
}w��������
��������������� !"#$%&'()+,-./012345<yA| Faculty of Informatics
Masaryk University
Czech Republic

Platform-Dependent Verification

Habilitation Thesis
(Collection of Articles)

Jiřı́ Barnat

October 2010

Abstract

The computer industry is undergoing a paradigm shift. Chip manufacturers are shift-
ing development resources away from single-core chips to a new generation of multi-
core or even many-core chips. Huge clusters of multi-core workstations are easily ac-
cessible everywhere, external memory devices, such as hard disks or solid state disks,
are getting more powerful both in terms of capacity and access speed. This fundamen-
tal technological shift in core computing architectures requires a fundamental change
in how we ensure the quality of software. The key issue is that the verification tech-
niques need to undergo a similarly deep technological transition to catch up with the
complexity of software designed for the new hardware. It is, therefore, inevitable to
come up with new techniques that allow full exploitation of the power offered by the
new computer hardware to make the automated verification techniques capable of
handling next-generation computer systems. In particular, this thesis demonstrates
how the automated formal verification procedures, such as explicit LTL model check-
ing or decomposition of a directed graph into strongly connected components, can
be adapted to employ the computational power of clusters, multi-cored workstations,
disks or graphics processing units.

The thesis is conceived as a collection of articles. The collection contains thirteen tech-
nical papers published in journals or conference proceedings, and six tool papers de-
scribing software tools released under the supervision of the author of this thesis. The
author contributed to the collection mainly by formulating the ideas of results pub-
lished in the articles of the collection, but also by performing numerous analyses and
interpretations of experimental measurements, by writing down significant parts of
texts, and by implementing parts of released software tools.

iii

iv

Abstrakt

Počı́tačový průmysl procházı́ výraznou změnou výpočetnı́ho paradigmatu. Výrobci
čipů se nadále nezaměřujı́ na výrobu jednojaderných čipů, ale na výrobu vı́cejaderných
nebo dokonce mnohojaderných čipů. I dı́ky tomu jsou dnes běžně dostupné obrovské
výpočetnı́ klastry vı́cejaderných uzlů. Rostou také výkonostnı́ parametry jako ka-
pacita, nebo přı́stupová doba, všech externı́ch paměťových médiı́. Tento fundamentálnı́
technologický posun v kvalitě výpočetnı́ch architektur sebou nese také posun ve způso-
bu, jakým je třeba zajišťovat kvalitu produkovaných výpočetnı́ch systémů. Klı́čovým
aspektem je zejména to, aby verifikačnı́ techniky podstoupily podobný technologický
posun, a byly tak schopny zachytit komplexnost soudobých systémů. Je nezbytné
vyvinout nové techniky, které umožnı́ plně využı́t sı́lu soudobých a nadcházejı́cı́ch
výpočetnı́ch systémů. V této habilitačnı́ práci je konkrétně demonstrováno, jakým
způsobem je možné adaptovat techniky automatizované formálnı́ verifikace, jmen-
ovitě proces ověřovánı́ modelu pro logiky lineárnı́ho času a proces dekompozice ori-
entovaného grafu na silně souvislé komponenty tak, aby tyto techniky využily výpo-
četnı́ sı́ly klastrů, vı́cejaderných pracovnı́ch statnic, disků, nebo grafických karet.

Tato habilitačnı́ práce je koncipována jako soubor uveřejněných vědeckých pracı́ (§72
odst. 3 pı́smena b zákona o vysokých školách). Soubor obsahuje třináct článků pub-
likovaných v časopisech nebo konferenčnı́ch sbornı́cı́ch a šest článků popisujı́cı́ch pro-
gramové nástroje, které vznikly pod supervizı́ autora této habilitačnı́ práce. Přı́spěvek
autora do souboru uveřejněných pracı́ tkvı́ zejména ve formulaci publikovaných myš-
lenek, ale také v prováděnı́ nesčetných analýz a interpretacı́ experimentálnı́ch měřenı́,
v psanı́ textu samotných článků a v implementaci částı́ zveřejněných softvérových
nástrojů.

v

Acknowledgments

First of all, I would like to thank to Luboš Brim for being my supervisor. I would never
be where I am without his guidance, support and the courage to start the parallel
model checking topic. I appreciate all the fruitful discussions, tiring squash matches,
and even rare quarrels we had.

I also wish to thank all my coauthors and acknowledge all the work they did. Espe-
cially, I thank all the students participating in the development of DiVinE tool and all
its spin-offs and branches.

Many thanks should also go to my wife and our daughters for their endless patience
and moral support.

vii

Contents

I Commentary 1

1 Introduction 3
1.1 Motivation . 3
1.2 Focus of the Thesis . 4
1.3 Preliminaries . 5

2 State of the Art 7
2.1 Parallel Model Checking . 7

2.1.1 State Space Generation . 7
2.1.2 Beyond State Space Generation . 7
2.1.3 Shared-Memory Architectures . 8
2.1.4 GPU Computing . 8

2.2 Parallel Symbolic Model Checking . 9
2.3 Embarrassingly Parallel Model Checking 10
2.4 SCC Decomposition . 10
2.5 Model Checking with Disks . 11

3 Thesis Contribution 13
3.1 Parallel and Distributed-Memory LTL Model Checking 13
3.2 I/O Efficient Verification . 14
3.3 SCC Decomposition . 16
3.4 Verification of Probabilistic Systems . 16
3.5 Tools and Tool Papers . 17

4 Bibliography 19

II Collection of Articles 31

5 Journal and Conference Papers 33

6 Tool Papers 35

ix

Part I

Commentary

1

Chapter 1

Introduction

1.1 Motivation

The computing power of computers has increased by a factor of a million over the
past couple of decades. As a matter of fact, the development effort, both in industry
and in academia, has gone into developing bigger, more powerful and more complex
applications. Due to various factors such as continuing miniaturization, parallel and
distributed computing, etc., we may still expect a similar rate of growth in the next
few decades. With the increase in complexity of computer systems, it became even
more important to develop formal methods for ensuring their quality and reliability.
Various techniques for automated and semi-automated analysis and verification have
been designed and successfully applied to small real-life systems. However, many
of these techniques are computationally demanding and memory-intensive in general
and their applicability to large and complex systems routinely seen in practice these
days is limited. The major hampering factor is the state space explosion problem due to
which large industrial models cannot be efficiently handled unless more sophisticated
and scalable methods are used.

A lot of attention has been paid to the development of approaches to fight the
state space explosion problem [58] in the field of automated formal verification [125].
Many techniques, such as a state compaction [75], compression [94], state space re-
duction [124, 56, 68], symbolic state space representation [45], etc., are used to reduce
the memory requirements needed to handle the verification problem with a standard
sequential software tool. Employing these techniques allows user to process larger
systems with the same computing power. A complementary approach suggests to
employ more computational power. To that end, various verification and analysis
techniques that can efficiently utilize the power of combined hardware resources have
been studied. Some of the techniques are general and applicable across a broad range
of computing platforms, some of them are tailored to the specific capabilities of a
particular hardware architectures. Examples include techniques to fight the mem-
ory limits with an efficient utilization of external memory devices [134], techniques
that introduce cluster-based algorithms to employ the aggregate power of network-
interconnected computers [133, 115, 73, 7], techniques to speed-up the verification
process on multi-core processors [96, 14, 113], etc. An inevitable aspect of employ-
ing combined hardware resources is parallel processing. Unfortunately, it is not the

3

4 CHAPTER 1. INTRODUCTION

case that all the sequential solutions that are used for serial processing can be easily
applied in parallel setting. On the contrary, many sequential solutions and algorithms
are practically ineffective when used to utilize combined hardware resources. As a
result, different solutions must have been and must be devised in order to facilitate
parallel processing.

The idea of using combined resources to increase the computational power is far
from being new. Attempts to use hard drives or parallel computers for verification of
large systems have appeared in the very early years of the automated formal verifi-
cation era. However, the inaccessibility of cheap parallel computers with sufficiently
fast external memory devices together with the negative theoretical complexity results
excluded these approaches from the main stream in formal verification. Moreover,
thanks to the Moore’s law, the performance of software tools kept improving contin-
uously for years as the power of a single cored CPU grew. The situation changed
dramatically with oncoming of multi core CPU chips. The progress in computer de-
sign over the past decades had measured several orders of magnitude with respect to
various physical parameters such as power consumption, efficiency, physical size or
cost. As a result, it became more efficient for chip producers to introduce multiple CPU
cores on a single chip rather than to increase the speed of a single core. As the speed of
a single core virtually stopped growing, every piece of software that was built upon a
serial algorithm could not take the advantage of technological progress anymore. The
focus of parallel and distributed-memory computing community shifted away from
unique massively parallel systems competing for world records towards smaller and
more cost effective systems built up from small and cheap personal computer parts.
Suddenly, the need for parallel processing become rather general and wide spread in
all science fields relying on complex computation operations, automated formal veri-
fication being not an exception.

Besides the parallel processing, the interest of formal verification community in
specific hardware platforms has widen to graphics processing units and NVIDIA’s
CUDA technology, but also to contemporary external memory devices, such as solid
state disks. As a matter of fact, the interest in the platform-dependent formal verifica-
tion has been revived.

1.2 Focus of the Thesis

One particularly successful approach to automated formal verification is model check-
ing [57, 5]. It builds upon an automated procedure that takes a model of a system and
decides whether the model satisfies a given property or not. This thesis focuses, in
particular, on platform dependent techniques and algorithms for model checking of
formulas of Linear Temporal Logic (LTL) [127].

Articles included in the thesis describe results that allow implementation of scal-
able parallel LTL model checking algorithms. Upon the theoretical results presented
in the thesis, software tools that are capable of efficient usage of aggregate computa-
tion resources of shared-memory and distributed-memory parallel architectures are
presented. Thesis also describes new, the so called I/O efficient, algorithms for LTL
model checking with external memory devices. Besides the LTL model checking prob-

1.3. PRELIMINARIES 5

lem, parallel algorithms for decomposing a directed graph into strongly connected
components (SCCs) are described. SCC decomposition problem is inherently present
in the core of many automated formal verification procedures. Finally, the platform-
dependent verification of discrete nondeterministic systems is carried on to discrete
probabilistic systems and systems with degradation.

