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summary

Regression models with compositional response have been studied from the be-
ginning of the log-ratio approach for analysing compositional data. These early
approaches suggested the statistical hypothesis of logistic-normality of the com-
positional residuals to test the model and its coefficients. Also, the Dirichlet
distribution has been proposed as an alternative model for compositional resid-
uals, but it leads to restrictive and not easy-to-use regressions. Recent advances
on the Euclidean geometry of the simplex and on the logistic-normal distribution
allow re-formulating simplicial regression with logistic-normal residuals. Estima-
tion of the model is presented as a least-squares problem in the simplex and is
formulated in terms of orthonormal coordinates. This estimation decomposes into
simple linear regression models which can be assessed independently. Marginal
normality of the coordinate-residuals suffices to check influence of covariables
using standard regression tests. Examples illustrate the proposed procedures.
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1 Introduction

Compositional data appear frequently in statistical analysis. They quantitatively represent

the parts of a whole and only the proportions of their parts are assumed informative. Typ-

ical examples are a chemical composition, the proportions of large counts in surveying, the

structure of a stock portfolio, the distribution of household expenditures and incomes, etc.

As a consequence, compositional data also occur as responses in regression models. Regres-

sion models for compositional data were first discussed in [18, 10]. In Aitchison and Shen

[18] a discussion on the distribution of the residuals of the regression is enlightening. One

obvious candidate was the Dirichlet distribution. The competing model was the logistic-

normal family of distributions. It was shown that the Dirichlet family can be approximated

by the logistic-normal distribution and thus approximately included in the logistic-normal

family. Moreover, the Dirichlet family seemed to the authors too restrictive for an effective

and practical use in applications [12]. Most of the material about regression with composi-

tional responses and the distributions appropriate for residuals presented in these references

keep their validity, and only a little bit about techniques can be added. However, over

almost the last three decades these results have not been taken into account, and a lot of

studies on Dirichlet regression for compositional responses have appeared. Recent examples

are [32, 33, 2].

Recent developments on the simplex geometry [4, 35, 14, 25, 22, 20] allow to express the

regression model in coordinates and to estimate its coefficients using ordinary least squares

[19]. When the normal model is assumed for the residuals, its distribution is identified

with the logistic-normal or additive-logistic-normal [9, 17]. In this simple case, the least

squares approach can be applied to simplicial coordinates of the compositional response,

and it corresponds to the maximum likelihood estimation of the model. Our objective is

to present the linear regression model for compositional response in its coordinate version.

The model can be estimated using ordinary least squares. Under normality of the coor-

dinate residuals, standard statistical techniques of multiple regression can be applied. As

a consequence, the logistic-normal linear regression for compositional responses is the sim-

plest regression method, competing with other approaches like e.g. models with Dirichlet

distributed residuals. Model selection is not treated here globally, but separately for each

coordinate. Standard techniques in regression analysis can be used on coordinates. Also

more specific techniques dealing with missing data and rounded zeros have been recently

developed [31].

2 Aitchison simplicial geometry

Geometry

Compositional data of D parts are identified with equivalence classes of proportional vectors

with positive components. A representative of these equivalence classes can be taken to be

in the simplex of D parts (equivalently the (D− 1)-dimensional simplex), denoted SD. The
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simplex SD can be defined as the set of real vectors of D positive components adding to a

constant, here assumed to be unity. If x is a D-vector of positive components, denote Cx
its representative in the simplex. Cx is readily obtained dividing each component by their

total sum, and is called the closure of x.

A natural operation between elements of the simplex is perturbation, which plays the

role of addition in the simplex. Multiplication by real numbers is called powering. Denoting

transpose by (·)′, compositions in SD by x = (xα1 , x
α
2 , . . . , x

α
D)′, y = (y1, y2, . . . , yD)′, and

α ∈ R, perturbation and powering are defined as

x⊕ y = C(x1y1, x2y2, . . . , xDyD)′ , α� x = C(xα1 , xα2 , . . . , xαD)′ , (2.1)

respectively. The composition n with equal components is the neutral element for the

perturbation. Perturbation and powering (2.1) define a (D − 1)-dimensional vector space

structure in the simplex SD. The Aitchison inner product in SD is

〈x,y〉a =

D∑
i=1

(log xi · log yi)−
1

D

 D∑
j=1

log xj

 ·( D∑
k=1

log yk

)
. (2.2)

The corresponding norm and distance are

‖x‖a =
√
〈x,x〉a , da(x,y) = ‖x	 y‖a , (2.3)

where	 represents the opposite operation of⊕, i.e. 	y ≡ ⊕ ((−1)� y). The metrics defined

by eq. (2.2), resp. (2.3), is compatible with the operations in (2.1), so that the simplex(
SD,⊕,�, 〈., .〉a

)
is a (D− 1)-dimensional Euclidean space [14, 35, 4]. This constitutes the

so-called Aitchison geometry of the simplex.

