0 −U0), where S0 and U0 correspond to no predation (P = 0) and
no mate-finding Allee effect (Θ = 0), i.e. U0 = 0; in fact ρ f is just a multiple of the
population resilience R. For prey with inflexible behavior, we measure the relative
population resilience as ρi = (S −U)/(S1 −U1), where S1 and U1 correspond to
no predation and the mate-finding Allee effect remaining at the unchanged strength
Θ > 0; ρi always equals 1 if there is no predation.

Model results

Model equilibria and their stability

The extinction equilibrium x0 = 0 of the model (4.6) is locally stable for any mate-
finding Allee effect (Θ > 0). It is globally stable, i.e. the population goes extinct
regardless of its density, and no other equilibria exist if the mate-finding Allee effect
and/or the predation-driven Allee effect are sufficiently strong (i.e. if Θ and/or α
are sufficiently large). For no mate-finding Allee effect (Θ = 0), x0 is locally or
globally stable if α > (g−1)/δ and unstable if α < (g−1)/δ . In the latter case, the
population always reaches a unique positive equilibrium (environmental carrying
capacity) regardless of its (positive) initial density. A complete analysis of the case
with no mate-finding Allee effect is given in Box 4.1.

If the extinction equilibrium x0 = 0 is only locally stable, two positive equilibria
exist of which the lower is unstable (Allee threshold) and the upper is locally stable
(environmental carrying capacity). All else being equal, the two positive equilibria
approach one another with increasing Θ and/or α until both merge and cease to exist
in a saddle-node bifurcation; the extinction equilibrium then becomes globally sta-
ble (Fig. 4.4a). The population resilience R is maximized for no mate-finding Allee
effect and no predation (Θ = 0 and α = 0; R = g− 1) and declines as the strength
of mate-finding Allee effect Θ and/or the attack rate α increase (Fig. 4.5a; the thin
lines depict isolines along which the resilience is constant). The lower limit of the
isolines is the viability limit at which the positive equilibria merge and R = 0. For Θ
and/or α to the right and above the viability limit, the population cannot persist as
deaths exceed births for any population density. We denote the mate-finding Allee
effect strength and the attack rate at which the viability limit intersects the respective
axes as Θlim and αlim (Θlim = 0.172 and αlim = 2.55 in Fig. 4.5a). The relative popu-
lation resilience ρi of prey with inflexible reproductive behavior is maximized in the
absence of predation (α = 0) and declines with increasing α for any 0 <Θ <Θlim
(Fig. 4.5b).
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Box 4.1 Analysis of the models (4.6) and (4.7)

Setting the right-hand side of the equation (4.6) to zero always has the trivial
solution x0 = 0, corresponding to population extinction. The extinction equi-
librium x0 is locally stable for Θ > 0 as the derivative of the right-hand side
of the equation (4.6) with respect to x, evaluated at x0, is −1−αδ < 0 (all
model parameters are positive).

To find positive model equilibria for Θ > 0, we solve the equation

G(x) = g
x

x+Θ
− (1+ x)− αδ

1+ x/B
= 0 (4.11)

Since G is always concave (G′′(x) < 0), model (4.6) can have at most two
different positive equilibria. We used Matlab to find out numerically that there
is either no positive equilibrium or that they are just two of which the lower
is unstable (Allee threshold) and the upper is locally stable (environmental
carrying capacity).

The case Θ = 0 (no mate-finding Allee effect, only the Allee effect due
to predation) allows for more detailed analysis. Straightforward yet tedious
algebra gives the results summarized in Table 4.1; the areas I-IV are shown in
Fig. 4.3a.

For the model (4.7) and Θ > 0, the analysis follows the same lines as above
with analogous results. The results for Θ = 0 are summarized in Table 4.2; the
areas I-V are shown in Fig. 4.3b.

For both models (4.6) and (4.7) and Θ > 0, the extinction equilibrium x0
can also be unique and globally stable if the mate-finding Allee effect and/or
the Allee effect due to predation are sufficiently strong; for α = 0 or B → 0 or
λ = 0, this happens when Θ >Θlim = (1−√

g)2.
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Fig. 4.3 Model analysis for no mate-finding Allee effect (Θ = 0). (a) Numbers and stability of
equilibria of the model (4.6) in the α −B parameter space. Areas I-IV explained in Table 4.1. (b)
Numbers and stability of equilibria of the model (4.7) in the λ −H parameter space. Areas I-V
explained in Table 4.2
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Area Conditions Extinction equi-
librium x0 = 0

Positive equilibria

I α > (g− 1)/δ and α > αlim(B)
(alternatively B > Blim(α))

globally stable no positive equilibrium

II α > (g−1)/δ and α < αlim(B) locally stable two equilibria: lower unstable
(Allee threshold), upper locally
stable (carrying capacity)

III α < (g−1)/δ and B < g−1 unstable unique, globally stable equilib-
rium (carrying capacity)

IV α < (g−1)/δ and B > g−1 unstable unique, globally stable equilib-
rium (carrying capacity) that van-
ishes at α = (g−1)/δ

Table 4.1 Analysis of the model (4.6) for no mate-finding Allee effect (Θ = 0). Parameters α , g,
δ and B are explained in the main text; αlim(B) = [B(1+1/B−g/B)2/4+g−1]/δ and Blim(α) =

(g−1)2/[2αδ −g+1+
√
(2αδ −g+1)2 − (g−1)2]

Area Conditions Extinction equi-
librium x0 = 0

Positive equilibria

I λ > (g−1)/δ and λ > λlim(H) globally stable no positive equilibrium
II λ > (g−1)/δ and λ < λlim(H) locally stable two equilibria: lower unstable

(Allee threshold), upper locally
stable (carrying capacity)

III λ < (g − 1)/δ and 1/H < (g −
1)2/(4δ )

unstable unique, globally stable equilib-
rium (carrying capacity)

IV λ < (g− 1)/δ and (g− 1)2/(4δ ) <
1/H < (g−1)2/δ

unstable unique, globally stable equilib-
rium (carrying capacity)

V λ < (g−1)/δ and 1/H > (g−1)2/δ unstable unique, globally stable equilib-
rium (carrying capacity) that van-
ishes at λ = (g−1)/δ

Table 4.2 Analysis of the model (4.7) for no mate-finding Allee effect (Θ = 0). Parameters λ , g,
δ and H are explained in the main text; λlim(H) = 1/(H(1−g)+2

√
Hδ )

For high attack rates, α > (g−1)/δ , the dependence of equilibria of the model
(4.6) on the mate-finding Allee effect strength Θ and the prey vulnerability B is
qualitatively the same as in Fig. 4.4a and the corresponding (relative) population
resilience plots are analogous to Fig. 4.5a-b. For low attack rates, α < (g− 1)/δ ,
the results differ qualitatively and high values of B do not affect the equilibria
(Fig. 4.4b). This is because for highly vulnerable prey (1/B close to 0) the pre-
dation term in the model (4.6) reduces to αδx < (g−1)x, and hence for Θ = 0 the
population always attains a unique positive equilibrium (carrying capacity) that is
globally stable. In biological terms, the prey cannot go extinct if the mate-finding
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Fig. 4.4 Equilibria of the model (4.6). Stable (solid lines) and unstable (dashed lines) equilibria
of the model (4.6) as they depend on (a) the mate-finding Allee effect strength Θ and the predator
attack rate α for g = 2, B = 0.01 and δ = 10 and on (b) the mate-finding Allee effect strength Θ
and the prey vulnerability B for g = 2, α = 0.05, δ = 10. Lines of equilibria in panel (a) range
from α = 0 until 2.4 (step size 0.2; no equilibria beyond α = 2.55), and lines of equilibria in
panel (b) start with B = 0.0001 and have step size 0.1 (lines for large B approach the leftmost line
corresponding to B → ∞)

Allee effect is absent and the attack rate is low enough. Consequently, the viability
limit and isolines of the (relative) population resilience in the Θ −B parameter space
are much more convex (Fig. 4.5c-d).

Similar conclusions hold for the existence and stability of equilibria of the model
(4.7). The extinction equilibrium x0 = 0 is locally or globally stable for any mate-
finding Allee effect (Θ > 0). For no mate-finding Allee effect (Θ = 0), x0 = 0 is
locally or globally stable for high prey encounter rates λ > (g− 1)/δ and unsta-
ble for λ < (g− 1)/δ . A complete analysis for Θ = 0 (see Box 4.1) implies that
if the handling time is sufficiently short, H < 4δ/(g− 1)2, the positive equilibria
of the model (4.7), population resilience and relative population resilience behave
similarly as shown in Figs. 4.4a, 4.5a and 4.5b, respectively. On the other hand, long
handling times, H > 4δ/(g− 1)2, yield results that are qualitatively analogous to
Figs. 4.4b, 4.5c and 4.5d and the encounter rate λ affects the location of equilibria
only when relatively small. This is because the predation-driven Allee effect is not
strong enough to drive the population to inevitable extinction even for virtually in-
finite encounter rates λ , for which the predation term in the model (4.7) reduces to
a constant δ/H.

The isoline plots of (relative) population resilience in Fig. 4.5 also reveal that the
prey population can or cannot always be eliminated by strong predation. Popula-
tions that can always be eliminated by strong predation are characterized by plots in
which the viability limit intersects the y-axis at some αlim < ∞ (Fig. 4.5a-b). These
populations will be wiped out by predation with α >αlim irrespective of the strength
of mate-finding Allee effect Θ ; we call them populations with predation limit. On
the other hand, the viability limit of some populations may not intersect the y-axis
(Fig. 4.5c-d). These populations cannot be wiped out by predation of any strength
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Fig. 4.5 Population resilience (panels (a) and (c)) and relative population resilience for prey with
inflexible reproductive behavior (panels (b) and (d)) for the model (4.6), plotted as a function of
the mate-finding Allee effect strength Θ and the predator attack rate α (panels (a) and (b)) and the
mate-finding Allee effect strength Θ and the prey vulnerability B (panels (c) and (d)). Parameter
values: (a-b) g= 2, B= 0.01 and δ = 10, so that Θlim = 0.17 and αlim = 2.55. (c-d) g= 2, α = 0.05
and δ = 10, so that Θlim = 0.17 and there is no Blim. The thin lines are isolines of the (relative)
population resilience, increasing from 0 to g− 1 with stepsize 0.05 (indicated by thick arrow).
These two pairs of panels ((a) with (b) and (c) with (d)) represent two generic outcomes that all
models analyzed in this section produce

when the mate-finding Allee effect strength Θ is sufficiently low and we call them
populations without predation limit. Populations without predation limit appear in
the PV model with low attack rates α and in the ER model with long handling times
H (Table 4.3).

Population resilience under reproduction-predation risk trade-off

How do population resilience and relative population resilience change along the
reproduction-predation risk trade-off? And how is the population affected by the
shape of the trade-off? We first explain several examples, based on the AR model,
in detail before giving the complete results. We have already shown how the pop-



4.1 Caught between two Allee effects: trade-off between reproduction and predation risk 115

Model Populations with predation
limit (Fig. 4.5a-b)

Populations without preda-
tion limit (Fig. 4.5c-d)

AR Always Never
PV α > (g−1)/δ α < (g−1)/δ
ER H < 4δ/(g−1)2 H > 4δ/(g−1)2

Table 4.3 Two generic cases distinguishing the qualitative shape of the (relative) population re-
silience surface plots in Fig. 4.5

ulation resilience changes with the strength of mate-finding Allee effect and the
predation pressure (Fig. 4.5a). We now overlay different trade-off shapes over the
isoline landscape. The curves A, B and C in Fig. 4.6a are three trade-off curves (4.8)
that exemplify the main differences in the qualitative outcomes reported here.

First, there is a difference between cheap and costly reproduction. For sufficiently
‘cheap’ reproductive activities characterized by a convex trade-off curve (z < 1,
curve A in Fig. 4.6a), the resilience R can be maximized at intermediate values of
the mate-finding Allee effect strength (curve A in Fig. 4.6b). Populations with more
costly reproductive activities characterized by linear and concave trade-offs (z ≥ 1,
curve B in Fig. 4.6a) have the resilience always maximized either in the absence of
predation (Θ =Θmax and α = 0) or in the absence of the mate-finding Allee effect
(Θ = 0 and α = αmax; as for curve B in Fig. 4.6b). The exact value of z above which
the maximum resilience can no longer occur at an intermediate Θ depends on the
curvature of the trade-off relative to the curvature of the isolines; the value will be
z < 1 because the isolines are always convex.

Second, populations might be always safe or liable to extinction as the strength of
mate-finding Allee effect and the predation pressure vary along the trade-off. This is
determined by the location of the trade-off relative to the viability limit: populations
characterized by trade-off curves A and B persist for any Θ between 0 and Θmax and
only go extinct if Θ >Θlim, while populations characterized by trade-off curve C go
extinct for intermediate values of Θ between 0 and Θmax (curve C in Fig. 4.6b; the
maximum strengths of the two Allee effects due to mate-finding and predation are
larger for curve C than for curve B). In extreme cases, the trade-off can be so severe
that the population always goes extinct (see below).

Finally, we note that predation ceases and only the mate-finding Allee effect
operates for Θ > Θmax. Any two trade-offs thus give the same results for Θ above
the larger of their Θmax values. In addition, if Θmax <Θlim, the population resilience
declines with increasing Θ for Θ >Θmax until it reaches zero at Θ =Θlim (all curves
in Fig. 4.6b).

Now we give the complete results. Results for populations with predation limit
can be classified into five qualitatively different scenarios, characterized by the
location of the point corresponding to the maximum double Allee effect with-
out any trade-off, i.e. point [Θmax,αmax] or [Θmax,Bmax] for model (4.6) and point
[Θmax,λmax] for the model (4.7), relative to the viability limit. The five scenarios
correspond to the five areas marked as A to E in Fig. 4.7a. Results for populations
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Fig. 4.6 Population resilience under reproduction-predation risk trade-off. (a) The population re-
silience R as a function of Θ and α with examples of three trade-off curves marked A, B and C.
Thin black lines = isolines of population resilience, increasing from 0 to g− 1 with stepsize 0.05
(indicated by thick arrow). Populations cannot persist above the viability limit = the isoline con-
necting the points [Θlim,0] and [0,αlim] at which R = 0; R is maximized for Θ = 0 and α = 0 where
R= g−1. (b) The population resilience R as a function of Θ along the three trade-off curves shown
in panel (a). Trade-offs A and B yield the same resilience for Θ > Θmax = 0.08 and trade-offs A,
B and C for Θ > Θmax = 0.12. See the main text for details. Parameter values: g = 2, B = 0.01,
δ = 10; trade-off curves: Θmax = 0.08, αmax = 1, z = 0.4 (A), Θmax = 0.08, αmax = 1, z = 3 (B),
and Θmax = 0.12, αmax = 1.8, z = 3 (C)

without predation limit can be described by only three scenarios (areas A to C in
Fig. 4.7b), which are covered by the former five: parameter combinations from ar-
eas A to C in Fig. 4.7a and Fig. 4.7b give qualitatively analogous results. We thus
present and discuss only the results for populations with predation limit.
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Fig. 4.7 Parameter regions yielding the five different scenarios for populations with predation limit
(a) and the three scenarios for populations without predation limit (b). See also Table 4.3 and the
main text for details
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In all five scenarios, the population resilience declines with increasing cost of re-
production (i.e. increasing z) for the mate-finding Allee effects satisfying Θ <Θlim
(Fig. 4.8). The main distinguishing feature of each scenario is whether and for what
values of Θ the population cannot persist. The population will survive predation ir-
respective of the strength of mate-finding Allee effect and the shape of the trade-off
only in scenario A (Fig. 4.8a). In biological terms, this scenario corresponds to prey
that can survive predation even when both Allee effects are at maximum strength.
In all other scenarios, the population may go extinct; the range of Θ that lead to
extinction increases with z. In scenario B, the population will not survive preda-
tion for intermediate Θ and sufficiently costly reproduction (i.e. concave trade-offs
with high values of z; Fig. 4.8b). This contrasts with the remaining three scenarios
in which intermediate values of Θ are typically ‘the safest’ and the population goes
extinct for high, low, and both high and low levels of reproductive activity in sce-
narios C, D and E, respectively (Fig. 4.8c-e). In other words, extinction occurs for
strong mate-finding Allee effects (high Θ ) if their maximum strength is very high
(cases C and E) and for weak mate-finding Allee effects (low but positive Θ ) if the
maximum strength of Allee effect due to predation is very high (cases D and E).
In the latter case, the trade-off results in strong Allee effects due to predation. Fi-
nally, the population is never viable for sufficiently costly reproduction in scenario
E (Fig. 4.8e).

The relative population resilience ρ f of prey with flexible reproductive behav-
ior is a multiple of the population resilience R and can thus be taken from Fig. 4.8.
We observe the same five qualitatively different scenarios for the relative popula-
tion resilience ρi of prey with inflexible reproductive behavior (Fig. 4.9), although
the value of Θ at which the relative population resilience ρi is maximized (or min-
imized) can be different from that for the (relative) population resilience R (ρ f )
(compare the corresponding panels in Figs. 4.8 and 4.9).

Summary

A trade-off between reproduction and predation risk occurs in many animals but
its impact on population viability has been little studied. We have focused in this
section on the viability of a population that faces, along with this trade-off, two
different Allee effects due to reproduction and predation, and examined how various
characteristics of the population and shapes of the trade-off affect its resilience to
disturbances. We have also compared the results for prey that can or cannot adjust
their reproductive activity to the predation level.

We have found that the fate of a population, given its demographic rates g and δ ,
depends on three main factors: the cost of reproduction (that is, the trade-off shape
characterized by the parameter z), the maximum strength of mate-finding Allee ef-
fect at which predation ceases, and the maximum strength of Allee effect due to
predation in the absence of the mate-finding Allee effect (that is, the trade-off lo-
cation characterized by the parameters αmax, Bmax or λmax, respectively). While the
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Fig. 4.8 Examples of the five scenarios of the impact of reproduction-predation risk trade-off
between the mate-finding Allee effect strength Θ and the attack rate α on the population re-
silience R for the AR model. Panels (a-e) represent examples from the equally marked areas in
Fig. 4.7a. Parameter values: g = 2, B = 0.01 and δ = 10, so that Θlim = 0.17 and αlim = 2.55;
(a) Θmax = 0.08 < Θlim and αmax = 1 < αlim; (b) Θmax = 0.08 < Θlim and αmax = 1.8 < αlim;
(c) Θmax = 0.18 >Θlim and αmax = 1 < αlim; (d) Θmax = 0.08 <Θlim and αmax = 2.6 > αlim; (e)
Θmax = 0.18 >Θlim and αmax = 2.6 > αlim

results depend strongly on the reproduction-predation risk trade-off, the flexibility
or inflexibility of prey reproductive behavior as well as the type of Allee effect due
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Fig. 4.9 Examples of the five scenarios of the impact of reproduction-predation risk trade-off be-
tween the mate-finding Allee effect strength Θ and the attack rate α on the relative population
resilience ρi for prey with inflexible reproductive behavior for the AR model. Legend as in Fig. 4.8

to predation (that is, models AR, PV and ER) do not produce qualitatively different
outcomes. We summarize all results jointly in what follows.

Overall, the (relative) population resilience declines with increasing cost of re-
production embodied in the parameter z that represents the strength of reproduction-
predation risk trade-off. In some cases, reproduction can be so costly in terms of
predation that the population always goes extinct. In other cases, the population
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goes extinct only over a certain range of mate-finding Allee effects, which may cor-
respond to high, low or intermediate levels of reproductive activity. For example,
intermediate levels of reproductive activity might be the only ones that guarantee
population survival (e.g. sufficiently convex trade-offs in scenario E in Fig. 4.8e) or
that, on the contrary, lead to population extinction (e.g. sufficiently concave trade-
offs in scenario B in Fig. 4.8b).

Our results on the relative population resilience imply that the impact of predator
manipulation (i.e. removal or addition) differs quantitatively but not qualitatively
for prey with flexible and inflexible reproductive behavior. That is, our main results
are equally valid if predators exploit hardwired traits associated with reproduction
(such as coloration) or if they exploit adjustable prey behavior such as the intensity
and duration of mating calls. All else being equal, predator manipulation has the
largest effect on populations with high cost of reproduction in terms of predation.
This can have either positive or negative consequences depending on the application:
conservation biologists have obviously opposing goals to pest managers.

Predator removal is often considered among conservation management strategies
because it can increase survivorship in endangered populations (Sinclair et al, 1998).
Our modeling results show that removal of predators can be particularly worthwhile
for populations with predation limit that can be heavily predated and must suppress
their reproductive behavior considerably in order to avoid predation (i.e. have rela-
tively high αmax and Θmax; area E in Fig. 4.7a). On the contrary, pest management
might attempt to remove a pest by augmenting existing or introducing entirely new
predators (Solomon et al, 2000). Here we demonstrate that, within the types of life
histories and ecological interactions considered in our models, the most difficult
pests fall into the category of populations that are without predation limit and face
relatively few difficulties in finding mates when they manage to avoid predation (i.e.
have relatively small Θmax; area A in Fig. 4.7b).

Given the disparate results on population viability that depend on quantitative
details of the reproduction-predation risk trade-off, it is clear that no general rule of
thumb can be put forward and the fate of a population subject to antagonistic mate-
finding and predation-driven Allee effects should be evaluated on a case-by-case
basis. In every case, as our results suggest, searching for multiple Allee effects and
their relationship in plant and animal populations could reveal new and interesting
insights and is worth further research both by theoreticians and field workers.

Last but not least, we have also highlighted how surprisingly little is known on
the processes that, according to our results, drive population dynamics under the
reproduction-predation risk trade-off. More data are needed to assess which shapes
of the trade-off are most common in nature and how often species are actually caught
between two Allee effects caused by reproduction and predation.
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4.2 Impacts of predation on dynamics of age-structured prey:
Allee effects and multi-stability

Understanding the mechanisms that allow predators to regulate density of their prey
may help in efficient population management, be it pest biocontrol, harvesting of
economically important species, or endangered species protection (Hajek, 2004;
Berec et al, 2007; Hunter and Gibbs, 2007). Examples abound of different predator
species feeding on juveniles and adults of a prey species. For example, juveniles
of the Utah prairie dog Cynomys parvidens are more prone to predation by north-
ern goshawks, whereas adults, especially pregnant females, are more often killed by
foxes (Hoogland et al, 2006). As the different predator species feeding on different
age classes of prey may often be representatives of different genera or even classes,
they may be expected to possess different foraging habits and hence different func-
tional responses, quantitatively or even qualitatively. We are also interested in prey
dynamics where only juveniles or adults are consumed by a generalist predator.
Predation of or escape from predation in one of the age classes of prey may have
important consequences for dynamics of the prey population as a whole. For exam-
ple, the lack of predation on pupae was suspected to cause outbreaks of such prey
species as the winter moth Operophtera brumata (Raymond et al, 2002).

Importance of predator-prey models that incorporate an age structure in prey for
getting more realistic predictions of dynamics of the involved populations has al-
ready been acknowledged (Wikan, 2001; de Roos et al, 2003; Jang, 2007, 2010).
Specifically, in a series of papers, Hastings demonstrated that age-dependent pre-
dation can have a stabilizing effect on predator-prey dynamics (Hastings, 1983,
1984a,b,c). However, all models developed and analyzed in these studies assumed
specialist predators1, which attacked one or more prey age classes. To our best
knowledge, there has been no study so far that would explore dynamics of an age-
structured population of prey consumed by generalist, age-specific predators2.

Therefore, in this section, we develop and analyze a simple predator-prey model
(albeit with relatively complex behavior) in which juvenile and adult prey are ex-
ploited each by a different generalist predator (or no predator). We use this model
to explore impacts of various combinations of predator functional responses (or no
functional response) on prey population dynamics, assuming that at least one of the
functional responses is of type II, the most frequently observed type of functional
response (Hassell et al, 1976; Jeschke et al, 2002). In particular, we focus on the po-
tential of predators to generate strong Allee effects or more generally multiple stable
equilibria in prey. In practical terms, we ask about the possibility of prey population
suppression or even complete eradication. From here on, we will briefly speak of
Allee effects to mean strong Allee effects with an Allee threshold.

1 Predators that numerically responded to prey densities.
2 Generalist predators are predators that do not numerically respond to changes in prey abundance.
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Model development

We structure the prey population into two age classes – juveniles and adults – and
assume its growth to be resource-limited, with juveniles and adults feeding on dif-
ferent resources:

dJ
dt

= bA−mJ−d jJ
(

1+
J

K j

)
−Pj

dA
dt

= mJ−daA
(

1+
A
Ka

)
−Pa

(4.12)

Here J and A represent juvenile and adult density, respectively, b is the per adult
birth rate, m is the maturation rate, d j (da) is the intrinsic mortality rate of juveniles
(adults) due to factors other than consumption by focal predators, and K j (Ka) scales
the environmental carrying capacity of juveniles (adults). As we assume generalist
predators with constant densities, there are no dynamic equations for predators. For
the predation terms Pj and Pa, we use five different combinations (Table 4.4) of no
predation, Pj = 0 or Pa = 0, a type II functional response,

Pj =
L jJ

1+B jJ
or Pa =

LaA
1+BaA

(4.13)

and a type III functional response

Pj =
L jJ2

1+B jJ2 or Pa =
LaA2

1+BaA2 (4.14)

In these expressions, L j/B j is the maximum attack rate of predators at high juvenile
densities and B j is the inverse of juvenile density (type II) or of square of juvenile
density (type III) at which the attack rate reaches 50% of its maximum value. The
parameters La and Ba have an analogous interpretation for adults.

