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Abstract

The computer industry is undergoing a paradigm shift. Chip manufacturers are shift-
ing development resources away from single-core chips to a new generation of multi-
core or even many-core chips. Huge clusters of multi-core workstations are easily ac-
cessible everywhere, external memory devices, such as hard disks or solid state disks,
are getting more powerful both in terms of capacity and access speed. This fundamen-
tal technological shift in core computing architectures requires a fundamental change
in how we ensure the quality of software. The key issue is that the verification tech-
niques need to undergo a similarly deep technological transition to catch up with the
complexity of software designed for the new hardware. It is, therefore, inevitable to
come up with new techniques that allow full exploitation of the power offered by the
new computer hardware to make the automated verification techniques capable of
handling next-generation computer systems. In particular, this thesis demonstrates
how the automated formal verification procedures, such as explicit LTL model check-
ing or decomposition of a directed graph into strongly connected components, can
be adapted to employ the computational power of clusters, multi-cored workstations,
disks or graphics processing units.

The thesis is conceived as a collection of articles. The collection contains thirteen tech-
nical papers published in journals or conference proceedings, and six tool papers de-
scribing software tools released under the supervision of the author of this thesis. The
author contributed to the collection mainly by formulating the ideas of results pub-
lished in the articles of the collection, but also by performing numerous analyses and
interpretations of experimental measurements, by writing down significant parts of
texts, and by implementing parts of released software tools.
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Abstrakt

Počı́tačový průmysl procházı́ výraznou změnou výpočetnı́ho paradigmatu. Výrobci
čipů se nadále nezaměřujı́ na výrobu jednojaderných čipů, ale na výrobu vı́cejaderných
nebo dokonce mnohojaderných čipů. I dı́ky tomu jsou dnes běžně dostupné obrovské
výpočetnı́ klastry vı́cejaderných uzlů. Rostou také výkonostnı́ parametry jako ka-
pacita, nebo přı́stupová doba, všech externı́ch paměťových médiı́. Tento fundamentálnı́
technologický posun v kvalitě výpočetnı́ch architektur sebou nese také posun ve způso-
bu, jakým je třeba zajišťovat kvalitu produkovaných výpočetnı́ch systémů. Klı́čovým
aspektem je zejména to, aby verifikačnı́ techniky podstoupily podobný technologický
posun, a byly tak schopny zachytit komplexnost soudobých systémů. Je nezbytné
vyvinout nové techniky, které umožnı́ plně využı́t sı́lu soudobých a nadcházejı́cı́ch
výpočetnı́ch systémů. V této habilitačnı́ práci je konkrétně demonstrováno, jakým
způsobem je možné adaptovat techniky automatizované formálnı́ verifikace, jmen-
ovitě proces ověřovánı́ modelu pro logiky lineárnı́ho času a proces dekompozice ori-
entovaného grafu na silně souvislé komponenty tak, aby tyto techniky využily výpo-
četnı́ sı́ly klastrů, vı́cejaderných pracovnı́ch statnic, disků, nebo grafických karet.

Tato habilitačnı́ práce je koncipována jako soubor uveřejněných vědeckých pracı́ (§72
odst. 3 pı́smena b zákona o vysokých školách). Soubor obsahuje třináct článků pub-
likovaných v časopisech nebo konferenčnı́ch sbornı́cı́ch a šest článků popisujı́cı́ch pro-
gramové nástroje, které vznikly pod supervizı́ autora této habilitačnı́ práce. Přı́spěvek
autora do souboru uveřejněných pracı́ tkvı́ zejména ve formulaci publikovaných myš-
lenek, ale také v prováděnı́ nesčetných analýz a interpretacı́ experimentálnı́ch měřenı́,
v psanı́ textu samotných článků a v implementaci částı́ zveřejněných softvérových
nástrojů.
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Chapter 1

Introduction

1.1 Motivation

The computing power of computers has increased by a factor of a million over the
past couple of decades. As a matter of fact, the development effort, both in industry
and in academia, has gone into developing bigger, more powerful and more complex
applications. Due to various factors such as continuing miniaturization, parallel and
distributed computing, etc., we may still expect a similar rate of growth in the next
few decades. With the increase in complexity of computer systems, it became even
more important to develop formal methods for ensuring their quality and reliability.
Various techniques for automated and semi-automated analysis and verification have
been designed and successfully applied to small real-life systems. However, many
of these techniques are computationally demanding and memory-intensive in general
and their applicability to large and complex systems routinely seen in practice these
days is limited. The major hampering factor is the state space explosion problem due to
which large industrial models cannot be efficiently handled unless more sophisticated
and scalable methods are used.

A lot of attention has been paid to the development of approaches to fight the
state space explosion problem [58] in the field of automated formal verification [125].
Many techniques, such as a state compaction [75], compression [94], state space re-
duction [124, 56, 68], symbolic state space representation [45], etc., are used to reduce
the memory requirements needed to handle the verification problem with a standard
sequential software tool. Employing these techniques allows user to process larger
systems with the same computing power. A complementary approach suggests to
employ more computational power. To that end, various verification and analysis
techniques that can efficiently utilize the power of combined hardware resources have
been studied. Some of the techniques are general and applicable across a broad range
of computing platforms, some of them are tailored to the specific capabilities of a
particular hardware architectures. Examples include techniques to fight the mem-
ory limits with an efficient utilization of external memory devices [134], techniques
that introduce cluster-based algorithms to employ the aggregate power of network-
interconnected computers [133, 115, 73, 7], techniques to speed-up the verification
process on multi-core processors [96, 14, 113], etc. An inevitable aspect of employ-
ing combined hardware resources is parallel processing. Unfortunately, it is not the
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4 CHAPTER 1. INTRODUCTION

case that all the sequential solutions that are used for serial processing can be easily
applied in parallel setting. On the contrary, many sequential solutions and algorithms
are practically ineffective when used to utilize combined hardware resources. As a
result, different solutions must have been and must be devised in order to facilitate
parallel processing.