A consequence of the Euclidean structure of SD is that an orthonormal basis of the

space can be built, and a composition x ∈ SD can be represented by its coordinates with

respect to such a basis. Let x∗ = h(x) be the vector of D − 1 real coordinates of x. For

each orthonormal basis, the coordinate function h(·) is an isometry between SD and RD−1,

called isometric log-ratio transformation [25]. Important properties of such an isometry are

h(x⊕ y) = h(x) + h(y) , h(α� x) = α · h(x) , (2.4)

and

〈x,y〉a = 〈h(x), h(y)〉 , ‖x‖a = ‖h(x)‖ , da(x,y) = d(h(x), h(y)) , (2.5)

where 〈·, ·〉, ‖ · ‖ and d(·, ·) are the ordinary Euclidean inner product, norm and distance in

RD−1 respectively. This means that, whenever compositions are transformed into coordi-

nates, the metrics and operations in the Aitchison geometry of the simplex are translated

into the ordinary Euclidean metrics and operations in real space.

The choice of an orthonormal basis can be made following the methods developed in

[22, 23]. They consist of defining a sequential binary partition (SBP) of the compositional

vector. In a first step, the components of the composition are divided into two groups;
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components in one group are marked with a +1 and components in the other group are

marked with a −1; see Table 1, order 1 row. In a second and following steps, a previous

group of parts is divided into two new groups and they are similarly marked with +1 and

−1, while the components not involved are marked with 0; see second and following rows

in Table 1. The number of steps required until each group contains a single component is

Table 1: Coding of a sequential binary partition (SBP) of a D = 5 compositional vector x. Each
row of the (4, 5)-matrix Θ indicates with +1 and −1 the components in each group of the partition
at the corresponding order; 0 indicates that the component does not participate in the partition.
Columns r, resp. s, are the number of +1, resp. −1, in the corresponding order partition. The
balance-coordinate is made explicit in the last column.

order x1 x2 x3 x4 x5 r s balance

1 +1 −1 −1 +1 +1 3 2 x∗1 = (6/5)1/2 log (x1x4x5)1/3

(x2x3)1/2

2 +1 0 0 +1 −1 2 1 x∗2 = (2/3)1/2 log (x1x4)1/2

x5

3 +1 0 0 −1 0 1 1 x∗3 = (1/2)1/2 log x1

x4

4 0 −1 +1 0 0 1 1 x∗4 = (1/2)1/2 log x3

x2

exactly D − 1, i.e. the dimension of SD. Let Θ = [θij ] be a (D − 1)×D matrix containing

the codes represented in Table 1. An element of an orthonormal basis of SD, and the

corresponding coordinate, are associated with each row of Θ. First, for the ith-row of Θ

compute the number of +1 and −1 and denote them by ri and si, respectively. Then,

construct the (D − 1)×D matrix Ψ = [ψij ] where

ψij = θij
s

(θij−1)/2
i

r
(θij+1)/2
i

√
risi
ri + si

, i = 1, 2, . . . , D − 1 , j = 1, 2, . . . , D . (2.6)

The matrix Ψ (2.6) has some remarkable properties, similar to those of Helmert matrices

[30]. The coordinate associated with the i-th row of Θ is

x∗i =

√
risi
ri + si

log

∏
+ x

1/ri
j∏

− x
1/si
k

, (2.7)

where the product subscripted + (resp. −) runs over the components marked with +1 (resp.

−1) in the i-th row of Θ. The transformation into coordinates (2.7) is called isometric log-

ratio transformation (ilr) [25, 22]. The coordinates are also called balances because of their

particular form as ratios of geometric means of components grouped as coded in the SBP,

as shown in (2.7). The computation of the balances or coordinates of the composition can

be written as

x∗ = h(x) = Ψ · log x , (2.8)
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where the logarithmic function applies componentwise and the dot denotes matrix product.

A composition can be readily recovered from its coordinates using the inverse ilr transfor-

mation

x = h−1(x∗) = C exp(Ψ′ · x∗) , (2.9)

where exp(.) applies componentwise to the argument vector [30].