1.3 Preliminaries

Given a model of a system, the model checking problem is to decide whether the
model meets a given specification or not. For model checking purposes, the spec-
ification needs to be formalized by means of temporal logic, LTL in our case. An
efficient automated procedure to decide LTL model checking problem has been intro-
duced [138]. It employs the theory of automata over infinite words, in particular, it
exploits the fact that every set of executions expressible by an LTL formula is an ω-
regular set and as such can be described by a Büchi automaton. The approach suggests
to express all the system executions by a system automaton and all the executions vio-
lating the given LTL formula by a property or negative claim automaton. These automata
are combined into their synchronous product in order to check for the existence of
system executions that violate the property. The language recognized by the product
automaton is empty if and only if no system execution is invalid.

The language emptiness problem for Büchi automata can be expressed as an accept-
ing cycle detection problem in a graph. Each Büchi automaton can be naturally identified
with an automaton graph which is a directed graph G = (V,E, s,A) where V is the set
of vertices (n = |V |), E is a set of edges (m = |E|), s is an initial vertex, and A ⊆ V

is a set of accepting vertices. We say that a cycle in G is accepting if it contains an
accepting vertex. Let A be a Büchi automaton and GA the corresponding automaton
graph. Then A recognizes a nonempty language iff GA contains an accepting cycle
reachable from s. The LTL model-checking problem is thus reduced to the accepting
cycle detection problem in the automaton graph.

Optimal sequential algorithms for accepting cycle detection use depth-first search
strategy. The individual algorithms differ in their space requirements, length of the
counterexample produced, and other aspects [137]. The typical algorithm used is the
Nested DFS algorithm [61]. The idea of the algorithm is to use two interleaved depth-
first searches, where the first one discovers accepting states reachable from the initial
state, while the second one – the nested, checks for a self-reachability of all accepting
states revealed by the first (outer) search. Several modifications of the algorithm have
been suggested to remedy some of its disadvantages [76]. The well known model
checker built on the Nested DFS algorithm is model checker SPIN [94, 93, 132].

The optimality of the Nested DFS algorithm is achieved due to the particular order
in which the graph is processed. The order guarantees that no vertices of the graph
are visited more than twice. In fact, all the best-known algorithms rely on the same
exploring principle, namely the postorder as computed by the depth-first search [60].
Unfortunately, deciding the postorder is P -complete problem [130] and as such it is in-
herently sequential, which means that any algorithmic solution relying on the depth-
first search postorder will have difficulties to efficiently employ contemporary parallel

6 CHAPTER 1. INTRODUCTION

hardware architectures. A work-optimal scalable parallel algorithm for accepting cy-
cle detection problem is unknown and, due to Reif [130], it is unlikely to exist.

An inseparable task of the model checking procedure is the so called state space
generation problem. When specifying the system to be verified, the system is typically
given by an initial configuration (initial state) and a function describing how the sys-
tem evolves from one configuration into one or more succeeding ones. The is carried
out by the so called next-state function. Such a definition of a system is referred to
as an implicit definition. The state space generation problem is then a problem of
enumerating all states (configurations) reachable from the initial state (initial configu-
ration) using the next-state function. Performing the state space generation basically
amounts to performing a graph traversal procedure. To guarantee termination for
cyclic graphs, a graph traversal procedure keeps track of vertices (states) that have
been traversed (generated). Due to the huge number of states (configurations) a sys-
tem can reach, the state space generation procedure is time and memory demanding.
The number of states a system can reach tends to grow exponentially with the size of
the next-state function description. This is the so called state space explosion problem.
Due to the state space explosion the amount of memory needed to store all reachable
states for a real-life system typically exceeds the memory available to the algorithm, in
which case the particular model checking procedure terminates incomplete. Verifica-
tion approaches that are capable of detecting a violation of the verified property prior
the full state space is generated are generally referred to as on-the-fly approaches.

Chapter 2

State of the Art

2.1 Parallel Model Checking

The need of parallel processing in automated formal verification stemmed from the
desire to fight the state space explosion problem by employing aggregate memory
of multiple network interconnected workstations. The crucial aspect studied at first
was how to partition the state space (the set of visited states) among individual parts
of the distributed-memory platform in order to take advantage of aggregate memory
and parallel processing at the same time.

2.1.1 State Space Generation

Based on a parallel algorithm for state space generation [46] a static partitioning scheme
relying on a hash function was suggested [52]. As observed by multiple researchers,
the hash-based partitioning yields better space locality if only parts of the state de-
scriptor are used as the input to the partitioning function. While there were ap-
proaches requiring the user of the tool to specify the concrete parts of the state de-
scriptor to be used for partitioning [52, 115], other approaches employed automated
or semi-automated techniques to do it [121, 122]. Techniques to load balance the set
of visited states, also known as repartitioning techniques, have been suggested as
well [2, 116, 111]. State space generation schemes employing probability aspects were
also introduced [107, 106].

The first known public implementation of a distributed memory tool for veri-
fication of communication protocols was the parallel implementation of the Murϕ
tool [63, 133]. Active messages were used later on to improve the efficiency of the
distributed-memory parallel processing with Murϕ [141]. After the successful story of
the Murϕ tool, the distributed-memory state space generation appeared in many other
verification tools, such as SPIN [115, 116], CADP [73], UPPALL [31], etc. Distributed-
memory state space generation as a technique of automated formal verification also
appeared in the context of Petri Nets [52, 88] and Markov chains [87, 86].

2.1.2 Beyond State Space Generation

The explicit model checking procedure is typically bound to linear time logic. Due
to Vardi and Wolper [139], the LTL model checking problem reduces to the problem

7

8 CHAPTER 2. STATE OF THE ART

of emptiness of Büchi automata, hence to the problem of accepting cycle detection in
a directed graph. Several parallel and distributed-memory algorithms for accepting
cycle detection were introduced. The first implementation [17] employed the so called
dependency structure to record the reachability relation among accepting states of a
distributed graph and applied the topological sort algorithm [105] to detect the pres-
ence of a self-reachable accepting state. Other parallel algorithms are built upon var-
ious ideas: negative cycle detection [43, 41], property automaton decomposition [8],
symbolic SCC hull detection [47], value propagation [42], or back-level edges as pro-
duced by a breadth-first search procedure [9, 10]. According to experimental evalu-
ations, practically the best algorithm to be used for parallel accepting cycle detection
combines the ideas of symbolic SCC hull detection and value propagation [15].

Besides the LTL model checking, parallel and distributed-memory algorithms for
other formal verification procedures were designed. Explicit parallel and distributed-
memory algorithms for verification of µ-calculus [37, 38, 91] or alternation-free boolean
equation systems [103] are known. Parallel explicit CTL model checking have been in-
troduced as well [44, 40]. Techniques of state space reduction have been studied in the
context of parallel processing as well. Approaches to reduce the state space mod-
ulo strong bisimulation were designed [34, 35] as well as a distributed-memory tool
LTSmin to perform signature-based bisimulation reduction for strong and branching
bisimulation [36]. Grid-enabled version of probabilistic model checker PRISM [112]
has been reported too [143].

2.1.3 Shared-Memory Architectures

Most techniques and results known from the distributed-memory setting are straight-
forwardly applicable also to shared-memory architectures. However, scalability of
distributed-memory solutions is often limited in shared-memory setting [12]. There-
fore, shared-memory specific techniques have been developed to improve the effi-
ciency and scalability of many parallel solutions leading in some cases almost to an
optimal scalability [113]. The shared-memory specific techniques include, for exam-
ple, shared communication data structures [98, 13], specific termination detection tech-
niques [13], dual-core algorithms [96] or quite unique partitioning schemes [95].

2.1.4 GPU Computing

After NVIDIA’s CUDA technology [62] was introduced, a lot of computational de-
manding task have been accelerated by GPU-aware algorithms. Examples of GPU
accelerated procedures include, but are not limited to sorting procedure [77], reduce
operation [85], or numerous biological and physical simulations, such as protein fold-
ing [101]. As for graph theory, successful adaptation of graph traversal algorithms
were reported [83, 84] demonstrating the computational power of the CUDA device.
Nevertheless, to achieve overall speedup in processing the graph to be traversed with
a CUDA accelerated algorithm has to be stored in suitable data format, adjacency ma-
trix for example.

The CUDA technology as a computing platform attracted also researches in the
field of automated formal verification. The key challenge for which no satisfactory so-

2.2. PARALLEL SYMBOLIC MODEL CHECKING 9

lution is known yet is how to CUDA accelerate the generation of the state space graph
from the implicit definition. Preliminary attempts to do so relate to explicit model
checking approach. They suggest to employ massively parallel check for enabledness
of transitions emanating from the states on the frontier of the search and massively
parallel execution of all the enabled transitions [66, 67].

Once the state space is generated and represented in appropriate sparse matrix like
structure, many verification tasks could be accelerated using CUDA technology. This
has been successfully demonstrated, for example, for explicit LTL model checking [23,
22], or verification of probabilistic systems [39].

2.2 Parallel Symbolic Model Checking

Symbolic approach to model checking [104] is definitely one of the most important
milestones achieved in automated formal verification. The key idea of the approach
is to replace the space demanding explicit enumeration of the set of states by signif-
icantly more succinct representation, and at the same time, allow for traversing of
multiple edges in the state space graph at once rather than handling them one by one
as done in the explicit/enumerative approach. Both goals could be achieved if the
set of visited states and the next-state functions are encoded using Binary Decision
Diagrams (BDDs), see e.g. [57]. The model checking procedure than reduces to ma-
nipulation of BDD structures. Unlike the explicit approach, the size of a BDD does not
necessarily grow with the number of states stored in the set represented with the BDD,
but rather with the irregularity of the set. For regular set of states, as produced e.g.
by synchronous systems, the symbolic approach is unbeatable, but for irregular state
spaces as produced typically by asynchronous systems BDDs are not that efficient.

