w2
$ ‘, |
5 % Faculty of Informatics
B &
%, E Masaryk University
3 :
< & Czech Republic
“Tag nasD

Experimental Research in Explicit
Model Checking

Habilitation Thesis

Radek Pelanek

2010

Abstract

The thesis consists of an introductory commentary and ten papers. Reported research
falls within the general area of formal verification. More specifically the research deals
with the explicit model checking technique for finite state systems with focus on ex-
perimental aspects of research. It contains both general methodological discussions
(e.g., evaluation of use of benchmarking examples) and specific experimental compar-
isons of algorithms. These results serve as a basis for proposal of new methods and
tools.

The keystone of this work is the BEEM project: BEnchmarks for Explicit Model check-
ers. This benchmark set is an important output of the research in itself — in 3 years since
it publication, BEEM was used in more than 30 research publications. The benchmark
set also serves as a basis for follow-up research reported in the thesis. The set was
used to analyze properties of practically used models and their state spaces (as re-
ported in papers Properties of State Spaces and Their Applications, Model Classifications
and Automated Verification, and Estimating State Space Parameters) and to experimentaly
compare different algorithms for explicit model checking (as reported in papers Evalu-
ation of State Caching and State Compression Techniques, Complementarity of Error Detection
Techniques, and Fighting State Space Explosion: Review and Evaluation). Two other exper-
imental studies were carried out without using the BEEM (Enhancing random walk state
space exploration and Test input generation for red black trees using abstraction).

The experiences with practically used models and with experimental comparisons
of algorithms showed a large degree of complementarity among different algorithms.
This conclusion led to a proposal of a concept of a verification manager (reported in the
paper Verification Manager: Automating the Verification Process). Verification manager
runs several algorithms in parallel and dynamically coordinates individual runs. In
this way, the manager is able to harness the complementarity of different algorithms.

The thesis consists of ten papers. Four papers were written solely by the author of
the thesis. Six papers were written with one or two co-author; in each case the author
has contributed by at least 30%.

iii

Abstrakt

Predkladana prace se skldadéd z avodniho komentate a deseti pfispévki. Prace spadd
do oblasti formalni verifikace pocitatovych systémti, konkrétné se zabyva metodou
explicitniho ovéfovani kone¢né stavovych modeli. Zaméfuje se pfedevsim na ex-
perimentalni aspekty vyzkumu v této oblasti, a to jak na obecné metodické trovni
(napf. vyhodnoceni dosavadniho experimentalniho vyzkumu v oblasti), tak v oblasti
konkrétniho experimentalniho vyhodnoceni algoritmti. Na zakladé téchto vysledkt
pak jsou navrhnuty nové postupy verifikace.

Vychozim bodem préce je srovnavaci sbirka modeltt BEEM — BEnchmarks for Ex-
plicit Model checkers. Tato sbirka jednak pfedstavuje samostatny dtleZity vystup, ktery
se setkal s dobrym pfijetim mezi vyzkumniky zabyvajicimi se explicitnim ovéfovanim
modelti (BEEM byl béhem 3 let pouZit ve vice neZ 30 recenzovanych publikacich), a
také tvofi zaklad, na kterém stavi dalsi ptispévky obsaZené v praci. S vyuZzitim této
sbirky modelt byly provedeny analyzy vlastnosti prakticky pouzivanych modela (viz
ptispévky Properties of State Spaces and Their Applications, Model Classifications and Au-
tomated Verification a Estimating State Space Parameters) a porovnani rtiznych algoritmt
pro explicitni ovéfovani modelt (viz p¥ispévky Evaluation of State Caching and State
Compression Techniques, Complementarity of Error Detection Techniques a Fighting State
Space Explosion: Review and Evaluation). Dalsi experimentdlni studie pak byly prove-
deny i mimo rdmec sbirky BEEM (viz piispévky Enhancing random walk state space
exploration a Test input generation for red black trees using abstraction).

Zkusenosti s prakticky pouzivanymi modely a s vyhodnocovanim rtiznych algo-
ritmt pro ovéfovani modelu mimo jiné ukazaly vysoky stuperi komplementarity mezi
jednotlivymi algoritmy. Tento zavér vedl k navZeni konceptu verifika¢niho manaZera,
ktery spousti paralelné nékolik algoritmt a dynamickym zptisobem jednotlivé béhy
koordinuje, diky ¢emuz dokdZze vyuZzit zminénou komplementaritu algoritmi (viz
ptispéveék Verification Manager: Automating the Verification Process).

U ¢tyf z deseti obsazenych pfispévki je uchazec jedinym autorem, u vétsiny os-
tatnich hral klicovou roli pfi psani textu pfispévku a celkovy obsahovy autorsky podil
uchazece je vzdy alespori 30%.