The idea of using combined resources to increase the computational power is far
from being new. Attempts to use hard drives or parallel computers for verification of
large systems have appeared in the very early years of the automated formal verifi-
cation era. However, the inaccessibility of cheap parallel computers with sufficiently
fast external memory devices together with the negative theoretical complexity results
excluded these approaches from the main stream in formal verification. Moreover,
thanks to the Moore’s law, the performance of software tools kept improving contin-
uously for years as the power of a single cored CPU grew. The situation changed
dramatically with oncoming of multi core CPU chips. The progress in computer de-
sign over the past decades had measured several orders of magnitude with respect to
various physical parameters such as power consumption, efficiency, physical size or
cost. As a result, it became more efficient for chip producers to introduce multiple CPU
cores on a single chip rather than to increase the speed of a single core. As the speed of
a single core virtually stopped growing, every piece of software that was built upon a
serial algorithm could not take the advantage of technological progress anymore. The
focus of parallel and distributed-memory computing community shifted away from
unique massively parallel systems competing for world records towards smaller and
more cost effective systems built up from small and cheap personal computer parts.
Suddenly, the need for parallel processing become rather general and wide spread in
all science fields relying on complex computation operations, automated formal veri-
fication being not an exception.

Besides the parallel processing, the interest of formal verification community in
specific hardware platforms has widen to graphics processing units and NVIDIA’s
CUDA technology, but also to contemporary external memory devices, such as solid
state disks. As a matter of fact, the interest in the platform-dependent formal verifica-
tion has been revived.

1.2 Focus of the Thesis

One particularly successful approach to automated formal verification is model check-
ing [57, 5]. It builds upon an automated procedure that takes a model of a system and
decides whether the model satisfies a given property or not. This thesis focuses, in
particular, on platform dependent techniques and algorithms for model checking of
formulas of Linear Temporal Logic (LTL) [127].

Articles included in the thesis describe results that allow implementation of scal-
able parallel LTL model checking algorithms. Upon the theoretical results presented
in the thesis, software tools that are capable of efficient usage of aggregate computa-
tion resources of shared-memory and distributed-memory parallel architectures are
presented. Thesis also describes new, the so called I/O efficient, algorithms for LTL
model checking with external memory devices. Besides the LTL model checking prob-
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lem, parallel algorithms for decomposing a directed graph into strongly connected
components (SCCs) are described. SCC decomposition problem is inherently present
in the core of many automated formal verification procedures. Finally, the platform-
dependent verification of discrete nondeterministic systems is carried on to discrete
probabilistic systems and systems with degradation.

1.3 Preliminaries

Given a model of a system, the model checking problem is to decide whether the
model meets a given specification or not. For model checking purposes, the spec-
ification needs to be formalized by means of temporal logic, LTL in our case. An
efficient automated procedure to decide LTL model checking problem has been intro-
duced [138]. It employs the theory of automata over infinite words, in particular, it
exploits the fact that every set of executions expressible by an LTL formula is an ω-
regular set and as such can be described by a Büchi automaton. The approach suggests
to express all the system executions by a system automaton and all the executions vio-
lating the given LTL formula by a property or negative claim automaton. These automata
are combined into their synchronous product in order to check for the existence of
system executions that violate the property. The language recognized by the product
automaton is empty if and only if no system execution is invalid.

The language emptiness problem for Büchi automata can be expressed as an accept-
ing cycle detection problem in a graph. Each Büchi automaton can be naturally identified
with an automaton graph which is a directed graph G = (V,E, s,A) where V is the set
of vertices (n = |V |), E is a set of edges (m = |E|), s is an initial vertex, and A ⊆ V

is a set of accepting vertices. We say that a cycle in G is accepting if it contains an
accepting vertex. Let A be a Büchi automaton and GA the corresponding automaton
graph. Then A recognizes a nonempty language iff GA contains an accepting cycle
reachable from s. The LTL model-checking problem is thus reduced to the accepting
cycle detection problem in the automaton graph.

Optimal sequential algorithms for accepting cycle detection use depth-first search
strategy. The individual algorithms differ in their space requirements, length of the
counterexample produced, and other aspects [137]. The typical algorithm used is the
Nested DFS algorithm [61]. The idea of the algorithm is to use two interleaved depth-
first searches, where the first one discovers accepting states reachable from the initial
state, while the second one – the nested, checks for a self-reachability of all accepting
states revealed by the first (outer) search. Several modifications of the algorithm have
been suggested to remedy some of its disadvantages [76]. The well known model
checker built on the Nested DFS algorithm is model checker SPIN [94, 93, 132].

The optimality of the Nested DFS algorithm is achieved due to the particular order
in which the graph is processed. The order guarantees that no vertices of the graph
are visited more than twice. In fact, all the best-known algorithms rely on the same
exploring principle, namely the postorder as computed by the depth-first search [60].
Unfortunately, deciding the postorder is P -complete problem [130] and as such it is in-
herently sequential, which means that any algorithmic solution relying on the depth-
first search postorder will have difficulties to efficiently employ contemporary parallel



6 CHAPTER 1. INTRODUCTION

hardware architectures. A work-optimal scalable parallel algorithm for accepting cy-
cle detection problem is unknown and, due to Reif [130], it is unlikely to exist.