Symbolic model checking can be adapted to parallel processing in various ways.
The first option is to run a serial model checking algorithm that calls to parallel BDD
manipulation routines. Such parallel BDD manipulation approaches were success-
fully applied to accelerate operations over large BDDs [119, 129, 135].

The second approach to adapt the symbolic model checking procedure to parallel
processing mimics the state space partitioning as known from the explicit approach.
To that end BDD slicing was introduced [90, 32, 89]. The set of states is a priory parti-
tioned according to the value of BDD control variables (BDD internal nodes) and the
BDD is sliced into multiple BDDs that are maintained by individual computation par-
ticipating workstations. The static partitioning was found inefficient because of the
network communication overhead rendered necessarily even for small verification in-
stances. Therefore, dynamic adaptive BDD slicing were introduced later on [80]. Still
the model checking process did not exhibited the expected speed-up which was, as
identified later, due to the synchronous execution of individual BDD operations. This
has been overcome by introducing virtually asynchronous processing over distributed
BDD slices [79] that lead to up to ten-fold speedup compared to the synchronous ver-
sion.

A different approach to symbolic state space generation and model checking is
saturation [53, 54]. The idea of it is to avoid encoding of the transition function with
a decision diagram, and thus, avoid slightly unpredictable operations over the two

10 CHAPTER 2. STATE OF THE ART

decision diagrams. Instead, the set of states reachable from a given set of states en-
coded by a BDD or an MDD (multi-valued decision diagram) is computed by direct
manipulation of the internal nodes of the decision diagram representing the set of
states reached so far. Unfortunately, the order in which the internal nodes of BDD or
MDD are manipulated, is strictly given. The order resembles depth-first search pos-
torder, hence, satisfactory scalable parallel technique to saturate a given BDD or MDD
has not been found yet [55], some researchers even suggest to optimize the sequential
algorithms rather than to parallelize them [71]. Nevertheless, horizontal partition-
ing [129] was employed for building up a parallel saturation procedure [49] that was
improved later on with static [51] and dynamic pattern [50] for speculative execution
of system transitions.

Beyond the state space generation, symbolic parallel approach to handle the veri-
fication of µ-calculus formulas has been introduced as well [78].

2.3 Embarrassingly Parallel Model Checking

The model checking task can be viewed as one big and computation demanding proce-
dure that is a natural candidate for being solved by means of parallel processing. The
parallel solutions mentioned so far introduce multiple parallel agents that process the
input data and communicate intensively to achieve the desired goal. However, this
is not the only option. The whole model checking procedure can be viewed also as a
bunch of many independent tasks that can be executed solely in parallel, i.e. without
any communication. Such a parallel solution is generally referred to as an embarrass-
ingly parallel approach. The difference can be nicely demonstrated on the LTL model
checking problem. While the classical parallel approaches suggest to employ multi-
ple communicating agents to detect the presence of an accepting cycle in the directed
graph, the embarrassingly parallel approach suggests to take individual system ex-
ecutions and check every single one for its conformance with the verified property.
The number of executions of a system may, however, be infinite, which renders the
embarrassingly parallel approach incomplete. Therefore, the embarrassingly parallel
solutions could rather be viewed as fast bug finding techniques. Examples of embar-
rassingly parallel approaches include parallel randomized state space search [64] or
parallel guided counter-example generation [131].

Regarding the LTL model checking procedure, the order in which the vertices of
the product automaton graph are explored plays significant role provided the graph
contains an error state or accepting cycle to be discovered. With good traverse order
the discovery of an error is a matter of relatively small number of steps of the un-
derlying algorithm. An embarrassingly parallel approach to LTL model checking that
instanciates multiple standard sequential procedures in parallel each with a randomly
modified order of exploration has been introduced [97].

2.4 SCC Decomposition

The problem of decomposition of a directed graph into its strongly connected compo-
nents is a fundamental graph problem inherently present in many scientific and com-

2.5. MODEL CHECKING WITH DISKS 11

mercial applications. The problem is defined as follows. Let G be a directed graph,
i.e. G is a pair (V , E), where V is a set of vertices, and E ⊆ V × V is a set of edges.
Let E∗ be a transitive and reflexive closure of E and s, t ∈ V two vertices. We say
that vertex t is reachable from vertex s if (s, t) ∈ E∗. A set of vertices C ⊆ V is strongly
connected, if for any vertices u, v ∈ C, we have that v is reachable from u. A strongly
connected component (SCC) is a maximal strongly connected C ⊆ V , i.e. such that no C ′

with C (C ′ ⊆ V is strongly connected. The problem of SCC decomposition is the
problem of identification of all strongly connected components for a given graph.

As for the automated formal verification, the SCC decomposition problem is used
as a subroutine in many algorithmic solutions. For example, the SCC decomposition
algorithm is employed for verification of probabilistic systems, state space reduction
by τ -confluence, verification of systems with fairness constraints, or verification of
liner time properties given by other than Büchi automata. SCC-based algorithms can
also be used directly for LTL model checking. While Nested DFS is more space effi-
cient, SCC-based algorithms produce shorter counterexamples in general [69].

An efficient algorithmic solution to this problem is due to Tarjan [136], who showed
that, given a graph with n vertices and m edges, it is possible to identify and list all
strongly connected components of the graph inO(n+m) time andO(n) space. Unfor-
tunately, the Tarjan’s solution builds upon the depth-first search postorder and as such
it is limited to sequential computing paradigms, hence inappropriate for contempo-
rary parallel computing platforms. The existence of an work-optimal scalable parallel
algorithm for SCC decomposition is an open problem. All the so far known parallel
solutions to the problem exhibit unoptimal time complexity.

Different approaches suitable for parallel processing have been considered. See
e.g. [74, 59, 3] for algorithm that works inO(log2n) time, but requiresO(n2.376) parallel
processors, or [142] for randomized parallel algorithm for the problem. Another par-
allel algorithm for SCC decomposition exploits the fact that it is possible to efficiently
compute in parallel the set of vertices reachable from a certain vertex or set of ver-
tices [72]. The general idea of the algorithm is to repeatedly pick a vertex of the graph
and identify the component to which it belongs, by using the forward and a back-
ward parallel reachability procedures. The algorithm proved to be efficient enough
in practice, which resulted in several theoretical improvements of it [123, 117]. The
worst time complexity of the algorithm is O(n · (n+m)). Nevertheless, the algorithm
exhibits O(m · log n) expected time [72]. A completely different strategy to detect SCC
in parallel was introduced in [123]. The algorithm employs value forward value prop-
agation to partition the graph into subgraphs respecting the SCCs. Each subgraph as
computed by the algorithm is rooted, hence subsequent backward reachability identi-
fies exactly the leading component of the subgraph. The algorithm performs well for
graphs with many small components, however, for graphs with large components it
is easily outperformed by other parallel algorithms.

2.5 Model Checking with Disks

Efficient usage of memory hierarchies is an established research topic [118]. Special-
ized algorithms were devised to efficiently utilize external-memory block devices. The

12 CHAPTER 2. STATE OF THE ART

efficiency is of such the algorithms is typically measured using the so called I/O (in-
put/output) complexity [1]. First of all, general graph traversal algorithms (state space
generation, in the context of formal verification) were adapted to become I/O effi-
cient. To that end the delayed duplicate detection was introduced [48] and further
improved [144, 6, 81] or specialized for undirected graphs [108, 109].

Employing disk to fight the state explosion problem in formal verification has
started by the disk extension of the verification tool Murϕ [134, 126]. The external
devices were also used to reconstruct the counterexample when applying the sweep-
line heuristics search [110].

As for problems beyond the state space generation. First results published em-
ploy a generic reduction of model checking problem to the reachability problem [33].
Unfortunately, such a reduction resulted in a quadratic grow in the space demands,
which effectively eliminated the possibility of complete search. There were heuristics
used instead trying to prove the existence of a counterexample. We have seen random
walks strategy [102], or iterative deepening and A∗ algorithms to be used [99, 100].
Another incomplete model checking approach suggested builds on the fact that new
transitions tend to lead to new states or to a states in recent breadth-first search lev-
els [114].

The quadratic space overhead in the I/O efficient LTL model checking was avoided
later on [24] and further improved by introducing the so called merge omissions [26]
that allowed for more efficient delayed duplicate detection in the later stages of the
computation. Various formulas for actual omissions were introduced [70]. A com-
pletely different technique for trading time for space has been suggested and is now
referred to as the semi-external approach to LTL model checking problem [65].

A problem related to I/O efficient verification, delayed duplicate detection in par-
ticular, exists and is known as the streaming state space problem [92].

Chapter 3

Thesis Contribution

This habilitation thesis is conceived as a collection of articles. Summary of results
achieved is given in four sections. Each section groups together results with a common
research topic and lists the concrete percentage of contribution by the author of this
thesis for each relevant article in the collection. An extra section is then devoted to the
related software tools that were solely supervised and partly developed by the author
of this thesis.

3.1 Parallel and Distributed-Memory LTL Model Checking

Achieved results

Distributed-Memory LTL Model Checking Parallel LTL model checker DiVinE [18]
has been successfully adapted to various contemporary hardware platforms. Initially
the tool was intended to aggregate computational power and system memory of mul-
tiple network interconnected workstations (clusters) in order to facilitate the verifi-
cation of large model checking instances [17, 7]. We demonstrated that the tool suc-
ceeded the mission in terms of both the speedup achieved due to parallel processing
and the ability of processing large model checking problem instances [140].

Shared-Memory LTL Model Checking In the light of technological shift towards
shared-memory systems, we described relative advantages and disadvantages of shared
versus private hash tables [29]. These were evaluated, both theoretically and practi-
cally, in a prototype implementation [14]. Later we have further improved the scala-
bility of the tool and were able to demonstrate that the parallel processing even with
an unoptimal algorithm outperforms highly efficient work-optimal sequential model
checker SPIN [12].

On-the-fly Parallel Algorithm for LTL Model Checking Though, the optimality of
the algorithm employed for parallel processing is an issue. There is an important
subclass of LTL for which optimal scalable parallel algorithm exists [47]. However,
this algorithm suffers from not being an on-the-fly algorithm. Since the on-the-fly
verification is an important practical aspect, we have devised a modification of this
algorithm that allows for on-the-fly verification in most verification instances [15].