There are other ways of representing elements of the simplex. Two of them, called

alr and clr [12], additive log-ratio and centered log-ratio transformations respectively, are

historically previous to orthogonal coordinates, ilr, and have been used extensively. The alr

transformation of a composition x ∈ SD is defined as the (D − 1)-real vector

alr(x) = log

(
x1

xD
,
x2

xD
, . . . ,

xD−1

xD

)′
, (2.10)

with inverse transformation

alr−1(y) = C exp (y1, y2, . . . , yD−1, 0)
′
, (2.11)

where y = alr(x) ∈ RD−1. The components of alr(x) are coordinates of the composition

with respect to an oblique basis of the simplex [22]. This means that it can be useful for

representations where the properties of SD as a vector space play the main role. However,

the alr representation may be not easy to use when dealing with metric properties of SD.

For x ∈ SD, the centered log-ratio transformation clr is defined as

clr(x) = log

(
x1

g(x)
,
x2

g(x)
, . . . ,

xD
g(x)

)′
, (2.12)

where g(·) is the geometric mean of the components of the argument. The clr representa-

tion is an isometry between SD with the Aitchison geometry and the (D − 1)-dimensional

subspace of RD of vectors whose components add to zero. Therefore, components of the

clr transformed vectors add to zero, thus constraining its components. The clr components

(2.12) permit the reconstruction of the corresponding composition

x = C exp(y) , (2.13)

where y = clr(x) ∈ RD. The clr representation of compositions is very useful to compute

operations and metrics in SD, although a redundant component is used in the storage and in

computation. Examples of use of the clr (2.12), (2.13) are the computation of compositional

principal components [11, 12] and compositional biplots [15].

Elements of simplicial statistics

When dealing with random compositions, i.e. random vectors whose sample space is SD,

the Aitchison simplicial geometry influences some elementary concepts, specially those re-

lated with the underlying metrics of the sample space. The mean and variance, and the
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respective estimators, are here addressed. Also the normal distribution in the simplex and

its representation is briefly presented.

The concept of centre of a random composition, X, was introduced in [13]. It can be

defined as

Cen[X] = h−1E[h(X)] = C exp(E[log X]) , (2.14)

where h(·) is the coordinate function for a chosen basis in SD and E[·] is the ordinary

expectation in the real space RD. The second member in (2.14) corresponds to a DeFinetti

gamma-mean [1]. The third member in (2.14) is the expression given by Aitchison, which

is proportional to a geometric mean. Note that the definition does not depend on the

chosen basis in SD. The center can also be defined as the element in SD minimizing the

Aitchison-metric variability of X, which does not depend on the basis [35]. In a more general

framework, this definition is in agreement with the general theory developed in [26]. Given

a random sample of X, the natural estimator of Cen[X] is the simplex-average or geometric

mean [36]

X =
1

n
�

n⊕
i=1

xi = C

( n∏
i=1

xi1

)1/n

,

(
n∏
i=1

xi2

)1/n

, . . . ,

(
n∏
i=1

xiD

)1/n
′ , (2.15)

where xi = (xi1, xi2, . . . , xiD)′ is the ith-sample composition. This estimator is unbiased in

the simplex, i.e. Cen[X	 Cen[X]] = n.

The metric or total variance of a random composition [13, 35] is defined in a natural way

as

MVar[X] = E[d2
a(X,Cen[X])] . (2.16)

There are a number of expressions of (2.16) in terms of log-ratios of the components of the

random composition. When using coordinates X∗ of the random composition with respect

to a chosen basis, MVar[X] is decomposed into variances of the coordinates [24], i.e.

MVar[X] =

D−1∑
j=1

Var[X∗j ] , (2.17)

where X∗j denotes de jth-coordinate of the random composition X. The decomposition

(2.17) holds after the decomposition of the Aitchison-distance using orthonormal coordi-

nates [22]. The estimation is then reduced to the estimation of the variances of the co-

ordinates Var[X∗j ]. The CoDa-dendrogram can be used for a visualization of the variance

decomposition [34, 37, 24]. The covariances between coordinates complete the second or-

der description of the variability of the random composition. They can be arranged in the

variance-covariance (D − 1, D − 1)-matrix Σ whose ij-entry is Cov[X∗i , X
∗
j ]. The matrix Σ

depends on the selected basis. However, the covariance endomorphism represented by Σ is

invariant under changes of basis in SD [26, 29].
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3 Least squares regression with a compositional response.

Consider a n-sample data set in which the i-th record is made of a compositional response

xi = (xi1, xi2, . . . , xiD)′ in SD, and the values of r covariates arranged in a vector ti =

(t0, ti1, ti2, . . . , tir)
′, where t0 = 1 is equal for each record. A prediction in the simplex SD

consists of a deterministic function of the covariates, also called predictor, p(t) ∈ SD; and

a perturbation-additive error or residual e ∈ SD. A linear predictor in the simplex is

p(t) =

r⊕
k=0

(tk � bk) , (3.1)

where the coefficients bk ∈ SD. The predictor (3.1), is a linear combination of compositional

coefficients bk, with respect to the Aitchison geometry of the simplex, where the coefficients

of the combination are the real covariates. The covariate t0 = 1 provides a constant term

in the predictor.