An inseparable task of the model checking procedure is the so called state space
generation problem. When specifying the system to be verified, the system is typically
given by an initial configuration (initial state) and a function describing how the sys-
tem evolves from one configuration into one or more succeeding ones. The is carried
out by the so called next-state function. Such a definition of a system is referred to
as an implicit definition. The state space generation problem is then a problem of
enumerating all states (configurations) reachable from the initial state (initial configu-
ration) using the next-state function. Performing the state space generation basically
amounts to performing a graph traversal procedure. To guarantee termination for
cyclic graphs, a graph traversal procedure keeps track of vertices (states) that have
been traversed (generated). Due to the huge number of states (configurations) a sys-
tem can reach, the state space generation procedure is time and memory demanding.
The number of states a system can reach tends to grow exponentially with the size of
the next-state function description. This is the so called state space explosion problem.
Due to the state space explosion the amount of memory needed to store all reachable
states for a real-life system typically exceeds the memory available to the algorithm, in
which case the particular model checking procedure terminates incomplete. Verifica-
tion approaches that are capable of detecting a violation of the verified property prior
the full state space is generated are generally referred to as on-the-fly approaches.



Chapter 2

State of the Art

2.1 Parallel Model Checking

The need of parallel processing in automated formal verification stemmed from the
desire to fight the state space explosion problem by employing aggregate memory
of multiple network interconnected workstations. The crucial aspect studied at first
was how to partition the state space (the set of visited states) among individual parts
of the distributed-memory platform in order to take advantage of aggregate memory
and parallel processing at the same time.

2.1.1 State Space Generation

Based on a parallel algorithm for state space generation [46] a static partitioning scheme
relying on a hash function was suggested [52]. As observed by multiple researchers,
the hash-based partitioning yields better space locality if only parts of the state de-
scriptor are used as the input to the partitioning function. While there were ap-
proaches requiring the user of the tool to specify the concrete parts of the state de-
scriptor to be used for partitioning [52, 115], other approaches employed automated
or semi-automated techniques to do it [121, 122]. Techniques to load balance the set
of visited states, also known as repartitioning techniques, have been suggested as
well [2, 116, 111]. State space generation schemes employing probability aspects were
also introduced [107, 106].

The first known public implementation of a distributed memory tool for veri-
fication of communication protocols was the parallel implementation of the Murϕ
tool [63, 133]. Active messages were used later on to improve the efficiency of the
distributed-memory parallel processing with Murϕ [141]. After the successful story of
the Murϕ tool, the distributed-memory state space generation appeared in many other
verification tools, such as SPIN [115, 116], CADP [73], UPPALL [31], etc. Distributed-
memory state space generation as a technique of automated formal verification also
appeared in the context of Petri Nets [52, 88] and Markov chains [87, 86].

2.1.2 Beyond State Space Generation

The explicit model checking procedure is typically bound to linear time logic. Due
to Vardi and Wolper [139], the LTL model checking problem reduces to the problem

7
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of emptiness of Büchi automata, hence to the problem of accepting cycle detection in
a directed graph. Several parallel and distributed-memory algorithms for accepting
cycle detection were introduced. The first implementation [17] employed the so called
dependency structure to record the reachability relation among accepting states of a
distributed graph and applied the topological sort algorithm [105] to detect the pres-
ence of a self-reachable accepting state. Other parallel algorithms are built upon var-
ious ideas: negative cycle detection [43, 41], property automaton decomposition [8],
symbolic SCC hull detection [47], value propagation [42], or back-level edges as pro-
duced by a breadth-first search procedure [9, 10]. According to experimental evalu-
ations, practically the best algorithm to be used for parallel accepting cycle detection
combines the ideas of symbolic SCC hull detection and value propagation [15].

Besides the LTL model checking, parallel and distributed-memory algorithms for
other formal verification procedures were designed. Explicit parallel and distributed-
memory algorithms for verification of µ-calculus [37, 38, 91] or alternation-free boolean
equation systems [103] are known. Parallel explicit CTL model checking have been in-
troduced as well [44, 40]. Techniques of state space reduction have been studied in the
context of parallel processing as well. Approaches to reduce the state space mod-
ulo strong bisimulation were designed [34, 35] as well as a distributed-memory tool
LTSmin to perform signature-based bisimulation reduction for strong and branching
bisimulation [36]. Grid-enabled version of probabilistic model checker PRISM [112]
has been reported too [143].

2.1.3 Shared-Memory Architectures

Most techniques and results known from the distributed-memory setting are straight-
forwardly applicable also to shared-memory architectures. However, scalability of
distributed-memory solutions is often limited in shared-memory setting [12]. There-
fore, shared-memory specific techniques have been developed to improve the effi-
ciency and scalability of many parallel solutions leading in some cases almost to an
optimal scalability [113]. The shared-memory specific techniques include, for exam-
ple, shared communication data structures [98, 13], specific termination detection tech-
niques [13], dual-core algorithms [96] or quite unique partitioning schemes [95].

2.1.4 GPU Computing

After NVIDIA’s CUDA technology [62] was introduced, a lot of computational de-
manding task have been accelerated by GPU-aware algorithms. Examples of GPU
accelerated procedures include, but are not limited to sorting procedure [77], reduce
operation [85], or numerous biological and physical simulations, such as protein fold-
ing [101]. As for graph theory, successful adaptation of graph traversal algorithms
were reported [83, 84] demonstrating the computational power of the CUDA device.
Nevertheless, to achieve overall speedup in processing the graph to be traversed with
a CUDA accelerated algorithm has to be stored in suitable data format, adjacency ma-
trix for example.