13

14 CHAPTER 3. THESIS CONTRIBUTION

CUDA Accelerated LTL Model Checking Finally, recent technological advancements
in GPU computing made available a new rather specific computing platform – the
NVIDIA’s CUDA technology [62]. It allows for acceleration of computation intensive
applications with GPU hardware. We have succeeded to adapt algorithms for accept-
ing cycle detection to CUDA framework and demonstrated significant speedup of the
LTL model checking process with CUDA technology [23].

Articles in Collection

[29] J. Barnat and P. Ročkai. Shared Hash Tables in Parallel Model Checking. ENTCS,
198(1):79–91, 2008.

Author’s contribution: 50%, significant part of the writing, main idea.

[12] J. Barnat, L. Brim, and P. Ročkai. Scalable shared memory LTL model checking.
International Journal on Software Tools for Technology Transfer (STTT), 12(2):139–153,
2010.

Author’s contribution: 33%, significant part of the writing, analysis of experi-
mental results and formulation of conclusions.

[140] K. Verstoep, H. Bal, J. Barnat, and L. Brim. Efficient Large-Scale Model Check-
ing. In 23rd IEEE International Parallel & Distributed Processing Symposium (IPDPS
2009). IEEE, 2009.

Author’s contribution: 25%, DiVinE architecture consultant, marginal part of
writing.

[15] J. Barnat, L. Brim, and P. Ročkai. A Time-Optimal On-the-Fly Parallel Algorithm
for Model Checking of Weak LTL Properties. In Formal Methods and Software
Engineering (ICFEM 2009), volume 5885 of LNCS, pages 407–425. Springer, 2009.

Author’s contribution: 70%, most of the writing, main idea, implementation,
and experimental validation.

[23] J. Barnat, L. Brim, M. Češka, and T. Lamr. CUDA accelerated LTL Model Check-
ing. In 15th International Conference on Parallel and Distributed Systems (ICPADS
2009), pages 34–41. IEEE Computer Society, 2009.

Author’s contribution: 25%, most of the writing, main ideas.

3.2 I/O Efficient Verification

Achieved results

I/O Efficient LTL Model Checking Due to the state space explosion problem, the
graph to be searched for the presence of an accepting cycle tends to be extremely
large. For that reason the LTL model checking verification procedure suffers from
limited applicability w.r.t the size of model checking instance if performed on a sin-
gle workstation. Reduction techniques [57, 5] are simply not strong enough to solve

3.2. I/O EFFICIENT VERIFICATION 15

the problem. To move the frontier of still tractable systems a little bit further exter-
nal memory devices (disks) are an option. We were first to show that the LTL model
checking process can be done I/O efficiently with the same space complexity as the
standard pure in memory solution [24].

Improved Delayed Duplicate Detection Technique The idea of LTL model check-
ing with external memory devices is to keep the track of vertices that have been ex-
plored by the algorithm on the external memory. Unfortunately, in order to access
the external memory efficiently, the standard work-flow of a graph traversal algo-
rithm has to be modified. This modification is referred to as the delayed duplicate de-
tection [108, 109, 120, 134]. According to our experimental measurements, the stan-
dard delayed duplicate detection technique becomes rather ineffective once the graph
traversal procedure is about to complete the search. We have, therefore, defined an
improved version of the work-flow and demonstrated its positive impact on I/O ef-
ficient verification [26]. Unfortunately, not all the parallel graph traversal algorithms
that are suitable for in memory computing are compatible with our new work-flow
modification. Hence, we have also defined a criterion for deciding the compliance of
a graph traversal algorithm with our modification – the so called revisiting resistance.

Parallel I/O Efficient Model Checking We have also investigated how parallel disks
can be combined to further improve the I/O efficient LTL model checking proce-
dure [25] and whether the recent introduction of flash memory disks have some im-
plications on the field of I/O efficient processing [11].

Articles in Collection

[24] J. Barnat, L. Brim, and P. Šimeček. I/O Efficient Accepting Cycle Detection. In
Computer Aided Verification, volume 4590 of LNCS, pages 281–293. Springer, 2007.

Author’s contribution: 33%, analyses of experimental results, significant part of
writing.

[11] J. Barnat, L. Brim, S. Edelkamp, D. Sulewski, and P. Šimeček. Can Flash Memory
Help in Model Checking. In Formal Methods for Industrial Critical Systems (FMICS
2008), volume 5596 of LNCS, pages 150–165. Springer-Verlag, 2008.

Author’s contribution: 25%, analyses of experimental results, formulation of
conclusions, significant part of writing.

[26] J. Barnat, L. Brim, P. Šimeček, and M. Weber. Revisiting Resistance Speeds Up
I/O-Efficient LTL Model Checking. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS)., volume 4963 of LNCS, pages 48–62. Springer,
2008.

Author’s contribution: 25%, revisiting resistant work-flow identification, analy-
ses of experimental results, formulation of conclusions, significant part of writ-
ing.

16 CHAPTER 3. THESIS CONTRIBUTION

[25] J. Barnat, L. Brim, and P. Šimeček. Cluster-Based I/O Efficient LTL Model
Checking. In 24th IEEE/ACM International Conference on Automated Software En-
gineering (ASE 2009), pages 635–639. IEEE Computer Society, 2009.

Author’s contribution: 33%, analyses of experimental results, formulation of
conclusions, significant part of writing.

3.3 SCC Decomposition

Achieved results

OBF Graph Decomposition Procedure We have developed a new parallel technique
to partition a directed graph into multiple SCC respecting parts – the so called OBF
technique [28]. The technique is unique as it can partition the graph into a number
of subgraphs in linear time. A such it combines the good properties of the forward-
backward strategy [72] that works in linear time but produces only a constant number
of subgraphs, and the value propagation approach [123] that identifies a number of
subgraphs, but requires quadratic time.

Recursive OBF Algorithm for Parallel SCC Decomposition The OBF technique has
been further improved and used recursively to build a new standalone parallel algo-
rithm for SCC decomposition – Recursive OBF [27]. According to our experimental
evaluation over various types of directed graphs, the new algorithm outperforms all
the known parallel SCC decomposition algorithms known so far.

Articles in Collection

[28] Jiřı́ Barnat and Pavel Moravec. Parallel Algorithms for Finding SCCs in Implic-
itly Given Graphs. In Formal Methods: Applications and Technology, volume 4346
of LNCS, pages 316–330. Springer, 2006.

Author’s contribution: 60%, OBF technique, complete writing.

[27] J. Barnat, J. Chaloupka, and J. Van De Pol. Distributed Algorithms for SCC
Decomposition. Journal of Logic and Computation Advance Access, 2010.

Author’s contribution: 50%, Recursive OBF algorithm idea.

3.4 Verification of Probabilistic Systems

Achieved results

Parallel Quantitative LTL Model Checking Quantitative analysis of probabilistic
systems has been studied mainly from the global model checking point of view. In the
global model checking problem, the goal of the verification is to decide the probabil-
ity of satisfaction of a given property for all reachable states in the state space of the
system under investigation. On the other hand, in the local model checking approach
the probability of satisfaction is computed only for the set of initial states. We devised

3.5. TOOLS AND TOOL PAPERS 17

parallel local model checking procedure and demonstrated that with the platform de-
pendent local model checking procedure we were able to reduce the runtime needed
for verification from days to minutes [20].

Degradation Concept The quantitative model checking procedure was extended
also to the systems with degradation [30]. Under some condition, systems with degra-
dation may be viewed as the standard probabilistic systems – Markov Decision Pro-
cesses (MDP’s) [128]. Rather theoretical result we obtained was that the degradation
properties can distinguish probabilistic systems (MDP’s) that are indistinguishable by
means of the standard probabilistic logics such as LTL, PCTL [82] or PCTL∗ [4].

Articles in Collection

[20] J. Barnat, L. Brim, I. Černá, M. Češka, and J. Tůmová. Local Quantitative LTL
Model Checking. In Formal Methods for Industrial Critical Systems (FMICS 2008),
volume 5596 of LNCS, pages 53–68. Springer-Verlag, 2008.

Author’s contribution: 20%, analyses of experimental results, algorithmics, for-
mulation of conclusions, significant part of writing.

[30] J. Barnat, I. Černá, and J. Tůmová. Quantitative Model Checking of Systems
with Degradation. In Proceeding of the Sixth International Conference on Quantita-
tive Evaluation of Systems (QEST 2009), pages 21–30. IEEE, 2009.

Author’s contribution: 33%, concept of degradation, relation to probabilistic sys-
tems, writing.

3.5 Tools and Tool Papers

In this section we describe software tools that were solely supervised and partly de-
veloped by the author of this thesis.

DiVinE, DiVinE Cluster LTL model checker built over the MPI standard allowing
efficient utilization of computational resources of a cluster of workstations (Obsolete).

DiVinE-MC Clone of DiVinE dedicated for usage solely on multi-cored CPUs with
shared memory architecture (Obsolete).

DiVinE-CUDA Clone of DiVinE dedicated for usage with NVIDIA’s CUDA tech-
nology on workstations with appropriate graphics processing units.

DiVinE 2.x New implementation of parallel LTL model checker with the combined
capabilities of previous DiVinE versions. With the release of DiVinE 2.x tool DiVinE
and DiVinE-MC became obsolete.

18 CHAPTER 3. THESIS CONTRIBUTION

ProbDiVinE Tool for qualitative model checking of probabilistic systems capable of
employing aggregate computational power of a cluster of workstations.

ProbDiVinE-MC Tool for quantitative model checking of probabilistic systems ca-
pable of efficient utilization of multiple cores on a shared-memory platform.

Articles in Collection

[18] J. Barnat, L. Brim, I. Černá, P. Moravec, P. Ročkai, and P. Šimeček. DiVinE –
A Tool for Distributed Verification (Tool Paper). In Computer Aided Verification,
volume 4144/2006 of LNCS, pages 278–281. Springer Berlin / Heidelberg, 2006.