Acknowledgments

I would like to thank all coauthors of included papers (Lubo$ Brim, Ivana Cern,
Tomas HanZl, Pavel Moravec, Corina S. Pdsdreanu, Véaclav Rosecky, Pavel Simecgek,
Jaroslav Sedénka, Willem Visser) for fruitful collaboration, Ivana Cerna and Pavel
Kréal for many interesting discussions about my research and for feedback on drafts
of papers, and developers of the DiVinE tool (particularly Jifi Barnat) for the develop-
ment of the platform that I used in experimental evaluation. Last but not least, I thank
my wife Barbora for support, encouragement, and love.

vii

Contents

[1 Experimental Research in Explicit Model Checking: Commentary| 1

M1 Introductionl 1

1.2 fthe Artl. 2

(1.3 MainThemes| 5

M4 Contributions 7
2 BEEM: Benchmarks for explicit model checkers| 19
[3 Properties of state spaces and their applications| 25
4 Estimating State Space Parameters| 39
[5> Enhancing Random Walk State Space Exploration| 55
[6 Evaluation of State Caching and State Compression Techniques| 65
(7 Complementarity of Error Detection Techniques| 83
[8 Test Input Generation for Java Containers using State Matching] 99
9__Model Classifications and Automated Verification| 111
(10 Fighting State Space Explosion: Review and Evaluation| 127
(11 Verification Manager: Automating the Verification Process| 145

ix

Chapter 1

Experimental Research in Explicit
Model Checking: Commentary

The presented habilitation thesis consists of a collection of ten papers. This introduc-
tion presents the overall motivation, the context of the work, and the state of the art
in the area. It also outlines main common themes of the collected papers and gives a
brief overview, highlighting relations among individual papers.

1.1 Introduction

Let us start by an informal introduction of the “big picture”: why is the work impor-
tant and what is the context of novel contributions?

1.1.1 Motivation

Computer systems are pervasive in our lives. At the same time, design and implemen-
tation of computer systems is a difficult task during which humans often make errors.
This does not mean that we should resign and accept that our lives will be governed
by faulty machines. We should try hard to make our computer systems as reliable as
possible. In this quest, our effort has to be differentiated. Not all errors are created
equal.

Some errors are just annoying, some errors are costly, and some errors are even
deadly. If your word processor freezes, it bothers you and you may have to rewrite
several sentences. If you operating systems freezes, it makes you upset and you may
have to press the reset button and wait for a while. However, if the operating system
of your space robot freezes, it may be quite a problem, since it can be complicated to
press the reset button when the machine operates on an uninhabited planet. Such an
error can be very expensive. Other errors can even kill — for example freezing of a
medical machine controller which emulates intensive radiation.

In cases where potential errors are just annoying, it is reasonable to perform the
search for errors in an informal and pragmatic way. But when potential errors are
very costly or even deadly, we should try hard to find all errors in the system. This is
the main motivation of this work: finding errors in formal way in a safety-critical systems.

1

1.1.2 Context

Development of computer systems consists of several phases: requirements specifica-
tion, design, implementation, verification, and maintenance. We focus on just one of
these steps — verification. Aim of verification is to either verify that the system satisfies
given requirements or to find an example which demonstrates an incorrect behavior of
the system. There are several different verification methods, e.g., inspections, testing,
simulation, and formal verification. None of these methods is superior to others, each
of them has its advantages, disadvantages, and domains of application. We focus on
formal verification. In comparison to the other verification methods, formal verification
can give us much higher assurance of system correctness. However, it is a difficult
and time-consuming method. Therefore it is not very convenient for detecting errors
in ordinary programs, but rather for verification of systems which are safety-critical.

There exist two basic approaches to formal verification: deductive methods and
automatic methods. With deductive methods we try to produce a mathematical proof
which states that a system satisfies given requirements. Although the construction of a
proof can be partially automatized (simple proofs can be constructed algorithmically),
deductive methods have to be performed by experts and are very time-consuming.
The second approach are automatic methods, of which the most commonly used one
is model checking. Model checking is fully automatic and in case that a system does
not satisfy requirements the technique is capable of demonstrating a wrong behavior
(counterexample).

Model checking methods can be classified even further. The most often used classi-
fications are explicit versus symbolic and finite state versus infinite state model check-
ing. We focus on finite state explicit model checking. This technique is applicable for
systems which have a finite number of system states and works by explicitly enu-
merating all reachable states. Hence the main main idea of finite state explicit model
checking is principally very simple: “use brute-force and try to test all possible behav-
iors of a system and verify that all of them satisfy requirements”. Albeit principally
simple, this technique is quite powerful and has many applications.

For any practically relevant specification language even the simplest verification
problems are in theory algorithmically intractable (to formulate it precisely: PSPACE-
complete). However, in practice the approach works and is widely studied. Due to
theoretical intractability, all research in this area is principally of a heuristic nature.
Therefore, it is very important to perform high-quality experimental evaluation of al-
gorithms and to understand behaviour of algorithms. By this we have finally reached
the specific topic of this thesis: experimental research in explicit model checking.