The least squares regression problem is to find estimates, b̂k, of the compositional coef-

ficients bk, k = 0, 1, . . . , r, in

xi = b0 ⊕
r⊕

k=1

(tik � bk)⊕ ei , i = 1, 2, . . . , n , (3.2)

minimizing the sum of square-norms of the error

SSE =

n∑
i=1

‖ei‖2a =

n∑
i=1

‖p(ti)	 xi‖2a . (3.3)

The regression model (3.2) contains (r+1)×D parameter values to be determined. However,

the bk’s are in the simplex and D−1 components determine these coefficients and, therefore,

there are only (r + 1) × (D − 1) parameters to be estimated from the data. It is worth to

remark that all familiar geometrical concepts in (3.2) and (3.3), like linearity, deviation,

norm, are here referred to the Aitchison geometry of the simplex. Accordingly, SSE (3.3)

cannot be compared to similar expressions in which the norms and operations are those of the

standard real Euclidean space. The adequacy of SSE as a target function to be minimized

relays on the compositional character of the response and the consequent measurement of

deviations in SD.

Assume that the least-squares estimate of the compositional coefficients are b̂k, thus

defining the predictor p̂(t). The corresponding estimated residuals are êi and ŜSE denotes

the minimized sum of squares. Similarly to the standard multiple linear regression analysis,

the total sum of squares ŜST, defined as

ŜST =

n∑
i=1

‖xi 	X‖2a , (3.4)

is considered. The statistics X in (3.4) is the geometric average of the sample response

as defined in (2.15). The statistics n−1 · ŜST is an estimator of the total variance of the
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responses MVar[X] (2.16). Also, a sum of squares explained by the regression model can be

defined as

ŜSR =

n∑
i=1

‖p̂(ti)	X‖2a , (3.5)

which gives rise to a decomposition of ŜST:

ŜST = ŜSR + ŜSE . (3.6)

The reasoning to arrive to the decomposition (3.6) is parallel to that of the ordinary real

multivariate linear regression. Similarly, a determination coefficient of the regression model

can be defined as

R2 =
ŜSR

ŜST
= 1− ŜSE

ŜST
, (3.7)

which is interpreted as the per unit of metric-variance of the compositional response ex-

plained by the regression.

The least-squares problem can be efficiently solved expressing the compositional re-

sponses in coordinates, specifically with respect to an orthonormal basis of the simplex.

If h(·) is the coordinate function for the chosen orthonormal basis, denote x∗i = h(xi),

e∗i = h(ei) for i = 1, 2, . . . , n; and b∗k = h(bk), k = 0, 1, . . . , r. Taking coordinates in (3.2),

the transformed model is

x∗i = b∗0 +

r∑
k=1

(tik · b∗k) + e∗i , i = 1, 2, . . . , n , (3.8)

and, using (2.17),

SSE =

n∑
i=1

‖e∗i ‖2 =

n∑
i=1

D−1∑
j=1

(e∗ij)
2 . (3.9)

Eq. (3.9) is a consequence of the isometric character of h(·): the Aitchison norm of a

composition is equal to the ordinary real Euclidean norm of its coordinates (2.5). In the

expression of SSE (3.9), the order of the sums can be inverted and, being all terms non-

negative, the minimization of SSE in coordinates is equivalent to the separate minimization

of the D − 1 terms

SSEj =

n∑
i=1

(e∗ij)
2 =

n∑
i=1

(
xij −

r∑
k=0

tkb
∗
kj

)2

, j = 1, 2, . . . , D − 1 , (3.10)

where b∗kj is the j-th coordinate of the compositional coefficient bk. Comparing (3.9) and

(3.10), the Pythagorean decomposition
∑D−1
j=1 SSEj = SSE is easily obtained. For the j-th

coordinate, (3.10) implies the ordinary least-squares solution of the real regression model

x∗ij =

r∑
k=0

tkb
∗
kj + e∗ij , i = 1, 2, . . . , n , (3.11)
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where e∗ij is the j-th coordinate of the compositional residual ei. Eqs. (3.10) and (3.11)

imply that the least-squares regression problem in the simplex (3.2), (3.3) is equivalent to

D − 1 ordinary least-squares problems for the coordinates (3.10) and (3.11). Remarkably,

the least-squares problems for the coordinates can be solved independently. Moreover, the

results are independent of the selected orthonormal basis: although the coordinates of the

obtained coefficients bk and residuals ei depend on the selected basis, the reconstructed

compositional coefficients and residuals using (2.9) do not.