The CUDA technology as a computing platform attracted also researches in the
field of automated formal verification. The key challenge for which no satisfactory so-
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lution is known yet is how to CUDA accelerate the generation of the state space graph
from the implicit definition. Preliminary attempts to do so relate to explicit model
checking approach. They suggest to employ massively parallel check for enabledness
of transitions emanating from the states on the frontier of the search and massively
parallel execution of all the enabled transitions [66, 67].

Once the state space is generated and represented in appropriate sparse matrix like
structure, many verification tasks could be accelerated using CUDA technology. This
has been successfully demonstrated, for example, for explicit LTL model checking [23,
22], or verification of probabilistic systems [39].

2.2 Parallel Symbolic Model Checking

Symbolic approach to model checking [104] is definitely one of the most important
milestones achieved in automated formal verification. The key idea of the approach
is to replace the space demanding explicit enumeration of the set of states by signif-
icantly more succinct representation, and at the same time, allow for traversing of
multiple edges in the state space graph at once rather than handling them one by one
as done in the explicit/enumerative approach. Both goals could be achieved if the
set of visited states and the next-state functions are encoded using Binary Decision
Diagrams (BDDs), see e.g. [57]. The model checking procedure than reduces to ma-
nipulation of BDD structures. Unlike the explicit approach, the size of a BDD does not
necessarily grow with the number of states stored in the set represented with the BDD,
but rather with the irregularity of the set. For regular set of states, as produced e.g.
by synchronous systems, the symbolic approach is unbeatable, but for irregular state
spaces as produced typically by asynchronous systems BDDs are not that efficient.

Symbolic model checking can be adapted to parallel processing in various ways.
The first option is to run a serial model checking algorithm that calls to parallel BDD
manipulation routines. Such parallel BDD manipulation approaches were success-
fully applied to accelerate operations over large BDDs [119, 129, 135].

The second approach to adapt the symbolic model checking procedure to parallel
processing mimics the state space partitioning as known from the explicit approach.
To that end BDD slicing was introduced [90, 32, 89]. The set of states is a priory parti-
tioned according to the value of BDD control variables (BDD internal nodes) and the
BDD is sliced into multiple BDDs that are maintained by individual computation par-
ticipating workstations. The static partitioning was found inefficient because of the
network communication overhead rendered necessarily even for small verification in-
stances. Therefore, dynamic adaptive BDD slicing were introduced later on [80]. Still
the model checking process did not exhibited the expected speed-up which was, as
identified later, due to the synchronous execution of individual BDD operations. This
has been overcome by introducing virtually asynchronous processing over distributed
BDD slices [79] that lead to up to ten-fold speedup compared to the synchronous ver-
sion.

A different approach to symbolic state space generation and model checking is
saturation [53, 54]. The idea of it is to avoid encoding of the transition function with
a decision diagram, and thus, avoid slightly unpredictable operations over the two
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decision diagrams. Instead, the set of states reachable from a given set of states en-
coded by a BDD or an MDD (multi-valued decision diagram) is computed by direct
manipulation of the internal nodes of the decision diagram representing the set of
states reached so far. Unfortunately, the order in which the internal nodes of BDD or
MDD are manipulated, is strictly given. The order resembles depth-first search pos-
torder, hence, satisfactory scalable parallel technique to saturate a given BDD or MDD
has not been found yet [55], some researchers even suggest to optimize the sequential
algorithms rather than to parallelize them [71]. Nevertheless, horizontal partition-
ing [129] was employed for building up a parallel saturation procedure [49] that was
improved later on with static [51] and dynamic pattern [50] for speculative execution
of system transitions.

Beyond the state space generation, symbolic parallel approach to handle the veri-
fication of µ-calculus formulas has been introduced as well [78].

2.3 Embarrassingly Parallel Model Checking

The model checking task can be viewed as one big and computation demanding proce-
dure that is a natural candidate for being solved by means of parallel processing. The
parallel solutions mentioned so far introduce multiple parallel agents that process the
input data and communicate intensively to achieve the desired goal. However, this
is not the only option. The whole model checking procedure can be viewed also as a
bunch of many independent tasks that can be executed solely in parallel, i.e. without
any communication. Such a parallel solution is generally referred to as an embarrass-
ingly parallel approach. The difference can be nicely demonstrated on the LTL model
checking problem. While the classical parallel approaches suggest to employ multi-
ple communicating agents to detect the presence of an accepting cycle in the directed
graph, the embarrassingly parallel approach suggests to take individual system ex-
ecutions and check every single one for its conformance with the verified property.
The number of executions of a system may, however, be infinite, which renders the
embarrassingly parallel approach incomplete. Therefore, the embarrassingly parallel
solutions could rather be viewed as fast bug finding techniques. Examples of embar-
rassingly parallel approaches include parallel randomized state space search [64] or
parallel guided counter-example generation [131].

Regarding the LTL model checking procedure, the order in which the vertices of
the product automaton graph are explored plays significant role provided the graph
contains an error state or accepting cycle to be discovered. With good traverse order
the discovery of an error is a matter of relatively small number of steps of the un-
derlying algorithm. An embarrassingly parallel approach to LTL model checking that
instanciates multiple standard sequential procedures in parallel each with a randomly
modified order of exploration has been introduced [97].