Author.’s contribution: 40%, Overall concept of the tool, implementation of mul-
tiple parallel accepting cycle detection algorithms.

[14] J. Barnat, L. Brim, and P. Ročkai. DiVinE Multi-Core – A Parallel LTL Model-
Checker. In Automated Technology for Verification and Analysis (ATVA 2008), vol-
ume 5311 of LNCS, pages 234–239. Springer, 2008.

Author’s contribution: 33%, LTL model checking algorithmics.

[22] J. Barnat, L. Brim, and M. Češka. DiVinE-CUDA: A Tool for GPU Acceler-
ated LTL Model Checking. Electronic Proceedings in Theoretical Computer Science
(PDMC 2009), 14:107–111, 2009.

Author’s contribution: 40%, algorithmics, algorithm engineering.

[16] Jiřı́ Barnat, Luboš Brim, and Petr Ročkai. DiVinE 2.0: High-Performance Model
Checking. In 2009 International Workshop on High Performance Computational Sys-
tems Biology (HiBi 2009), pages 31–32. IEEE Computer Society Press, 2009.

Author’s contribution: 33%, tool road-map, processing of precompiled models.

[19] J. Barnat, L. Brim, I. Černá, M. Češka, and J. Tůmová. ProbDiVinE: A Parallel
Qualitative LTL Model Checker. In Fourth International Conference on the Quan-
titative Evaluation of Systems (QEST’07), pages 215–216. IEEE Computer Society,
2007.

Author’s contribution: 20%, algorithmics, tool distribution.

[21] J. Barnat, L. Brim, I. Černá, M. Češka, and J. Tůmová. Probdivine-mc: Multi-core
ltl model checker for probabilistic systems. In QEST ’08: Proceedings of the 2008
Fifth International Conference on Quantitative Evaluation of Systems, pages 77–78,
Washington, DC, USA, 2008. IEEE Computer Society.

Author’s contribution: 20%, algorithmics.

Bibliography

[1] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116–1127, 1988.

[2] S. Allmaier, S. Dalibor, and D. Kreische. Parallel Graph Generation Algorithms
for Shared and Distributed Memory Machines. In G. Bilardi, A. G. Ferreira,
R. Lüling, and J. D. P. Rolim, editors, Proceeding of the Parallel Computing Confer-
ence PARCO’97 (Bonn, Germany), volume 1253 of LNCS, pages 207–218. Springer,
1997.

[3] N. Amato. Improved Processor Bounds for Parallel Algorithms for Weighted
Directed Graphs. Information Processing Letters, 45(3):147–152, 1993.

[4] Adnan Aziz, Vigyan Singhal, Felice Balarin, Robert K. Brayton, and Alberto L.
Sangiovanni-Vincentelli. It usually works: The temporal logic of stochastic sys-
tems. In Proceedings of the 7th International Conference on Computer Aided Verifica-
tion, pages 155–165, London, UK, 1995. Springer-Verlag.

[5] Ch. Baier and J. P. Katoen. Principles of Model Checking. The MIT Press, 2008.

[6] Tonglaga Bao and Michael Jones. Time-efficient model checking with magnetic
disk. In TACAS, volume 3440 of Lecture Notes in Computer Science, pages 526–540.
Springer, 2005.

[7] J. Barnat. Distributed Memory LTL Model Checking. PhD thesis, Masaryk Univer-
sity Brno, Faculty of Informatics, 2004.

[8] J. Barnat, L. Brim, and I. Černá. Property driven distribution of Nested DFS. In
Proc. Workshop on Verification and Computational Logic, number DSSE-TR-2002-5
in DSSE Technical Report, pages 1–10. University of Southampton, UK, 2002.

[9] J. Barnat, L. Brim, and J. Chaloupka. Parallel Breadth-First Search LTL Model-
Checking. In 18th IEEE International Conference on Automated Software Engineering
(ASE’03), pages 106–115. IEEE Computer Society, Oct. 2003.

[10] J. Barnat, L. Brim, and J. Chaloupka. From Distributed Memory Cycle Detection
to Parallel LTL Model Checking. Electronic Notes in Theoretical Computer Science,
133(1):21–39, 2005.

[11] J. Barnat, L. Brim, S. Edelkamp, D. Sulewski, and P. Šimeček. Can Flash Memory
Help in Model Checking. In Formal Methods for Industrial Critical Systems (FMICS
2008), volume 5596 of LNCS, pages 150–165. Springer-Verlag, 2008.

19

20 BIBLIOGRAPHY

[12] J. Barnat, L. Brim, and P. Ročkai. Scalable shared memory LTL model checking.
International Journal on Software Tools for Technology Transfer (STTT), 12(2):139–
153, 2010.

[13] J. Barnat, L. Brim, and P. Ročkai. Scalable multi-core ltl model-checking. In
Model Checking Software, volume 4595 of LNCS, pages 187–203. Springer, 2007.

[14] J. Barnat, L. Brim, and P. Ročkai. DiVinE Multi-Core – A Parallel LTL Model-
Checker. In Automated Technology for Verification and Analysis (ATVA 2008), vol-
ume 5311 of LNCS, pages 234–239. Springer, 2008.

[15] J. Barnat, L. Brim, and P. Ročkai. A Time-Optimal On-the-Fly Parallel Algorithm
for Model Checking of Weak LTL Properties. In Formal Methods and Software
Engineering (ICFEM 2009), volume 5885 of LNCS, pages 407–425. Springer, 2009.

[16] J. Barnat, L. Brim, and P. Ročkai. DiVinE 2.0: High-Performance Model Check-
ing. In 2009 International Workshop on High Performance Computational Systems
Biology (HiBi 2009), pages 31–32. IEEE Computer Society Press, 2009.

[17] J. Barnat, L. Brim, and J. Střı́brná. Distributed LTL Model-Checking in SPIN. In
Proc. SPIN Workshop on Model Checking of Software, volume 2057 of LNCS, pages
200–216. Springer, 2001.

[18] J. Barnat, L. Brim, I. Černá, P. Moravec, P. Ročkai, and P. Šimeček. DiVinE –
A Tool for Distributed Verification (Tool Paper). In Computer Aided Verification,
volume 4144/2006 of LNCS, pages 278–281. Springer Berlin / Heidelberg, 2006.

[19] J. Barnat, L. Brim, I. Černá, M. Češka, and J. Tůmová. ProbDiVinE: A Parallel
Qualitative LTL Model Checker. In Fourth International Conference on the Quan-
titative Evaluation of Systems (QEST’07), pages 215–216. IEEE Computer Society,
2007.

[20] J. Barnat, L. Brim, I. Černá, M. Češka, and J. Tůmová. Local Quantitative LTL
Model Checking. In Formal Methods for Industrial Critical Systems (FMICS 2008),
volume 5596 of LNCS, pages 53–68. Springer-Verlag, 2008.

[21] J. Barnat, L. Brim, I. Černá, M. Češka, and J. Tůmová. ProbDiVinE-MC: Multi-
core LTL Model Checker for Probabilistic Systems. In QEST ’08: Proceedings of
the 2008 Fifth International Conference on Quantitative Evaluation of Systems, pages
77–78, Washington, DC, USA, 2008. IEEE Computer Society.

[22] J. Barnat, L. Brim, and M. Češka. DiVinE-CUDA: A Tool for GPU Acceler-
ated LTL Model Checking. Electronic Proceedings in Theoretical Computer Science
(PDMC 2009), 14:107–111, 2009.

[23] J. Barnat, L. Brim, M. Češka, and T. Lamr. CUDA accelerated LTL Model Check-
ing. In 15th International Conference on Parallel and Distributed Systems (ICPADS
2009), pages 34–41. IEEE Computer Society, 2009.

[24] J. Barnat, L. Brim, and P. Šimeček. I/O Efficient Accepting Cycle Detection. In
Computer Aided Verification, volume 4590 of LNCS, pages 281–293. Springer, 2007.

BIBLIOGRAPHY 21

[25] J. Barnat, L. Brim, and P. Šimeček. Cluster-Based I/O Efficient LTL Model Check-
ing. In 24th IEEE/ACM International Conference on Automated Software Engineering
(ASE 2009), pages 635–639. IEEE Computer Society, 2009.

[26] J. Barnat, L. Brim, P. Šimeček, and M. Weber. Revisiting Resistance Speeds Up
I/O-Efficient LTL Model Checking. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS)., volume 4963 of LNCS, pages 48–62. Springer,
2008.

[27] J. Barnat, J. Chaloupka, and J. Van De Pol. Distributed Algorithms for SCC
Decomposition. To appear in Journal of Logic and Computation, 2010.

[28] J. Barnat and P. Moravec. Parallel Algorithms for Finding SCCs in Implicitly
Given Graphs. In Formal Methods: Applications and Technology, volume 4346 of
LNCS, pages 316–330. Springer, 2006.

[29] J. Barnat and P. Ročkai. Shared Hash Tables in Parallel Model Checking. ENTCS,
198(1):79–91, 2008.

[30] J. Barnat, I. Černá, and J. Tůmová. Quantitative Model Checking of Systems with
Degradation. In Proceeding of the Sixth International Conference on Quantitative
Evaluation of Systems (QEST 2009), pages 21–30. IEEE, 2009.

[31] G. Behrmann, T. S. Hune, and F. W. Vaandrager. Distributed timed model check-
ing — how the search order matters. In Proc. 12th Conference on Computer-Aided
Verification CAV00, volume 1855 of LNCS, pages 216–231. Springer, 2000.

[32] S. Ben-David, T. Heyman, O. Grumberg, and A. Schuster. Scalable Distributed
On-the-fly Symbolic Model Checking. In Warren A. Hunt Jr. and Steven D. John-
son, editors, Proc. 3rd International Conference on Formal Methods in Computer-
Aided Design (FMCAD’00), Austin, Texas, volume 1954 of LNCS, pages 390–404,
2000.

[33] Armin Biere, Cyrille Artho, and Viktor Schuppan. Liveness checking as safety
checking. Electronic Notes in Computer Science, 66(2), 2002.

[34] Stefan Blom and Simona Orzan. Distributed State Space Minimization. Electr.
Notes Theor. Comput. Sci., 80, 2003.