1.2 State of the Art

The first section provided the motivation and the context for the presented work. This
section briefly surveys the state of the art in the area of explicit model checking. We
focus only on the research closely relevant to the presented thesis.

2

1.2.1 Research

The main obstacle of model checking is the state space explosion problem — the num-
ber of states in the state space can grow exponentially in the worst case. For practical
problems we do not observe exponential grow, nevertheless the size of the state space
is still very large. Therefore, the main research topic in explicit model checking is the
development of techniques for fighting state space explosion, i.e., techniques which
aim at reducing the time and memory requirements of the state space search.

A detailed survey of techniques for fighting state space explosion is given in one
of the papers included in this thesis ([61]). Here we just briefly summarise the main
types of techniques:

e State space reductions: techniques reducing the number of states that need to be
explored, e.g., transition merging [15, 46|, partial order reduction [25,39], sym-
metry reduction [41], live variable reduction [18,71], cone of influence reduction
and slicing [17, 32], and compositional methods [30) 44].

e Storage size reductions: techniques reducing the memory requirements needed
for storing states, e.g., state compression [23, 27, 38, 73], state caching [22} 26],
selective storing [6,'47], and sweep line method [11, 54].

e Parallel and distributed computation: techniques exploiting additional compu-
tation power, e.g., parallel computation on multi-core processor [3,40] and dis-
tributed computation on network of workstations [21}, 49, 50].

e Randomized techniques and heuristics: techniques that give up the require-
ment on completeness and explore only part of the state space, e.g., heuristic
search [28, 45, 70], random walk [31] 164], partial search [35, 43} 53], and bitstate
hashing [37].

Except for techniques for fighting state space explosion, other active research top-
ics are for example combination of explicit model checking with other techniques
(e.g., theorem proving, satisfiability solving, static analysis), transfer of ideas between
different domains of application (e.g., between model checking and artificial intelli-
gence), or application of model checking to biological models.

1.2.2 Applications and Tools

In general, formal verification is used mainly in the following domains: embedded
systems [16], computer network communication protocols [36], traffic supervision
(airlines, railways [8]]), space flights systems [52], and hardware [5] 24]. Finite state
explicit model checking is used particularly during development of protocols (in sev-
eral of the areas given above). More specifically, explicit model checking is suitable
technique for verification of systems that satisfy the following criteria:

e the control part of the system is rather sophisticated,

e data within the system have only restricted influence on the behaviour of the
system,

e the system contains parallel components, which may have complicated inter-
leavings.

Typical problems that meet these criteria ar

Mutual exclusion protocols The goal of mutual exclusion protocols is to ensure an
exclusive access to a resource which is shared by two or more processes. Exam-
ples of such protocols are Peterson’s algorithm, Fischer’s algorithm, or Ander-
son’s queue lock algorithm (for overview see [1]).

Communication protocols The goal of communication protocols is to ensure reliable
communication via unreliable or shared medium. Examples of such protocols
are bounded retransmission protocol [13]], sliding window protocol [14], colli-
sion avoidance protocol, or layer link protocol of the IEEE-1394 [72].

Leader election algorithms The goal of leader election algorithms is to choose a unique
leader from a set of nodes. Leader election algorithms are often used as a part
of communication protocols. Examples of such algorithms are Firewire (IEEE
1394) tree identification protocol [10], or Lann’s leader election algorithm for to-
ken ring.

Controllers of embedded systems Controllers are algorithms that control behaviour
of a distributed algorithm. Examples of controllers are elevator controller, gear
controller [51], or audio/video power controller [33].

The proliferation of explicit model checking is also documented by availability of
a large number of model checking tools. Let us mention just few illustrative examples:

CADP [20] CADP is a toolbox that offers a wide set of functionalities (e.g., simula-
tion, equivalence checking, model checking). The basic specification language is
based on a process algebra (LOTOS).

DiVinE [4] DiVinE (Distributed Verification Environment) is an environment specif-
ically targeted at distributed verification. As a specification language it uses
low-level language based on communicating finite state machines.

Java PathFinder [9] Java PathFinder uses as a specification language the general pro-
gramming language Java. The basic principle of the tool is very similar to other
model checkers, but it has to deal with specific problems caused by such high-
level specification language.

mCRL2 [29] mCRL2 is another toolset based on process algebra and offering wide
functionality.

Spin [7] Spin is probably the most well-known model checker, particularly due to its
speed. As a specification language it uses Promela (PROocol MOdeling LAn-
guage), a high level modeling language with features similar to programming
languages.