Case Juveniles – Pj Adults – Pa

A Type II no predation
B no predation Type II
C1 Type II Type II
C2 Type II Type III
C3 Type III Type II

Table 4.4 Examined combinations of predator functional responses on juveniles and adults

We analyze dynamics of the prey population with respect to parameters m, L j
and La, as representatives of the age structure of the prey population and of the
predation pressure. The other parameters were set to somewhat arbitrary values
which nonetheless follow some reasonable assumptions about the age classes, such
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as lower mortality rate of adults relative to juveniles (Table 4.5). Simulations with
other parameter values than those in Table 4.5 produced qualitatively similar results.

Parameter Meaning Baseline value

b Per adult birth rate 1
d j Intrinsic mortality rate of juveniles 0.02
da Intrinsic mortality rate of adults 0.01
K j Parameter scaling carrying capacity for juveniles 5
Ka Parameter scaling carrying capacity for adults 3
B j Parameter scaling functional response for juveniles 0.8
Ba Parameter scaling functional response for adults 0.5

Table 4.5 Baseline parameter values

Model results

The point E0 = (J0,A0) = (0,0) is a steady state of the model (4.12) for any of
the examined cases and will be referred to as the extinction equilibrium further
on. When there is no predation (Pj = Pa = 0), E0 is unique and globally stable if
m(b− da)− d jda < 0 or equivalently b < da(1+ d j/m) (Box 4.2). Local stability
results for E0 when there is predation are summarized in Table 4.6. In general, E0 is
locally stable if the death rate exceeds the birth rate for either only low or any prey
population densities. In the former case, the prey population is subject to an Allee
effect and an interior steady state exists. In the latter case, E0 is unique and globally
stable.

Box 4.2 Interior equilibria of the model (4.12) in case of no predation

Interior equilibria of the model (4.12) do exist if the model isoclines,

f1(J) = A =
m
b

J+
d j

b
J
(

1+
J

K j

)
+

Pj

b

f2(A) = J =
da

m
A
(

1+
A
Ka

)
+

Pa

m

(4.15)

intersect in the first quadrant (J > 0 and A > 0) of the state space. For no
predation (Pj = Pa = 0), the isoclines represent two parabolic functions that
intersect at J = A = 0 and that have their vertices in the fourth quadrant (J < 0
and A< 0) of the state space – so their parts in the first quadrant are increasing
functions. Whether they also intersect in the first quadrant depends on the
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tangent lines of the parabolic functions at the origin. Imagining J as the x-
axis and A as the y-axis, the tangent line corresponding to the f1 isocline with
Pj = 0 is

S1 =
∂ f1

∂J

∣∣∣∣
J=0

=
m+d j

b
(4.16)

Similarly, the tangent line corresponding to the f2 isocline with Pa = 0 is (note
that A = f−1

2 (J) in the first quadrant)

S2 = 1
/[

∂ f2

∂A

∣∣∣∣
A=0

]
=

m
da

(4.17)

The two isoclines intersect in the first quadrant provided that S1 < S2 which
happens if

m(b−da)−d jda > 0 (4.18)

Also, due to the form of the two isoclines in the first quadrant, the respective
interior equilibrium denoted here as E1 is unique.

Now, let f (J,A) and g(J,A) denote the right-hand sides of equations for
J and A of the model (4.12), respectively. For no predation (Pj = Pa = 0),
f (K,K) < 0 if and only if K > K j(b−m− d j)/d j. Similarly, g(K,K) < 0 if
and only if K > Ka(m−da)/da. Hence, for any fixed

K > max
{

K j
b−m−d j

d j
,Ka

m−da

da

}
dJ/dt < 0 for J = K and A ∈ [0,K] and dA/dt < 0 for A = K and J ∈ [0,K].
This all implies that the area [0,K]× [0,K] is attracting for any trajectory of
the system (4.12). In addition, since

∂ f
∂J

+
∂g
∂A

=−m−d j −
2d j

K j
J−da −

2da

Ka
A < 0

for J ≥ 0 and A ≥ 0, then according to the Bendixson’s criterion there are no
periodic orbits of the system (4.12) in [0,K]× [0,K].

If m(b−da)−d jda < 0 we already know that E0 is the only equilibrium of
the model (4.12). The Jacobian evaluated in this equilibrium is

J =

(
−m−d j b

m −da

)
(4.19)

This implies Tr(J) < 0. In addition, Det(J) > 0 if and only if m(b− da)−
d jda < 0. Hence, once m(b− da)− d jda < 0, the unique equilibrium E0 is
locally stable. Given the above derivations, the Poincaré-Bendixson theory
implies that E0 is also globally stable.
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If m(b− da)− d jda > 0, E0 is unstable and we already know that there is
an interior equilibrium E1. In addition, it can be shown that the tangent line to
the stable manifold of E0 evaluated at E0 crosses the second and fourth quad-
rants of the state space and the tangent line of its unstable manifold crosses
the first and third quadrants. We thus exclude the possibility that trajectories
of the system (4.12) approach a cycle graph. As a consequence, the Poincaré-
Bendixson trichotomy implies that all system trajectories must approach an
equilibrium. Since trajectories starting in the interior of [0,K]× [0,K] cannot
approach E0 they much approach the interior equilibrium E1. Thus, we con-
clude that E1 is globally stable (and hence also locally stable) whenever it
exists.

Case Determinant and trace of Jacobian at E0 Conditions on local stability of E0

A
and
C2

Det(J) = −[m(b − da) − d jda] + L jda,
Tr(J) =−(m+d j +da +L j)

L j >
m(b−da)−d jda

da
or equivalently m <

(L j+d j)da
b−da

for b > da; m > 0 (i.e. always)
for b < da

B
and
C3

Det(J)=−[m(b−da)−d jda]+La(d j+m),
Tr(J) =−(m+d j +da +La)

La >
m(b−da)−d jda

d j+m or equivalently m <

(La+da)d j
b−da−La

for b > da + La; m > 0 (i.e. al-
ways) for b < da +La

C1 Det(J) = −[m(b − da) − d jda] + L jda +
La(d j + m) + L jLa, Tr(J) = −(m + d j +
L j +da +La)

La >
m(b−da)−d jda−L jda

d j+m+L j
or equivalently

m <
(La+da)(L j+d j)

b−da−La
for b > da +La; m > 0

(i.e. always) for b < da +La

Table 4.6 Conditions on local stability of the extinction equilibrium E0 = (0,0). Since the trace
Tr(J) of the Jacobian of the model (4.12) stays always negative for any of the examined cases,
whether E0 is locally stable or not depends on the sign of its determinant Det(J); E0 is locally
stable if Det(J)> 0 and unstable if Det(J)< 0

Due to negative density dependence in prey growth, the model (4.12) pos-
sesses an interior equilibrium once the extinction equilibrium ceases to be sta-
ble. Indeed, when there is no predation (Pj = Pa = 0), this equilibrium exists if
m(b−da)−d jda > 0 or equivalently b > da(1+d j/m), and is unique and globally
stable (E0 is unstable; Box 4.2). On the contrary, two or even more interior equilib-
ria may exist once predation acts (Pj > 0 and/or Pa > 0; see below). Although the
graphical analysis of isoclines can tell us how many positive equilibria the model
(4.12) may have in any of the examined cases A to C3, these equilibria are not
analytically tractable (they are roots of higher-order polynomials that cannot be fac-
torized). We thus perform their stability and bifurcation analyses using Matlab 7
(The MathWorks, Inc.), including the third-party Matlab package Matcont that al-
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lows for numerical bifurcation analysis of dynamical systems defined by ordinary
differential equations (Dhooge et al, 2003).

We observe several types of prey dynamics due to different prey maturation rates
(parameter m), different predator functional responses (no, type II, or type III), and
different predation pressure (parameters L j and/or La). Most frequently, we observe
(i) a unique interior equilibrium which is globally stable (the extinction equilibrium
is here unstable), (ii) an additional, unstable interior equilibrium, defining an Allee
threshold, as a result of an emerging, predation-driven Allee effect (the extinction
equilibrium is here locally stable), and (iii) still another, locally stable, low-density
equilibrium corresponding to a predator pit whereby the prey population is able to
persist at two alternative stable densities, low and high (the extinction equilibrium
is here unstable). In addition to these major and fairly expected patterns (although
not always expected where they actually occur; see below), there are situations in
which even three (locally) stable interior equilibria coexist or where two (locally)
stable interior equilibria co-occur with the (locally) stable extinction equilibrium.
We now go through the examined cases A to C3 one by one.

Case A. Once there is predation only on juveniles and the predator exhibits a type
II functional response, the model (4.12) may possess up to three interior equilibria
(Box 4.3; examples given in Fig. 4.10). Slow maturation (low m) and sufficiently
strong predation (high L j) make prey extinction the globally stable event, for ob-
vious reasons of the prey population not being able to replicate itself. The higher
is the maturation rate, the wider is the range of predation pressure under which the
prey population is able to persist (Fig. 4.10). When maturation is fast enough (high
enough m), there is a unique interior equilibrium which is globally stable (Fig. 4.10;
Box 4.3). This is because fast maturation allows juveniles to swiftly escape the dan-
ger of predation and enjoy safe life as adults. At intermediate maturation rates there
is a range of L j values for which an Allee effect develops (two interior equilibria)
and even a range of L j values for which a predator pit occurs (three interior equilib-
ria) (Fig. 4.10). Where both an Allee effect and a predator pit occur for the same m,
the Allee effect occurs for higher predation pressures L j (Fig. 4.10).

Box 4.3 Up to three interior equilibria in case A

For Pa = 0 and Pj = L jJ/(1+B jJ), the juvenile isocline f1(J) becomes

f1(J) = A =

(
m
b
+

d j

b

)
J+

d j

bK j
J2 +

(L j/b)J
1+B jJ

(4.20)

while the adult one is given by (4.15). Thus, f (J) is increasing ( f ′(J) > 0)
for all J > 0, concave ( f ′′(J) < 0) for 0 < J < ( 3

√
B jL jK j/d j − 1)/B j and

convex ( f ′′(J) > 0) for J > ( 3
√

B jL jK j/d j −1)/B j. Hence, for B jL jK j < d j,
the model (4.12) can have at most one interior equilibrium, for the same rea-
sons as in Box 4.2, while for B jL jK j > d j, due to concave-convex form of one
isocline and concave form of the other, the model (4.12) can have up to three
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Fig. 4.10 Type II predation on juveniles. (a) Stable (decreasing parts with increasing L j of equi-
librium curves) and unstable (increasing parts with increasing L j of equilibrium curves) equilibria
of the model (4.12) in the case A. (b) Areas in the m−L j parameter space in which different num-
bers of stable and unstable equilibria exist. Solid lines mark the limit points at which the equilibria
merge and cease to exist in a saddle-node bifurcation, and the dashed line denotes the branch points
at which the equilibria start to become negative and biologically not feasible. Solid points show
where the solid lines touch the dashed line and cease to exist. AE = Allee effect, PP = predator pit.
See Table 4.5 for the other parameter values

interior equilibria. For specific examples, see Fig. 4.10. For analogous reasons
as given in Box 4.2, if the interior equilibrium is unique, it is globally stable.

The observation of a predator pit in this case is amazing, as this phenomenon
has generally been associated with the predator-prey system in which a generalist
predator with a type III functional response consumes an unstructured, logistically
growing population of prey (May, 1977). We claim here that a predator pit can also
be a consequence of type II functional responses of generalist predators attacking
only prey juveniles. More generally, this implies that accounting for an age-structure
in prey can qualitatively change operation of functional responses.

Case B. If only adults suffer from predation via a type II functional response, the
situation becomes sort of symmetric. Although the model (4.12) can also possess
up to three interior equilibria in this case (Box 4.4; examples given in Fig. 4.11),
contrary to the case A, there is neither an Allee effect nor a predator pit observed
for low maturation rates (Fig. 4.11). With faster maturation, a predator pit arises
first, followed by an Allee effect (Fig. 4.11). If maturation is very fast, the juve-
niles tend to quickly leave their class and the system virtually behaves as the one-
dimensional system with an unstructured prey and a type II functional response –
Allee effect thus occurs for high enough predation pressure La (Fig. 4.11). Similarly
to the case A, at higher maturation rates prey can persist at higher predation pres-
sures (Fig. 4.11). What was concluded above for the case A thus equally holds for
the case B.
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Allee effects are thus more prevalent here relative to the case A. On the other
hand, the range −2 < logm < −1 of maturation rates within which a preda-
tor pit occurs here is much smaller than the corresponding range in the case A
(−2 < logm < 1). The area in parameter space in which three interior steady states
exist can be made larger, and the predator pit thus more widespread, by decreas-
ing the mortality rates of both age classes, increasing the birth rate, or increasing
the parameter B j, but it nonetheless cannot be made as large as in the case A for a
comparable parameter set.
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Fig. 4.11 Type II predation on adults. (a) Stable (decreasing parts with increasing La of equilibrium
curves) and unstable (increasing parts with increasing La of equilibrium curves) equilibria of the
model (4.12) in the case B. (b) Areas in the m−La parameter space in which different numbers of
stable and unstable equilibria exist. Legend as in Fig. 4.10. See Table 4.5 for the other parameter
values

Box 4.4 Up to three interior equilibria in case B

For Pj = 0 and Pa = LaA/(1+BaA), the adult isocline f2(A) becomes

f2(A) = J =
da

m
A+

da

mKa
A2 +

(La/m)A
1+BaA

(4.21)

while the juvenile one stays as in (4.15). Analogous reasoning can be made
here as in Box 4.3; see also Fig. 4.11 for specific examples.

Case C1. In this case, both juveniles and adults are decimated by predation
through a type II functional response. Graphical analysis of isoclines reveals a pos-
sibility of up to four interior equilibria (Box 4.5). Figure 4.12a exemplifies the sit-
uation with four interior equilibria, showing how with increasing La, initially one
interior equilibrium first bifurcates to two, with a relatively low Allee threshold,
then to four and eventually to two again, now with a relatively high Allee threshold,
before a too high predation pressure prevents persistence of any prey population. Of
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particular importance here is that there is a critical predation pressure L∗
a at which

the Allee threshold undergoes an instant and dramatic increase. As a consequence,
if a population resides at the stable, low-density equilibrium below L∗

a it finds itself
far below the Allee threshold when the predation pressure rises above it (Fig. 4.12a).

Still, an Allee effect with two interior equilibria is the most common pattern we
observed in this case. The combinations of L j and La at which the system undergoes
a saddle-node bifurcation and the extinction equilibrium becomes globally stable are
negatively correlated (Fig. 4.12b). In addition, the higher is the maturation rate m,
the larger is the area in the La−L j parameter space for which the prey population can
persist (not shown). So, whereas for prey with fast maturation predation on juveniles
or adults can be extensive, slowly maturating prey can stand only relatively weak
predation on both classes. In general, figures like Fig. 4.12b can be used to assess
what combinations of La and L j are the most cost-effective for prey eradication,
once cost isolines are overlaid.
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Fig. 4.12 Type II predation on both juveniles and adults. (a) Stable (decreasing parts with increas-
ing La of equilibrium curves) and unstable (increasing parts with increasing La of equilibrium
curves) equilibria of the model (4.12) in the case C1. (b) Areas in the La −L j parameter space in
which different numbers of stable and unstable equilibria exist; logm = 1 (plots for other values of
m are qualitatively similar). (c) A zoomed portion of panel (b). Legend as in Fig. 4.10; CC = only a
unique interior equilibrium exists (stable carrying capacity), 4 = four interior equilibria. See Table
4.5 for the other parameter values
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Box 4.5 Up to three interior equilibria in case C1

For Pj = L jJ/(1+B jJ) and Pa = LaA/(1+BaA), the system of isoclines be-
comes

f1( j) = A =
m+d j

b
J+

d j

bK j
J2 +

(L j/b)J
1+B jJ

J =
da

m
A+

da

mKa
A2 +

(La/m)A
1+BaA

(4.22)

Now, isoclines in their most complex form are of the concave-convex and
convex-concave shape, respectively. Because of this, the model (4.12) can
have up to four interior equilibria. For specific examples, see Fig. 4.12.

Type III functional response. When only a type III functional response operates
on juveniles or adults, graphical analysis of isoclines shows that the system may
have one or three interior equilibria, if any (Box 4.6; examples given in panels A
and B of Fig. 4.13). We now very shortly present results for the two remaining cases
C2 and C3 in which both age classes of prey are being consumed, one via a type II
functional response and the other via a type III functional response.

Box 4.6 A type III functional response on juveniles or adults

For Pj = L jJ2/(1+B jJ2) and Pa = 0, or Pj = 0 and Pa = LaA2/(1+BaA2), the
model (4.12) can have one or three interior equilibria, if any. This is because,
in the former case, the f2 isocline is a parabolic function rooted in the origin
J = A = 0 and increasing at a decelerating rate, while the f1 isocline is of the
convex-concave-convex shape. Thus, if S1 < S2 (these quantities are defined
in Box 4.2), the isoclines intersect in one or three interior equilibria. If S1 >
S2, on the other hand, they do not intersect at all, since in this case they do
not intersect in the absence of predation, and predation causes a ‘distance’
between the isoclines yet to increase. Hence, we cannot have an Allee effect
in this case.

Case C2. This case covers predators that exploit juveniles via a type II functional
response and adults via a type III functional response. Although up to five interior
equilibria are possible in this case (Box 4.7), for the examined set of parameter val-
ues a predator pit is the most frequent multi-stability pattern, but the scenario with
five interior equilibria is not uncommon (Fig. 4.13). For negligible values of the pre-
dation pressure on adults La, the number of interior equilibria obviously corresponds
to that of the case A, but this may soon change as La increases. For example, the
system with only a unique interior equilibrium at La = 0 may soon possess three in-
terior equilibria, then five, then again three, and finally just one again, this time with
an extremely low prey density (Fig. 4.13a). Allee effects arise when the juveniles
mature slowly and are under heavy predation, in which case the type II functional
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response has a stronger influence on prey population dynamics than the type III one
(Fig. 4.13d). The faster the juveniles mature, the more the system behaves as an
unstructured one and the more the type III functional response dominates. For the
examined parameter set we did not find any situation with four interior equilibria
but this situation may occur for other parameter sets.
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Fig. 4.13 Type II predation on juveniles and type III predation on adults. (a) and (b) Stable (de-
creasing parts with increasing La of equilibrium curves) and unstable (increasing parts with in-
creasing La of equilibrium curves) equilibria of the model (4.12) in the case C2; L j = 55 in (a). (c)
Areas in the m−La parameter space for which different numbers of stable and unstable equilibria
exist; L j = 55. (d) Areas in the m−L j parameter space for which different numbers of stable and
unstable equilibria exist; La = 0.1. Legend as in Fig. 4.10; 5 = five interior equilibria. See Table 4.5
for the other parameter values

Box 4.7 Up to five interior equilibria in case C2

For Pj = L jJ2/(1+B jJ2) and Pa = LaA/(1+BaA), the juvenile isocline f1(J)
becomes

f1(J) = A =
m+d j

b
J+

d j

bK j
J2 +

(L j/b)J2

1+B jJ2 (4.23)
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while the adult one is given by the equation (4.21). Thus, both f1(J) and f2(A)
are increasing functions of J and A, respectively. In addition, the f1(J) isocline
has in its most complex form a convex-concave-convex shape with increasing
J, while the f2(A) isocline has in its most complex form a convex-concave
shape with increasing A. Hence, the model (4.12) can have up to five interior
equilibria.

Case C3. Here predators exhibit a type III functional response with respect to
prey juveniles and a type II functional response with respect to prey adults. And
here as well, up to five positive equilibria are possible (Box 4.8; examples given
in panels A and B of Fig. 4.14). While Allee effects are not surprisingly the most
frequent pattern observed at high maturation rates, scenarios with three and four
interior equilibria are quite common at intermediate maturation rates; low matura-
tion rates give rise to a unique interior equilibrium (Fig. 4.14c). On the contrary, the
scenario with five interior equilibria is relatively rare for the examined set of param-
eter values (Fig. 4.14c). For negligible values of the predation pressure on juveniles
L j, the system is obviously close to that of the case B – also here, the number of
equilibria may quickly change as L j increases. As already emphasized for the case
C1, the scenario with four interior equilibria might have far-reaching consequences
for population management (Fig. 4.14a, dashed line). Although this scenario was
relatively rare in the case C1, it is quite common here.

Box 4.8 Up to five interior equilibria in case C3

The situation here is essentially symmetric to the predation scenario C2. For
Pj = L jJ/(1+B jJ) and Pa = LaA2/(1+BaA2), the juvenile isocline f1(J) is
given by the equation (4.20), while the adult one becomes

f2(A) = J =
da

m
A+

da

mKa
A2 +

(La/m)A2

1+BaA2 (4.24)

Thus, both f1(J) and f2(A) are increasing functions of J and A, respectively.
In addition, the f1(J) isocline has in its most complex form a concave-convex
shape with increasing J, while the f2(A) isocline has in its most complex
form a concave-convex-concave shape with increasing A. Hence, also here,
the model (4.12) can have up to five interior equilibria.

Summary

In this section, we developed a mathematical model to study dynamics of an age-
structured population preyed upon by age-specific, generalist predators. The age-
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Fig. 4.14 Type III predation on juveniles and type II predation on adults. (a) and (b) Stable (de-
creasing parts with increasing La of equilibrium curves) and unstable (increasing parts with in-
creasing La of equilibrium curves) equilibria of the model (4.12) in the case C3; L j = 55 in (a)
and the empty circle marks the location of a branch point, common to all three curves. (c) Areas
in the m−La parameter space in which different numbers of stable and unstable equilibria exist;
L j = 55. (d) Areas in the m−L j parameter space in which different numbers of stable and unstable
equilibria exist; La = 1.5. Legend as in Fig. 4.10. See Table 4.5 for the other parameter values

specific predation on an otherwise logistically growing prey population offered three
frequent types of dynamics: a unique stable interior equilibrium, a strong Allee ef-
fect, and a predator pit. This is partly consistent with what was observed for a lo-
gistically growing, unstructured prey consumed by generalist predators – the strong
Allee effect for type II functional responses (Berec et al, 2007) and the predator
pit for type III functional responses (May, 1977). Indeed, fast maturation causes
the age-structured system to behave nearly as an unstructured one composed only
of adults and predation on adults (if present) thus dominates system dynamics. It
is low or intermediate maturation rates for which novel dynamics emerge. First,
when only one of the prey age classes is consumed, predator pits can occur even for
type II functional responses; we found this outcome more prevalent for predation
on juveniles. Second, in some situations, the strong Allee effects and predator pits
combined to give rise to four or five interior steady states of which two and three,
respectively, were (locally) stable.
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From the pest control perspective, age-specificity of a biocontrol agent and hence
replacement of a strong Allee effect (unstructured model) by a predator pit (age-
structured model) might prevent efficient eradication of invasive pest species (Lieb-
hold and Bascompte, 2003; Liebhold and Tobin, 2008; Boukal and Berec, 2009;
Tobin et al, 2011). For native pests, however, the goal is rather to reduce their levels
below an economic threshold, and this can be equally achieved with the predator
pit if the corresponding low-density equilibrium lies below that threshold. From the
population management perspective in general, the scenario with two interior sta-
ble equilibria, two interior unstable equilibria, and the stable extinction equilibrium
may have far-reaching consequences for the population persistence or extinction.
When the prey population is at the lower interior stable equilibrium and, as pre-
dation pressure increases, this equilibrium vanishes before the upper interior stable
equilibrium does, then the Allee threshold undergoes an instant dramatic increase if
the predation pressure is sufficiently enhanced (Fig. 4.12). The change in the preda-
tion pressure itself can however be relatively small. The prey population formerly
in a stable (interior) equilibrium suddenly occurs far below the Allee threshold and
is doomed to extinction. Hence, further release or immigration of a relatively small
amount of predators may cause the system to collapse.