[35] Stefan Blom and Simona Orzan. A distributed algorithm for strong bisimulation
reduction of state spaces. STTT, 7(1):74–86, 2005.

[36] Stefan Blom, Jaco van de Pol, and Michael Weber. LTSmin: Distributed and
Symbolic Reachability. In Computer Aided Verification, volume 6174 of LNCS,
pages 354–359. Springer, 2010.

[37] B. Bollig, M. Leucker, and M Weber. Parallel model checking for the alternation
free mu-calculus. In T. Margaria and W. Yi, editors, Proc. TACAS 2001, volume
2031 of LNCS, pages 543–558. Springer, 2001.

22 BIBLIOGRAPHY

[38] Benedikt Bollig, Martin Leucker, and Michael Weber. Local parallel model
checking for the alternation-free mu-calculus. In Proceedings of the 9th Interna-
tional SPIN Workshop on Model checking of Software (SPIN ’02). Springer-Verlag
Inc., 2002.

[39] D. Bosnacki, S. Edelkamp, and D. Sulewski. Efficient Probabilistic Model Check-
ing on General Purpose Graphics Processors. In Model Checking Software (SPIN
2009), volume 5578 of LNCS, pages 32–49. Springer, 2009.

[40] M. Bourahla. Distributed CTL model checking. IEE Proceedings - Software,
152(6):297–308, 2005.

[41] L. Brim, I. Černá, and L. Hejtmánek. Parallel Algorithms for Detection of Nega-
tive Cycles. Technical Report FIMU-RS-2003-04, Faculty of Informatics, Masaryk
University Brno, 2003.

[42] L. Brim, I. Černá, P. Moravec, and J. Šimša. Accepting predecessors are better
than back edges in distributed LTL model-checking. In Formal Methods in Com-
puter Aided Design (FMCAD), volume 4144 of LNCS, pages 352–366. Springer,
2004.

[43] L. Brim, I. Černá, P. Krčál, and R. Pelánek. Distributed LTL model checking
based on negative cycle detection. In Proc. of Foundations of Software Technology
and Theoretical Computer Science (FST TCS 2001), volume 2245 of LNCS, pages
96–107. Springer, 2001.

[44] Lubos Brim and Jitka Žı́dková. Using Assumptions to Distribute Alternation
Free [mu]-Calculus Model Checking. ENTCS, 89(1):17 – 32, 2003.

[45] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98(2):142–
170, 1992.

[46] S. Caselli, G. Conte, and P. Marenzoni. Parallel state space exploration for GSPN
models. In G. de Michelis and M. Diaz, editors, Applications and Theory of Petri
Nets 1995, volume 935 of LNCS, pages 181–200. Springer Verlag, 1995.

[47] I. Černá and R. Pelánek. Distributed explicit fair cycle detection. In Thomas
Ball and Sriram K. Rajamani, editors, Model Checking Software, 10th International
SPIN Workshop, volume 2648 of LNCS, pages 49–73. Springer-Verlag, 2003.

[48] Yi-Jen Chiang, Michael T. Goodrich, Edward F. Grove, Roberto Tamassia, Dar-
ren Erik Vengroff, and Jeffrey Scott Vitter. External-memory graph algorithms.
In Symposium on Discrete Algorithms (SODA), pages 139–149. Society for Indus-
trial and Applied Mathematics, 1995.

[49] Ming-Ying Chung and Gianfranco Ciardo. Saturation NOW. In 1st Interna-
tional Conference on Quantitative Evaluation of Systems (QEST 2004), pages 272–
281. IEEE Computer Society, 2004.

BIBLIOGRAPHY 23

[50] Ming-Ying Chung and Gianfranco Ciardo. A dynamic firing speculation to
speedup distributed symbolic state-space generation. In 20th International Par-
allel and Distributed Processing Symposium (IPDPS 2006). IEEE, 2006.

[51] Ming-Ying Chung and Gianfranco Ciardo. A Pattern Recognition Approach for
Speculative Firing Prediction in Distributed Saturation State-Space Generation.
Electr. Notes Theor. Comput. Sci., 135(2):65–80, 2006.

[52] G. Ciardo, J. Gluckman, and D.M. Nicol. Distributed State Space Generation of
Discrete-State Stochastic Models. INFORMS Journal on Computing, 10(1):82–93,
1998.

[53] Gianfranco Ciardo, Gerald Lüttgen, and Radu Siminiceanu. Saturation: An Ef-
ficient Iteration Strategy for Symbolic State-Space Generation. In Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS 2001), volume 2031 of
LNCS, pages 328–342. Springer, 2001.

[54] Gianfranco Ciardo and Andy Jinqing Yu. Saturation-Based Symbolic Reachabil-
ity Analysis Using Conjunctive and Disjunctive Partitioning. In Correct Hardware
Design and Verification Methods (CHARME 2005), volume 3725 of LNCS, pages
146–161. Springer, 2005.

[55] Gianfranco Ciardo, Yang Zhao, and Xiaoqing Jin. Parallel symbolic state-space
exploration is difficult, but what is the alternative? CoRR, abs/0912.2785, 2009.

[56] E. M. Clarke, R. Enders, T. Filkorn, and S. Jha. Exploiting symmetry in temporal
logic model checking. Form. Methods Syst. Des., 9(1-2):77–104, 1996.

[57] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

[58] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Progress on the State
Explosion Problem in Model Checking. In R. Wilhelm, editor, Informatics - 10
Years Back. 10 Years Ahead, volume 2000 of LNCS, pages 176–194. Springer, 2001.

[59] R. Cole and U. Vishkin. Faster Optimal Parallel Prefix Sums and List Ranking.
Information and Computation, 81(3):334–352, 1989.

[60] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms, Second Edition. McGraw-Hill Sci-
ence/Engineering/Math, July 2001.

[61] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-Efficient
Algorithms for the Verification of Temporal Properties. Formal Methods in System
Design, 1:275–288, 1992.

[62] NVIDIA CUDA Compute Unified Device Architecture - Programming Guide
Version 2.0,, 2009. http://www.nvidia.com/object/cuda_develop.

html, June 2009.

http://www.nvidia.com/object/cuda_develop.html
http://www.nvidia.com/object/cuda_develop.html

24 BIBLIOGRAPHY

[63] David L. Dill. The murϕ verification system. In Conference on Computer-
Aided Verification (CAV ’96), Lecture Notes in Computer Science, pages 390–393.
Springer-Verlag, July 1996.

[64] Matthew B. Dwyer, Sebastian G. Elbaum, Suzette Person, and Rahul Purandare.
Parallel Randomized State-Space Search. In International Conference on Software
Engineering (ICSE 2007), pages 3–12. IEEE Computer Society, 2007.

[65] Stefan Edelkamp, Peter Sanders, and Pavel Šimeček. Semi-external LTL model
checking. In CAV ’08: Proc. of the 20th international conference on Computer Aided
Verification, pages 530–542, Berlin, Heidelberg, 2008. Springer.

[66] Stefan Edelkamp and Damian Sulewski. Model Checking via Delayed Duplicate
Detection on the GPU. Technical Report Technical Report 821, TU Dortmund,
2008. Presented on the 22nd Workshop on Planning, Scheduling, and Design
PUK 2008.

[67] Stefan Edelkamp and Damian Sulewski. Parallel State Space Search on the GPU.
In International Symposium on Combinatorial Search (SoCS 2009), 2009.

[68] E. Allen Emerson and A. Prasad Sistla. Symmetry and model checking. Form.
Methods Syst. Des., 9(1-2):105–131, 1996.

[69] J. Esparza and S. Schwoon. A note on on-the-fly verification algorithms. In
TACAS’05, volume 3440 of LNCS, pages 174–190. Springer, 2005.

[70] Sami Evangelista. Dynamic delayed duplicate detection for external memory
model checking. In SPIN ’08: Proc. of the 15th international workshop on Model
Checking Software, pages 77–94, Berlin, Heidelberg, 2008. Springer.

[71] Jonathan Ezekiel, Gerald Luttgen, and Radu Siminiceanu. To Parallelize or to
Optimize? Advance access of Journal of Logic and Computation, page exp006, 2009.

[72] L. K. Fleischer, B. Hendrickson, and A. Pinar. On Identifying Strongly Con-
nected Components in Parallel. In Parallel and Distributed Processing, volume
1800 of LNCS, pages 505–511. Springer, 2000.

[73] H. Garavel, R. Mateescu, and I.M Smarandache. Parallel State Space Construc-
tion for Model-Checking. In Matthew B. Dwyer, editor, Proceedings of the 8th
International SPIN Workshop on Model Checking of Software (SPIN’2001), volume
2057 of LNCS, pages 216–234, Toronto, Canada, 2001. Springer-Verlag.

[74] H. Gazit and G. L. Miller. An Improved Parallel Algorithm That Computes the
BFS Numbering of a Directed Graph. Information Processing Letters, 28(2):61–65,
1988.

[75] Jaco Geldenhuys and P. J. A. de Villiers. Runtime efficient state compaction in
SPIN. In SPIN, pages 12–21, 1999.

[76] Jaco Geldenhuys and Antti Valmari. Tarjan’s algorithm makes on-the-fly LTL
verification more efficient. In TACAS’04, volume 2988 of LNCS, pages 205–219.
Springer, 2004.

BIBLIOGRAPHY 25

[77] Naga K. Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. GPUTera-
Sort: high performance graphics co-processor sorting for large database man-
agement. In International Conference on Management of Data (SIGMOD 06), pages
325–336. ACM, 2006.

[78] O. Grumberg, T. Heyman, and A. Schuster. Distributed Model Checking for µ-
calculus. In Gérard Berry, Hubert Comon, and Alain Finkel, editors, Proc. 13th
Conference on Computer-Aided Verification CAV01, volume 2102 of LNCS, pages
350–362. Springer, 2001.

[79] Orna Grumberg, Tamir Heyman, Nili Ifergan, and Assaf Schuster. Achieving
speedups in distributed symbolic reachability analysis through asynchronous
computation. In Correct Hardware Design and Verification Methods (CHARME
2005), volume 3725 of Lecture Notes in Computer Science, pages 129–145. Springer,
2005.