For each regression problem (3.11), (3.10), the sum of squares decomposition holds, i.e.

ŜSE =
∑D−1
j=1 ŜSEj and ŜSR =

∑D−1
j=1 ŜSRj . The determination coefficient can also be

expressed in terms of the sums of squares of the regression for the coordinates,

R2 =

∑D−1
j=1 ŜSRj

ŜST
=

∑D−1
j=1 ŜSTj ·R2

j

ŜST
, (3.12)

where R2
j = ŜSRj/ŜSTj is the determination coefficient for the regression of the jth-

coordinate of the response.

The whole procedure may be summarized in the following steps: (i) select an orthonor-

mal basis, possibly using a sequential binary partition (SBP) of the compositional response

vector; (ii) represent the compositional response by means of its orthonormal coordinates,

possibly balance-coordinates; (iii) perform the least-squares estimation of the regression

coefficients and the sums of squares for each coordinate of the response using the avail-

able covariates; (iv) reconstruct, if necessary, the compositional coefficients, predictor and

residuals. These steps correspond to the principle of working on coordinates [8].

The standard practice in logistic regression [16, 10, 5] , in spatial cokriging [38] or even

in simplicial regression [4, 19], has not been to use the ilr transformation (orthonormal

basis representation) but the alr transformation (oblique basis representation). A natural

question is which is the difference in the least-squares results when using these two dif-

ferent representations of the compositional response. In fact, there is no difference in the

estimated compositional coefficients of the regression model (3.2) and, consequently, the

compositional residuals are also equal. The difference appears when trying to obtain the

decomposition of ŜST (3.6) into the alr-coordinate contributions (3.4). When using alr-

coordinates,
∑D−1
j=1 ŜSTj ≥ ŜST,

∑D−1
j=1 ŜSRj 6= ŜSR, and

∑D−1
j=1 ŜSEj 6= ŜSE. In order

to compute the sums of squares it is then necessary to obtain the compositional predic-

tors and residuals and to compute ŜSR and ŜSE using their definition (3.5),(3.3) and the

Aitchison-norm (2.3). It is remarkable that in standard multinomial logistic regression there

are difficulties for defining a determination coefficient. This is related to the representation

of the response probabilities using alr-coordinates.
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4 The normal model of compositional residuals

4.1 Normal distribution on the simplex

A statistical analysis of a regression model requires further hypotheses on the distribution

of the residuals. The simplest model with compositional residuals is that of the logistic-

normal distribution introduced by Aitchison and Shen [18], also to be found in [10, 12].

There, the logistic-normal model is compared with the Dirichlet distribution approach for

the residuals. The main argument against the Dirichlet approach is that this distribution

is too restrictive and imposes strong conditions on the dependence between components.

Moreover, the Dirichlet distribution can be suitably approximated (in the sense of Kullback-

Leibler divergence) by some distributions in the logistic-normal family. This gives sense

to the point put forward by Aitchison and Shen [18], which remains still open: Can we

develop satisfactory tests of the separate families, Dirichlet and logistic-normal, along the

lines of Cox (1962)? In particular, to what extent are current tests of multivariate normality

powerful against the Dirichlet alternative?

The main argument in favour of the logistic-normal distribution is the invariance of the

family under perturbations in the simplex. An important consequence is the central limit

theorem for the logistic-normal distribution, sketched in Aitchison [12]. This makes the

logistic-normal distribution a natural one.

The logistic-normal distribution can be defined in different ways. The original definitions

by J. Aitchison are based on the normality of the alr coordinates of a random composition.

More recently, and following the lines proposed by Eaton [26], an intrinsic definition inde-

pendent of coordinates is available [29]. Here the definition is based on the representation

in orthonormal coordinates [9, 7, 6].

Consider a random composition X ∈ SD whose representation in coordinates with re-

spect to a selected orthonormal basis is X∗ ∈ RD−1, X∗ = h(X). The random composition

X has a logistic-normal distribution or, equivalently, a normal distribution in the sim-

plex, whenever X∗ has a multivariate normal distribution, i.e. X∗ ∼ N (µ∗,Σ∗). Then

X ∼ NSD (µ∗,Σ∗), with Cen[X] = h−1(µ∗).

When the normal in the simplex is represented by a probability density, it is better to

take the Aitchison measure than the Lebesgue measure as reference. The probability density

of X ∼ NSD (µ∗,Σ∗) with respect to the Aitchison measure is

fSX(x) = (2π)−(D−1)/2 |Σ∗|−1/2 exp

(
−1

2
(x∗ − µ∗)′Σ∗−1(x∗ − µ∗)

)
, (4.1)

where x is an element of the simplex SD and x∗ is the vector of coordinates with respect

to a given orthonormal basis. Note the absence of a Jacobian in (4.1); it is cancelled

when changing the reference measure [9]. The density (4.1) is actually the Radon-Nikodym

derivative of the probability with respect to the Aitchison measure in the simplex.