Since Allee effects in prey may result from a type II functional response of gen-
eralist predators in an unstructured prey population (Gascoigne and Lipcius, 2004;
Berec et al, 2007), one of our main goals in this section was to explore how preva-
lent is this phenomenon in a more realistic, age-structured prey population con-
sumed by age-specific predators. Strong Allee effects occurred for all combinations
of functional responses that we considered. Not surprisingly, strong Allee effects
have been predominantly observed where adults were consumed via a type II func-
tional response (cases B, C1 and C3), especially at high maturation rates at which
the age-structured system is close to an unstructured one (see above), but they were
observed also in cases A and C2 if maturation rates were low and the effect of pre-
dation on adults relatively weak. The possibility of total eradication of a pest species
by suppressing its density below a certain extinction threshold thus remains viable
(Liebhold and Bascompte, 2003).

Choice of an optimal biocontrol agent is crucial if a biocontrol action is to be
successful. Our models are simple and therefore the information obtained through
them cannot be used directly for making any predictions or decisions in any particu-
lar system. In particular, an optimal biocontrol agent has to be suitable in a range of
other features (taxonomic compatibility, climatic matching, risk to the environment,
etc.; Hoelmer and Kirk, 2005) and its efficiency must be assessed with respect to
these. Nevertheless, in this section we presented and analyzed some predator-prey
interactions (age-specific generalist predators) that can work well towards the best
biocontrol agent selection if reflected or reduce the success of the biocontrol action
if neglected and that certainly occur in natural ecosystems. In addition, our results
also contribute to general ecological theory, thanks to our novel findings on Allee
effects, predator pits, and their combinations.
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4.3 Does sex-selective predation stabilize or destabilize
predator-prey dynamics?

Since many prey species exhibit sexual dimorphism in appearance, physiology and
behavior, while predators often prefer prey with certain size, conspicuousness, mor-
phology or habits (for a review, see Boukal et al, 2008), sex-selective predation
should be widespread. As a consequence, male- and female-biased predation can
impact population dynamics differently; the net result will be a combination of di-
rect effects due to reduced male and female densities in the prey and indirect effects
due to apparent competition between both sexes of the prey mediated by the shared
predator. Since previous studies showed that population dynamics of sexually re-
producing species are shaped by the mating system and, consequently, by the re-
productive success of individual females (Caswell and Weeks, 1986), and that more
and more species are observed to demonstrate mate-finding Allee effects (Stephens
et al, 1999; Gascoigne et al, 2009; Kramer et al, 2009), we for the first time develop
and analyze mathematical models of predator-prey dynamics that incorporate sex
structure in prey, and the implied sex selectivity of predators and mate-finding Allee
effect in prey. Our models can also describe dynamics of an exploited species in
which the sexes are harvested at different rates, extending the model studied in Cour-
champ et al (2006). Using these simple models, we aim at answering the following
questions: Can sex-selective predation alone stabilize predator-prey dynamics? How
are the (de)stabilizing properties of male- or female-biased predation linked to the
prey mating system? How do the mate-finding Allee effect and other (de)stabilizing
mechanisms influence the results? Finally, we discuss how the observed prevalence
of male-biased predation can relate to our modeling results and what implications
our results can have for exploited species. Throughout this section, all issues related
to males, females and sex-specificity in general always pertain to the prey.

Model development

To expose the consequences of sex-selective predation for predator-prey dynamics,
we first examine a simple extension of the classical Lotka-Volterra predator-prey
model. The model distinguishes between male (m) and female ( f ) prey and unstruc-
tured predator (x) populations. It accounts for a range of prey mating systems and
can include a mate-finding Allee effect in the prey:

dm
dt

=
b
2

p(m, f ,θ) f −dm−λ1mx

d f
dt

=
b
2

p(m, f ,θ) f −d f −λ2 f x

dx
dt

=−Mx+ e1λ1mx+ e2λ2 f x

(4.25)
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We assume that the prey sex ratio at birth is unbiased, the intrinsic mortality rate d
is equal in male and female prey, and the birth rate b per female prey in the absence
of mating constraints is sufficiently high (b/2 > d) such that the prey population
has positive growth rate in the absence of predation and Allee effects. Parameters
λi scale the linear sex-specific functional responses of the predator to male and
female prey, ei denote the efficiencies with which consumed male and female prey
are converted into new predators, and M is the predator per capita mortality rate.
The maximum prey birth rate is scaled by p(m, f ,θ), which is the female mating
rate or the probability that a female becomes fertilized per unit time (McCarthy,
1997; Boukal and Berec, 2002; Courchamp et al, 2008).

Function p incorporates both the mate-finding Allee effect in the prey (through
parameter θ ) and the prey mating system. If mating opportunities are unlimited,
p = 1. For the mate-finding Allee effect and unlimited male mating potential, the
female mating rate can be described by the negative exponential function of male
density (Dennis, 1989; McCarthy, 1997)

p(m, f ,θ) = 1− exp(−m/θ) (4.26)

We refer to this mating function as unlimited polygyny (Table 4.7). Constraints on
male mating potential or social system that lead to ‘limited’ polygyny, monogamy
or polyandry can be described as

p(m, f ,θ) =
hmexp((hm− f )/(hθ))−hm
hmexp((hm− f )/(hθ))− f

(4.27)

in which h represents, depending on the mating system, the number of matings
a male can achieve with different females per unit time or a male’s harem size
(Fig. 4.15). Values of h> 1 correspond to limited polygyny, h= 1 to monogamy, and
h < 1 to polyandry. Formula (4.27) reduces to the frequently used minimum func-
tion p(m, f ) =min(hm/ f ,1) in the absence of the mate-finding Allee effect (θ → 0)
and to (4.26) if the constraints on male mating potential are removed (h → ∞); see
McCarthy (1997) and Bessa-Gomes et al (2004) for details.

To reduce the number of parameters, we scale all population densities in the
model (4.25) by a multiplicative factor λ2 > 0 and introduce the predation bias Λ =
λ1/λ2 (male bias: Λ > 1, female bias: Λ < 1) and the new Allee effect parameter
Θ = λ2θ :

dm
dt

=
b
2

p(m, f ,Θ) f −dm−Λmx

d f
dt

=
b
2

p(m, f ,Θ) f −d f − f x

dx
dt

=−Mx+ e1Λmx+ e2 f x

(4.28)

For simplicity, we keep the same notation m, f , and x for the rescaled state variables
as in the model (4.25): whether we use the model (4.25) or (4.28) is always clear
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Fig. 4.15 Shape of the mating function (4.27). The mating function increases in h, decreases in
θ , and reduces to p(m, f ) = min(hm/ f ,1) in the absence of the mate-finding Allee effect (θ = 0).
Male and female population densities in the figure: m = 1, f = 2

from the context and the only difference in the rescaled mating functions (4.26) and
(4.27) is that Θ replaces θ .

Inevitably, the dynamics and long-term stability of any predator-prey system will
be affected by a multitude of various mechanisms, often with opposite impacts, and
additional mechanisms may overshadow the effect of sex-selective predation. For
example, negative density dependence in prey growth is known to have a strong
stabilizing effect in predator-prey interactions (Murdoch et al, 1998). Therefore, we
also account for negative density dependence in prey growth and different types of
predator-prey interactions (different forms of the functional response). To demon-
strate their additional impact on stability of the predator-prey coexistence equilib-
rium, we will introduce them one by one in the basic model (4.28) with unlimited
polygyny and no Allee effect.

The model (4.28) admits at most three steady states: the extinction equilibrium
E0 = (0,0,0), a prey-only equilibrium E1, and a predator-prey coexistence equilib-
rium E2 (Box 4.9). E1 is unstable and E0 locally stable if Θ > 0. E1 arises as a
direct consequence of the mate-finding Allee effect in prey and defines the Allee
threshold3. E0 is unstable, i.e. both populations can recover from near-extinction,
if there is no Allee effect (Θ = 0). We analyze the model (4.28) numerically using
Matlab 7 (The MathWorks, Inc.) package Matcont (Dhooge et al, 2003), focusing
primarily on stability of the coexistence equilibrium E2. In the following, stability
of the system (4.28) is used synonymously with stability of E2.

3 See Section 3.1: a prey population above the Allee threshold will grow, but a decline to extinction
occurs if the prey falls below.
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Box 4.9 Steady states of the rescaled model (4.28) and their stability

The rescaled model (4.28) admits at most three equilibria. Introducing func-
tions

ΦΘ (m) = p(m,m,Θ)

ΨΘ ,Λ (m) = p
(

m,
1
e2

(M− e1Λm) ,Θ
)

(both of them increase from 0 to 1 as m grows from 0 to ∞) and assuming
positivity of the second argument in ΨΘ ,Λ (m), the equilibria can be written as

E0 = {0,0,0}

E1 = {m,m,0}=
{

Φ−1
Θ

(
2d
b

)
,Φ−1

Θ

(
2d
b

)
,0
}

and

E2 = {m⋆, f ⋆,x⋆}=
{

m⋆,
1
e2
(M− e1Λm⋆),

b
2

ΨΘ ,Λ (m⋆)−d
}

in which m⋆ is the (single) root of the equation

b
2e2

(M−Λm(e1 + e2))ΨΘ ,Λ (m)−dm(1−Λ) = 0

The extinction equilibrium E0 is always unstable in the absence of the Allee
effect (when θ = 0 and hence Θ = 0) since we assume b/2 > d. In that case
the prey-only equilibrium E1 disappears and the prey grows exponentially in
the absence of predators. For the female mating rate functions p considered in
this section, E0 is locally stable and E1 unstable if the Allee effect is present
(Θ > 0).

E2 is meaningful only if m⋆, f ⋆ and x⋆ are all positive, and ceases to exist
when it collides with E1 for a Θ > 0 (saddle-node bifurcation).

We note that the structure of the model (4.28) becomes particularly simple when
mating opportunities are unlimited (p = 1): the male prey influence the female prey
only indirectly through the shared predator. For unlimited mating opportunities, un-
biased predation (Λ = 1), and equal initial densities of the male and female prey,
the model (4.28) is identical to the classic Lotka-Volterra predator-prey model in-
troduced in Chapter 1.
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Model results

Stability of the predator-prey system (4.28) depends primarily on two factors: the
prey mating system and predation bias for one sex of the prey. Male- and female-
biased predation generally have opposite consequences for the stability (Table 4.7).
The results are particularly simple for unlimited polygyny and no Allee effect (i.e.
p = 1): male-biased predation (Λ > 1) leads to stable coexistence, while female-
biased predation (Λ < 1) gives rise to increasing oscillations (Fig. 4.16a).

Mating Mating Female-biased predation Male-biased predation
system function

Unlimited (4.26) I: Extinction II: Coexistence possible
polygyny (stable equilibrium)

Limited (4.27) I: Cycles or extinction II: Coexistence possible
polygyny with 1 < h < ∞ (stable equilibrium or cycles)

Polyandry (4.27) III: Coexistence possible IV: Coexistence possible
with h < 1 (stable equilibrium) but very unlikely

(stable equilibrium or cycles)

Table 4.7 Summary of dynamics of the predator-prey system (4.28) with different types of sex-
selective predation and prey mating systems. Roman numerals correspond to the areas in Fig. 4.17b.
Extinction includes increasing oscillations that drop very close to zero

The outcome for limited polygyny, i.e. finite h> 1 in (4.27), is similar: only male-
biased predation can lead to stable predator-prey equilibrium (area II in Fig. 4.17b
and Table 4.7). In polyandrous prey (h< 1), the roles of both sexes in prey dynamics
are reversed, which is also reflected in the stabilizing role of sex-selective predation.
Only female-biased predation, together with strongly male-biased predation, can
stabilize the predator-prey dynamics (areas III and IV in Fig. 4.17b and Table 4.7).
Otherwise, sex-biased predation leads to stable predator-prey cycles (area I and parts
of areas II, III and IV); often, the troughs of these cycles are very low and the
system thus prone to collapse, e.g. due to the Allee effect in the prey (see below) or
stochasticity.

To illustrate the mechanism causing the observed differences between male- and
female-biased predation, we plot the per capita growth rate of the entire prey popu-
lation,

1
m+ f

d(m+ f )
dt

as a function of the total prey population density m+ f (Fig. 4.16b-c). This illustra-
tion is not relevant for specialized predators that feed only on male or female prey,
which we discuss in Box 4.10. Male-biased predation of polygynous prey gives rise
to an emergent negative density-dependence in prey growth (Fig. 4.16b). Popula-
tions perturbed away from the coexistence equilibrium thus return to it (Fig. 4.16a).
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Fig. 4.16 Illustration of population dynamics and the stabilizing and destabilizing effect of sex-
selective predation in the model (4.28). (a) Two types of dynamics for unlimited polygyny and no
Allee effect. Male-biased predation leads to a stable coexistence equilibrium E2 (thin dashed curve;
Λ = 2); female-biased predation leads to increasing oscillations prone to collapse (thick curve;
Λ = 0.5). Other parameters: b = 3, d = 0.2, e1 = 0.2, e2 = 0.1, M = 1, Θ = 0. Initial conditions:
m = f = 4, x = 1.5. (b) Stabilizing effect of the male-biased predation, shown in the per capita
population growth rate of the total prey population as a function of the total prey density, m+ f ;
data were generated by computing trajectories for ten random initial conditions and selecting points
with predator density close to equilibrium, x ∼ x∗ (results for other fixed predator densities were
similar). Λ = 2, other parameters as in (a). (c) Destabilizing effect of the female-biased predation,
shown as in (b). Λ = 0.5, other parameters as in (a)

On the other hand, female-biased predation of polygynous prey leads to an emer-
gent positive density dependence (i.e. not linked to the Allee effect if the latter is also
present; see below) and thus has a destabilizing effect (Fig. 4.16c). Predators feed-
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Fig. 4.17 Stability of the coexistence equilibrium E2 in the model (4.28). Common parameters:
b = 3, d = 0.2, e1 = 0.2, e2 = 0.1, and M = 1. (a) Combined effect of predation bias and the Allee
effect under unlimited polygyny. E2 is feasible to the left of the solid black curve and locally stable
within the grey area. (b) Combined effect of predation bias and prey mating system with no Allee
effect (Θ = 0). The equilibrium is feasible above h ∼ 0.133 (dashed line) and locally stable within
each grey area. Areas I-IV delimited by lines h = 1 and Λ = 1 correspond to Table 4.7

ing on female prey close to the equilibrium density first increase in numbers, while
the female prey density decreases, leading to poor prey growth and subsequent die-
off of the predators; as predators become scarce, the prey is released from predation
and its density increases above the equilibrium level, followed by predators. These
cycles spiral away from the equilibrium (Fig. 4.16a). The (de)stabilizing effect of
sex-biased predation is caused by the concomitant changes in male prey density: the
model (4.28) with male prey density kept fixed at an arbitrary value, no Allee effect
and unlimited polygyny is a neutrally stable, Lotka-Volterra predator-prey system.

Box 4.10 Predators feeding only on male or female prey

The rescaled model (4.28) does not cover specialized predators that feed on
only one prey sex, and we return to the original unscaled model (4.25) with



142 4 Allee effects in predator-prey interactions

unlimited polygyny to explain the population consequences. First, male prey
will remain constant while female prey and predators will grow indefinitely if
predators feed only on male prey and the mate-finding Allee effect is absent
or limited in magnitude; strong Allee effects always lead to collapse. Sec-
ond, the dynamics of female prey and predator in the model (4.25) reduce
to the classical Lotka-Volterra predator-prey system with neutrally stable cy-
cles surrounding the coexistence equilibrium when predators feed only on
female prey and there is no Allee effect. Any mate-finding Allee effect makes
the equilibrium unstable and leads to collapse. This can be seen as follows.
For predators feeding only on females (λ1 = 0), the characteristic equation
resulting from the Jacobian evaluated at the predator-prey equilibrium E2 is
s3 +a1s2 +a2s+a3 = 0 where

a1 = d − d2e2θλ2

bMµ

a2 =
1

µ2

(
d2e2θλ2(1−µ)(de2θλ2 −bMµ)

bM2

+µ[bM(1−µ)µ −d(e2θλ2(1−µ)+Mµ)])

a3 =
d(de2θλ2 −bMµ)[d(e2θλ2(1−µ)+Mµ)−bM(1−µ)µ ]

bMµ2

Hence,

a1a2 −a3 =−d3e2θλ2(1−µ)(de2θλ2 −bMµ)2

b2M3µ3

That is, a1a2 −a3 < 0 except a biologically irrelevant set of parameters with
de2θλ2 = bMµ . Application of the Routh-Hurwitz criterion yields that the
coexistence equilibrium E2 of the model (4.25) is always unstable if preda-
tors feed only on females. The persistence of predator-prey systems with
both types of specialized predation thus requires additional stabilizing mech-
anisms.

These conclusions do not change substantially in the presence of the mate-finding
Allee effect (Θ > 0). All additional differences in the results can be attributed to
the presence of the Allee threshold. The prey population will fall below it and the
predator-prey system can also collapse for male-biased predation (Λ ≫ 1). In terms
of the unscaled model (4.25), the maximum strength θ of the mate-finding Allee ef-
fect allowing for stable predator-prey coexistence levels off asymptotically at highly
male-biased predation for unlimited polygyny (Fig. 4.18). Such prey populations
with a pronounced mate-finding Allee effect (high θ ) can be stabilized only by
predators that feed very little on females (low λ2) and moderately on males (inter-
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mediate λ1). The stability for limited polygyny and polyandry is limited in a similar
way (Box 4.11). For all mating systems with the Allee effect, coexistence also be-
comes more difficult to achieve as predation strength relative to the intrinsic per
capita growth rate of the prey increases, e.g. through increased prey conversion ef-
ficiency ei which leads to higher predator and lower prey density at the equilibrium
(results not shown).
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Fig. 4.18 Combined effect of predation rates and the Allee effect in the prey in the unscaled model
(4.25). The curves trace a surface separating stable (below) and unstable (above) dynamics; points
with λ1 = λ2 (shown for θ = 0, thin line bottom front) separate male- and female-biased predation.
Other parameters as in Fig. 4.17a

In the final set of results, we summarize the impact of various additional mecha-
nisms on the dynamics. A finite prey carrying capacity stabilizes the dynamics, and
stable coexistence becomes possible also for female-biased predation. The range of
carrying capacities leading to stabilization can change with sex bias in predation
(Box 4.11). A similar effect is observed when the predators are allowed to switch
between the male and female prey to maximize their food intake rate (Box 4.11).
On the contrary, a Holling type II functional response destabilizes the dynamics: as
the handling time of the captured prey increases, the coexistence equilibrium be-
comes unstable also for male-biased predation, which is stabilizing for the linear
functional response, and the predation always leads to unstable dynamics above a
certain critical handling time (Box 4.11).

Box 4.11 Impact of some other mechanisms on predator-prey dynamics

The mate-finding Allee effect
In the main text we show that the mate-finding Allee effect limits the
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range of predation bias for which the coexistence equilibrium can be stable
under unlimited polygyny. Figure 4.19 illustrates the same effect for limited
polygyny and polyandry. The Allee effect will take away cyclic predator-prey
dynamics in which the prey densities fall too low, and stable predator-prey
cycles which emerge for some parameter combinations (Fig. 4.19) thus have
the prey density always bounded away from zero by the Allee threshold.
Decreasing male mating potential in limited polygyny also has a destabilizing
impact on the dynamics; for example, the range of the Allee effect and
predation bias combinations leading to stable predator-prey coexistence is
larger for unlimited than for limited polygyny (Fig. 4.19b; area below the
dotted curve and grey areas, respectively).

Logistic prey growth
We capture the logistic prey growth in the model (4.28) by considering nega-
tive density dependence in prey mortality rate:

dm
dt

=
b
2

p(m, f ,Θ) f −d
(

1+
m+ f

K

)
m−Λmx

d f
dt

=
b
2

p(m, f ,Θ) f −d
(

1+
m+ f

K

)
f − f x

dx
dt

=−Mx+ e1Λmx+ e2 f x

(4.29)

Modeled this way, prey survival rate decreases with total prey density. Carry-
ing capacity of the prey in the absence of predation increases with K irrespec-
tive of the mating system. The stabilizing property of the logistic prey growth
is shown in Fig. 4.20.

The model (4.29) is based on rescaled variables and parameters, which also
pertains to the carrying capacity of the prey: K = λ2k, where k is the unscaled
carrying capacity parameter in the model (4.25). All else being equal, decreas-
ing the predation bias Λ = λ1/λ2 either corresponds to decreasing predation
on male prey or increasing predation on female prey. As Λ decreases from
1 to 0 by lowering the predation on male prey (λ1), the destabilizing effect
of female-biased predation, mediated indirectly by predation on male prey,
weakens and allows for a wider range of carrying capacities to stabilize the
dynamics. In the complete absence of predation on males (λ1 = 0), the model
(4.29) turns into a Lotka-Volterra system with a carrying capacity in the prey,
for which any finite carrying capacity stabilizes the dynamics. On the other
hand, if the predation bias decreases from 1 to 0 through increased preda-
tion on female prey (λ2), the destabilizing effect of female-biased predation
remains the same and the unscaled carrying capacity parameter k yielding a
stable coexistence equilibrium remains approximately constant (Fig. 4.20).
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Fig. 4.19 Impacts of the Allee effect. Stability of the model (4.28) with various mating systems and
the mate-finding Allee effect. Precise extent of parameter combinations leading to stable cycles not
shown. Common parameters: b = 3, d = 0.2, e1 = 0.2, e2 = 0.1, and M = 1. (a) Combined effect
of predation bias and prey mating system with a mate-finding Allee effect (Θ = 0.2). E2 is feasible
approximately above h ∼ 0.133 and below Λ ∼ 200 (thick solid line) and locally stable within
each grey area. Areas I-IV delimited by lines h = 1 and Λ = 1 refer to Table 4.7. (b) Combined
effect of predation bias and the Allee effect for limited polygyny (h = 3), except the dotted curve
that delimits the area of stable E2 for unlimited polygyny (h → ∞)
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Fig. 4.20 Impacts of the upper bound on prey population growth. Stability of the model (4.29)
with unlimited polygyny and no mate-finding Allee effect. Combined effect of predation bias and
parameter K scaling the prey carrying capacity. Other parameters: b = 3, d = 0.2, Θ = 0, e1 = 0.2,
e2 = 0.1, and M = 1. E2 is locally stable within the grey area. Areas I and II delimited by line
Λ = 1 refer to Table 4.7

Behavioral response of the predator (predator switching)
The predation bias for prey sex will no longer be constant if predators can
adjust their foraging mode in response to changing male and female prey den-
sities. One plausible mechanism involves optimal foraging, in which predators
adjust their feeding to maximize their food intake rate (Stephens and Krebs,
1986). In this modification of the model (4.28), we assume that predators use
search images to locate the currently more profitable sex of the prey, i.e. they
aim at maximizing their instantaneous food intake rate e1Λm+ e2 f , and that
the male and female prey search images are traded off against each other. We
denote by u the probability that the predator will use a search image to capture
only males. Optimal foraging theory predicts that predators with perfect infor-
mation about their environment will eat only males (u = 1) when e1Λm > e2 f
and only females (u = 0) when e1Λm < e2 f . We embed this optimal foraging
mode into a more general family of predator switching rules described by the
function

u(m, f ,a) =
1

1+ exp(−a(e1Λm− e2 f ))
(4.30)

In this formula, parameter a gives the slope of the switching: a → ∞ cor-
responds to the optimal foraging mode described above, while a = 0 gives
u = 0.5 irrespective of the male and female prey population densities. We in-
clude this family of predator switching rules in the rescaled model (4.28) as:

dm
dt

=
b
2

p(m, f ,Θ) f −dm−2u(m, f ,a)Λmx

d f
dt

=
b
2

p(m, f ,Θ) f −d f −2(1−u(m, f ,a)) f x

dx
dt

=−Mx+2u(m, f ,a)e1Λmx+2(1−u(m, f ,a))e2 f x

(4.31)



4.3 Does sex-selective predation stabilize or destabilize predator-prey dynamics? 147

In this setting, a = 0 represents the model (4.28). The stabilizing property of
the switching for unlimited polygyny and no mate-finding Allee effect (Θ = 0)
is illustrated in Fig. 4.21. The switching greatly enhances the stability of the
coexistence equilibrium E2 when predation is female-biased. Some combina-
tions of male-biased predation and nearly optimal foraging give rise to a stable
predator-prey limit cycle and hence destabilize E2. This predator-prey cycle
with a limited amplitude, characteristic of optimal foraging (Křivan, 1997),
can also arise for female-biased predation when the switching is sufficiently
steep (high a).
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Fig. 4.21 Impacts of adaptivity in predator feeding decisions. Stability of the model (4.31) with
unlimited polygyny and no mate-finding Allee effect. Combined effect of predation bias and steep-
ness in predator switching on the stability of the coexistence equilibrium E2. Parameters: b = 3,
d = 0.2, Θ = 0, e1 = 0.2, e2 = 0.1, and M = 1. E2 is locally stable within the grey area. Areas I
and II delimited by line Λ = 1 refer to Table 4.7

Holling type II functional response
Holling type II predator functional response is known to destabilize predator-
prey dynamics (Murdoch and Oaten, 1975). We include type II functional
response in the model (4.28), assuming the same handling time τ for male
and female prey:

dm
dt

=
b
2

p(m, f ,Θ) f −dm− Λmx
1+ τΛm+ τ f

d f
dt

=
b
2

p(m, f ,Θ) f −d f − f x
1+ τΛm+ τ f

dx
dt

=−Mx+
e1Λmx+ e2 f x
1+ τΛm+ τ f

(4.32)

In this setting, τ = 0 gives the model (4.28). The increasingly destabilizing
impact of the handling time is shown in Fig. 4.22.
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Fig. 4.22 Impacts of the type II predator functional response. Stability of the model (4.32) with un-
limited polygyny and no mate-finding Allee effect. Combined effect of predation bias and handling
time of the predator with Holling type II functional response. Other parameters: b = 3, d = 0.2,
Θ = 0, e1 = 0.2, e2 = 0.1, and M = 1. E2 is locally stable within the grey area. Areas I and II
delimited by line Λ = 1 refer to Table 4.7

Summary

Using a simple model of a predator feeding on sexually reproducing prey, we show
in this section that sex-selective predation can substantially affect predator-prey dy-
namics. Thus, sex-selective predation should be taken into account along with other,
well-established factors influencing the stability of predator-prey interactions. In the
simplest setting, males affect females only indirectly through apparent competition
via the shared predator. Males can also affect females directly via the mate-finding
Allee effect. We demonstrated that the impact of sex-selective predation depends on
the interplay of the predation bias and the prey mating system. Only predation on
the less limiting prey sex usually yields stable equilibria. This contrasts with pre-
dation on the more limiting prey sex, which usually promotes unstable dynamics
and thus makes the predator-prey system prone to collapse. Male-biased predation
is therefore stabilizing in polygynous prey, while female-biased predation can only
stabilize the dynamics if the prey mating system is polyandrous (Table 4.7). The
presence of the Allee effect in the prey, apart from the collapse of the predator-prey
system if the Allee effect is too strong, does not substantially alter these differences.