2.4 SCC Decomposition

The problem of decomposition of a directed graph into its strongly connected compo-
nents is a fundamental graph problem inherently present in many scientific and com-
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mercial applications. The problem is defined as follows. Let G be a directed graph,
i.e. G is a pair (V , E), where V is a set of vertices, and E ⊆ V × V is a set of edges.
Let E∗ be a transitive and reflexive closure of E and s, t ∈ V two vertices. We say
that vertex t is reachable from vertex s if (s, t) ∈ E∗. A set of vertices C ⊆ V is strongly
connected, if for any vertices u, v ∈ C, we have that v is reachable from u. A strongly
connected component (SCC) is a maximal strongly connected C ⊆ V , i.e. such that no C ′

with C ( C ′ ⊆ V is strongly connected. The problem of SCC decomposition is the
problem of identification of all strongly connected components for a given graph.

As for the automated formal verification, the SCC decomposition problem is used
as a subroutine in many algorithmic solutions. For example, the SCC decomposition
algorithm is employed for verification of probabilistic systems, state space reduction
by τ -confluence, verification of systems with fairness constraints, or verification of
liner time properties given by other than Büchi automata. SCC-based algorithms can
also be used directly for LTL model checking. While Nested DFS is more space effi-
cient, SCC-based algorithms produce shorter counterexamples in general [69].

An efficient algorithmic solution to this problem is due to Tarjan [136], who showed
that, given a graph with n vertices and m edges, it is possible to identify and list all
strongly connected components of the graph inO(n+m) time andO(n) space. Unfor-
tunately, the Tarjan’s solution builds upon the depth-first search postorder and as such
it is limited to sequential computing paradigms, hence inappropriate for contempo-
rary parallel computing platforms. The existence of an work-optimal scalable parallel
algorithm for SCC decomposition is an open problem. All the so far known parallel
solutions to the problem exhibit unoptimal time complexity.

Different approaches suitable for parallel processing have been considered. See
e.g. [74, 59, 3] for algorithm that works inO(log2n) time, but requiresO(n2.376) parallel
processors, or [142] for randomized parallel algorithm for the problem. Another par-
allel algorithm for SCC decomposition exploits the fact that it is possible to efficiently
compute in parallel the set of vertices reachable from a certain vertex or set of ver-
tices [72]. The general idea of the algorithm is to repeatedly pick a vertex of the graph
and identify the component to which it belongs, by using the forward and a back-
ward parallel reachability procedures. The algorithm proved to be efficient enough
in practice, which resulted in several theoretical improvements of it [123, 117]. The
worst time complexity of the algorithm is O(n · (n+m)). Nevertheless, the algorithm
exhibits O(m · log n) expected time [72]. A completely different strategy to detect SCC
in parallel was introduced in [123]. The algorithm employs value forward value prop-
agation to partition the graph into subgraphs respecting the SCCs. Each subgraph as
computed by the algorithm is rooted, hence subsequent backward reachability identi-
fies exactly the leading component of the subgraph. The algorithm performs well for
graphs with many small components, however, for graphs with large components it
is easily outperformed by other parallel algorithms.

2.5 Model Checking with Disks

Efficient usage of memory hierarchies is an established research topic [118]. Special-
ized algorithms were devised to efficiently utilize external-memory block devices. The
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efficiency is of such the algorithms is typically measured using the so called I/O (in-
put/output) complexity [1]. First of all, general graph traversal algorithms (state space
generation, in the context of formal verification) were adapted to become I/O effi-
cient. To that end the delayed duplicate detection was introduced [48] and further
improved [144, 6, 81] or specialized for undirected graphs [108, 109].

Employing disk to fight the state explosion problem in formal verification has
started by the disk extension of the verification tool Murϕ [134, 126]. The external
devices were also used to reconstruct the counterexample when applying the sweep-
line heuristics search [110].

As for problems beyond the state space generation. First results published em-
ploy a generic reduction of model checking problem to the reachability problem [33].
Unfortunately, such a reduction resulted in a quadratic grow in the space demands,
which effectively eliminated the possibility of complete search. There were heuristics
used instead trying to prove the existence of a counterexample. We have seen random
walks strategy [102], or iterative deepening and A∗ algorithms to be used [99, 100].
Another incomplete model checking approach suggested builds on the fact that new
transitions tend to lead to new states or to a states in recent breadth-first search lev-
els [114].

The quadratic space overhead in the I/O efficient LTL model checking was avoided
later on [24] and further improved by introducing the so called merge omissions [26]
that allowed for more efficient delayed duplicate detection in the later stages of the
computation. Various formulas for actual omissions were introduced [70]. A com-
pletely different technique for trading time for space has been suggested and is now
referred to as the semi-external approach to LTL model checking problem [65].

A problem related to I/O efficient verification, delayed duplicate detection in par-
ticular, exists and is known as the streaming state space problem [92].



Chapter 3

Thesis Contribution

This habilitation thesis is conceived as a collection of articles. Summary of results
achieved is given in four sections. Each section groups together results with a common
research topic and lists the concrete percentage of contribution by the author of this
thesis for each relevant article in the collection. An extra section is then devoted to the
related software tools that were solely supervised and partly developed by the author
of this thesis.

3.1 Parallel and Distributed-Memory LTL Model Checking

Achieved results

Distributed-Memory LTL Model Checking Parallel LTL model checker DiVinE [18]
has been successfully adapted to various contemporary hardware platforms. Initially
the tool was intended to aggregate computational power and system memory of mul-
tiple network interconnected workstations (clusters) in order to facilitate the verifi-
cation of large model checking instances [17, 7]. We demonstrated that the tool suc-
ceeded the mission in terms of both the speedup achieved due to parallel processing
and the ability of processing large model checking problem instances [140].