If the Lebesgue measure is used as reference, the logistic-normal density has the expres-
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sion

fX(x) =
(2π)−(D−1)/2 | Σ∗ |−1/2

√
D x1x2 · · ·xD

exp

(
−1

2
(x∗ − µ∗)′Σ∗−1(x∗ − µ∗)

)
, (4.2)

where the denominator is the Jacobian of the coordinate transformation [9].

Normal compositional residuals

The standard statistical model for linear regression assumes that the residuals are indepen-

dent and normally distributed. Similarly, independence and normality in the simplex are

here assumed for the compositional residuals in the regression model (3.2). This assumption

permits to use likelihood ratio tests to check global hypotheses on the regression models.

They were developed in [12] and then used in a lattice of hypothesis with increasing com-

plexity, to arrive to an appropriate regression. No further development is here offered in

these aspects. However, expressing the regression model in orthonormal coordinates, con-

veys an additional result, not clearly developed previously: the standard battery of testing

hypotheses for linear regression models can be applied to the regression model for each

orthogonal coordinate (3.11). Therefore, marginal normality of each coordinate residual is

enough to use regression tests based on normality. However, these marginal tests depend in

general on the selected basis of the simplex.

5 Illustrative examples

In the following examples, we apply the above mentioned theoretical considerations to real

data cases from different fields of interest, namely economics and geochemistry. Special

attention will be devoted to the construction of balances and to the interpretation of results.

Example 1 (Household expenditures) The first data set comes from Eurostat (European

Union statistical information service) and represents mean consumption expenditures of

households on 12 domestic year costs in all 27 Member States of the European Union (EU) in

2005; it is available at http://epp.eurostat.ec.europa.eu/ statistics explained/index.php

/Household consumption expenditure. The data are displayed in Table 2, together with the

gross domestic product (GDP) for 2009, one of the well known measures of a country’s

overall economic performance that was obtained from public sources of the internet ency-

clopedia Wikipedia. The GDP represents the market value of all final goods and services

made within the borders of a country in a year. In order to offer a better insight into the

construction and interpretation of balances, we focus on a subcomposition of four parts,

that include expenditures on foodstuff, housing (including water, electricity, gas and other

fuel), health, and communications. The first two parts thus represent basic costs, while the

latter two rather ”external” costs that seem to be more or less related to economic status

and, consequently, also to quality of life in each member state. However, to see the influence

of GDP, not the absolute values as in Table 2, but the ratios between the expenditures are
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of interest. Since the absolute values are influenced by the overall price levels in the single

states, their direct analysis would lead to meaningless results. The closed geometric mean

of the chosen expenditures (denoted x1, . . . , x4) is X = (0.364, 0.496, 0.066, 0.074)′, i.e. the

expenditures on housing clearly dominate.

Table 2 shows that the GDP of Luxembourg is considerably higher than for the other

countries. Since the least squares method is very sensitive to outlying observations, espe-

cially in the direction of an explanatory variable, this could essentially change the results of

regression analysis and affect the final interpretation. For this reason, we exclude Luxem-

bourg from further computations.

To see the effect of the GDP on both basic and external costs using regression analysis,

we decompose the relative information contained in the (sub)composition, into balances.

Here it seems natural to separate the parts x1 and x2, representing the basic costs, from

the external ones, x3 and x4. The corresponding SBP is displayed in Table 3. Thus, the

first coordinate, x∗1, represents the balance between the parts x1, x2 and the parts x3, x4, or

equivalently expressed, it explains the four ratios between foodstuff and housing on one side,

and health and communications on the other side. The second balance, x∗2, then explains

the ratio between foodstuff and housing, and x∗3 the remaining ratio between health and

communications. The variances of the balances are Var[X∗1 ] = 0.060, Var[X∗2 ] = 0.166 and

Var[X∗3 ] = 0.144. Taking into account Eq. (2.17) for the metric variance, MVar[X], one can

conclude that the second and third balance explain most of the variability contained in the

composition.

For all three balances we apply the regression model according to (3.11). The obtained

regression lines are displayed in Figure 1. Since in the following we assume normal dis-

tributed residuals we have to check this assumption. For this reason, we employ the well

known Quantile-Quantile (Q-Q) plot that compares theoretical quantiles of the normal dis-

tribution with the corresponding quantiles coming from the regression residuals. If the

points in the plot lie approximately on a line, the residuals are approximating a normal

distribution. Although here some deviations are clearly visible, see Figure 1 (lower row),

the assumption of normality seems to be reasonable. This can be consequently checked

also with some normality tests; e.g., with the well-known Anderson-Darling test [21] we

obtain p-values 0.632, 0.409 and 0.401, respectively, meaning that the hypothesis of normal

distribution can not be rejected in all three cases.