These results have general repercussions for predator-prey dynamics: many of
the prey with quantified male-biased predation are likely to be polygynous (Boukal
et al, 2008). For this class of prey, male-biased predation can stabilize the dynamics
even if no other stabilizing mechanisms were present. The results are also puzzling:
none of the prey with quantified female-biased predation is known to be polyandrous
(Boukal et al, 2008). In general, polyandry is uncommon. How can female-biased
predation exist? A value of our model lies in showing, among other things, that other



4.3 Does sex-selective predation stabilize or destabilize predator-prey dynamics? 149

stabilizing mechanisms, such as a finite carrying capacity of the prey or predator
switching, can be essential for long-term coexistence of these predator-prey systems.
In intuitive terms, the negative density dependence in per capita prey growth rate
arising from such mechanisms must override the emergent positive density depen-
dence brought by the female-biased predation. On the other hand, we demonstrate
that the destabilization of the predator-prey dynamics by sex-selective predation can
be further exacerbated, and stabilization overshadowed, by other mechanisms such
as type II predator functional responses.

Bias towards one sex is also common to harvesting of commercially important
species and trophy hunting. Our model can, along with predator-prey dynamics,
describe the temporal dynamics in harvesting/hunting effort and the density of a
harvested/hunted population subject to open-access exploitation (Clark, 1990). Har-
vesting is usually male-biased in ungulates (Milner et al, 2006) and their mating
systems are more or less polygynous; our model therefore predicts that moderate
open-access exploitation tends to have a stabilizing effect. On the other hand, ex-
ploitation of many fish stocks is biased towards larger or more active individuals and
may be therefore female- or male-biased depending on the species and type of gear
(Rowe and Hutchings, 2003; Olsen et al, 2006). Over longer timescales, bias to-
wards either sex might therefore contribute to stability or large fluctuations and col-
lapses in open-access fisheries. We emphasize that our conclusions are only relative
and focus only on the differences between male- and female-biased exploitation.
Sustainability of any exploitation scheme and its impact on the target population
should be assessed on a case-by-case basis, as it will be influenced by a number of
other factors, among them the exploitation intensity, mating system and any Allee
effects in the exploited population.

Finally, we combine an evolutionary and population-dynamical argument to pro-
vide one more possible explanation of the observed skew towards male-biased pre-
dation. Given our theoretical results, it seems plausible that the skew reflects the
evolutionary history of sex-selective predator-prey interactions. The inherent insta-
bility of female-biased predation might have prevented the persistence of such sys-
tems on longer timescales if other counter-acting stabilizing mechanisms have been
absent or weak, leading to population-level selection. Current evidence for this hy-
pothesis is weak due to lack of direct evidence, which should simultaneously include
time series of predator and prey densities, information on the sex bias in predation,
the mating system, and the presence and strength of other mechanisms influencing
prey stability. Data analyzed by Boukal et al (2008) provide only circumstantial ev-
idence: with one exception, none of the reviewed predator-prey systems appears to
involve a single predator specialized on a particular prey and feeding predominately
on females.
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4.4 Impacts of foraging facilitation among predators on
predator-prey dynamics

Predator-prey theory has largely dangled round the concept of predator functional
response, that is, the per capita feeding rate of predators upon their prey (Solomon,
1949; Murdoch and Oaten, 1975; Begon et al, 1990; Berryman, 1992; Gascoigne
and Lipcius, 2004). Despite a great variety of functional response types proposed
in the literature (Jost, 1998; Jeschke et al, 2002), the theory has been dominated
by the Holling type II and linear Lotka-Volterra functional responses (Skalski and
Gilliam, 2001). Whereas the type II functional responses have been most frequently
observed (Hassell et al, 1976; Begon et al, 1990), the linear functional response is
sufficiently simple to deal with mathematically (e.g. Křivan, 2007). In addition, vir-
tually any textbook on population ecology adheres to the traditional classification of
functional responses into three, predator-density-independent, “Holling” types: type
I (initially linear, then constant), type II (decelerating, approaching an asymptote)
and type III (sigmoid, also approaching an asymptote) (Begon et al, 1990; Krebs,
2001; Gascoigne and Lipcius, 2004).

Independence of a predator functional response of predator density actually
means that any single predator affects the prey population growth rate indepen-
dently of its conspecifics, that effects of two or more predators sum up, and that
competition among predators for food occurs only through prey depletion. This is
hardly always true, and even when prey density does not limit predator consump-
tion, the feeding rate is often likely to decrease as the predator density increases; one
then speaks of predator interference. Predator interference or simply interference is
a collective term that embraces a number of specific mechanisms such as behav-
ior typical of territorial animals where individuals ‘waste time’ in direct contests
thereby decreasing time each could otherwise devote to foraging (searching for or
handling prey) or predators that steal already subdued prey from one another (Berec,
2010, and references therein). Despite this variety, a common pattern that appears
to emerge from modeling interference is its stabilizing effect on predator-prey dy-
namics (Rogers and Hassell, 1974; Ruxton et al, 1992; Ruxton, 1995; Huisman and
DeBoer, 1997).

An alternative possibility for the predator functional response to depend on
predator density, largely neglected in current predator-prey theory, is the process ‘in-
verse’ to predator interference, that is, foraging facilitation. In such a case, higher
predator densities give rise to an increased foraging efficiency and hence feeding
rate for any member of the foraging party, at least at lower predator densities. Mech-
anisms of foraging facilitation also vary. They include an increased ability of larger
groups to locate food or prevent kleptoparasites from stealing already subdued prey
(Berec, 2010, and references therein). Any of these mechanisms can, in turn, en-
hance individual reproduction and/or survival of predators, and even enhance sur-
vival of their offspring by teaching them to hunt collectively (Dawson and Man-
nan, 1991). Surprisingly, however, the question of how foraging facilitation affects
predator-prey dynamics has not been addressed yet.
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This section addresses the question of how foraging facilitation modifies predator-
prey dynamics set by a type II functional response. It does so via developing a
novel set of reasonably realistic, predator-density-dependent functional responses
of which the type II functional response as well as common types of predator func-
tional responses with interference are special cases. Although we primarily focus on
foraging facilitation, we explore also the effects of predator interference of various
strength on predator-prey dynamics, as this requires no extra computational time and
makes the picture “symmetric” and complete. In addition, since foraging facilitation
is a component Allee effect (that is, a mechanism invoking an Allee effect) on the
side of predators (an increase in their population or group size leads to an increase
in a fitness component of each of its individual members; Courchamp et al, 2008),
we ask a couple of related questions. Does this component Allee effect generate a
strong Allee effect, that is, an Allee threshold in predators in need to be crossed for
predators to persist? And does it affect overall predator-prey dynamics?

Model development

Setting the stage: guessing effects of foraging facilitation

We start by considering the Rosenzweig-MacArthur predator-prey model

dN
dt

= rN
(

1− N
K

)
− f (N,P)P

dP
dt

= e f (N,P)P−mP
(4.33)

where the functional response f (N,P) is of (Holling) type II:

f (N,P) =
λN

1+hλN
(4.34)

The prey population thus grows logistically in the absence of predators and the
predator population dies out exponentially in the absence of prey. In this model, N
and P are prey and predator density, respectively, r is the intrinsic per capita growth
rate of prey, K is the environmental carrying capacity of prey, m is the per capita
predator mortality rate, and e determines the efficiency with which consumed prey
are transformed into new predators.

Two quantities that characterize consumption of prey by predators are λ , a posi-
tive constant scaling encounter rate of predators with their prey, and h, the predator
handling time of a prey individual. How could these quantities depend on preda-
tor density P if foraging facilitation or predator interference are assumed to act?
When any of these mechanisms operates, then λ might no longer be a constant, but
rather an increasing (facilitation) or decreasing (interference) function of predator
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density P. Similarly, h need not be a constant, but rather a decreasing (facilitation)
or increasing (interference) function of predator density P.

To guess a priori how dependence of parameters λ and h on predator density
might affect predator-prey dynamics, it is illuminating to consider the effects of
leaving h, λ , and K as parameters and see what happens when these parameters are
simply increased or decreased. In model (4.33) with the type II functional response
(4.34), destabilization occurs if the vertical predator isocline N = m/[λ (e− hm)]
moves from the right side of the peak N = (K − 1/(hλ ))/2 in the prey isocline to
the left side. Increasing K moves the peak of the prey isocline to the right and leaves
the predator isocline fixed, which eventually causes them to cross and leads to desta-
bilization – this is the so-called paradox of enrichment (Rosenzweig, 1971). Increas-
ing λ moves the peak of the prey isocline to the right and the predator isocline to
the left, in a way that causes them to cross eventually, so that is also destabilizing.
On the other hand, decreasing h moves both the peak of the prey isocline and the
predator isocline to the left, so it is unclear in general whether it will cause them to
cross. Actually, they may or may not cross depending on the other parameters; in the
former case, the peak of the prey isocline may cross the predator isocline both from
the left and from the right (just plot the above two expressions for h in the interval
(0,1) and e = 1, m = 1, K = 8 and λ = 5). This simple algebraic analysis suggests
that facilitation increasing encounter rate might be destabilizing to predator-prey
dynamics, while facilitation decreasing handling time might not be.

Alternatively, given the proclaimed stabilizing effect of predator interference and
the destabilizing effect of Allee effects, we may hypothesize that foraging facilita-
tion will generally destabilize predator-prey dynamics. With regard to the notion that
predator interference is stabilizing, the most widely studied models for interference
(Beddington-DeAngelis, Hassell-Varley, and ratio-dependent functional responses)
can all be interpreted as arising from encounter rates that decrease with predator
density (see below). Perhaps the conventional wisdom that interference is stabiliz-
ing is due to the fact that there has been little study of models for interference that
cannot be interpreted as arising from reduced encounter rates. Therefore, we also
account for a novel possibility that handling time h might alternatively be affected
by foraging facilitation or predator interference.

Foraging facilitation, predator interference and functional response

A variety of predator-density-dependent functional responses have already been pro-
posed in the literature (Jost, 1998; Skalski and Gilliam, 2001; Jeschke et al, 2002).
Some have been designed as phenomenological extensions of functional responses
dependent only on prey density, some have involved a mechanistic argument, but
virtually all have been developed to model predator interference. The only excep-
tion we are aware of was provided by Cosner et al (1999), who suggested to model
the per capita feeding rate of predators as
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f (N,P) =
λ0NP

1+hλ0NP
(4.35)

for predators that forage in a linear school and aggregate when a school of prey is
encountered. Here h is the time a predator spends handling one prey item and λ0 is
a positive constant.

To assess impacts of foraging facilitation on predator-prey dynamics and make
the presentation as simple as possible at the same time, we would like to come
up with a functional response that is based on some mechanistic arguments, covers
foraging facilitation and predator interference in a unified way, and recovers the type
II functional response (4.34) as well as (some) common functional responses used to
model predator interference as special cases. A starting choice could be functional
responses of the Hassell-Varley type:

f (N,P) =
λ0(N/Pw)

1+hλ0(N/Pw)
(4.36)

where w > 0 corresponds to interference, w = 0 recovers the type II functional re-
sponse (4.34) and w < 0 can describe facilitation; note that w =−1 corresponds to
the functional response (4.35). Note also that this form can be understood as a gen-
eralization of (4.34) with λ = λ0/Pw. The disadvantage of this form is, however,
that for negative w the per capita feeding rate of predators goes to zero as predator
density P goes to zero, and that for positive w this form is close to ratio-dependent
functional responses which are considered by many rather controversial (Abrams
and Ginzburg, 2000, and references therein). Therefore, we generalize this form to
overcome these disadvantages, by considering

λ (P) =
λ0

(b+P)w (4.37)

for some b ≥ 0, where w > 0 corresponds to interference, w = 0 recovers the type II
functional response (4.34), and w < 0 models facilitation. By incorporating (4.37)
into (4.34), the resulting functional response covers the Hassell-Varley functional re-
sponse (4.36) for b = 0, including (4.35) if w = −1 and ratio-dependent functional
responses if w = 1. In addition, it covers the Beddington-DeAngelis functional re-
sponse if b > 0 and w = 1 (Beddington, 1975; DeAngelis et al, 1975). Hence, all
the common functional responses that model predator interference can be viewed
as arising from encounter rates that decrease with increasing predator density. We
refer to the functional response (4.34) with λ defined by the formula (4.37) as the
encounter-driven functional response.

Regarding the handling time h, we analogously define

h(P) = h0(b+P)w (4.38)

for some b ≥ 0. Again, we have facilitation for w < 0, type II functional response
for w = 0, and interference for w > 0. We refer to the functional response (4.34)
with h defined by the formula (4.38) as the handling-driven functional response.
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Apparently, predators cannot profit from facilitation indefinitely, that is, even
if their density gets very high. In such a case, interference is likely to overpower
facilitation. Therefore, the formulas (4.37) and (4.38) with w< 0 can best be applied
once predator density at the coexistence equilibrium or maximum predator density
in case of oscillatory behavior does not grow too high. Otherwise, one should adopt
a more realistic scenario where the effects of predator density on foraging efficiency
are positive up to a critical predator density and negative beyond that value. For the
parameter λ we somewhat arbitrarily define:

λ (P) = A+
B−A

(P/Pc −1)2 +1
(4.39)

where A and B are non-negative constants, with B > A. In this way, λ initially in-
creases with predator density (facilitation) and later starts to decline after the critical
predator density Pc is exceeded (interference). Here, (A+B)/2 is the limit of λ (P)
as P tends to zero, B is the maximum value of λ (P) achieved at P = Pc, and λ (P)
approaches A as P grows large. We refer to the functional response (4.34) with λ
defined by the formula (4.39) as the functional response with humped λ . Similarly,
for the parameter h we define:

h(P) = B− B−A
(P/Pc −1)2 +1

(4.40)

Again, we assume B > A. In this way, h initially decreases with predator density
(facilitation) and later starts to increase after the critical predator density Pc is ex-
ceeded (interference). Here, (A+B)/2 is the limit of h(P) as P tends to zero, A is
the minimum value of h(P) achieved at P = Pc, and h(P) approaches B as P grows
large. We refer to the functional response (4.34) with h defined by the formula (4.40)
as the functional response with humped h.

In what follows, we study dynamics of the predator-prey model (4.33) in which
parameters λ and h of the functional response (4.34) are given in turn by expres-
sions (4.37) to (4.40). For each of these adopted functional responses, we start by
exploring the number of coexistence equilibrium points and how this number varies
with changing model parameters, and then go on to analyze local stability of these
points. For the latter, we use the Matlab 7 (The MathWorks, Inc.) package Matcont
that allows for numerical bifurcation analysis of dynamical systems defined via or-
dinary differential equations (Dhooge et al, 2003). To set up terminology we use
below, we will speak on unstable nodes and unstable foci jointly as unstable equi-
libria and refer to saddle points just as saddle points (so that ‘unstable equilibrium’
never means saddle point throughout the following text).

As we will see below, except for the extinction equilibrium N = 0 and P = 0 and
the prey-only equilibrium N =K and P= 0 that both always exist, for many parame-
ters the predator-prey system (4.33) has either no coexistence equilibrium, a unique
stable coexistence equilibrium or a unique unstable coexistence equilibrium. How-
ever, we also observe a number of multi-equilibrial regimes. One of these regimes
occurs in the domain of predator interference (w > 0) and represents a previously
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unreported phenomenon: predator interference is able to generate multiple stable co-
existence attractors. Another such regime lies in the domain of foraging facilitation
(w < 0) and corresponds to bistability due to a strong Allee effect among predators.

Model results

Dynamical behavior of the model (4.33) with the type II functional response (4.34)
is well known. This model is a prototype for the paradox of enrichment (Rosen-
zweig, 1971): increasing prey carrying capacity K (enrichment) causes the system
to change from the state with a stable coexistence equilibrium to the state with a
stable limit cycle around an unstable coexistence equilibrium.

We now analyze the model (4.33) with the functional response (4.34) and first
the functions (4.37) and (4.38), and then (4.39) and (4.40). Stability analysis of
the extinction equilibrium E0 = (0,0) and the prey-only equilibrium EK = (K,0) is
carried out in Box 4.12. Apart from the functional responses that arise by setting b=
0 in the formulas (4.37) and (4.38), the analysis gives results analogous to all model
variants that we examine: the extinction equilibrium E0 is a saddle point so that
prey and predators cannot go simultaneously extinct, and the prey-only equilibrium
EK is locally stable for sufficiently small K provided that e > mh(P = 0), where
h(P = 0) denotes the handling time when predator density gets very low so that
there are no effects of facilitation or interference, and for any K if e < mh(P =
0). For b = 0 and some values of w, some system trajectories might be attracted
by the extinction equilibrium E0, implying that sometimes it is possible to have
simultaneous extinction of predators and prey even if both are initially present at
positive densities; see Box 4.12 and references therein. Conditions on local stability
of the prey-only equilibrium EK in the case b = 0 are also given in Box 4.12.

Box 4.12 Stability of extinction and prey-only equilibria

The Jacobian corresponding to the model (4.33) with a general functional
response f (N,P) is

J =

r−2rN/K −P
∂ f
∂N

−P
∂ f
∂P

− f

eP
∂ f
∂N

−m+ e
(

P
∂ f
∂P

+ f
)
 (4.41)

For any of the adopted functional response forms, except for b = 0 and w > 0
in the formula (4.37) and b = 0 and w < 0 in the formula (4.38), this Jacobian
evaluated at the extinction equilibrium E0 = (0,0) is

J =

(
r 0
0 −m

)
(4.42)
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Hence, in all these cases E0 is a saddle point – no trajectory can end up in it
unless the system starts with no prey.

For b = 0 and w > 0 in (4.37) and b = 0 and w < 0 in (4.38), the
predator-prey system (4.33) has a singularity at E0. Several authors studied
the predator-prey system (4.33) with the ratio-dependent functional response,
corresponding to b = 0 and w = 1 in (4.37), proving that E0 can be either
a saddle point or an attractor for certain or even for all system trajectories
(Kuang and Beretta, 1998; Jost et al, 1999; Xiao and Ruan, 2001). Whether
this is true also for b = 0 and other positive w in (4.37) and for b = 0 and
w < 0 in (4.38) is so far unknown.

The Jacobian (4.41) evaluated at the prey-only equilibrium EK = (K,0) is

J =

(
−r − f (K,0)
0 −m+ e f (K,0)

)
(4.43)

EK is therefore locally stable (node) if f (K,0) < m/e and a saddle point if
f (K,0)> m/e. From the general functional response,

f (N,P) =
λ (P)N

1+h(P)λ (P)N

we have

f (K,0) =
λ (P)K

1+λ (P)h(P)K

∣∣∣∣
P=0

This implies that except for b = 0 in the formulas (4.37) and (4.38), EK is
locally stable (i) if K < m/[λ (0)(e−mh(0))] when e > mh(0), and (ii) for any
positive K provided that e < mh(0). If K > m/[λ (0)(e−mh(0))] in the case
(i) then EK is a saddle point. In these conditions, λ (0) = λ0/bw and h(0) = h
for the encounter-driven functional response (4.37), λ (0) = λ and h(0) =
h0bw for the handling-driven functional response (4.38), λ (0) = (A+B)/2
and h(0) = h for the functional response with humped λ (4.39), and λ (0) = λ
and h(0) = (A+B)/2 for the functional response with humped h (4.40). For
b = 0 in the formulas (4.37) and (4.38), results are summarized in Table 4.8.

Expr. w f (K,0) Stability of EK

(4.37) > 0 1/h stable if mh > e, saddle point if mh < e
(4.37) < 0 0 always stable
(4.38) > 0 λK stable if K < m/(λe), saddle point if K > m/(λe)
(4.38) < 0 0 always stable

Table 4.8 Local stability of the prey-only equilibrium EK when b = 0 in the formulas (4.37) and
(4.38)
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To calculate the number of coexistence equilibria, we set the right-hand sides
of the system (4.33) to zero and solve the resulting system of equations. Solving
the second equation for the functional response and inserting the result to the first
equation relates P to N as

P =
e
m

rN
(

1− N
K

)
(4.44)

This expression defines a concave parabolic curve crossing the prey density axis at
N = 0 and N = K and attaining the maximum (erK)/(4m) at N = K/2. Inserting
the general form of our functional response

f (N,P) =
λ (P)N

1+h(P)λ (P)N
(4.45)

to the second equation then relates N to P as

N =
m

λ (P)[e−mh(P)]
(4.46)

Analyzing properties of the function (4.46) for each of the functional responses we
consider allows us to find the number of coexistence equilibria and how this number
varies with model parameters.

Encounter-driven functional response

For the encounter-driven functional response, we have λ (P) = λ0(b + P)−w and
h(P) = h. Equation (4.46) thus becomes

N =
m(b+P)w

λ0(e−mh)
(4.47)

Obviously, e<mh results in no coexistence equilibrium and we thus assume e>mh.
For w = 0, this formula reduces to N = m/(λ0(e−mh)) which is a vertical line
that intersects the function (4.44) just once provided that m/(λ0(e−mh)) < K and
does not intersect it otherwise. Not surprisingly, we thus have one or no coexistence
equilibrium, respectively, for the type II functional response (4.34). For w ̸= 0, we
rewrite (4.47) as

P =

[
λ0(e−mh)

m

]1/w

N1/w −b (4.48)

Specifically, for w = 1 and b > 0 (the Beddington-DeAngelis functional response),
(4.48) becomes an increasing linear function of N, starting at P =−b for N = 0 and
thus crossing (4.44) at no or just one point; the latter occurs if P(N = K) = λ0(e−
mh)K/m− b > 0. The Beddington-DeAngelis functional response thus gives rise
to either no coexistence equilibrium or a unique coexistence equilibrium; multiple
coexistence equilibria cannot occur.
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For 0 < w < 1 or 1/w > 1, the function (4.48) is convex and starting at P = −b
for N = 0. Thus, the system (4.33) can have at most one coexistence equilibrium,
as at most one intersection of (4.48) with (4.44) is possible in this case. For w > 1
or (0 < 1/w < 1, (4.48) defines a concave function that starts at P =−b for N = 0.
Depending on its exact shape, it may intersect the function (4.44) at no, one or
three points with positive N and P and we thus expect no, one or three coexistence
equilibria in this case, depending on exact parameter values. Sufficient conditions
on model parameters for the most interesting case, three co-occurring coexistence
equilibrium points, are given in Box 4.13.

Box 4.13 Sufficient conditions for multiple coexistence equilibria

Three coexistence equilibria in case w > 1
Irrespectively of the value of w > 1, all curves defined by the equation (4.48)
cross the point P̂ = 1− b at N̂ = m/[λ0(e−mh)]. As (4.48) is an increasing
function of N, starting at P=−b for N = 0, then to get three intersections with
function (4.44), it is sufficient to require that P̂ lies above the increasing part
of (4.44) and the value of P at N = K/2, where (4.44) attains its maximum
(erK)/(4m), is lower than this maximum. These requirements result in the
following two respective conditions on model parameters:

er
m

N̂
(

1− N̂
K

)
< P̂ = 1−b

[
λ0(e−mh)

m
K
2

]1/w

−b <
erK
4m

An example of this situation is plotted in Fig. 4.23.