[80] Orna Grumberg, Tamir Heyman, and Assaf Schuster. A work-efficient dis-
tributed algorithm for reachability analysis. Formal Methods in System Design,
29(2):157–175, 2006.

[81] Moritz Hammer and Michael Weber. ”To Store or Not To Store” Reloaded: Re-
claiming Memory on Demand. In Luboš Brim, Boudewijn R. Haverkort, Martin
Leucker, and Jaco van de Pol, editors, FMICS/PDMC, volume 4346 of Lecture
Notes in Computer Science, pages 51–66. Springer, 2006.

[82] Hans Hansson and Bengt Jonsson. A Framework for Reasoning about Time and
Reliability. In IEEE Real-Time Systems Symposium, pages 102–111, 1989.

[83] P. Harish and P. J. Narayanan. Accelerating Large Graph Algorithms on the
GPU Using CUDA. In HiPC, volume 4873 of LNCS, pages 197–208. Springer,
2007.

[84] P. Harish, V. Vineet, and P. J. Narayanan. Large Graph Algorithms for Massively
Multithreaded Architectures. Technical Report IIIT/TR/2009/74, Center for Vi-
sual Information Technology, International Institute of Information Technology
Hyderabad, INDIA, 2009.

[85] M. Harris. Optimizing Parallel Reduction in CUDA,. http://developer.

download.nvidia.com/compute/cuda/1_1/Website/projects/

reduction/doc/reduction.pdf, March 2010.

[86] B. R. Haverkort, A. Bell, and H. C. Bohnenkamp. On the efficient sequential and
distributed generation of very large markov chains from stochastic petri nets.
In Proc. 8th Int. Workshop on Petri Net and Performance Models (PNPM’99), 8-10
October 1999, Zaragoza, Spain, pages 12–21. IEEE Computer Society Press, 1999.

[87] Boudewijn R. Haverkort, Henrik Bohnenkamp, and Alexander Bell. Efficiency
improvements in the evaluation of large stochastic petri nets. In Desel, J., Kem-
per, P., Kindler, E., and Oberweis, A., editors, Forschungsbericht: 5. Workshop
Algorithmen und Werkzeuge für Petrinetze, pages 55–61. Universität Dortmund,

http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf

26 BIBLIOGRAPHY

Fachbereich Informatik, 1998. Published as Forschungsbericht: 5. Workshop Al-
gorithmen und Werkzeuge für Petrinetze, number 694.

[88] Keijo Heljanko, Victor Khomenko, and Maciej Koutny. Parallelisation of the
Petri Net Unfolding Algorithm. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2002), volume 2280 of Lecture Notes in Computer Sci-
ence, pages 371–385. Springer, 2002.

[89] Tamir Heyman, Daniel Geist, Orna Grumberg, and Assaf Schuster. A Scal-
able Parallel Algorithm for Reachability Analysis of Very Large Circuits. Formal
Methods in System Design, 21(3):317–338, 2002.

[90] Tamir Heyman, Danny Geist, Orna Grumberg, and Assaf Schuster. Achieving
scalability in parallel reachability analysis of very large circuits. In O. Grumberg,
editor, Computer Aided Verification, 12th International Conference, volume 1855 of
LNCS, pages 20–35. Springer, 2000.

[91] Fredrik Holmén, Martin Leucker, and Marcus Lindström. UppDMC – a dis-
tributed model checker for fragments of the µ-calculus. In Lubos Brim and Mar-
tin Leucker, editors, Proc. of the 3rd Workshop on Parallel and Distributed Methods
for Verification, volume 128/3 of Electronic Notes in Computer Science. Elsevier Sci-
ence Publishers, 2004.

[92] Viliam Holub and Petr Tůma. Streaming state space: A method of distributed
model verification. In 1st Joint IEEE/IFIP Symposium on Theoretical Aspects of Soft-
ware Engineering, pages 356–368. IEEE Computer Society, 2007.

[93] Gerard J. Holzmann. The Model Checker SPIN. IEEE Transactions on Software
Engineering, 23(5):279–295, May 1997. Special issue on Formal Methods in Soft-
ware Practice.

[94] Gerard J. Holzmann. The Spin Model Checker: Primer and Reference Manual.
Addison-Wesley, 2003.

[95] Gerard J. Holzmann. A Stack-Slicing Algorithm for Multi-Core Model Checking.
ENTCS, 198(1):3–16, 2008.

[96] Gerard J. Holzmann and Dragan Bosnacki. The design of a multicore extension
of the spin model checker. IEEE Trans. Software Eng., 33(10):659–674, 2007.

[97] Gerard J. Holzmann, Rajeev Joshi, and Alex Groce. Swarm Verification. In 23rd
IEEE/ACM International Conference on Automated Software Engineering (ASE 2008),
page 6 pages. IEEE, 2008.

[98] Cornelia P. Inggs and Howard Barringer. CTL∗ model checking on a shared-
memory architecture. Electronic Notes in Computer Science, 128(3):107–123, 2005.

[99] Shahid Jabbar and Stefan Edelkamp. I/O efficient directed model checking. In
Proc. of 6th International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI 2005), volume 3385 of Lecture Notes in Computer Science,
pages 313–329. Springer, 2005.

BIBLIOGRAPHY 27

[100] Shahid Jabbar and Stefan Edelkamp. Parallel external directed model checking
with linear I/O. In Proc. of 7th International Conference on Verification, Model Check-
ing, and Abstract Interpretation (VMCAI 2006) Charleston, volume 3855 of Lecture
Notes in Computer Science, pages 237–251. Springer, 2006.

[101] G. Jayachandran, V. Vishal, and V. S. Pande. Using massively parallel simu-
lations and Markovian models to study protein folding: Examining the Villin
head-piece. Journal of Chemical Physics, 124(6):903–914, 2006.

[102] Michael Jones and Eric Mercer. Explicit state model checking with Hopper. In
SPIN, volume 2989 of Lecture Notes in Computer Science, pages 146–150. Springer,
2004.

[103] Christophe Joubert and Radu Mateescu. Distributed On-the-Fly Model Check-
ing and Test Case Generation. In Model Checking Software, volume 3925 of LNCS,
pages 126–145. Springer, 2006.

[104] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
Model Checking: 1020 States and Beyond. In Proc. of the Fifth Annual IEEE Sym-
posium on Logic in Computer Science, pages 1–33, Washington, D.C., 1990. IEEE
Computer Society Press.

[105] A. B. Kahn. Topological sorting of large networks. Communications of the ACM,
5(11):558–562, 1962.

[106] W. Knottenbelt, P.G Harrison, M. Mestern, and P.S. Kritzinger. A Probabilistic
Dynamic Technique for the Distributed Generation of Very Large State Spaces.
Performance Evaluation, 35(1–4):127–148, Feb 2000.

[107] W. Knottenbelt, M. Mestern, P.G Harrison, , and P.S. Kritzinger. Probability,
parallelism and the state space exploration problem. In R. Puigjaner, editor,
Tools’98, volume 1469 of LNCS, pages 165–179. Springer Verlag, 1998.

[108] R. Korf. Best-First Frontier Search with Delayed Duplicate Detection. In
AAAI’04, pages 650–657. AAAI Press / The MIT Press, 2004.

[109] R. Korf and P. Schultze. Large-Scale Parallel Breadth-First Search. In AAAI’05,
pages 1380–1385. AAAI Press / The MIT Press, 2005.

[110] Lars Michael Kristensen and Thomas Mailund. Efficient path finding with the
sweep-line method using external storage. In ICFEM, volume 2885 of Lecture
Notes in Computer Science, pages 319–337. Springer, 2003.

[111] Rahul Kumar and Eric G. Mercer. Load balancing parallel explicit state model
checking. Electronic Notes in Computer Science, 128(3):19–34, 2005.

[112] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model
checking with PRISM: A hybrid approach. In Proc. TACAS’02, 2002.

[113] Alfons Laarman, Jaco van de Pol, and Michael Weber. Boosting Multi-Core
Reachability Performance with Shared Hash Tables. In Formal Methods in Com-
puter Aided Design (FMCAD 2010). To Appear, 2010.

28 BIBLIOGRAPHY

[114] Peter Lamborn and Eric A. Hansen. Layered duplicate detection in external-
memory model checking. In SPIN ’08: Proc. of the 15th international workshop on
Model Checking Software, pages 160–175, Berlin, Heidelberg, 2008. Springer.

[115] Flavio Lerda and Riccardo Sisto. Distributed-memory Model Checking with
SPIN. In Proc. of the 5th International SPIN Workshop, volume 1680 of LNCS.
Springer-Verlag, 1999.

[116] Flavio Lerda and Willem Visser. Addressing Dynamic Issues of Program Model
Checking. In Proceedings of the 8th International SPIN Workshop on Model Checking
of Software (SPIN’2001), volume 2057 of LNCS, pages 80–102, Toronto, Canada,
2001. Springer-Verlag.

[117] W. McLendon III, B. Hendrickson, S. J. Plimpton, and L. Rauchwerger. Finding
Strongly Connected Components in Distributed Graphs. Journal of Parallel and
Distributed Computing, 65(8):901–910, 2005.

[118] Ulrich Meyer, Peter Sanders, and Jop Sibeyn, editors. Algorithms for Memory
Hierarchies. Springer, 2003.

[119] Kim Milvang-Jensen and Alan J. Hu. BDDNOW: A Parallel BDD Package. In
Formal Methods in Computer-Aided Design (FMCAD ’98), volume 1522 of Lecture
Notes in Computer Science, pages 501–507. Springer, 1998.

[120] Kameshwar Munagala and Abhiram Ranade. I/O-complexity of graph algo-
rithms. In SODA ’99: Proc. of the tenth annual ACM-SIAM symposium on Discrete
algorithms, pages 687–694, Philadelphia, PA, USA, 1999. Society for Industrial
and Applied Mathematics.

[121] D.M. Nicol and G. Ciardo. Automated Parallelization of Discrete State-space
Generation. Journal of Parallel and Distributed Computing, 47(2):122–131, 1997.