Table 4 summarizes the estimated regression coefficients, together with results from the

inference statistics. From Figure 1 (upper left) it can be seen that the linear relation

between the first coordinate and GDP is very poor. This means that GDP has nearly no

influence on the ratios between parts from the variable groups ”basic” and ”external”, repre-

sented by the first balance. Also the low coefficient of determination of R2
1 = 0.045 confirms

this finding. However, one should be careful with more general conclusions, because by

construction of the first balance, a nearly constant relation of the balance to GDP can also

be reached by an increase of one ratio and a decrease of the other ratio by about the same

amount. For the second balance, that describes only the ratio foodstuff/housing, a decreas-
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Table 2: GDP per capita (2009) and mean consumption expenditures of households on 12 domestic
year costs (2005; both in Euro) in all 27 Member States of the European Union.
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Table 3: Sequential binary partition (SBP) for household expenditures on ’foodstuff’ (x1), ’housing’
(x2), ’health’ (x3) and ’communications’ (x4). The balance-coordinate is made explicit in the last
column.

order x1 x2 x3 x4 r s balance

1 +1 +1 −1 −1 2 2 x∗1 = log (x1x2)1/2

(x3x4)1/2

2 +1 −1 0 0 1 1 x∗2 = (1/2)1/2 log x1

x2

3 0 0 +1 −1 1 1 x∗3 = (1/2)1/2 log x3

x4

Table 4: Results of regression analysis for the first, second and third balance, respectively (see
Table 3). Displayed are estimated coefficients of intercept and slope, values of the t-statistic and
their corresponding p-values (under the assumption of normality).

coefficient estimated value t-statistic p-value

b∗01 1.648 10.435 2.13× 10−10

b∗11 7.474× 10−6 1.065 0.297

b∗02 0.786 4.814 6.67× 10−5

b∗12 −4.684× 10−5 −6.461 1.11× 10−6

b∗03 −0.212 −0.953 0.350

b∗13 5.921× 10−6 0.599 0.554

ing trend is clearly visible, confirmed by the corresponding t-statistic (see Table 4) as well as

by R2
2 = 0.635. From the construction of the coordinate x∗2 (see Table 3), this corresponds

to a decreasing ratio between foodstuff and household expenditures for increasing values of

GDP. This is somewhat in contradiction with our intuition, since we would expect a rather

constant relation between GDP and the ratio of the basic costs. Finally, the regression of

the third balance on GDP shows that the ratio between the selected external costs is inde-

pendent from the economic status of the member states; here R2
3 = 0.015. Again, one would

rather expect a systematic influence of the GDP. Using (3.12) we obtain the coefficient of

determination for the whole regression model, R2 = 0.323. Note that another choice of SBP

would enable to focus also on the other ratios induced by the investigated composition.

Example 2 (Concentrations of chemical elements) Here we employ the well-known Kola

data set which resulted from a large geochemical mapping project, carried out from 1992 to
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Figure 1: Regression for the first (upper left), second (upper middle) and third (upper right)
balance in dependence on GDP, together with the resulting regression lines. In the lower row Q-Q
plots for residuals of the corresponding regression models are displayed.

1998 by the Geological Surveys of Finland and Norway, and the Central Kola Expedition,

Russia. An area covering 188000 km2 in the Kola peninsula of Northern Europe was sampled

(Figure 2). In total, approximately 600 samples of soil were taken in four different layers

(moss, O-horizon, B-horizon, C-horizon) and subsequently analyzed by a number of different

techniques for more than 50 chemical elements. The project was primarily designed to reveal

the environmental conditions in the area; more details can be found in [3]. The whole data

set is available in package StatDA [28] of the statistical software R. For our study, three

chemical elements from the O-horizon were taken, Fe (iron, x1), K (potassium, x2), and

P (phosphorus, x3), and their values are reported in mg/kg. The element concentrations

are depending on different geological processes, but also other effects play an important

role, like the climatic zones (corresponding to the latitude) or the elevation (Figure 2).

Especially elements like potassium (K) and phosphor (P) are likely to depend on latitude

and/or elevation, because they both form a nutrient base for plants. However, from the

maps of the single element concentrations [3] it is not easy to detect whether elevation is

indeed a dominant effect for the element concentrations. With three-part compositions, we
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Figure 2: Map of the Kola peninsula, lighter shadings correspond to higher altitude.

have the possibility to visualize the observations in a ternary diagram (Figure 3, left). Here,

the symbol size is proportional to the elevation. However, any systematic pattern is not

visible (analogously also longitude and latitude as location variables would show no clear

effects).