0 5 10
0

1

2

3

4

5

Prey density N

P
re

da
to

r 
de

ns
ity

 P

Fig. 4.23 An example of three co-occurring coexistence equilibria for the encounter-driven func-
tional response and predator interference. Solid line = eq. (4.48), dashed line = eq. (4.44). Parame-
ters: w = 4, r = 2, K = 8, e = 1, m = 1, h = 0.25, λ0 = 5, b = 0.4
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Two coexistence equilibria in case w < 0
For w < 0, the equation (4.49) is a decreasing, convex function. To get two
intersections with the function (4.44), it is thus sufficient to require that the
value of (4.49) at N = K is positive and the value of P at N = K/2 is lower
than (erK)/(4m). That is:[

m
λ0(e−mh)K

]−1/w

−b > 0

[
m

λ0(e−mh)K/2

]−1/w

−b <
erK
4m

An example of this situation is plotted in Fig. 4.24.
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Fig. 4.24 An example of two co-occurring coexistence equilibria for the encounter-driven func-
tional response and foraging facilitation. Solid line = eq. (4.49), dashed line = eq. (4.44). Parame-
ters: w =−6, r = 2, K = 8, e = 1, m = 1, h = 0.25, λ0 = 5, b = 0.4

Finally, for w < 0, that is, foraging facilitation, we may rewrite (4.47) as

P =

[
m

λ0(e−mh)

]−1/w 1
N−1/w −b (4.49)

where −1/w > 0. For positive N, (4.49) is thus a decreasing, convex function for
which P → ∞ as N → 0 from the right and P →−b as N → ∞. Such a function may
cross (4.44) at most twice; we thus expect no, one or two coexistence equilibria in
this case. Sufficient conditions on model parameters that give rise to two coexistence
equilibrium points are given in Box 4.13.

Figure 4.25a-b shows an example of how the number and character of coexis-
tence equilibria change with w. For sufficiently low negative w, we observe a strong
Allee effect among predators – a coexistence equilibrium corresponding to a sad-
dle point separates the stable prey-only equilibrium from another coexistence equi-
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librium; this latter coexistence equilibrium is in this particular case unstable and
surrounded by a stable limit cycle. This bistability regime including both predator
extinction and predator persistence is a direct consequence of the component Allee
effect among predators due to foraging facilitation.

For high enough positive w, there is another multi-equilibrial regime where a sad-
dle point separates either two stable coexistence equilibria or one stable coexistence
equilibrium and one unstable coexistence equilibrium (Fig. 4.25a-b). The observa-
tion of multiple coexistence equilibria as a consequence of predator interference
has not been reported in the literature yet. This ‘omission’ most likely stems from
the fact that the flagship model of predator interference has been the Beddington-
DeAngelis functional response (for which we show above that it gives rise to at
most one coexistence equilibrium). In between the areas with multiple equilibria
the predator-prey system (4.33) possesses either a unique stable coexistence equi-
librium or a unique unstable coexistence equilibrium (Fig. 4.25).

Exploration of predator-prey dynamics with respect to some parameter pairs is
summarized in Fig. 4.25c-d. Most importantly, we observe that the multi-equilibrial
regimes are by no means marginal to the explored system but rather cover significant
portions of the parameter space. This figure can also help us address the question
whether foraging facilitation stabilizes or destabilizes predator-prey dynamics. Let
us assess the (de)stabilizing effect of foraging facilitation according to how the value
of prey carrying capacity K at which the paradox of enrichment originates changes
with the degree of facilitation w. Figure 4.25c shows that in this particular case of
encounter-driven functional response, increasing the degree of foraging facilitation
(i.e. decreasing w) destabilizes predator-prey dynamics, in agreement with our ex-
pectation. In addition, there is a wide range of parameters in the negative w domain
for which predators suffer a strong Allee effect and hence predator extinction is a
locally stable event; this can also be viewed as destabilizing to predator-prey dy-
namics. Looking at positive w, we observe that increasing the degree of predator in-
terference stabilizes population dynamics until multiple equilibria arise (Fig. 4.25c).

Handling-driven functional response

For the handling-driven functional response, we have λ (P) = λ and h(P) = h0(b+
P)w. Equation (4.46) now becomes

N =
m

λ (e−mh0(b+P)w)
(4.50)

Let us start with w > 0, that is, predator interference. It can be shown by standard
tools of mathematical analysis that N as a function of P is increasing for all P >−b
for which it is formally defined, and that it has a point of discontinuity at P for
which e − mh0(b + P)w vanishes, i.e. at P∗ = (e/mh0)

1/w − b. In addition, N →
N∗ = m/[λ (e−mh0bw)] as P → 0, N → 0 from the left as P → ∞, N → ∞ as P → P∗

from the left and N → −∞ as P → P∗ from the right. The function (4.50) is thus
composed of two hyperbolic branches, one of which (P > P∗) lies outside the first
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Fig. 4.25 Effects of the encounter-driven functional response (4.37) on predator-prey dynamics.
(a) and (b) Prey and predator equilibrium densities as functions of the degree of foraging facil-
itation or predator interference. Solid line = locally stable equilibrium, dashed line = unstable
equilibrium, dotted line = saddle point. Grey dots indicate transition points between the equilib-
rium stability types. Parameters: r = 2, K = 8, e = 1, m = 1, h = 0.25, λ0 = 5, b = 0.5. (c) and
(d) Bifurcation diagrams for selected pairs of model parameters. Legend: 1 = a unique unstable
coexistence equilibrium, 2 = strong Allee effect: predator extinction equilibrium co-occurs with a
stable limit cycle surrounding an unstable coexistence equilibrium, 3 = a unique stable coexistence
equilibrium, 4 = a stable coexistence equilibrium co-occurs with an unstable one with the two
separated by a saddle point, 5 = two stable coexistence equilibria co-occur and are separated by a
saddle point, 6 = strong Allee effect: predator extinction equilibrium coexists with a stable coex-
istence equilibrium, 7 = predator extinction is globally stable. Solid curves represent the curves of
Hopf bifurcation points, dashed curves are the curves of limit points, and dotted curves represent
the curves of branch points. Parameters: r = 2, K = 8 (d), e = 1, m = 1, h = 0.25, λ0 = 5, b = 0.5
(c)

quadrant with positive N and P (see Box 4.14 for an example). This implies that
P as a function of positive N for the other branch (inverse function to (4.50)) is an
increasing, concave function that is rooted at N∗ (where P= 0) and approaches P∗ as
N grows large. Since N∗ > 0 if and only if P∗ > 0, (4.50) can intersect the function
(4.44) at no, one or three points with positive N and P. Sufficient conditions on
model parameters for three co-occurring coexistence equilibrium points are given
in Box 4.14.
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Box 4.14 Sufficient conditions for multiple coexistence equilibria

Three coexistence equilibria in case w > 0
Irrespectively of the value of w > 0, all curves defined by the equation (4.50)
cross the point N̂ = m/[λ (e−mh0)] at P̂ = 1−b. As we showed that (4.50),
viewed as a function P of positive N, is an increasing, concave function rooted
at N∗ =m/[λ (e−mh0bw)] (where P= 0) and approaching P∗ =(e/mh0)

1/w−
b as N grows large, then to get three intersections with the function (4.44), it
is sufficient to require that P̂ lies above the increasing part of (4.44) and at
the same time the value of P∗ is lower than the value of (4.44) evaluated at
N = K/2, where (4.44) attains its maximum (erK)/(4m). These requirements
result in the following two respective conditions on model parameters:

er
m

N̂
(

1− N̂
K

)
< P̂ = 1−b

P∗ = (e/mh0)
1/w −b <

erK
4m

An example of this situation is plotted in Fig. 4.26.
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Fig. 4.26 An example of three co-occurring coexistence equilibria for the handling-driven func-
tional response and predator interference. Solid line = eq. (4.50), dashed line = eq. (4.44). Parame-
ters: w = 4, r = 2, K = 8, e = 1, m = 1, h0 = 0.25, λ = 5, b = 0.2

Two coexistence equilibria in case w < 0
For w < 0, the equation (4.52), viewed as a function P of positive N, is a de-
creasing, convex function. We also know that N → N∗ = m/(λe) from above
as P → ∞ and that N → ∞ as P → P∗ = (e/mh0)

−1/w −b from the right. We
may therefore consider only the case N > m/(λe), which allows us to rewrite
(4.52) as

P =

(
mh0

e−m/(λN)

)−1/w

−b (4.51)
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Then, to get two intersections with the function (4.44), it is sufficient to require
that the value of (4.51) at N =K is positive and the value of (4.51) at N =K/2,
where (4.44) attains its maximum (erK)/(4m), is lower than this maximum.
That is: (

mh0

e−m/(λK)

)−1/w

−b > 0

(
mh0

e−m/(λK/2)

)−1/w

−b <
erK
4m

An example of this situation is plotted in Fig. 4.27.
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Fig. 4.27 An example of two co-occurring coexistence equilibria for the handling-driven func-
tional response and foraging facilitation. Solid line = eq. (4.51), dashed line = eq. (4.44). Parame-
ters: w =−6, r = 2, K = 8, e = 1, m = 1, h0 = 0.25, λ = 5, b = 0.2

For w < 0, that is, foraging facilitation, we may rewrite (4.50) as

N =
m

λ (e−mh0/(b+P)−w)
(4.52)

with −w > 0. One can easily show that N → N∗ = m/(λe) as P → ∞, N → 0
as P → −b from the right, N → −∞ as P → P∗ from the left, where now P∗ =
(e/mh0)

−1/w − b, and N → ∞ as P → P∗ from the right. In addition, N as a func-
tion of P is a decreasing function for all admissible P > −b. This implies that the
function (4.52) is formed by two hyperbolic branches, one of which (P < P∗) lies
outside the first quadrant (see Box 4.14 for an example). Therefore, P as a function
of positive N for the other branch (inverse function to (4.52)) is a decreasing, convex
function, and can thus intersect function (4.44) at most twice – we thus have up to
two coexistence equilibria. Sufficient conditions on model parameters that give rise
to two coexistence equilibrium points are given in Box 4.14.

Figure 4.28a-b shows an example of how the number and character of coexis-
tence equilibria change with w. As in the previous case, also here we observe a
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strong Allee effect for sufficiently low negative w. Similarly to the previous case,
we also observe a parameter range for which there are three coexistence equilibria
in the interference domain (w > 0). The existence of these multi-equilibrial regimes
is thus independent of what parameter in the functional response is actually af-
fected by predator density, and makes our conclusions more robust and appealing.
In between the areas with multiple equilibria and in this case also for some model
parameters and strong enough predator interference (high w > 0) the predator-prey
system (4.33) possesses either a unique stable coexistence equilibrium or a unique
unstable coexistence equilibrium (Fig. 4.28).

Exploration of predator-prey dynamics with respect to some parameter pairs is
summarized in Fig. 4.28c-d. Also in this case, the multi-equilibrial regimes are by
no means marginal to the explored system but rather cover a significant portion of
the parameter space. Likewise, Fig. 4.28c shows that as w decreases, the paradox of
enrichment occurs at still lower values of K, and there is a wide range of parameters
for which predators suffer a strong Allee effect. Therefore, also here, increasing the
degree of foraging facilitation (decreasing w) destabilizes predator-prey dynamics,
and increasing the degree of predator interference (increasing w) stabilizes predator-
prey dynamics until multiple equilibria arise.

Functional response with humped λ

For the functional response with humped λ , we have

λ (P) = A+
B−A

(P/Pc −1)2 +1
(4.53)

with B > A, and h(P) = h. Equation (4.46) now becomes

N =
m

e−mh

/[
A+

B−A
(P/Pc −1)2 +1

]
(4.54)

We assume that e > mh; otherwise, N < 0 and there is no coexistence equilibrium.
This implies N = m

e−mh

/(A+B
2

)
at P = 0 and N → m

(e−mh)A as P → ∞. Moreover, by
calculating dN/dP one can show that the function (4.54) decreases for P < Pc and
increases for P>Pc; at P=Pc, it attains the minimum value N(Pc) =m/[(e−mh)B].
As a result, (4.54) can cross the function (4.44) at no, one, two or three points with
positive N and P. Sufficient conditions on model parameters that give rise to two or
three coexistence equilibrium points are given in Box 4.15.

Box 4.15 Sufficient conditions for multiple coexistence equilibria

Three coexistence equilibria
We already know that the function (4.54) attains its minimum value N(Pc) =
m/[(e−mh)B] at P = Pc. To get three intersections with the function (4.44),
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Fig. 4.28 Effects of the handling-driven functional response (4.38) on predator-prey dynamics. (a)
and (b) Prey and predator equilibrium densities as functions of the degree of foraging facilitation
or predator interference. Legend as in Fig. 4.25. Parameters: r = 2, K = 8, e = 1, m = 1, h0 = 0.25,
λ = 5, b = 0.5. (c) and (d) Bifurcation diagrams for selected pairs of model parameters. Legend as
in Fig. 4.25. Parameters: r = 2, K = 8 (d), e = 1, m = 1, h0 = 0.25, λ = 5, b = 0.5 (c)

it thus suffices to require that Pc lies above the increasing part of (4.44) and at
the same time the value of (4.54) evaluated at N = K/2, where (4.44) attains
its maximum (erK)/(4m), is lower than this maximum. These requirements
result in the following two respective conditions on model parameters:

Pc >
er
m

N(Pc)

(
1− N(Pc)

K

)

max
[

solution
(

m
e−mh

/[
A+

B−A
(P/Pc −1)2 +1

]
=

K
2
,P
)]

<
erK
4m

where the symbol solution( f (x,y, . . .) = c,x) denotes the set of solutions of an
equation f (x,y, . . .) = c with respect to variable x; c is a constant. An example
of this situation is plotted in Fig. 4.29.
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Fig. 4.29 An example of three co-occurring coexistence equilibria for the functional response with
humped λ . Solid line = eq. (4.54), dashed line = eq. (4.44). Parameters: r = 2, K = 8, e = 1, m = 1,
h = 0.25, A = 0.2, B = 6, Pc = 0.6

Two coexistence equilibria
To get two intersections with the function (4.44), it is sufficient to require that
the value of (4.54) at P = 0 is higher than K and that Pc lies below (4.44). This
gives:

K < N(P = 0) =
m

e−mh

/(
A+B

2

)
Pc <

er
m

N(Pc)

(
1− N(Pc)

K

)
An example of this situation is plotted in Fig. 4.30.
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Fig. 4.30 An example of two co-occurring coexistence equilibria for the functional response with
humped λ . Solid line = eq. (4.54), dashed line = eq. (4.44). Parameters: r = 2, K = 8, e = 1, m = 1,
h = 0.25, A = 0.02, B = 0.3, Pc = 0.6
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Figure 4.31 exemplifies behavior of the predator-prey system (4.33) and the func-
tional response with humped λ , with respect to the peak height B. Parameter B can
here be viewed as a degree of foraging facilitation or predator interference – increas-
ing (decreasing) B means that prey encounter rate by predators increases (decreases)
for all predator densities P. The system is stable for low B and any K and for higher
B as soon as K is low (Fig. 4.28c). In addition, multiple equilibria may occur with
either two stable equilibria or one stable and one unstable equilibrium when K gets
sufficiently high and B attains some intermediate values (Fig. 4.31c). Although we
do not observe the bistability regime corresponding to a strong Allee effect among
predators for the particular choice of model parameters used in Fig. 4.31, we know
from Box 4.15 that such a regime exists: when there are just two coexistence equilib-
ria, the one with lower predator density is always a saddle point while the one with
higher predator density is either a stable equilibrium or an unstable equilibrium sur-
rounded by a stable limit cycle; moreover, the prey-only equilibrium is in this case
stable (numerical results not shown). Altogether, in the case of the functional re-
sponse with humped λ , the paradox-of-enrichment curve in Fig. 4.31c suggests that
increasing foraging facilitation (predator interference) reduces (enhances) stability
of the predator-prey system (4.33).

Functional response with humped h

For the functional response with humped h, we have λ (P) = λ and

h(P) = B− B−A
(P/Pc −1)2 +1

(4.55)

with B > A. Equation (4.46) thus becomes

N =
m
λ

/(
e−m

[
B− B−A

(P/Pc −1)2 +1

])
(4.56)

This implies N = m/[λ (e−m[(A+B)/2])] at P = 0 and N → m/[λ (e−mB)] as
P → ∞. Moreover, by calculating dN/dP one can show that the function (4.56)
decreases when P < Pc and increases when P > Pc; at P = Pc, it attains the minimum
value N(Pc) =

m
λ (e−mA) . In addition, the function (4.56) has two discontinuity points

at P = Pc(1±
√
(e/m−A)/(B− e/m)) provided that A < e/m and B > e/m, and no

discontinuity points otherwise (B < e/m or A > e/m). If there are no discontinuity
points, (4.56) has the same qualitative form as in the previous case of humped λ ,
and the predator-prey system (4.33) can thus have up to three coexistence equilibria.
Note, however, that for A > e/m and hence B > e/m the above limits imply that N in
(4.56) is always negative, so that there are no coexistence equilibria in this particular
case.

If there are two discontinuity points (A < e/m and B > e/m), the function (4.56)
is composed of two hyperbolic branches that surround a parabolic curve (see Box
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Fig. 4.31 Effects of the functional response with humped λ on predator-prey dynamics. (a) and
(b) Prey and predator equilibrium densities as functions of the degree of foraging facilitation or
predator interference; there is an inaccessible domain to the left of the vertical solid line as B < A
there. Legend as in Fig. 4.25. Parameters: r = 2, K = 8, e = 1, m = 1, h = 0.25, A = 0.2, Pc = 0.6.
(c) and (d) Bifurcation diagrams for selected pairs of model parameters. Legend as in Fig. 4.25, 8 =
inaccessible domain as B < A there. Parameters: r = 2, K = 8 (d), e = 1, m = 1, h = 0.25, A = 0.2,
Pc = 0.6 (c)

4.16 for an example). It can be shown analytically that none of the hyperbolic
branches can cross the function (4.44). Therefore, the system can have up to four
coexistence equilibrium points that are intersections of the parabolic curve and
the function (4.44), depending on exact parameter values. Sufficient conditions on
model parameters that give rise to two, three or even four coexistence equilibria are
given in Box 4.16.

Box 4.16 Sufficient conditions for multiple coexistence equilibria

If B < e/m and hence A < e/m then we showed in the main text that the
function (4.56) has qualitatively the same shape as the function (4.54). Hence,
sufficient conditions for the co-occurrence of three or two coexistence equi-
libria can be derived along the same lines as in Box 4.14. In what follows, we
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assume that B > e/m and A < e/m, and give sufficient conditions for the si-
multaneous existence of four, three or two coexistence equilibria. For the case
B > e/m and A < e/m, we present a figure first and only then derive the condi-
tions. The function is composed of two hyperbolic branches in between which
there is a parabolic-like form (Figs. 4.32-4.34); the points of discontinuity at
which hyperbolic branches ‘pass’ to a parabolic form are

P1 = Pc(1+
√
(e/m−A)/(B− e/m))

and
P2 = Pc(1−

√
(e/m−A)/(B− e/m))

Four coexistence equilibria
We already know that the function (4.56) attains its minimum value N(Pc) =
m/[λ (e−mA)] at P = Pc. To get four intersections with the function (4.44), it
thus suffices to require that Pc lies above the increasing part of (4.44) and at
the same time P2 > 0 and P1 is lower than (erK)/(4m), the maximum value
attained by (4.44). These requirements result in the following three respective
conditions on model parameters:

Pc >
er
m

N(Pc)

(
1− N(Pc)

K

)

P1 = Pc(1−
√
(e/m−A)/(B− e/m))<

erK
4m

P2 = Pc(1−
√

(e/m−A)/(B− e/m))> 0

An example of this situation is plotted in Fig. 4.32.
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Fig. 4.32 An example of four co-occurring coexistence equilibria for the functional response with
humped h. Solid line = eq. (4.56), dashed line = eq. (4.44). Parameters: r = 2, K = 8, e = 1, m = 1,
λ = 5, A = 0.2, B = 2, Pc = 0.7. Note that (4.56) defines function N as it depends on P
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Three coexistence equilibria
To get three intersections with the function (4.44), it suffices to require that Pc
lies above the increasing part of (4.44), that P1 is lower than (erK)/(4m), the
maximum value attained by (4.44), and that the lower P at which (4.56) equals
K is lower than 0. These requirements result in the following three respective
conditions on model parameters:

Pc >
er
m

N(Pc)

(
1− N(Pc)

K

)

P1 = Pc(1−
√
(e/m−A)/(B− e/m))<

erK
4m

min
[

solution
(

m
λ

/(
e−m

[
B− B−A

(P/Pc −1)2 +1

])
= K,P

)]
< 0

An example of this situation is plotted in Fig. 4.33.
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Fig. 4.33 An example of three co-occurring coexistence equilibria for the functional response with
humped h. Solid line = eq. (4.56), dashed line = eq. (4.44). Parameters: r = 2, K = 8, e = 1, m = 1,
λ = 5, A = 0.2, B = 1.3, Pc = 0.7

Two coexistence equilibria
There are actually two qualitatively different possibilities of how to get two
coexistence equilibria. Firstly, we may modify the case with four equilibria
and require that Pc lies below (4.44) and at the same time P2 > 0 and P1 is
lower than (erK)/(4m), the maximum value attained by (4.44). These require-
ments result in the following three respective conditions on model parameters:

Pc <
er
m

N(Pc)

(
1− N(Pc)

K

)

P1 = Pc(1−
√
(e/m−A)/(B− e/m))<

erK
4m
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P2 = Pc(1−
√

(e/m−A)/(B− e/m))> 0

An example of this situation is plotted in Fig. 4.34a. Alternatively, we may
require that Pc lies above the increasing part of (4.44), P1 is sufficiently large
and P2 is sufficiently low yet positive; rigorous conditions are a bit nasty in
this case and are not given explicitly. An example of this situation is plotted
in Fig. 4.34b.
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Fig. 4.34 Examples of two co-occurring coexistence equilibria for the functional response with
humped h. Solid line = eq. (4.56), dashed line = eq. (4.44). Parameters: (a) r = 2, K = 8, e = 1,
m = 1, λ = 5, A = 0.8, B = 2, Pc = 0.7. (b) r = 2, K = 8, e = 1, m = 1, λ = 5, A = 0.2, B = 2,
Pc = 2.5

Figure 4.35 exemplifies behavior of the predator-prey system (4.33) and the func-
tional response with humped h, with respect to the trough depth A. Parameter A can
here be viewed as a degree of foraging facilitation or predator interference – decreas-
ing (increasing) A means that predator handling time of prey h decreases (increases)
for all predator densities P. For B < e/m, Fig. 4.35c shows that the system is stable
for high A (note that we require A < B < e/m) and low to medium K, and for almost
any A as soon as K is low. A bistable pattern may occur when A is relatively low
and K gets sufficiently high. The bistability regime corresponding to a strong Allee
effect among predators occurs for high enough A and low enough K (Fig. 4.35c).

Regarding (de)stabilizing effects of foraging facilitation, the picture is not as
straightforward here as in the previous cases. As A decreases, the curve connect-
ing the values of K at which the paradox of enrichment originates does not decline
monotonously (Fig. 4.35c). So, for some values of A, as K increases the coexistence
equilibrium changes from stable to unstable to stable to again unstable. For other
values of A, system dynamics change from demonstrating the strong Allee effect
to a unique stable equilibrium to a unique unstable equilibrium. Both these routes
hardly describe a destabilizing property of foraging facilitation. For low values of A,
however, the paradox-of-enrichment curve has the form expected when foraging fa-
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cilitation would be destabilizing. Looked at from another perspective, for low values
of K, decreasing A first stabilizes the system from a strong Allee effect to a unique
stable equilibrium and destabilizes it later on from a unique stable equilibrium to a
unique unstable equilibrium. For high K, on the other hand, we observe a destabi-
lizing route: from a unique stable equilibrium to a unique unstable equilibrium to
two unstable equilibria. Hence, the impact of foraging facilitation on dynamics of
the predator-prey system (4.33) is ambiguous here.
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Fig. 4.35 Effects of the functional response with humped h on predator-prey dynamics. (a) and
(b) Prey and predator equilibrium densities as functions of the degree of foraging facilitation or
predator interference. Legend as in Fig. 4.25. Parameters: r = 2, K = 6, e = 1, m = 1, λ = 5,
B= 0.95, Pc = 0.6. (c) and (d) Bifurcation diagrams for selected pairs of model parameters. Legend
as in Fig. 4.25, 11 = co-occurrence of two unstable coexistence equilibria. Parameters: r = 2, K = 6
(d), e = 1, m = 1, λ = 5, B = 0.95, Pc = 0.6 (c)

Quite a different situation arises once A < e/m and B > e/m, that is, in the
case for which we proved the simultaneous existence of four coexistence equilib-
ria. A snapshot of system dynamics is plotted as Fig. 4.36. Apart from the globally
stable prey-only equilibrium observed for high A and any K or low K and any A
(Fig. 4.36c), all the remaining dynamical regimes that we identified for the selected
parameter values involve multiple coexistence equilibria. These include a strong
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Allee effect (regimes 2 and 5) and four coexistence equilibria where two stable or
unstable equilibria and the stable prey-only equilibrium are interspersed with two
saddle points (regimes 9 and 10); see also Fig. 4.36a-b.
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Fig. 4.36 Effects of the functional response with humped h on predator-prey dynamics. (a) and
(b) Prey and predator equilibrium densities as functions of the degree of foraging facilitation or
predator interference. Legend as in Fig. 4.25. Parameters: r = 2, K = 8, e = 1, m = 1, λ = 5, B = 2,
Pc = 0.6. (c) and (d) Bifurcation diagrams for selected pairs of model parameters. Legend as in
Fig. 4.25, 9 = co-occurrence of one stable and one unstable coexistence equilibrium and two saddle
points, 9 = co-occurrence of two stable coexistence equilibria and two saddle points. Parameters:
r = 2, K = 8 (d), e = 1, m = 1, λ = 5, B = 2, Pc = 0.6 (c)

Summary

This section addresses the previously unexplored question of how foraging facilita-
tion among predators affects predator-prey dynamics. Also, it explores the effects
of predator interference, as this requires no extra computational time and makes the
resulting picture ‘symmetric’ and complete. Both foraging facilitation and preda-
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tor interference can be modeled as affecting encounter rate between predators and
prey or predator handling time of prey. We show that all the common functional re-
sponses used to model predator interference can be viewed as arising from encounter
rates that decrease with increasing predator density. Therefore, we also account for
a novel possibility that the predator handling time of prey might alternatively be
affected by foraging facilitation or predator interference.