Shared-Memory LTL Model Checking In the light of technological shift towards
shared-memory systems, we described relative advantages and disadvantages of shared
versus private hash tables [29]. These were evaluated, both theoretically and practi-
cally, in a prototype implementation [14]. Later we have further improved the scala-
bility of the tool and were able to demonstrate that the parallel processing even with
an unoptimal algorithm outperforms highly efficient work-optimal sequential model
checker SPIN [12].

On-the-fly Parallel Algorithm for LTL Model Checking Though, the optimality of
the algorithm employed for parallel processing is an issue. There is an important
subclass of LTL for which optimal scalable parallel algorithm exists [47]. However,
this algorithm suffers from not being an on-the-fly algorithm. Since the on-the-fly
verification is an important practical aspect, we have devised a modification of this
algorithm that allows for on-the-fly verification in most verification instances [15].

13
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CUDA Accelerated LTL Model Checking Finally, recent technological advancements
in GPU computing made available a new rather specific computing platform – the
NVIDIA’s CUDA technology [62]. It allows for acceleration of computation intensive
applications with GPU hardware. We have succeeded to adapt algorithms for accept-
ing cycle detection to CUDA framework and demonstrated significant speedup of the
LTL model checking process with CUDA technology [23].

Articles in Collection

[29] J. Barnat and P. Ročkai. Shared Hash Tables in Parallel Model Checking. ENTCS,
198(1):79–91, 2008.

Author’s contribution: 50%, significant part of the writing, main idea.

[12] J. Barnat, L. Brim, and P. Ročkai. Scalable shared memory LTL model checking.
International Journal on Software Tools for Technology Transfer (STTT), 12(2):139–153,
2010.

Author’s contribution: 33%, significant part of the writing, analysis of experi-
mental results and formulation of conclusions.

[140] K. Verstoep, H. Bal, J. Barnat, and L. Brim. Efficient Large-Scale Model Check-
ing. In 23rd IEEE International Parallel & Distributed Processing Symposium (IPDPS
2009). IEEE, 2009.

Author’s contribution: 25%, DiVinE architecture consultant, marginal part of
writing.

[15] J. Barnat, L. Brim, and P. Ročkai. A Time-Optimal On-the-Fly Parallel Algorithm
for Model Checking of Weak LTL Properties. In Formal Methods and Software
Engineering (ICFEM 2009), volume 5885 of LNCS, pages 407–425. Springer, 2009.

Author’s contribution: 70%, most of the writing, main idea, implementation,
and experimental validation.

[23] J. Barnat, L. Brim, M. Češka, and T. Lamr. CUDA accelerated LTL Model Check-
ing. In 15th International Conference on Parallel and Distributed Systems (ICPADS
2009), pages 34–41. IEEE Computer Society, 2009.

Author’s contribution: 25%, most of the writing, main ideas.

3.2 I/O Efficient Verification

Achieved results

I/O Efficient LTL Model Checking Due to the state space explosion problem, the
graph to be searched for the presence of an accepting cycle tends to be extremely
large. For that reason the LTL model checking verification procedure suffers from
limited applicability w.r.t the size of model checking instance if performed on a sin-
gle workstation. Reduction techniques [57, 5] are simply not strong enough to solve
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the problem. To move the frontier of still tractable systems a little bit further exter-
nal memory devices (disks) are an option. We were first to show that the LTL model
checking process can be done I/O efficiently with the same space complexity as the
standard pure in memory solution [24].

Improved Delayed Duplicate Detection Technique The idea of LTL model check-
ing with external memory devices is to keep the track of vertices that have been ex-
plored by the algorithm on the external memory. Unfortunately, in order to access
the external memory efficiently, the standard work-flow of a graph traversal algo-
rithm has to be modified. This modification is referred to as the delayed duplicate de-
tection [108, 109, 120, 134]. According to our experimental measurements, the stan-
dard delayed duplicate detection technique becomes rather ineffective once the graph
traversal procedure is about to complete the search. We have, therefore, defined an
improved version of the work-flow and demonstrated its positive impact on I/O ef-
ficient verification [26]. Unfortunately, not all the parallel graph traversal algorithms
that are suitable for in memory computing are compatible with our new work-flow
modification. Hence, we have also defined a criterion for deciding the compliance of
a graph traversal algorithm with our modification – the so called revisiting resistance.

Parallel I/O Efficient Model Checking We have also investigated how parallel disks
can be combined to further improve the I/O efficient LTL model checking proce-
dure [25] and whether the recent introduction of flash memory disks have some im-
plications on the field of I/O efficient processing [11].

Articles in Collection

[24] J. Barnat, L. Brim, and P. Šimeček. I/O Efficient Accepting Cycle Detection. In
Computer Aided Verification, volume 4590 of LNCS, pages 281–293. Springer, 2007.

Author’s contribution: 33%, analyses of experimental results, significant part of
writing.

[11] J. Barnat, L. Brim, S. Edelkamp, D. Sulewski, and P. Šimeček. Can Flash Memory
Help in Model Checking. In Formal Methods for Industrial Critical Systems (FMICS
2008), volume 5596 of LNCS, pages 150–165. Springer-Verlag, 2008.

Author’s contribution: 25%, analyses of experimental results, formulation of
conclusions, significant part of writing.

[26] J. Barnat, L. Brim, P. Šimeček, and M. Weber. Revisiting Resistance Speeds Up
I/O-Efficient LTL Model Checking. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS)., volume 4963 of LNCS, pages 48–62. Springer,
2008.