The distribution of the concentrations of Fe, and in particular of K and P in the study

area can be revealed by employing the same strategy for the sequential binary partition

as in the previous example. Thus, in the first balance we separate Fe from the other

elements and the second balance of interest will correspond to the logratio between both

nutrient base elements K and P. The sequential binary partition is displayed in Table 5

and the resulting coordinates are shown in Figure 3 (right). Here some departures from

the main data cloud are clearly visible, and they are due to outliers in the ratio K and P,

expressed by the second balance. One of the main questions is whether the concentrations

Table 5: Coding a sequential binary partition (SBP) for the composition Fe, K, P of the O-horizon
in Kola data. The balance-coordinate is made explicit in the last column.

order x1 x2 x3 r s balance

1 +1 −1 −1 1 2 x∗1 = (2/3)1/2 log x1

(x2x3)1/2

2 0 −1 +1 1 1 x∗2 = (1/2)1/2 log x3

x2

102



●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
● ●

● ●

●
●

●

●

●

●
● ●●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●●

●

●
●

●

●

● ●●

●

●

●

● ●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

● ●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●●
●

● ●
●

●

●

●

● ●
●

●

●

●

●
●

●

●
●

●

●

●● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●
●

●

●

●

●

Fe K

P

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●
●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●
●

●
●

●

●

●

●●

●

●

●

●
● ●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
● ●

●

●

●
●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●
● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●●

●
●●

● ●

●

●

●

●
●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●●

0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

z1

z 2
Figure 3: Ternary diagram (left) and coordinate representation (right) of the elements Fe, K, P
from O-horizon of the Kola data.

of the elements are uniformly distributed in the study area, and whether an influence of

elevation can be demonstrated. For this purpose, we construct regression models for both

balances, with longitude, latitude and elevation as explanatory variables. The results are

summarized in Table 6. The first balance, that explains the ratios Fe/K and Fe/P, confirms

our preliminary expectations. Elevation is significant in the regression model, and longitude

is nearly significant on the usual significance level α = 0.05. Since Fe is supposed to be

independent from location and elevation, the parts K and/or P will be responsible for the

significance. Also for the ratio P to K, expressed by the second balance, both elevation

and longitude play an important role in the regression model. The elevation is highly

significant, with a p-value of 6.92 × 10−9, revealing that the construction of the balances

for the regression model was able to confirm our expectations that plant nutrients indeed

depend on the altitude. In fact, the ratio of P to K is increasing with increasing elevation.

The Q-Q plots of the residuals for both balances are presented in Figure 4 (upper row).

They show certain deviations from normality, and thus care has to be taken with the validity

of the results. A possible solution could be to use robust methods that are able to deal

with certain deviations from normality [27]. On the other hand, the above findings can

be compared with maps of the values of both balances, see Figure 4, lower row. Indeed,

the effect of elevation on the first balance is visible in the map (lower left), and even more

clearly visible for the second balance (lower right).
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Figure 4: Q-Q plots of the residuals resulting from regressions with the first and second balance,
respectively (upper row), and maps of the balances (lower row).
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Table 6: Results of regression analysis for the first and second balance, respectively. Displayed
are estimated coefficients of intercept and slope, values of the t-statistic and their corresponding
p-values (under the assumption of normality).

parameter coefficient estimated value t-statistic p-value

intercept b∗01 2.431 1.616 0.107

longitude b∗11 3.290× 10−7 1.752 0.080

latitude b∗21 −2.717× 10−7 −1.424 0.155

elevation b∗31 5.502× 10−4 2.144 0.032

intercept b∗02 0.374 0.621 0.5350

longitude b∗12 −1.358× 10−7 −1.806 0.0715

latitude b∗22 −5.685× 10−8 −0.744 0.4570

elevation b∗32 6.035× 10−4 5.875 6.92× 10−9

6 Conclusion

Regression models with compositional response were proposed in the eighties. The natural

statistical hypothesis was that compositional residuals follow logistic-normal distribution.

Using the Euclidean structure of the simplex, the response variables can be represented

using orthogonal coordinates. The estimation of model coefficients is formulated as a least-

squares problem with respect to the Aitchison geometry of the simplex and then translated

into coordinates. Each coordinate can be studied separately under marginal normality of

coordinate residuals using a standard and simple regression model. Formulated in this way,

simplicial regression under logistic-normal residuals is a natural and easy-to-use model.
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