Several novel and interesting results stem from the performed analysis. Firstly, in
systems with the encounter-driven functional response, handling-driven functional
response, and functional response where the predator encounter rate with prey first
increases and then decreases with increasing predator density, foraging facilitation
appears to be destabilizing to predator-prey dynamics. On the contrary, an ambigu-
ity is observed in systems with the functional response where the predator handling
time of prey first decreases and then increases with increasing predator density: we
can interpret the effects of foraging facilitation on predator-prey dynamics as stabi-
lizing in a portion of the parameter space and as destabilizing in another portion. For
a wide range of parameter values, this last way of how foraging facilitation operates
can even give rise to four co-occurring coexistence equilibria. The particular way of
how foraging facilitation operates (or is modeled) thus significantly affects resulting
predator-prey dynamics.

Foraging facilitation is a component Allee effect among predators (Courchamp
et al, 2008): an increase in predator population or group size leads to an increase
in a fitness component of each of its members. One may therefore be interested in
whether at least for some parameter values this component Allee effect gives rise
to a strong Allee effect among predators, corresponding to two alternative system
steady states: predator extinction and predator persistence. This is indeed the case
and we observe quite a wide range of model parameters for which there is a critical
predator density below which predators go extinct and prey attain the environmental
carrying capacity and above which both species coexist.

We also show that predator interference is stabilizing to predator-prey dynamics
once its strength is not too high, and thus corroborate results of others (Rogers and
Hassell, 1974; Ruxton et al, 1992; Ruxton, 1995; Huisman and DeBoer, 1997). Con-
trary to this conventional wisdom, however, the analysis revealed a dynamic regime
previously unreported for predator interference: there is quite a wide range of model
parameters for which predator interference gives rise to three co-occurring coexis-
tence equilibria. Dynamical behavior around these equilibria depends on specific
parameter values: the equilibrium with the highest prey density always appears to
be stable while the one with the lowest prey density may be either stable or unsta-
ble; the intermediate steady state is always a saddle point. Such a multi-equilibrial
regime is rather robust and was observed for all the four functional response types
adopted in this article. An interesting topic for future research thus may be to seek
for general conditions on the predator functional response that would produce three
coexistence steady states in a predator-prey model.

Interestingly, our sample simulations showed that in many cases the unsta-
ble equilibria are surrounded by stable limit cycles. Thus, many multi-equilibrial
regimes are actually bistability regimes in which either two stable limit cycles or
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one stable equilibrium and one stable limit cycle co-occur. Investigation of the limit
cycle behavior of our model variants with foraging facilitation and predator inter-
ference would certainly be an interesting adventure to be undertaken in the future.

4.5 Conclusions and further research

In this chapter, we explored impacts that Allee effects in the prey or predator pop-
ulations might have on predator-prey dynamics. For unstructured prey populations,
generalist predators with a type II functional response are known to induce an Allee
effect in prey (Gascoigne and Lipcius, 2004; Courchamp et al, 2008). We extended
this knowledge in two directions. First, we assumed prey themselves are subject to
a mate-finding Allee effect even in the absence of predation, and so suffer from a
double Allee effect. In addition, these two component Allee effects were supposed
to be traded off: as prey mitigate the predation-driven Allee effect by e.g. moving
more carefully, they at the same time worsen their mate-finding Allee effect, and
vice-versa. Considering a number of mechanisms (and corresponding models) re-
sponsible for this coupling, and a number of qualitative forms for such trade-offs
(convex, concave), we show that the (relative) population resilience declines with
increasing cost of reproduction embodied in a transition from convex to concave
reproduction-predation risk trade-offs. In some cases, reproduction can be so costly
that the population always goes extinct. In other cases, the population goes extinct
only over a certain range of low, intermediate or high levels of reproductive ac-
tivities. Moreover, we show that predator removal (e.g. in an attempt to save an
endangered prey species) has the least effect on populations with low cost of repro-
duction in terms of predation and, conversely, predator addition (e.g. to eradicate a
pest) is most effective for populations with high predation cost of reproduction. Our
results indicate that a detailed knowledge of the trade-off can be crucial in applica-
tions: for some trade-off shapes, only intermediate levels of reproductive activities
might guarantee population survival, while they can lead to extinction for others. We
therefore suggest that the fate of populations subject to the two antagonistic Allee
effects should be evaluated on a case-by-case basis.

Second, we developed a mathematical model to study dynamics of an age-
structured population preyed upon by age-specific, generalist predators. Predation
on any age class is either absent, or represented by type II or type III functional
responses, in various combinations. We seek for Allee effects or more generally for
multiple stable steady states in the prey population, and explore whether predation
is more effective on juveniles or adults. One of the key findings we made is the
occurrence of predator pit when only one age class is consumed and predators use
a type II functional response – this scenario is known to occur for an unstructured
prey population consumed through a type III functional response and can never oc-
cur for an unstructured prey population consumed through a type II one. In case
both age classes are consumed by predators exhibiting a type II functional response
strong Allee effects occur frequently, but some parameter combinations give rise to
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predator pits and even three stable equilibria (one extinction equilibrium and two
interior ones – an Allee effect and a predator pit combined). Multiple stable interior
steady states are common if one of the age classes is exploited through a type III
functional response – here, in addition to the behaviors mentioned above one may
even observe the case of three stable interior equilibria – the ‘double’ predator pit.
Despite intriguing consequences of some these behaviors for population manage-
ment, our results demonstrate that even consideration of a simple population struc-
ture may bring about predictions that are qualitatively different from those based on
(frequently used) unstructured models.

In the second part of this chapter, we considered prey populations consumed
by specialist predators, that is, predators that numerically responded to prey densi-
ties. Since little is known about the impact of prey sexual dimorphism on predator-
prey dynamics and the impact of sex-selective harvesting and trophy hunting on
long-term stability of exploited species, we first developed and analyzed several
simple predator-prey models with sex-selective predation (i.e. predators attacked
male and female prey with differing intensities). We show that the consequences of
sex-selective predation depend on the interplay of predation bias and prey mating
system. Predation on the ‘less limiting’ prey sex can yield a stable predator-prey
equilibrium, while predation on the other sex usually destabilizes the dynamics and
promotes population collapses. For prey mating systems that we consider, males are
less limiting except for polyandry, and male-biased predation alone on such prey can
stabilize otherwise unstable dynamics. On the contrary, female-biased predation on
polygynous or monogamous prey requires other stabilizing mechanisms to persist.
As a consequence, the observed skew towards male-biased predation might reflect,
in addition to sexual selection, the evolutionary history of predator-prey interactions.
Our results can also have implications for long-term sustainability of harvesting and
trophy hunting of sexually dimorphic species.

Our final model concerned the impacts of foraging facilitation among preda-
tors on predator-prey dynamics, showing that these impacts depend on the way this
process is modeled. In particular, foraging facilitation destabilizes predator-prey dy-
namics when it affects the encounter rate between predators and prey. By contrast, it
might have a stabilizing effect if the predator handling time of prey is affected. For-
aging facilitation is an Allee effect mechanism among predators and we show that
for many parameters, it gives rise to a demographic Allee effect or a critical predator
density in need to be crossed for predators to persist. We explore also the effects of
predator interference, to make the picture ‘symmetric’ and complete. Predator in-
terference is shown to stabilize predator-prey dynamics once its strength is not too
high, and thus corroborates results of others. On the other hand, there is a wide range
of model parameters for which predator interference gives rise to three co-occurring
coexistence equilibria. Such a multi-equilibrial regime is rather robust as we ob-
serve it for all the functional response types we explore. This is a previously un-
reported phenomenon which we show cannot occur for the Beddington-DeAngelis
functional response. An interesting topic for future research thus might be to seek
for general conditions on predator functional responses that would produce multiple
coexistence equilibria in a predator-prey model.
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The issue of impacts of Allee effects on predator-prey dynamics is currently very
topical (Boukal et al, 2007; van Voorn et al, 2007; Aguirrea et al, 2009; Verdy, 2010;
McLellan et al, 2010; Wang et al, 2011). And still, much remains to be done. One
of the promising research avenues is to consider tri-trophic interactions with one or
more Allee effects involved, not to speak of larger and more complex food webs.
Consider, e.g. a three species chain (such as resource, primary consumer, and car-
nivore) in which one of the intermediate species may be subject to an Allee effect
with respect to the lower species in the chain (such as due to foraging facilitation)
and another Allee effect with respect to an upper species in the chain (such as due to
an anti-predator behavior) . Another situation arises when the intermediate species
has an Allee effect that goes beyond this chain, such as a mate-finding one. One
might also imagine a predator-prey interaction devoid of Allee effects, when one
or the other population are consumed by a generalist predator with a type II func-
tional response. This latter topic is especially interesting given that many models of
predator-prey interactions predict coexistence of the two species along a limit cycle.
From an empirical perspective, one may imagine a population of trees that aim at
attracting pollinators, coupled with a disproportionate predation on resulting seeds,
owing to failure to satiate seed predators. Likewise, rare plants can be both pollen
limited and subject to herbivore-driven Allee effects, analogous to Allee effects ow-
ing to predator satiation. In both these cases, trees or plants are subject to double
Allee effects (Berec et al, 2007). Many of these higher trophic interactions can be
studied via mathematical models composed of the models examined in this chapter.





Part III
Infectious diseases and pest control





Chapter 5
Double impact of sterilizing pathogens: added
value of increased life expectancy on pest control
effectiveness

International travel and trade are the major drivers of an unprecedented increase in
the rate of non-native species invasions (Mack et al, 2000; Lockwood et al, 2007).
While most such invasions turn out to eventually be unsuccessful (Willamson and
Fitter, 1996; Simberloff and Gibbons, 2004), those few that succeed impose im-
mense environmental, social and economic damages (Courchamp et al, 2003; Tobin
et al, 2009). Need for control of such successful invasive species thus arises, with
armies of pest managers equipped with a diversity of weapons, often specific to the
focal species (Thacker, 2002; Courchamp et al, 2003).

Generally, control methods aim to enhance species mortality and/or decrease fer-
tility. A substantial intellectual effort has been invested into which of these strategies
is more effective. Using an optimal control approach, Stenseth (1981) suggested that
fertility reduction should be increasingly preferred the larger is mortality of the un-
controlled population. On the contrary, if mortality of the uncontrolled population
is low, the optimal pest control strategy should often aim at increasing mortality as
much as possible (Stenseth, 1981). The mating system and the way density depen-
dence operates appear to also play a significant role (Barlow et al, 1997). Reviewing
fertility control by chemical or surgical means, Dell’Omo and Palmery (2002) con-
cluded that “an ideal fertility control strategy should induce long-term or permanent
sterility without secondary toxic effects such as behavioral alterations, be target-
specific, and act on both sexes.”

Parallel to this effort, discussions have been under way relating efficacy of the
bait delivery and the cost-effectiveness of the operations (Courchamp et al, 2003).
Concerns have been raised that areas which are large, difficult to access, or have a
low pest density are extremely difficult if not impossible to cover by hunters, traps
or poisonous baits. As dissemination of control agents constitutes a major limitation
in many control programs, research has focused on biological control. Biological
control relies upon self-disseminating natural enemies such as viruses which may
have the double advantage of economic viability and high control success. How-
ever, use of most pathogens is unethical as they inflict unnecessary suffering before
killing the host (Courchamp et al, 2003).

181
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Sterilizing effects are characteristic of a variety of plant pathogens, parasitic cas-
trators of invertebrates, and sexually transmitted diseases (Baudoin, 1975; O’Keefe
and Antonovics, 2002; Antonovics, 2009). If no such pathogen is available to a
pest species, it could possibly be engineered. Indeed, research effort has recently
turned towards virus-vectored immunocontraception (VVIC), a new form of bio-
logical control that retains the advantages of self-dissemination of control agents
while avoiding the unethical aspects of animal suffering. VVIC is based on a ster-
ilization process that induces the immune system of an individual to attack its own
reproductive cells – infecting an individual with a protein derived from the follicular
layers activates production of antibodies against its own gametes, thereby blocking
fertilization (Tyndale-Biscoe, 1994; Bradley et al, 1997). VVIC agents are viruses
that are genetically modified to carry a gene encoding the reproductive protein of a
target species (Tyndale-Biscoe, 1994). The use of modified, species-specific viruses
thus allows for an efficient dissemination of a control agent through the pest popula-
tion regardless of its area of distribution, accessibility and density, and combines the
advantages of high specificity and optimal dissemination. This potentially powerful
technique appears most appropriate for rodents and small herbivores, such as rab-
bits and possums (Cowan, 1996; McLeod and Twigg, 2006; Rodger, 1997; Smith
et al, 1997), yet it could also be very efficient for control of small carnivores such as
cats and foxes (Bradley et al, 1997; Courchamp and Cornell, 2000; Pech et al, 1997;
Verdier et al, 1999).

Since the publication of seminal review articles by Anderson and May (Ander-
son and May, 1979, 1981), very many host-parasite models with pathogens induc-
ing reduction of host fertility in general and sterilizing pathogens in particular have
been developed. Yet, none of these models has ever accounted for a well-known
aspect of life-history theory, namely the cost of reproduction or a trade-off between
reproduction and survival – by decreasing the energy outlay on reproduction, indi-
viduals with lowered reproduction can live longer. This trade-off predicts that “non-
reproducing females have a higher chance of surviving than reproducing females”
(Neuhaus and Pelletier, 2001), that there is “a negative relationship between the
mean female fecundity and the mean [female] longevity” (Thomas et al, 2000), or
that “early reproduction may increase mortality to such an extent that delaying re-
production may increase survival and lifetime reproductive success” (Bennett and
Owens, 2002). These trade-offs have indeed been found to occur in birds (Bennett
and Owens, 2002), insect parasitoids (Ellers, 1995; Ramesh and Manickavasagam,
2003), mammals (Neuhaus and Pelletier, 2001) and even humans (Thomas et al,
2000).

Sterilizing pathogens thus can have a double impact on their hosts. Not only they
depress host reproduction, but by letting the infected individuals live longer, these
sterilized animals help spread the pathogen for a longer time which may further
increase the control effectiveness. Mathematical models should always form a nec-
essary first step to assess effectiveness of any control technique before it is accepted.
Therefore, in this chapter, we develop and analyze a mathematical model to address
the question of whether and how much does effectiveness of releasing a sterilizing
pathogen into a pest population increase if the cost of reproduction is accounted for.
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5.1 Model formulation

We limit ourselves to an SI epidemiological model, assuming that as soon as sus-
ceptible individuals (S) get infected, i.e. sterilized, they remain so until they die.
This also allows us to assess the full potential of increased longevity due to steril-
izing pathogens on pest control effectiveness, since the infection will not be curbed
by any latent or immunity period. To keep the model as simple as possible (and to
eliminate any confounding factors), we also assume no disease-induced mortality.
In fact, sterilizing pathogens may have little or no effect on host mortality (O’Keefe
and Antonovics, 2002; Bonds, 2006). Also, we assume no vertical transmission.
Although some sexually transmitted infections can also be passed from parents to
offspring (Lockhart et al, 1996; Knell and Webberley, 2004), we decided not to
consider this additional transmission route here but rather to examine its effect sep-
arately. Finally, we assume that the infection does not always lead to sterilization
so we distinguish infected individuals that become sterilized due to the disease (IS)
and the remaining infected individuals that are able to spread the virus yet also re-
produce (IF ). As the sterilized individuals do not ‘waste’ resources in reproduction,
they are allowed to live longer than the fertile ones.

As a consequence, host dynamics are described by the following model:

dS
dt

= b(S+ IF)−Φ(N)
S(IF + IS)

N
− (d +d1N)S

dIF

dt
= (1−σ)Φ(N)

S(IF + IS)

N
− (d +d1N)IF

dIS

dt
= σΦ(N)

S(IF + IS)

N
− (δd +d1N)IS

(5.1)

We thus assume that both fertile and sterile infectives are able to spread the disease
equally. We have σ as the proportion of infected individuals that become sterilized
(0 < σ < 1) and δ as the proportional reduction of the intrinsic mortality rate d in
those infected individuals that become sterilized (0< δ < 1). For the sake of simpler
analysis, the host population is assumed here regulated through negative density de-
pendence in the mortality rate, with d1 being its strength, but one might alternatively
consider regulation through the birth rate, or a mixture of the two (Hassell, 1975;
Gao and Hethcote, 1992). The function Φ(N) specifies the way disease is transmit-
ted and covers both the contact rate between individual hosts and the probability of
disease transmission upon an adequate contact between infectives and susceptibles.
We start with a generic form of Φ(N), and later on explore the model (5.1) under
the standard incidence (Φ(N) = β ), the mass action incidence (Φ(N) = βN), and
the asymptotic incidence (Φ(N) = βN/(c+N) for some c > 0; e.g. Diekmann and
Kretzschmar (1991)) modes of disease transmission.

In the absence of disease, the total host population density N evolves as

dN
dt

= bN − (d +d1N)N (5.2)
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Hence, the host population has the intrinsic growth rate r = b− d and attains the
environmental carrying capacity K = (b− d)/d1. We assume b > d further on so
that the host population is able to persist without the disease. In the presence of
disease, we have

dN
dt

= b(S+ IF)− (d +d1N)(S+ IF)− (δd +d1N)IS (5.3)

The major question we address in this chapter is how the ability of the disease
to suppress the host population changes with δ , the factor that extends the life ex-
pectancy of sterilized hosts. This ability, or the control effectiveness, is evaluated
here as E = 1−N∗/K where N∗ is the host population density at a stable equilib-
rium of the model (5.1). It can be E = 0 if the disease cannot invade, 0 < E < 1 if
an endemic equilibrium exists, or E = 1 if the disease is strong enough to drive the
host to extinction.

For δ = 1, i.e. no effect of sterilization on host longevity, the model (5.1) reduces
to

dS
dt

= b(S+(1−σ)I)−Φ(N)
SI
N

− (d +d1N)S

dI
dt

= Φ(N)
SI
N

− (d +d1N)I
(5.4)

See Box 5.1 for the results of an analysis of the model (5.4).

Box 5.1 Case δ = 1: the system (5.4)

For δ = 1, the model (5.1) reduces to the model (5.4). This latter model is a
special case of the system analyzed by Zhou and Hethcote (1994, their model
(9)). Transforming the model (5.4) to that with state variables i = I/N and
N = S+ I, we get

di
dt

= i [Φ(N)(1− i)−b(1−σ i)]

dN
dt

= N [b(1−σ i)− (d +d1N)]

(5.5)

Results of the standard local stability analysis of the system (5.5) are summa-
rized in Table 5.1. Zhou and Hethcote (1994) proved that if the equilibria are
locally stable then they are also globally stable.
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Equilibrium Exists Locally stable Unstable E

(0,0) always – always (b > d) –

(K,0) always R0 < 1 R0 > 1 0

(0, i∗0) AI & MI: feasible only for σ = 1 – exists –
for which i∗0 = 1
SI: R0 > 1, i∗0 = (β −b)/(β −σb) exists & i∗0 >

1/(σb/(b−d))
exists & i∗0 <
1/(σb/(b−d))

1

(N∗, i∗) AI & MI: R0 > 1 exists – i∗σb/(b−d)
SI: R0 > 1 & i∗ < 1/(σb/(b−d)) exists – i∗σb/(b−d)

Table 5.1 Existence and local stability of equilibria of the model (5.4); R0 =Φ(K)/b, AI = asymp-
totic incidence, MI = mass action incidence, SI = standard incidence

Alternatively, for σ = 1, i.e. sterilization of any infected individual, the model
(5.1) reduces to

dS
dt

= bS−Φ(N)
SI
N

− (d +d1N)S

dI
dt

= Φ(N)
SI
N

− (δd +d1N)I
(5.6)

See Box 5.2 for the results of an analysis of the model (5.6).

Box 5.2 Case σ = 1: the system (5.6)

For σ = 1, the model (5.1) reduces to the model (5.6). Transforming the model
(5.6) to that with state variables i = I/N and N = S+ I, we get

di
dt

= i(1− i) [Φ(N)− (b− (1−δ )d)]

dN
dt

= N [(b−d)(1− i)−δdi−d1N]

(5.7)

Results of the standard local stability analysis of the system (5.7) are summa-
rized in Table 5.2. Poincaré-Bendixson theory together with the Dulac crite-
rion (with the multiplying factor 1/[Ni(1− i)]) can be used to show that also
here, if the equilibria are locally stable then they are also globally stable.
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Equilibrium Exists Locally stable Unstable E

(0,0) always – always (b > d) –

(K,0) always R0 < 1 R0 > 1 0

(0,1) always MI & AI: – MI & AI: always –
SI: R0 > 1 SI: R0 < 1 1

(N∗, i∗) AI & MI: R0 > 1 AI & MI: exists AI & MI: – 0 < E < 1
SI: – SI: – SI: –

Table 5.2 Existence and local stability of equilibria of the model (5.6); R0 = Φ(K)/[b−(1−δ )d],
AI = asymptotic incidence, MI = mass action incidence, SI = standard incidence

5.2 Model results

Basic reproduction number

As is usual in virtually any study on infectious disease dynamics, we start with
calculating the basic reproduction number R0. Using the next generation matrix ap-
proach due to van den Driessche and Watmough (2002), one can show that (see Box
5.3)

R0 = Φ(K)

(
1−σ

b
+

σ
b− (1−δ )d

)
(5.8)

It is useful to rewrite this term using reciprocals of mortality rates to get its clearer
biological interpretation:

R0 = (1−σ)
Φ(K)

d +d1K
+σ

Φ(K)

δd +d1K

Here, the first fraction represents the number of secondary infections caused by
a reproductive infectious individual introduced into a fully susceptible population,
while the second fraction represents the number of secondary infections caused by a
sterile infectious individual, with σ the fraction of infectives that become sterilized.