[122] D.M. Nicol and G. Ciardo. Automated Parallelization of Discrete State-space
Generation. Technical Report NASA/CR-2000-210082, NASA Langley Research
Center, Hampton, USA, 2000.

[123] S. Orzan. On Distributed Verification and Verified Distribution. PhD thesis, Free
University of Amsterdam, 2004.

[124] Doron Peled. Ten years of partial order reduction. In Proceedings of the 10th Inter-
national Conference on Computer Aided Verification, pages 17–28. Springer-Verlag,
1998.

[125] R. Pelánek. Fighting State Space Explosion: Review and Evaluation. In Formal
Methods for Industrial Critical Systems (FMICS 2008), volume 5596 of LNCS, pages
37–52. Springer, 2009.

[126] Giuseppe Della Penna, Benedetto Intrigila, Enrico Tronci, and Marisa Venturini
Zilli. Exploiting transition locality in the disk based Murϕ verifier. In FMCAD,
pages 202–219, 2002.

BIBLIOGRAPHY 29

[127] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE
Symposium on the Foundations of Computer Science, pages 46–57. IEEE Computer
Society Press, 1977.

[128] M. L. Puterman. Markov Decision Processes-Discrete Stochastic Dynamic Program-
ming. John Wiley &Sons, New York, 1994.

[129] Rajeev K. Ranjan, Jagesh V. Sanghavi, Robert K. Brayton, and Alberto L.
Sangiovanni-Vincentelli. Binary decision diagrams on network of workstation.
In International Conference on Computer Design (ICCD ’96), pages 358–364. IEEE
Computer Society, 1996.

[130] John H. Reif. Depth-first search is inherently sequential. Information Processing
Letters, 20(5):229–234, June 1985.

[131] N. Rungta and E. G. Mercer. Generating Counter-Examples Through Random-
ized Guided Search. In Model Checking Software (SPIN 2007), volume 4595 of
LNCS, pages 39–57. Springer, 2007.

[132] On-the-fly, LTL model checking with SPIN.
URL: http://spinroot.com/.

[133] U. Stern and D. L. Dill. Parallelizing the murϕ verifier. In O. Grumberg, editor,
Proceedings of Computer Aided Verification (CAV ’97), volume 1254 of LNCS, pages
256–267. Springer-Verlag, 1997.

[134] U. Stern and D. L. Dill. Using magnetic disk instead of main memory in the
Murϕ verifier. In Computer Aided Verification. 10th International Conference, pages
172–183, 1998.

[135] Tony Stornetta and Forrest Brewer. Implementation of an Efficient Parallel BDD
Package. In Proc. of Design Automation Conference (DAC’96), pages 641–644. ACM
Press, 1996.

[136] Robert Tarjan. Depth first search and linear graph algorithms. SIAM journal on
computing, pages 146–160, Januar 1972.

[137] M. Vardi. Automata-Theoretic Model Checking Revisited. In VMCAI’07, vol-
ume 4349 of LNCS, pages 137–150. Springer, 2007.

[138] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic pro-
gram verification (preliminary report). In Proceedings 1st Annual IEEE Symp. on
Logic in Computer Science, LICS’86, Cambridge, MA, USA, 16–18 June 1986, pages
332–344. IEEE Computer Society Press, Washington, DC, 1986.

[139] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic pro-
gram verification. In Proc. IEEE Symposium on Logic in Computer Science, pages
322–331. Computer Society Press, 1986.

[140] K. Verstoep, H. Bal, J. Barnat, and L. Brim. Efficient Large-Scale Model Check-
ing. In 23rd IEEE International Parallel & Distributed Processing Symposium (IPDPS
2009). IEEE, 2009.

http://spinroot.com/

30 BIBLIOGRAPHY

[141] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active messages:
a mechanism for integrated communication and computation. In 19th Annual
International Symposium on Computer Architecture, pages 256–266, 1992.

[142] S. Warren. Finding Strongly Connected Components in Parallel Using O(log2n)
Reachability Queries. In SPAA, pages 146–151. ACM, 2008.

[143] Y. Zhang, D. Parker, and M. Kwiatkowska. Grid-enabled probabilistic model
checking with PRISM. In Proc. 4th All Hands Meeting Workshop (AHM’05), 2005.

[144] Rong Zhou and Eric A. Hansen. Structured duplicate detection in external-
memory graph search. In AAAI, pages 683–689. AAAI Press / The MIT Press,
2004.

Part II

Collection of Articles

31

Chapter 5

Journal and Conference Papers

1. J. Barnat and P. Ročkai. Shared Hash Tables in Parallel Model Checking. ENTCS,
198(1):79–91, 2008.

2. J. Barnat, L. Brim, and P. Ročkai. Scalable shared memory LTL model checking.
International Journal on Software Tools for Technology Transfer (STTT), 12(2):139–153,
2010.

3. K. Verstoep, H. Bal, J. Barnat, and L. Brim. Efficient Large-Scale Model Check-
ing. In 23rd IEEE International Parallel & Distributed Processing Symposium (IPDPS
2009). IEEE, 2009.

4. J. Barnat, L. Brim, and P. Ročkai. A Time-Optimal On-the-Fly Parallel Algorithm
for Model Checking of Weak LTL Properties. In Formal Methods and Software
Engineering (ICFEM 2009), volume 5885 of LNCS, pages 407–425. Springer, 2009.

5. J. Barnat, L. Brim, M. Češka, and T. Lamr. CUDA accelerated LTL Model Check-
ing. In 15th International Conference on Parallel and Distributed Systems (ICPADS
2009), pages 34–41. IEEE Computer Society, 2009.

6. Jiřı́ Barnat and Pavel Moravec. Parallel Algorithms for Finding SCCs in Implic-
itly Given Graphs. In Formal Methods: Applications and Technology, volume 4346
of LNCS, pages 316–330. Springer, 2006.

7. J. Barnat, J. Chaloupka, and J. Van De Pol. Distributed Algorithms for SCC
Decomposition. Journal of Logic and Computation Advance Access, 2010.

8. J. Barnat, L. Brim, and P. Šimeček. I/O Efficient Accepting Cycle Detection. In
Computer Aided Verification, volume 4590 of LNCS, pages 281–293. Springer, 2007.

9. J. Barnat, L. Brim, S. Edelkamp, D. Sulewski, and P. Šimeček. Can Flash Memory
Help in Model Checking. In Formal Methods for Industrial Critical Systems (FMICS
2008), volume 5596 of LNCS, pages 150–165. Springer-Verlag, 2008.

10. J. Barnat, L. Brim, P. Šimeček, and M. Weber. Revisiting Resistance Speeds Up
I/O-Efficient LTL Model Checking. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS)., volume 4963 of LNCS, pages 48–62. Springer,
2008.

33

34 CHAPTER 5. JOURNAL AND CONFERENCE PAPERS

11. J. Barnat, L. Brim, and P. Šimeček. Cluster-Based I/O Efficient LTL Model Check-
ing. In 24th IEEE/ACM International Conference on Automated Software Engineering
(ASE 2009), pages 635–639. IEEE Computer Society, 2009.

12. J. Barnat, L. Brim, I. Černá, M. Češka, and J. Tůmová. Local Quantitative LTL
Model Checking. In Formal Methods for Industrial Critical Systems (FMICS 2008),
volume 5596 of LNCS, pages 53–68. Springer-Verlag, 2008.

13. J. Barnat, I. Černá, and J. Tůmová. Quantitative Model Checking of Systems with
Degradation. In Proceeding of the Sixth International Conference on Quantitative
Evaluation of Systems (QEST 2009), pages 21–30. IEEE, 2009.

Chapter 6

Tool Papers

1. J. Barnat, L. Brim, I. Černá, P. Moravec, P. Ročkai, and P. Šimeček. DiVinE –
A Tool for Distributed Verification (Tool Paper). In Computer Aided Verification,
volume 4144/2006 of LNCS, pages 278–281. Springer Berlin / Heidelberg, 2006.

2. J. Barnat, L. Brim, and P. Ročkai. DiVinE Multi-Core – A Parallel LTL Model-
Checker. In Automated Technology for Verification and Analysis (ATVA 2008), vol-
ume 5311 of LNCS, pages 234–239. Springer, 2008.

3. J. Barnat, L. Brim, and M. Češka. DiVinE-CUDA: A Tool for GPU Acceler-
ated LTL Model Checking. Electronic Proceedings in Theoretical Computer Science
(PDMC 2009), 14:107–111, 2009.

4. J. Barnat, L. Brim, and P. Ročkai. DiVinE 2.0: High-Performance Model Check-
ing. In 2009 International Workshop on High Performance Computational Systems
Biology (HiBi 2009), pages 31–32. IEEE Computer Society Press, 2009.

5. J. Barnat, L. Brim, I. Černá, M. Češka, and J. Tůmová. ProbDiVinE: A Parallel
Qualitative LTL Model Checker. In Fourth International Conference on the Quan-
titative Evaluation of Systems (QEST’07), pages 215–216. IEEE Computer Society,
2007.

6. J. Barnat, L. Brim, I. Černá, M. Češka, and J. Tůmová. Probdivine-mc: Multi-core
ltl model checker for probabilistic systems. In QEST ’08: Proceedings of the 2008
Fifth International Conference on Quantitative Evaluation of Systems, pages 77–78,
Washington, DC, USA, 2008. IEEE Computer Society.

35

	I Commentary
	Introduction
	Motivation
	Focus of the Thesis
	Preliminaries

	State of the Art
	Parallel Model Checking
	State Space Generation
	Beyond State Space Generation
	Shared-Memory Architectures
	GPU Computing

	Parallel Symbolic Model Checking
	Embarrassingly Parallel Model Checking
	SCC Decomposition
	Model Checking with Disks

	Thesis Contribution
	Parallel and Distributed-Memory LTL Model Checking
	I/O Efficient Verification
	SCC Decomposition
	Verification of Probabilistic Systems
	Tools and Tool Papers

	4 Bibliography

	II Collection of Articles
	Journal and Conference Papers
	Tool Papers