Author’s contribution: 25%, revisiting resistant work-flow identification, analy-
ses of experimental results, formulation of conclusions, significant part of writ-
ing.
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[25] J. Barnat, L. Brim, and P. Šimeček. Cluster-Based I/O Efficient LTL Model
Checking. In 24th IEEE/ACM International Conference on Automated Software En-
gineering (ASE 2009), pages 635–639. IEEE Computer Society, 2009.

Author’s contribution: 33%, analyses of experimental results, formulation of
conclusions, significant part of writing.

3.3 SCC Decomposition

Achieved results

OBF Graph Decomposition Procedure We have developed a new parallel technique
to partition a directed graph into multiple SCC respecting parts – the so called OBF
technique [28]. The technique is unique as it can partition the graph into a number
of subgraphs in linear time. A such it combines the good properties of the forward-
backward strategy [72] that works in linear time but produces only a constant number
of subgraphs, and the value propagation approach [123] that identifies a number of
subgraphs, but requires quadratic time.

Recursive OBF Algorithm for Parallel SCC Decomposition The OBF technique has
been further improved and used recursively to build a new standalone parallel algo-
rithm for SCC decomposition – Recursive OBF [27]. According to our experimental
evaluation over various types of directed graphs, the new algorithm outperforms all
the known parallel SCC decomposition algorithms known so far.

Articles in Collection

[28] Jiřı́ Barnat and Pavel Moravec. Parallel Algorithms for Finding SCCs in Implic-
itly Given Graphs. In Formal Methods: Applications and Technology, volume 4346
of LNCS, pages 316–330. Springer, 2006.

Author’s contribution: 60%, OBF technique, complete writing.

[27] J. Barnat, J. Chaloupka, and J. Van De Pol. Distributed Algorithms for SCC
Decomposition. Journal of Logic and Computation Advance Access, 2010.

Author’s contribution: 50%, Recursive OBF algorithm idea.

3.4 Verification of Probabilistic Systems

Achieved results

Parallel Quantitative LTL Model Checking Quantitative analysis of probabilistic
systems has been studied mainly from the global model checking point of view. In the
global model checking problem, the goal of the verification is to decide the probabil-
ity of satisfaction of a given property for all reachable states in the state space of the
system under investigation. On the other hand, in the local model checking approach
the probability of satisfaction is computed only for the set of initial states. We devised
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parallel local model checking procedure and demonstrated that with the platform de-
pendent local model checking procedure we were able to reduce the runtime needed
for verification from days to minutes [20].

Degradation Concept The quantitative model checking procedure was extended
also to the systems with degradation [30]. Under some condition, systems with degra-
dation may be viewed as the standard probabilistic systems – Markov Decision Pro-
cesses (MDP’s) [128]. Rather theoretical result we obtained was that the degradation
properties can distinguish probabilistic systems (MDP’s) that are indistinguishable by
means of the standard probabilistic logics such as LTL, PCTL [82] or PCTL∗ [4].

Articles in Collection

[20] J. Barnat, L. Brim, I. Černá, M. Češka, and J. Tůmová. Local Quantitative LTL
Model Checking. In Formal Methods for Industrial Critical Systems (FMICS 2008),
volume 5596 of LNCS, pages 53–68. Springer-Verlag, 2008.

Author’s contribution: 20%, analyses of experimental results, algorithmics, for-
mulation of conclusions, significant part of writing.

[30] J. Barnat, I. Černá, and J. Tůmová. Quantitative Model Checking of Systems
with Degradation. In Proceeding of the Sixth International Conference on Quantita-
tive Evaluation of Systems (QEST 2009), pages 21–30. IEEE, 2009.

Author’s contribution: 33%, concept of degradation, relation to probabilistic sys-
tems, writing.

3.5 Tools and Tool Papers

In this section we describe software tools that were solely supervised and partly de-
veloped by the author of this thesis.

DiVinE, DiVinE Cluster LTL model checker built over the MPI standard allowing
efficient utilization of computational resources of a cluster of workstations (Obsolete).

DiVinE-MC Clone of DiVinE dedicated for usage solely on multi-cored CPUs with
shared memory architecture (Obsolete).

DiVinE-CUDA Clone of DiVinE dedicated for usage with NVIDIA’s CUDA tech-
nology on workstations with appropriate graphics processing units.

DiVinE 2.x New implementation of parallel LTL model checker with the combined
capabilities of previous DiVinE versions. With the release of DiVinE 2.x tool DiVinE
and DiVinE-MC became obsolete.



18 CHAPTER 3. THESIS CONTRIBUTION

ProbDiVinE Tool for qualitative model checking of probabilistic systems capable of
employing aggregate computational power of a cluster of workstations.

ProbDiVinE-MC Tool for quantitative model checking of probabilistic systems ca-
pable of efficient utilization of multiple cores on a shared-memory platform.

Articles in Collection

[18] J. Barnat, L. Brim, I. Černá, P. Moravec, P. Ročkai, and P. Šimeček. DiVinE –
A Tool for Distributed Verification (Tool Paper). In Computer Aided Verification,
volume 4144/2006 of LNCS, pages 278–281. Springer Berlin / Heidelberg, 2006.

Author.’s contribution: 40%, Overall concept of the tool, implementation of mul-
tiple parallel accepting cycle detection algorithms.

[14] J. Barnat, L. Brim, and P. Ročkai. DiVinE Multi-Core – A Parallel LTL Model-
Checker. In Automated Technology for Verification and Analysis (ATVA 2008), vol-
ume 5311 of LNCS, pages 234–239. Springer, 2008.