Box 5.3 Basic reproduction number R0

Using the next generation matrix approach due to van den Driessche and Wat-
mough (2002), we first reshuffle the state variables so that the first two repre-
sent infected classes: (IF , IS,S). Using the notation of van den Driessche and
Watmough (2002), we have
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F =

(1−σ)Φ(N)S(IF + IS)/N
σΦ(N)S(IF + IS)/N

0


comprising all rates of the model (5.1) that describe the appearance of new
infections, and

V =

 (d +d1N)IF
(δd +d1N)IS

−b(S+ IF)+Φ(N)S(IF + IS)/N +(d +d1N)S


comprising all remaining rates (with the reverse sign). Setting x = (IF , IS,S)
and x0 = (0,0,K), this implies

F =

[
∂Fi

∂x j
(x0)

]∣∣∣∣
1≤i, j≤2

= Φ(K)

(
1−σ 1−σ

σ σ

)
and

V =

[
∂Vi

∂x j
(x0)

]∣∣∣∣
1≤i, j≤2

=

(
b 0
0 b− (1−δ )d

)
This implies

V−1 =

(
1/b 0
0 1/(b− (1−δ )d)

)
and the next generation matrix thus becomes

FV−1 = Φ(K)

(
(1−σ)/b (1−σ)/(b− (1−δ )d)

σ/b σ/(b− (1−δ )d)

)
of which the dominant (in the absolute value) eigenvalue, equal to R0, is

R0 = Φ(K)

(
1−σ

b
+

σ
b− (1−δ )d

)
(5.9)

The disease thus invades if R0 > 1 or equivalently if

Φ(K)>
b[b− (1−δ )d]

b− (1−σ)(1−δ )d
(5.10)

R0 increases with increasing σ (as ∂R0/∂σ > 0 if b > d) and, more importantly
from our perspective, with decreasing δ (as ∂R0/∂δ < 0 for σ > 0). Indeed, reduc-
tion of the intrinsic host mortality rate due to sterilization can revert the outcome
of disease invasion – a disease that cannot invade the host population for a high δ
might be able to do that for a low δ (Fig. 5.1).
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Fig. 5.1 Basic reproduction number R0 of the model (5.1), as a function of the proportional re-
duction of the intrinsic mortality rate in those infected individuals that become sterilized (δ )
and the proportion of infected individuals that become sterilized (σ ). Other parameters values:
Φ(K) = 1.95, b = 2, d = 0.2

System equilibria

We start by going from densities to proportions, thus getting equations for iF = IF/N
and iS = IS/N:

diF
dt

= (1−σ)Φ(N)(1− iF − iS)(iF + iS)−diF − iF [(b−d)(1− iS)−δdiS]

diS
dt

= σΦ(N)(1− iF − iS)(iF + iS)−δdiS − iS[(b−d)(1− iS)−δdiS]
(5.11)

As this system contains N, it can be closed with one more equation for the total host
population density

dN
dt

= N[b(1− iS)− (d +d1N)(1− iS)− (δd +d1N)iS] (5.12)

This system of three differential equations has several equilibrium points (iF , iS,N):

• (0,0,0) which is an extinction equilibrium
• (0,0,K) which is the disease-free equilibrium
• (0,1,0) which is a disease-induced extinction equilibrium
• (i∗F , i

∗
S,0) which is another disease-induced extinction equilibrium, feasible only

for transmission terms with Φ(0)> 0 (only standard incidence in our case)1

1 For Φ(0) = 0 and 0 < δ < 1, setting the right-hand sides of both equations of (5.11) to zero leads
to two incompatible algebraic equations.
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• (i∗F , i
∗
S,N

∗) which is an endemic equilibrium; setting the term in square brackets
of the right-hand side of (5.12) to zero, we have

N∗ =
(b−d)(1− i∗S)−δdi∗S

d1
= K − i∗S

b− (1−δ )d
d1

(5.13)

In the last two cases, i∗F can be expressed as a function of i∗S by setting the right-
hand sides of both equations of (5.11) to zero, solving both for Φ(N)(1 − iF −
iS)(iF + iS) and equating the resulting expressions. This gives

i∗F = i∗S
(1−σ)(δd +[(b−d)(1− i∗S)−δdi∗S])

σ(d +[(b−d)(1− i∗S)−δdi∗S])
=

δ (1−σ)i∗S(1− i∗S)
σ [δ (α − i∗S)+1−α]

(5.14)

where we have denoted
α =

1

1+ δd
b−d

(5.15)

Note that 0 < α < 1 as soon as b > d.
We are now going to explore existence, uniqueness and stability of these equilib-

ria for the transmission terms we consider. The underlying calculations are given as
proofs of a set of propositions.

Proposition 5.1. The extinction equilibrium (0,0,0) is always unstable.

Proof. The Jacobian of the system (5.11) and (5.12) evaluated at this equilibrium is

J(0,0,0) =

(1−σ)Φ(0)−b (1−σ)Φ(0) 0

σΦ(0) σΦ(0)−b+(1−δ )d 0

0 0 b−d

 (5.16)

As we assume b > d, this matrix has at least one eigenvalue with positive real part,
hence the extinction equilibrium (0,0,0) is always unstable.

⊓⊔

Proposition 5.2. The disease-free equilibrium (0,0,K) is locally stable if and only
if R0 < 1 and unstable if and only if R0 > 1.

Proof. The Jacobian of the system (5.11) and (5.12) evaluated at this equilibrium is

J(0,0,K) =

(1−σ)Φ(K)−b (1−σ)Φ(K) 0
σΦ(K) σΦ(K)− [b− (1−δ )d] 0

0 −[b− (1−δ )d]K −(b−d)

 (5.17)

As we assume b > d, one eigenvalue is always negative and the other two have
negative real parts if and only if

Φ(K)< 2b− (1−δ )d

and



190 5 Sterilizing pathogens and pest control effectiveness

Φ(K)<
b[b− (1−δ )d]

b− (1−δ )(1−σ)d

Note that the second condition is equivalent to R0 < 1 (5.10) and includes the first
one, because

2b− (1−δ )d − b[b− (1−δ )d]
b− (1−δ )(1−σ)d

=

=
[b− (1−σ)(1−δ )d]2 +σ(1−σ)d2(1−δ )2

b− (1−δ )(1−σ)d
> 0

Hence, the disease-free equilibrium (0,0,K) is locally stable if and only if R0 < 1
and unstable if and only if R0 > 1.

⊓⊔

Proposition 5.3. The disease-induced extinction equilibrium (0,1,0) is locally sta-
ble if and only if (1−δ )d −b(1−σ)> 0 and

Φ(0)>
(1−δ )d[b− (1−δ )d]
(1−δ )d −b(1−σ)

Proof. The Jacobian of the system (5.11) and (5.12) evaluated at this equilibrium is

J(0,1,0) =

−Φ(0)(1−σ)− (1−δ )d −Φ(0)(1−σ) 0
−σΦ(0) −σΦ(0)+ [b− (1−δ )d] 0

0 0 −δd

 (5.18)

One eigenvalue is therefore always negative and the other two have negative real
parts if and only if

Φ(0)> b−2(1−δ )d

Φ(0)>
(1−δ )d[b− (1−δ )d]
(1−δ )d −b(1−σ)

(1−δ )d −b(1−σ)> 0

Note that the second condition includes the first one since

(1−δ )d[b− (1−δ )d]
(1−δ )d −b(1−σ)

− [b−2(1−δ )d] =
d[δ 2(1−σ)+σ(1−δ )2(1−α)2]

(1−α)[σ(1−α +δα)−δ ]

where we used the term (5.15) for α . The numerator is clearly positive. The denom-
inator is also positive since

σ(1−α +δα)−δ > 0

follows from
(1−δ )d −b(1−σ)> 0

So, the necessary and sufficient condition for local stability of (0,1,0) is
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(1−δ )d −b(1−σ)> 0

and

Φ(0)>
(1−δ )d[b− (1−δ )d]
(1−δ )d −b(1−σ)

However, this is only possible if Φ(0) > 0. So (0,1,0), while it always exists, can
be locally stable only under standard incidence (out of the incidence terms we con-
sider).

⊓⊔

Corollary 5.1. For both mass action and asymptotic incidences the disease-induced
extinction equilibrium (0,1,0) is always unstable, because Φ(0) = 0.

Under standard incidence, the system of two equations (5.11) is closed, i.e. not
containing N. We are now going to explore the existence and uniqueness of its inte-
rior equilibrium (i∗F , i

∗
S).

Proposition 5.4. Under standard incidence, the system (5.11) has a unique, biolog-
ically feasible endemic equilibrium, (i∗F , i

∗
S), if and only if one of the following two

conditions is satisfied:

(1−δ )d−(1−σ)b> 0 and
b[b− (1−δ )d]

b− (1−δ )(1−σ)d
< β <

(1−δ )d[b− (1−δ )d]
(1−δ )d − (1−σ)b

or

(1−δ )d − (1−σ)b < 0 and
b[b− (1−δ )d]

b− (1−δ )(1−σ)d
< β

Proof. Substituting i∗F (5.14) into the second equation of (5.11) and using Φ(N)= β
we obtain the following equation for i∗S

1
σ(1−α)[δ (α − i∗S)+1−α]2

i∗S(i
∗
S −1)[a2(i∗S)

2 +a1i∗S +a0] = 0

with
a2 = (δ dσ +β (−1+α))δ 2

a1 = 2σδ (1−α +δα)[β (1−α)−δd]+βδ 2(1−α)(1−σ)

a0 = σ(1−α +δα)2(δd −βσ +βσα)−βδσ(1−σ)(1−α)(1−α +δα)

We are interested in solving the quadratic equation

A(i∗S) = a2(i∗S)
2 +a1i∗S +a0 = 0

since the roots 0 and 1 correspond to the extinction and disease-free equilibria
and the disease-induced extinction equilibrium, respectively. The two roots of this
quadratic equation are of the form

m±n
√

D
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with

D = 4δ β (1−α)2 (1−σ)2
(

d (1−δ )(1−α +α δ )σ +
1
4

β δ
)

The existence of real roots of the quadratic equation is equivalent to D > 0, that is,

dσ (1−δ ) [1−α(1−δ )]+
1
4

β δ > 0

which is always true since 0 < α < 1 and 0 < δ < 1.

We first prove the uniqueness of (i∗F , i
∗
S) in the interval (0,1). Let us assume that

both the roots m±n
√

D lie in the interval (0,1). This assumption leads to two cases:

(a) 0 < m < 1
2 and n2D < m2

(b) 1
2 < m < 1 and n2D < (1−m)2

The following quantities will characterize these inequalities:

m =
−β (1−α)

[
δ
2 +σ

(
(1−α)(1−δ )+ δ

2

)]
+σδd(1−α +αδ )

δ [σδd − (1−α)β ]
(5.19)

1
2
−m =−

σ [δd − (1−α)β ]
[
(1−α)(1−δ )+ δ

2

]
δ [σδd − (1−α)β ]

(5.20)

1−m =
(1−α)

[
β
(

σ
(
(1−α)(1−δ )+ δ

2

)
− δ

2

)
−σδd(1−δ )

]
δ [σδd − (1−α)β ]

(5.21)

m2−n2D=
σ(1−α +δα) [−β (1−α)((1−δ )(1−α)σ +δ )+δd(1−α +δα)]

δ 2[σδd − (1−α)β ]
(5.22)

(1−m)2 −n2D =−σ(1−δ )(1−α)2 [β (σ(1−α +δα)−δ )−δd(1−δ )]
δ 2[σδd − (1−α)β ]

(5.23)
First suppose σδd − (1−α)β > 0. This is equivalent to

β <
σδd
1−α

and also implies that δd− (1−α)β > 0 and hence 1
2 −m < 0. So the case (a) is not

possible. To satisfy the case (b) we need 1−m > 0, which is equivalent to
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σ
[
(1−α)(1−δ )+

δ
2

]
− δ

2
> 0

and

β >
σδd(1−δ )

σ
[
(1−α)(1−δ )+ δ

2

]
− δ

2

Thus we have a lower and upper bound of β that need to satisfy

σδd(1−δ )

σ
[
(1−α)(1−δ )+ δ

2

]
− δ

2

<
σδd
1−α

However, this is equivalent (after simplification) to σ > 1 so the case (b) is also not
possible.

Similarly, we assume now

σδd − (1−α)β < 0, i.e. β >
σδd
1−α

Now 1
2 −m > 0 is equivalent to

δd − (1−α)β > 0, i.e. β <
δd

1−α

and m2 −n2D > 0 is equivalent to

β >
δd(1−α +δα)

(1−α)[(1−δ )(1−α)σ +δ ]

This again leads to the case (a) being not possible since

δd(1−α +δα)

(1−α)[(1−δ )(1−α)σ +δ ]
<

δd
1−α

is equivalent to σ > 1.
For the case (b) to hold, we need 1−m > 0 and (1−m)2 −n2D > 0. These two

inequalities are equivalent to

β
[

σ
(
(1−α)(1−δ )+

δ
2

)
− δ

2

]
< σδd(1−δ )

β [σ(1−α +δα)−δ ]> δd(1−δ )

Notice that [
σ
(
(1−α)(1−δ )+

δ
2

)
− δ

2

]
> σ(1−α +δα)−δ
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since it is equivalent to σ < 1 and

σ(1−α +δα)−δ > 0

from the second inequality above. Thus we have again the following bounds for β

δd(1−δ )
σ(1−α +δα)−δ

< β <
σδd(1−δ )

σ
(
(1−α)(1−δ )+ δ

2

)
− δ

2

But this is impossible since it implies

σ(1−α +αδ )− δ
2
< 0

which contradicts
σ(1−α +αδ )−δ > 0

So the case (b) is also impossible.
Altogether, if an i∗S exists, it is unique. We are now going to derive conditions for

its existence. The existence of a unique biologically feasible real root is equivalent
to (also taking into account 0 < i∗S < 1)

A(0)A(1)< 0 ⇔ a0(a2 +a1 +a0)< 0

This is equivalent to

−σ2(1−δ )(1−α)2(1−α +δα)B(β )< 0

or
B(β )> 0

with
B(x) = b2x2 +b1x+b0

and

b2 =−(1−α) [(1−α +δ α)σ −δ ] [(1−α)(1−δ )σ +δ ]

b1 =
(

2
((

1/2−α +α2)δ 2 +
(
3α −1−2α2)δ +(α −1)2

)
σ −δ 2

)
dδ

b0 =−δ 2d2(1−δ )(1−α +δα)< 0

The quadratic equation B(x) = 0 has two real roots as follows:

x1 =
δd(1−α +αδ )

(1−α)[δ +σ(1−α)(1−δ )]
> 0

and

x2 =
δd(1−δ )

σ(1−α +δα)−δ
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Note that the signs of x2 and b2 are opposite to each other and they are given by
σ(1−α +δα)−δ . We have the following two sets of conditions for B(β )> 0

σ(1−α +δα)−δ > 0 and min{x1,x2}< β < max{x1,x2} (5.24)

or
σ(1−α +δα)−δ < 0 and x1 < β (5.25)

Note that in the case of (5.24) both x1 and x2 are positive so we need to establish
the min and the max of the two. We will show that x1 < x2 under the assumption in
(5.24):

x1 − x2 =− 2dδ 2(1−σ)((α −1/2)δ −α +1)
[(1−α +α δ )σ −δ ] (1−α) [(1−δ )(1−α)σ +δ ]

The sign of this expression depends on the term

T = (α −1/2)δ −α +1

which, written in terms of the original parameters, is

T =
δ [b+d(1−δ )]
2(b− (1−δ )d)

> 0

Therefore, x1 − x2 < 0 and the above conditions now read:

(1−δ )d−(1−σ)b> 0 and
b[b− (1−δ )d]

b− (1−δ )(1−σ)d
< β <

(1−δ )d[b− (1−δ )d]
(1−δ )d − (1−σ)b

(5.26)
or

(1−δ )d − (1−σ)b < 0 and
b[b− (1−δ )d]

b− (1−δ )(1−σ)d
< β (5.27)

⊓⊔
Note that negating the condition for local stability of the disease-induced extinc-

tion equilibrium (0,1,0) is in agreement with the conditions (5.26) and (5.27). Note
also that the lower bound for β in both (5.26) and (5.27) is in fact the condition
R0 > 1; see (5.10).

Concerning the stability of (i∗F , i
∗
S), we obtained the following result:

Proposition 5.5. The solutions of the system (5.11) under standard incidence are
globally stable whenever they exist.

Proof. First denote

F(iF , iS)= diF/dt =(1−σ)β (1− iF − iS)(iF + iS)−diF − iF [(b−d)(1− iS)−δdiS]

G(iF , iS) = diS/dt = σβ (1− iF − iS)(iF + iS)−δdiS − iS[(b−d)(1− iS)−δdiS]

We use the Poincaré-Bendixson trichotomy that says the following for a planar sys-
tem: Any trajectory that remains in a closed and bounded region of the plane with
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finitely many fixed points has the limit set either (1) an equilibrium, (2) a periodic
orbit, (3) a finite set of equilibria and trajectories that emerge in and converge to this
finite set of equilibria.

Note that, since we have already proved the uniqueness of (i∗F , i
∗
S) in the rectangle

[0,1]× [0,1], the option (3) is ruled out from the start. What remains is to show that
for any initial condition in this rectangle the solution stays inside the rectangle and
also to rule out periodic solutions. The original system in S, IF and IS is positively
invariant. This ensures that the rectangle [0,1]× [0,1] is invariant for the system
of proportions of infectives iF and iS. To rule out periodic solutions, consider the
following Dulac function

φ(iF , iS) =
1

iF + iS
Then

∂
∂ iF

[φ(iF , iS)F(iF , iS)]+
∂

∂ iS
[φ(iF , iS)G(iF , iS)] =− 1

iF + iS
{β iF+

+iS [β − (b− (1−δ )d)]+(b− (1−δ )d)(1− iS)+d(1−δ )
iS

iF + iS

}
< 0

This follows from the existence condition on the interior equilibrium (i∗F , i
∗
S), i.e.

β >
b[b− (1−δ )d]

b− (1−δ )(1−σ)d
> b− (1−δ )d.

Thus periodic solutions are ruled out and the unique interior equilibrium (i∗F , i
∗
S) is

globally stable whenever it exists.
⊓⊔

Proposition 5.6. Define

B1 =
b[b− (1−δ )d]

b− (1−δ )(1−σ)d

B2 =
σd[b− (1−δ )d]

[d −b(1−σ)][δ +(1−δ )σ ]

B3 =
(1−δ )d[b− (1−δ )d]
(1−δ )d − (1−σ)b

Then under standard incidence, we have that:

Case 1: (1−δ )d −b(1−σ)> 0 implies B1 < B2 < B3 and

• if B1 < β < B2 then (i∗F , i
∗
S,N

∗) is globally stable
• if B2 < β < B3 then (i∗F , i

∗
S,0) is globally stable

Case 2: (1−δ )d −b(1−σ)< 0 implies B1 < B2 and

• if b(1−σ)− d < 0 and B1 < β < B2, or if b(1−σ)− d > 0 and β > B2 then
(N∗, i∗F , i

∗
S) is globally stable
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• if b(1−σ)−d < 0 and β > B2 then (0, i∗F , i
∗
S) is globally stable

Proof. From the equation for N (5.12) we know that

• (i∗F , i
∗
S,0) is globally stable if and only if i∗S > α if and only if A(α)A(1)< 0

• (i∗F , i
∗
S,N

∗) is globally stable if and only if i∗S < α if and only if A(0)A(α)< 0

where
A(iS) = a2(iS)2 +a1iS +a0

It is

A(α)A(1) =−d4δ 6σ(1−δ )T1T2

[b− (1−δ )d]6

where
T1 = [b(1−σ)−d][δ +(1−δ )σ ]β +σd(b− [1−δ )d]

T2 = [(1−δ )d −b(1−σ)]β −d(1−δ )[b− (1−δ )d]

Taking into account the existence and uniqueness conditions (5.26) and (5.27) for a
steady state i∗S in the interval (0,1), we conclude that

T2 < 0

So A(α)A(1)< 0 if and only if T1 < 0. This is equivalent to

b(1−σ)< d and β >
σd[b− (1−δ )d]

[d −b(1−σ)][δ +(1−δ )σ ]

This threshold for β is greater than the lower bound for β in the conditions (5.26)
and (5.27):

σd[b− (1−δ )d]
[d −b(1−σ)][δ +(1−δ )σ ]

− b[b− (1−δ )d]
b− (1−δ )(1−σ)d

=

=
[b− (1−δ )d](1−σ)(b−d)[(1−δ )(b+d)σ +δb]
[δ +(1−δ )σ ][d −b(1−σ)][b−d(1−δ )(1−σ)]

> 0

Furthermore, if the condition (5.26) is satisfied then this threshold is lower than the
upper bound on β (5.26), because

(1−δ )d[b− (1−δ )d]
(1−δ )d − (1−σ)b

− σd[b− (1−δ )d]
[d −b(1−σ)][δ +(1−δ )σ ]

=

=
δd(1−σ)[b− (1−δ )d] [(1−δ )[d −b(1−σ)]+bσ ]

[d(1−δ )−b(1−σ)][d −b(1−σ)][δ +σ(1−δ )]
> 0

⊓⊔

Altogether, in terms of β , we have the following results for standard incidence:
Case 1: (1−δ )d −b(1−σ)> 0 implies B1 < B2 < B3 and

• if β < B1 then (0,0,K) is locally stable
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• if B1 < β < B2 then (i∗F , i
∗
S,N

∗) is globally stable
• if B2 < β < B3 then (i∗F , i

∗
S,0) is globally stable

• if β > B3 then (0,1,0) is locally stable

Case 2: (1−δ )d −b(1−σ)< 0 implies B1 < B2 and

• if β < B1 then (0,0,K) is locally stable
• if b(1−σ)− d < 0 and B1 < β < B2 or if b(1−σ)− d > 0 and β > B2 then

(N∗, i∗F , i
∗
S) is globally stable

• if b(1−σ)−d < 0 and β > B2 then (0, i∗F , i
∗
S) is globally stable

Proposition 5.7. Under both mass action incidence and asymptotic incidence, the
endemic equilibrium (i∗F , i

∗
S,N

∗) exists and is unique if and only if R0 > 1.

Proof. We carry out the phase plane analysis to prove existence and uniqueness of
the endemic equilibrium (i∗F , i

∗
S,N

∗). With (5.14), we have

i∗F + i∗S = i∗S

(
1+

δ (1−σ)(1− i∗S)
σ [δ (α − i∗S)+1−α ]

)
= i∗Sc(i∗S)

where we defined

c(i∗S) =
δ (1−σ)(1− i∗S)

σ [δ (α − i∗S)+1−α]

Inserting this form into the second equation of (5.11) and simplifying, i∗S > 0 and
N∗ > 0 will be solutions of the system

σΦ(N)[1− iSc(iS)]c(iS)− [b− (1−δ )d](1− iS) = 0

(b−d)− [b− (1−δ )d]iS −d1N = 0
(5.28)

where the second equation follows from (5.12). This second equation implies (recall
K = (b−d)/d1)

N = K − iS
b− (1−δ )d

d1
(5.29)

so that the N-isocline is a linearly decreasing function of iS, starting at K for iS = 0
and terminating at −δd/d1 for iS = 1. The first equation of (5.28) implies

Φ(N) =
[b− (1−δ )d](1− iS)

σ [1− iSc(iS)]c(iS)
> 0 (5.30)

since c(iS)> 0. This can be seen by noting that δ (α − iS)+1−α > 0 if and only if

iS <
1−α +αδ

δ
=

b
b− (1−δ )d

(5.31)

if we insert the formula (5.15) for α . As b/[b− (1−δ )d]> 1 the inequality (5.31)
is satisfied for any iS ∈ [0,1].

Let us now explore the right-hand side of (5.30) as a function of iS, say f (iS),
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f (iS) =
[b− (1−δ )d](1− iS)

σ [1− iSc(iS)]c(iS)

It is f (1) = [b− (1−δ )d]/σ and f (0) = [b− (1−δ )d]/[σc(0)]. In addition,

c(0) = 1+
δ (1−σ)

σ(δα +1−α)
= 1+

δ (1−σ)[b− (1−δ )d]
σδb

> 1

where we used the formula (5.15) for α . Hence, f (0) < f (1). Differentiating the
function f (iS) with respect to iS, we get

f ′(iS) =
[b− (1−δ )d]δ (1−α +αδ −δ iS)(1−σ)σ

[σ(1−α +αδ )−δ iS]2[σ(1−α)−δ (1− iS −σ(1−α))]2
×

×{δ [(1−2iS)(1−α +αδ )+δ iS]+2(1−α)(1−δ )σ(1−α +αδ )}

Everything off the curled brackets of f ′(iS) is positive, so that we are going to
explore the sign of the expression in the curled brackets, which can be rewritten as

(1−α +αδ )[δ +2(1−α)(1−δ )σ ]− iSδ [2(1−α +αδ )−δ ] (5.32)

Setting this expression to zero and solving it for iS, we have

i◦S =
(1−α +αδ )[δ +2(1−α)(1−δ )σ ]

δ [2(1−α +αδ )−δ ]

Substituting the formula (5.15) for α , we eventually have

i◦S =
b+(1−δ )d

(
2bσ

b−(1−δ )d

)
b+(1−δ )d

Obviously, i◦S > 0. In addition, the expression (5.32) is positive for iS < i◦S and neg-
ative for iS > i◦S. Hence, the function f (iS) is growing for iS < i◦S and declining for
iS > i◦S, and reaches a maximum at iS = i◦S. We note that it might be i◦S > 1 for high
enough σ , and f (iS) will then be growing for all iS ∈ [0,1].

Now, because N is declining in iS (5.29) and both Φ(N) = βN (mass action
incidence) and Φ(N) = βN/(c+N) (asymptotic incidence) are growing in N, the
composite function Φ(N(iS)) will be declining in iS. This implies that the necessary
and sufficient condition for the existence of an endemic equilibrium is

Φ(K)> f (0)

or equivalently, after insertion for f (0) and trivial algebraic manipulations,

Φ(K)>
b[b− (1−δ )d]

b− (1−σ)(1−δ )d
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This last expression is equivalent to R0 > 1, see (5.10). Finally, because of the shape
and endpoints of the involved isoclines, the endemic equilibrium is unique provided
it exists.

⊓⊔

We were not able to rigorously prove local stability (or not) of the endemic
equilibrium (i∗F , i

∗
S,N

∗) under both mass action incidence and asymptotic incidence.
Therefore, we resorted to large-scale numerical simulations. These consisted of ran-
domly generating values of model parameters such that R0 > 1, seeking for endemic
equilibria corresponding to these parameter values, evaluating the Jacobian of the
model (5.1) at these equilibria, and seeking for eigenvalues of the Jacobian. For
both mass action incidence and asymptotic incidence, we made 106 such parame-
ter values generations and eigenvalue evaluations, and all of these produced only
eigenvalues with negative real parts. So, we make the following conjecture:

Conjecture 5.1. Under both mass action incidence and asymptotic incidence, the
endemic equilibrium (i∗F , i

∗
S,N

∗) is locally stable if and only if R0 > 1, i.e. whenever
it exists.

Control effectiveness

In this section, we run the model (5.1) for a variety of parameter sets and evaluate
the effectiveness E with which the host population is controlled. Based on these
simulations, we aim at identifying the parameter range (i.e. pathogen properties) in
which a significant effect of increased lifespan of the sterilized individuals on the
pest control effectiveness is observed. Once R0 > 1, the results we present below do
not change qualitatively with the strength of negative density dependence d1.

Standard incidence

For any fixed value of δ , the control effectiveness E increases with increasing σ
(Fig. 5.2). For relatively low β , the increase is rather unnoticed for low σ up to
a point from which the control effectiveness rapidly increases to 1 (Fig. 5.2a and
c). For relatively high β , however, the increase is virtually linear in σ until the
maximum value E = 1 of the control effectiveness is reached (Fig. 5.2b and d).

Most importantly from our perspective, for any fixed value of σ , the control ef-
fectiveness E increases with decreasing δ . However, as Fig. 5.2 suggests, the factor
δ that extends life expectancy of the sterilized hosts has a measurable effect only
for β close to b, high enough d, and relatively high σ . Indeed, this is confirmed in
Figs. 5.3 and 5.4. In such cases, the increase in the control effectiveness can be very
dramatic, from virtually 0 to something in between 0.5 and 1 (Fig. 5.2c). Still, an
increase in β relative to b appears to have the most substantial effect (Figs. 5.2d and
5.4).
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Fig. 5.2 Control effectiveness with standard incidence, as a function of the proportion of infected
individuals that become sterilized (σ ) and the proportional reduction of the intrinsic mortality rate
in those infected individuals that become sterilized (δ ). Other parameter values: (a) β = 1, b = 1,
d = 0.2; (b) β = 3, b = 1, d = 0.2. (c) β = 1, b = 1, d = 0.5; (d) β = 3, b = 1, d = 0.5; all panels:
d1 = 0.1

Finally, we explore how the control effectiveness E depends on δ for β = b. The
higher is d with respect to b and the higher is σ , the more rapidly E increases as δ
decreases (Fig. 5.5). For example, for d/b = 0.6 and σ = 0.8, the 5% control effec-
tiveness observed for δ = 1 (no increase in longevity due to disease) increases up to
about 50% control effectiveness for δ = 0.9 (corresponding to the 10% increase in
longevity of sterilized individuals).

Mass action incidence

While the trends identified for standard incidence are maintained also here, the con-
trol effectiveness E attains much lower values (Figs. 5.6 and 5.7). Note that we scale
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Fig. 5.3 Control effectiveness with standard incidence, as a function of: (a) the disease transmis-
sion efficiency β and the proportional reduction of the intrinsic mortality rate in those infected
individuals that become sterilized (δ ); (b) the intrinsic mortality rate d and the proportional reduc-
tion of the intrinsic mortality rate in those infected individuals that become sterilized (δ ). Other
parameter values: (a) b = 1, d = 0.7, σ = 0.6; (b) b = 1, β = 1, σ = 0.6; all panels: d1 = 0.1
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Fig. 5.4 Control effectiveness with standard incidence, as a function of the β/b ratio. Plotted is the
difference between control effectiveness at δ = 0.01 and δ = 1, hence the added value of increased
life expectancy in the most optimistic case. Line coding: d = 0.4b (solid), d = 0.6b (dashed),
d = 0.7b (dash-dot), d = 0.8b (dotted); σ = 0.6, b = 1, d1 = 0.1. The figure is identical for other
values of b

here the transmission efficiency β by the environmental carrying capacity of the host
K, so as to keep the same basic reproduction numbers R0 for all adopted disease
transmission models.
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Fig. 5.5 Control effectiveness with standard incidence, as a function of the proportional reduction
of the intrinsic mortality rate in those infected individuals that become sterilized (δ ). Line coding:
σ = 0.8, d = 0.6b (solid), σ = 0.8, d = 0.4b (dashed), σ = 0.6, d = 0.6b (dash-dot), σ = 0.6,
d = 0.4b (dotted); common parameter values: b = β = 1, d1 = 0.1

Asymptotic incidence

While the trends identified for the previous two incidence terms are maintained also
here, the control effectiveness E attains lower values than standard incidence but
higher values than mass action incidence (Figs. 5.8 and 5.9). Note that we scale here
the transmission efficiency β by the term K/(K + c), so as to keep the same basic
reproduction numbers R0 for all adopted disease transmission models.

5.3 Discussion

In this chapter, we explored consequences for infection spread and host population
suppression of the assumption that sterilizing pathogens preventing reproduction in
some infected individuals cause a redistribution of resources and hence increased
longevity of sterilized population members. This in turn allows for a more efficient
infection spread, as just some of the infectious individuals are those that live longer,
and hence for a greater population suppression at endemic equilibrium compared
with when no longevity promotion is assumed.

It is not surprising that higher efficiencies of sterilization (larger σ ) and higher
stretches of longevity (lower δ ) promote higher effectiveness of host control by ster-
ilizing pathogens. Much less obvious is under what circumstances these effects are
‘measurable’ and, in particular, of practical importance for population management.
We show that the effect of increased longevity of sterilized individuals increases
with (1) decreasing difference between the per capita birth rate (b) and the transmis-
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Fig. 5.6 Control effectiveness with mass action incidence, as a function of the proportion of in-
fected individuals that become sterilized (σ ) and the proportional reduction of the intrinsic mor-
tality rate in those infected individuals that become sterilized (δ ). Other parameter values: (a)
β = 1/K, b = 1, d = 0.2; (b) β = 3/K, b = 1, d = 0.2. (c) β = 1/K, b = 1, d = 0.5; (d) β = 3/K,
b = 1, d = 0.5; all panels: d1 = 0.1, K = (b−d)/d1

sion rate between individuals at the carrying capacity (ϕ(K)), (2) decreasing birth-
to-intrinsic-death-rate ratio (i.e. b/d → 1, recall we assume b > d), and (3) increas-
ing sterilization efficiency of the pathogen (σ ). This result makes perfect sense since
it corresponds to the situation where the natural life expectancy is relatively short
and the disease transmission is relatively slow. In this situation, the enhanced life
expectancy of the sterilized hosts will have maximal effect in facilitating spread of
the pathogen. Interestingly, with no regard to disease-induced sterilization, Stenseth
(1981) concluded that “The larger the mortality of the uncontrolled population, the
more likely is reproduction to be the optimal pest control.”

The qualitative character of transmission is also of high importance – keeping R0
the same across the transmission models, the largest control efficiencies are gener-
ally achieved for standard incidence, followed by asymptotic incidence and eventu-
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Fig. 5.7 Control effectiveness with mass action incidence, as a function of: (a) the (scaled) disease
transmission efficiency β/K and the proportional reduction of the intrinsic mortality rate in those
infected individuals that become sterilized (δ ); (b) the intrinsic mortality rate d and the proportional
reduction of the intrinsic mortality rate in those infected individuals that become sterilized (δ ).
Other parameter values: (a) b = 1, d = 0.7, σ = 0.6; (b) b = 1, β = 1/K, σ = 0.6; all panels:
d1 = 0.1, K = (b−d)/d1

ally mass action incidence. Standard incidence provides the most effective control
mainly because this transmission dynamic allows for disease-induced population
extinction, which is not the case for the other two transmission dynamics (unless
δ = σ = 1). This should not concern us much, however, as sterilizing viruses are
mostly sexually transmitted (Lockhart et al, 1996) and sexually transmitted diseases
most closely fit the standard incidence paradigm (McCallum et al, 2001). If the
sterilizing pathogens are to be engineered, on the other hand, we have to carefully
consider their transmission mode. Our results have direct implications for the devel-
opment of effective VVIC agents. In particular, our results indicate how effective, in
terms of β and σ , the control agents should be, relative to the life history parameters
of a pest species (b, d and δ ).

The above results can only be applied, however, when we are able to estimate δ ,
the factor that extends life expectancy of the sterilized hosts. We expect this might
be a problem in many species, mostly in those that are long-lived, but it might on the
other hand be relatively easy in short-lived species such as insects or passerine birds
or rodents. It is just in these short-lived species where δ can be significantly high, as
we do not actually expect high δ in long-lived species. Studies that would allow for
an estimate of δ are rare, however; some are listed in Table 5.3. More often, studies
of reproduction-survival trade-offs summarize their results in the form of correla-
tions. For example, there is a highly significant negative correlation between egg
production and longevity in a wing-dimorphic cricket (Tanaka and Suzuki, 1998).
Also, some studies do not present intra-specific variability in fecundity vs. longevity,
but rather represent mean evolutionary endpoints at higher units: Bennett and Owens
(2002) thus showed that annual fecundity and clutch size were negatively correlated
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Fig. 5.8 Control effectiveness with asymptotic incidence, as a function of the proportion of in-
fected individuals that become sterilized (σ ) and the proportional reduction of the intrinsic mor-
tality rate in those infected individuals that become sterilized (δ ). Other parameter values: (a)
β/(K/(c+K)) = 1, b= 1, d = 0.2; (b) β = 3/(K/(c+K)), b= 1, d = 0.2. (c) β = 1/(K/(c+K)),
b = 1, d = 0.5; (d) β = 3/(K/(c+K)), b = 1, d = 0.5; all panels: d1 = 0.1, c = 1, K = (b−d)/d1

to adult survival rate and age at first breeding was positively correlated to adult sur-
vival rate, calculated across bird families and orders, while Thomas et al (2000)
showed that in humans, a significant negative relationship exists between the mean
female fecundity and the mean female longevity, calculated across countries – this
result indicates that women in rich countries tend to have fewer children and live
longer.

The trade-off between reproduction and survival does not need to be intrinsic to
the focal species, i.e. it need not always be driven by changes in energy allocation.
Many animals suffer from a conflict between mating success and survival – their
mating signals are exploited by their natural enemies (Zuk and Kolluru, 1998). For
example, gravid females might be more conspicuous to predators and hence suffer
from higher mortality such as in some copepods (Svensson, 1992). As gravid fe-
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Fig. 5.9 Control effectiveness with asymptotic incidence, as a function of: (a) the (scaled) disease
transmission efficiency β/(K/(c+K)) and the proportional reduction of the intrinsic mortality
rate in those infected individuals that become sterilized (δ ); (b) the intrinsic mortality rate d and
the proportional reduction of the intrinsic mortality rate in those infected individuals that become
sterilized (δ ). Other parameter values: (a) b = 1, d = 0.7, σ = 0.6; (b) b = 1, β = 1/(K/(c+K)),
σ = 0.6; all panels: d1 = 0.1, c = 1, K = (b−d)/d1

males, or more generally individuals generating a mating signal, are obviously not
sterile, this is yet another mechanism that may increase longevity of sterilized fe-
males. So δ might also decrease due to predators or parasitoids, and thus possibly
attain relatively low values.

One of our main results is that an increase in longevity of the sterilized infected
individuals further enhances their ability to spread the disease. A natural follow-up
would be to extend the model to include an indigenous species that is negatively
affected by the presence of an invasive species we aim to eradicate with the steriliz-
ing virus. In that case, the lower mortality rate of the sterilized infected individuals
can have both a negative and positive effect: on the one hand, they live longer and
spread the disease more efficiently, on the other hand, they have more time to cause
damage to the indigenous species. It all depends on how fast the invasive species
can eliminate the indigenous one. For example, in the Great Lakes, the Asian carp
is a huge problem because it is extremely efficient at eradicating plankton, which
in turn causes starvation and extinction in native populations (hence a competitive
interaction).

If we release a pathogen that sterilizes just males (as can happen, e.g. for VVIC),
we invoke a sort of “disease-induced” sterile-male-release technique (Dell’Omo and
Palmery, 2002; Dyck et al, 2005). In particular, an increasing fraction of the male
population becomes sterile, and females will loose time and opportunities in mating
with sterile males. This can create a mate-finding Allee effect (Courchamp et al,
2008) and accelerate the population decline, especially when females mate only
once; see also Barlow et al (1997) for the importance of mating systems in effec-
tiveness of fertility control. On the other hand, reduction of host population density
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Species Observation Estimate of δ Reference

Parasitoid
Trichogramma
brasiliensis

Adult females survived shorter (10 days)
when an unlimited supply of hosts was
present, but longer (16 days) when no
hosts were provided

10/16 = 0.625 Ramesh and
Manick-
avasagam
(2003)

Dung beetle
Onthophagus
binodis

Mating is not costly in terms of reduced
longevity for female dung beetles; de-
spite a longevity cost of reproduction for
males, no evidence was found for differ-
ential longevity costs associated with al-
ternative reproductive tactics – quantita-
tive results: males in mixed sex popula-
tions = 54.8 ± 2.5 days (mean ± stan-
dard error), males in single sex popula-
tions = 62.6±2.7 days, females in mixed
sex populations = 55.2±2.7 days, females
in single sex populations = 54.7±2.8 days

54.8/62.6 ∼ 0.875 Kotiaho and
Simmons
(2003)

Columbian
ground squir-
rel Sper-
mophilus
columbianus

Reproductive status influenced mortality
in females – non-reproducing females had
a higher chance of surviving (83.5%) than
reproducing females (75.7%)

16.5/24.3 ∼ 0.679 Neuhaus
and Pelletier
(2001)

Table 5.3 Some studies of fecundity-longevity or reproduction-survival trade-offs that allow for
an estimate of δ

makes it more difficult for pathogens to spread via mass action or asymptotic trans-
mission, as efficiency of that transmission declines with decreasing population den-
sity. Fortunately, when an Allee effect creates a demographic extinction threshold,
even diseases with mass action or asymptotic transmission can drive host popula-
tions to extinction (Hilker et al, 2009). Given also that mating can be costly in terms
of reduced longevity for one sex but not the other (Kotiaho and Simmons, 2003),
more predictive models should be sexually structured, reflecting sex-specificity of
the involved processes and possibility for a mate-finding Allee effect.

5.4 Conclusions and further research

Sterilizing pathogens are commonly assumed not to affect longevity of infected in-
dividuals, and if they do then negatively. Examples abound, however, of species in
which the absence of reproduction actually increases life expectancy. This happens
because by decreasing the energy outlay on reproduction individuals with lowered
reproduction can live longer. Alternatively, fertile individuals are more susceptible
to predators or parasitoids if the latter can capitalize on mating signals of the former.
Here we develop and analyze an SI epidemiological model to explore whether and
to what extent does such a life expectancy prolongation due to sterilizing pathogens
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affect host dynamics. In particular, we are interested in an added value of increased
life expectancy on the possibility of successful pest control, that is, the effect of in-
creased lifespan and hence increased potential of the infected individuals to spread
the disease on pest control effectiveness. We show that although the parameter range
in which we observe an effect of increased lifespan of the sterilized individuals is
not large, the effect itself can be significant. In particular, the increase in pest control
effectiveness can be very dramatic when disease transmission efficiency is close to
birth rate, mortality rate of susceptible individuals is relatively high (i.e. the species
is relatively short-lived), and sterilization efficiency is relatively high. Our results
thus characterize pathogens that are promising candidates for an effective pest con-
trol and that might possibly be engineered if not occurring naturally.

Among other things, we plan to extend the model studied in this chapter to a two-
sex version, due to reasons specified in the final paragraph of the previous section.
Actually, development of two-sex models is always a challenge, as it requires con-
sideration of many more processes than classical one-sex models (see Chapter 3).
On top of that, there are no standard functional forms for modeling these processes.
When it comes to two-sex models, the core element is the mating function or the
rate at which males and females meet and mate. When it comes to models of infec-
tious disease dynamics, the core element is the transmission function or the rate at
which infected and susceptible individuals meet and the disease is transmitted. So,
both these processes have something in common, and when it comes to modeling
dynamics of sexually transmitted diseases among males and females that form only
ephemeral pair bonds (just to meet, mate, and say goodbye), these two processes of
mating and disease transmission have a common base – the way males and females
meet and mate. So the mating and transmission functions should at least under some
circumstances be structurally consistent.

Let SM , IM , SF and IF be densities of susceptible males, infected males, suscep-
tible females, and infected females, respectively. Moreover, let ϕSS, ϕIS, ϕSI and ϕII
be the rates at which susceptible males meet and court susceptible females, infected
males meet and court susceptible females, susceptible males meet and court infected
females, and infected males meet and court infected females, respectively. Assum-
ing no recovery, the corresponding two-sex, SI epidemiological model is as follows
(the other symbols used in the model are explained in Table 5.4):

dSM

dt
= µbw(χSSϕSS +σISχISϕIS)+µbξ w(σSI χSIϕSI +σII χIIϕII)− τF χSIϕSI −dMSM

dIM

dt
= µb(1−ξ )w(σSI χSIϕSI +σII χIIϕII)+ τF χSIϕSI − (dM +αM)IM

dSF

dt
= (1−µ)bw(χSSϕSS +σISχISϕIS)+(1−µ)bξ w(σSI χSIϕSI +σII χIIϕII)− τM χISϕIS −dF SF

dIF

dt
= (1−µ)b(1−ξ )w(σSI χSIϕSI +σII χIIϕII)+ τM χISϕIS − (dF +αF )IF

(5.33)

What remains to specify is how the encounter rates ϕSS, ϕIS, ϕSI , and ϕII depend
on male and female densities. Let aS(SM + IM) and aI(SM + IM) be the rates at which
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Parameter Meaning

µ Sex ratio at birth
b Birth rate
σ Factors reducing birth rate if any partner is infected
χ Probabilities of mating of the respective pairs upon encounter
ξ Probability of the infection being transmitted vertically
dM (dF ) Male (female) background mortality rate
αM (αF ) Male (female) disease-induced mortality rate
w Fraction of matings that result in (instant) reproduction
τM (τF ) Probability of disease transmission from male (female) upon mating

Table 5.4 Parameters used in the model (5.33)

a susceptible female and an infected female, respectively, meet males as a function
of total male density SM + IM . Then,

ϕSS = aS(SM + IM) SM
SM+IM

SF

ϕIS = aS(SM + IM) IM
SM+IM

SF

ϕSI = aI(SM + IM) SM
SM+IM

IF

ϕII = aI(SM + IM) IM
SM+IM

IF

(5.34)

There are some standard ways of how to model aS and aI . One of them includes
so-called mating functions (also called pair formation functions or marriage func-
tions) that are commonly assumed homogeneous of degree one and define the rate
at which males and females mate (e.g. Dietz and Hadeler, 1998). Denoting such a
mating function as M (SM + IM,SF + IF), we have

a(SM + IM) =
M (SM + IM,SF + IF)

SF + IF
(5.35)

(we give a form common to aS and aI here, the two functions may differ by choosing
sex-specific parameter values of M ). Also, one may assume that the host population
is subject to an Allee effect and consider an alternative description of a:

a(SM + IM) = c
SM + IM

SM + IM +θ
(5.36)

The model (5.33) can be used to explore a number of issues, among which are
impacts of vertically transmitted male-killing bacteria, by setting to zero the first
term of the right-hand side in the equation for IM; these bacteria can also be si-
multaneously spread horizontally (Keeling et al, 2003; Hurst and Jiggins, 2000, and
references therein). Also, this model can be used to study effects of parasites pro-
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moting mating success, by setting, e.g. χSS < χIS = χSI < χII (McLachlan, 1999;
Knell and Webberley, 2004). We are currently working on the latter topic.

Also, we are currently examining how dynamics of the generic model (5.33) are
affected by the form of the mating function M and an appropriate, consistent trans-
mission function. The preliminary result we have so far is as follows. Consider the
following variant of the model (5.33), with a general mating function M (NM,NF):

dSM

dt
= γMCwb

M (NM,NF)

NF
(SF +σ IF)−δC

M (NM,NF)

NF

SMIF

NM
− (dM +dN)SM

dIM

dt
= δC

M (NM,NF)

NF

SMIF

NM
− (dM +dN)IM −αMIM

dSF

dt
= γFCwb

M (NM,NF)

NF
(SF +σ IF)−δC

M (NM,NF)

NF

SF IM

NM
− (dF +dN)SF

dIF

dt
= δC

M (NM,NF)

NF

SF IM

NM
− (dF +dN)IF −αF IF

(5.37)
In addition to the symbols given in Table 5.4, C is the rate at which males and
females meet, δ is the probability of disease transmission upon mating, and d is the
strength of negative density dependence in host mortality; N = NF +NM .

Proposition 5.8. If there is no disease-induced mortality, αM = αF = 0, the basic
reproduction number R0 of the model (5.37) does not depend on the mating function.

Proof. As in Box 5.3, we use the next generation matrix approach due to van den
Driessche and Watmough (2002). We first reshuffle the state variables so that the
first two represent infected classes: IF , IM,SF ,SM . Using the notation of van den
Driessche and Watmough (2002), we have

F =


δC

M (NM,NF)

NF

SF IM

NM

δC
M (NM,NF)

NF

SMIF

NM

0
0


comprising all rates of the model (5.37) that describe the appearance of new infec-
tions, and

V =



(dF +dN)IF +αF IF

(dM +dN)IM +αMIM

−dSF

dt

−dSM

dt


comprising all remaining rates (with the reverse sign). Setting x= (IF , IM,SF ,SM) as
the system state and x0 = (0,0,N∗

F ,N
∗
M) as the disease-free equilibrium, this implies
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F =

[
∂Fi

∂x j
(x0)

]∣∣∣∣
1≤i, j≤2

= δCM (N∗
M,N∗

F)

(
0 1/N∗

M
1/N∗

F 0

)
and

V =

[
∂Vi

∂x j
(x0)

]∣∣∣∣
1≤i, j≤2

=

(
αF +dF +d(N∗

F +N∗
M) 0

0 αM +dM +d(N∗
F +N∗

M)

)
This implies

V−1 =

(
1/[αF +dF +d(N∗

F +N∗
M)] 0

0 1/[αM +dM +d(N∗
F +N∗

M)]

)
and the next generation matrix thus becomes

FV−1 = δCM (N∗
M,N∗

F)

 0
1

N∗
M[αM +dM +d(N∗

F +N∗
M)]

1
N∗

F [αF +dF +d(N∗
F +N∗

M)]
0


of which the dominant (in the absolute value) eigenvalue equals R0 (van den Driess-
che and Watmough, 2002). Therefore,

R0 =
δCM (N∗

M,N∗
F)√

N∗
F N∗

M[αF +µF +d(N∗
F +N∗

M)][αM +µM +d(N∗
F +N∗

M)]
(5.38)

In the absence of disease, the model (5.37) simplifies to

dNF

dt
= γFCwbM (NM,NF)− (dF +dN)NF

dNM

dt
= γMCwbM (NM,NF)− (dM +dN)NM

(5.39)

Setting its right-hand sides to zero, then from the first equation we have for the
disease-free equilibrium

M

N∗
F
=

dF +d(N∗
F +N∗

M)

γFCwb

and from the second equation, analogously,

M

N∗
M

=
dM +d(N∗

F +N∗
M)

γMCwb

So
M 2

N∗
F N∗

M
=

[dF +d(N∗
F +N∗

M)][dM +d(N∗
F +N∗

M)]

γF γM(Cwb)2

and hence
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M√
N∗

F N∗
M

=

√
[dF +d(N∗

F +N∗
M)][dM +d(N∗

F +N∗
M)]

Cwb
√γF γM

Substituting this expression into (5.38) we eventually have

R0 =
δ

wb
√γF γM

×
√
[dF +d(N∗

F +N∗
M)][dM +d(N∗

F +N∗
M)]√

[αF +dF +d(N∗
F +N∗

M)][αM +dM +d(N∗
F +N∗

M)]
(5.40)

Hence, if there is no disease-induced mortality, the nominator and denominator of
the second fraction cancel out and R0 does not depend on the mating function M ,
since

R0 =
δ

wb
√γF γM

(5.41)

We note that if there is a disease-induced mortality, R0 depends on the mating func-
tion M through N∗

F +N∗
M , the total population size at the disease-free equilibrium.

However, if d(N∗
F +N∗

M) is large relative to both αF and αM , we still have a weak
dependence of R0 on the mating function M .

⊓⊔
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