Author’s contribution: 33%, LTL model checking algorithmics.

[22] J. Barnat, L. Brim, and M. Češka. DiVinE-CUDA: A Tool for GPU Acceler-
ated LTL Model Checking. Electronic Proceedings in Theoretical Computer Science
(PDMC 2009), 14:107–111, 2009.

Author’s contribution: 40%, algorithmics, algorithm engineering.

[16] Jiřı́ Barnat, Luboš Brim, and Petr Ročkai. DiVinE 2.0: High-Performance Model
Checking. In 2009 International Workshop on High Performance Computational Sys-
tems Biology (HiBi 2009), pages 31–32. IEEE Computer Society Press, 2009.

Author’s contribution: 33%, tool road-map, processing of precompiled models.

[19] J. Barnat, L. Brim, I. Černá, M. Češka, and J. Tůmová. ProbDiVinE: A Parallel
Qualitative LTL Model Checker. In Fourth International Conference on the Quan-
titative Evaluation of Systems (QEST’07), pages 215–216. IEEE Computer Society,
2007.

Author’s contribution: 20%, algorithmics, tool distribution.

[21] J. Barnat, L. Brim, I. Černá, M. Češka, and J. Tůmová. Probdivine-mc: Multi-core
ltl model checker for probabilistic systems. In QEST ’08: Proceedings of the 2008
Fifth International Conference on Quantitative Evaluation of Systems, pages 77–78,
Washington, DC, USA, 2008. IEEE Computer Society.

Author’s contribution: 20%, algorithmics.
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checking. In CAV ’08: Proc. of the 20th international conference on Computer Aided
Verification, pages 530–542, Berlin, Heidelberg, 2008. Springer.

[66] Stefan Edelkamp and Damian Sulewski. Model Checking via Delayed Duplicate
Detection on the GPU. Technical Report Technical Report 821, TU Dortmund,
2008. Presented on the 22nd Workshop on Planning, Scheduling, and Design
PUK 2008.

[67] Stefan Edelkamp and Damian Sulewski. Parallel State Space Search on the GPU.
In International Symposium on Combinatorial Search (SoCS 2009), 2009.

[68] E. Allen Emerson and A. Prasad Sistla. Symmetry and model checking. Form.
Methods Syst. Des., 9(1-2):105–131, 1996.

[69] J. Esparza and S. Schwoon. A note on on-the-fly verification algorithms. In
TACAS’05, volume 3440 of LNCS, pages 174–190. Springer, 2005.

[70] Sami Evangelista. Dynamic delayed duplicate detection for external memory
model checking. In SPIN ’08: Proc. of the 15th international workshop on Model
Checking Software, pages 77–94, Berlin, Heidelberg, 2008. Springer.

[71] Jonathan Ezekiel, Gerald Luttgen, and Radu Siminiceanu. To Parallelize or to
Optimize? Advance access of Journal of Logic and Computation, page exp006, 2009.

[72] L. K. Fleischer, B. Hendrickson, and A. Pinar. On Identifying Strongly Con-
nected Components in Parallel. In Parallel and Distributed Processing, volume
1800 of LNCS, pages 505–511. Springer, 2000.

[73] H. Garavel, R. Mateescu, and I.M Smarandache. Parallel State Space Construc-
tion for Model-Checking. In Matthew B. Dwyer, editor, Proceedings of the 8th
International SPIN Workshop on Model Checking of Software (SPIN’2001), volume
2057 of LNCS, pages 216–234, Toronto, Canada, 2001. Springer-Verlag.

[74] H. Gazit and G. L. Miller. An Improved Parallel Algorithm That Computes the
BFS Numbering of a Directed Graph. Information Processing Letters, 28(2):61–65,
1988.

[75] Jaco Geldenhuys and P. J. A. de Villiers. Runtime efficient state compaction in
SPIN. In SPIN, pages 12–21, 1999.

[76] Jaco Geldenhuys and Antti Valmari. Tarjan’s algorithm makes on-the-fly LTL
verification more efficient. In TACAS’04, volume 2988 of LNCS, pages 205–219.
Springer, 2004.



BIBLIOGRAPHY 25

[77] Naga K. Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. GPUTera-
Sort: high performance graphics co-processor sorting for large database man-
agement. In International Conference on Management of Data (SIGMOD 06), pages
325–336. ACM, 2006.

[78] O. Grumberg, T. Heyman, and A. Schuster. Distributed Model Checking for µ-
calculus. In Gérard Berry, Hubert Comon, and Alain Finkel, editors, Proc. 13th
Conference on Computer-Aided Verification CAV01, volume 2102 of LNCS, pages
350–362. Springer, 2001.

[79] Orna Grumberg, Tamir Heyman, Nili Ifergan, and Assaf Schuster. Achieving
speedups in distributed symbolic reachability analysis through asynchronous
computation. In Correct Hardware Design and Verification Methods (CHARME
2005), volume 3725 of Lecture Notes in Computer Science, pages 129–145. Springer,
2005.

[80] Orna Grumberg, Tamir Heyman, and Assaf Schuster. A work-efficient dis-
tributed algorithm for reachability analysis. Formal Methods in System Design,
29(2):157–175, 2006.

[81] Moritz Hammer and Michael Weber. ”To Store or Not To Store” Reloaded: Re-
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3. J. Barnat, L. Brim, and M. Češka. DiVinE-CUDA: A Tool for GPU Acceler-
ated LTL Model Checking. Electronic Proceedings in Theoretical Computer Science
(PDMC 2009), 14:107–111, 2009.
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