!See web portal of the BEEM project [60] for more problems: http://anna.fi.muni.cz/models

4

http://anna.fi.muni.cz/models

Uppaal [48] Uppaal uses as a specification language communicating timed automata
and is able to perform verification of infinite state real-time systems. However,
by virtue of its good graphical interface, it is also often used for finite-state model
checking.

1.2.3 Experimental Evaluation

Even through some research in the area of explicit model checking is rather theoreti-
cally oriented, it is the practical performance of studied techniques that really matters.
For example, the development of techniques such as partial order reduction or sym-
metry reduction involves many interesting theoretical problems, but in the end even
these techniques are just heuristics.

In order to asses the performance of heuristical techniques, it is necessary to per-
form high-quality experiments. Unfortunately, our analysis of research paper in ex-
plicit model checking [60, 61] suggests that the experimental standards are rather IOWEI
and that they are improving only slowly. This is rather disappointing because many
powerful tools and interesting case studies are available (as illustrated above).

The need for benchmarking, better experiments, and thorough evaluation of tools
and algorithms is well recognized, e.g., experimentation is a key part of Hoare’s pro-
posal for a “Grand Challenge of Verified Software” [34]. There is also significant in-
terest in benchmarks in the model checking community (see e.g., [2,12}[19] 42]). Nev-
ertheless, the progress has been rather slow so far. The main obstacle in developing
model checking benchmarks is the absence of a common modeling language — each
model checking tool is tailored towards its own modeling language and even verifica-
tion results over the same example are often incomparable. This makes the situation
more difficult than in areas like satisfiability solving or graph algorithms, where dif-
ferent input formats are easily transformable and standard benchmark sets exist.

1.3 Main Themes

After introducing the motivation, the context, and the state of the art we can proceed
to the discussion of presented contributions to the area of explicit model checking.
First, we introduce the main research themes that connect individual papers included
in the thesis.

1.3.1 Experimental Research

The common theme of all included papers is the focus on experiments. We do not
study or develop novel sophisticated techniques. Rather we focus our attention on
basic techniques and try to evaluate them and understand their behaviour. It turns
out that it is quite challenging to understand properly the behaviour of even very
simple techniques like random walk.

Our focus on experimental work forced us to confront the issue of benchmarks.
Since we were not able to find a suitable benchmark set for performing our experi-

*Note that we have analyzed quality of experiments only with respect to used models, not with re-
spect to other important issues like reproducibility.

ments, we decided to develop our own: BEEM = BEnchmark set for Explicit Model
checkers [60]. The development of this benchmark set is one of the important contri-
butions of our work on its own, but it is also an important base step for several of our
other works.

Our experimental research has also one distinctive feature: focus on properties of
state spaces. Explicit model checking works by traversing the whole state space of the
model. The behaviour of explicit model checkers is therefore closely connected with
the structure of the underlying state spaces. State space are usually treated as arbitrary
directed graphs. However, as our research shows, these state space are definitely not
arbitrary and share specific properties. In our experimental work, we have focused not
only on simple performance metrics of algorithms, but also on connections between
performance metrics and properties of state spaces.

1.3.2 Complementarity

Let us imagine a typical experimental setup: we have a problem, several competing
algorithms, and a benchmark set. In idealized (and naive) world we perform experi-
ments, analyze results, and conclude: “This is the best algorithm to run, we can throw
away all others and use this one.” In a real world, things are more complicated. Usu-
ally each algorithm works well on different input data, so we cannot choose one uni-
versal winner. On the other hand, it is seldom the case that all competing algorithms
are of the same value.

In this situation it would be very useful to have an answer to a question “What
works when?” Given an input problem, can we determine in advance which tech-
nique will work effectively for the problem? It turns out that this is a difficult problem.
We have tried to tackle this question in several ways, but we were not very successful.

Nevertheless, we do not need to be bothered to much by our inability to choose
a single technique for an input problem. Today, parallelism is widely available and
thus we can run several techniques at once. The question of selection, however, did
not disappear. Parallelism at our disposal is limited and the number of available tech-
niques is practically unlimited (most techniques are parametrized). A naive approach
would be to select £ most successful techniques (as evaluated over a benchmark set).
With such an approach we would probably use several techniques with very similar
functionality and performance — however, it is not very useful to run in parallel two
techniques with very similar functionality. What we need is to choose k£ complemen-
tary techniques. Even a technique with rather poor overall performance can be very
useful, if it works for problems for which all other techniques fail (e.g., this is the the
case of random walk in our experiments [67]).

1.3.3 Automating the Verification Process

Given a model and a specification, model checking is supposedly an automated veri-
fication technique — it algorithmically checks all possible behaviours of the model and
gives us ‘yes’ or ‘no” answer. In practice, however, model checking is quite a laborious
process. Typical scenario is the following:

1. We try to run the model checker. After waiting for a nontrivial time, it fails (it
runs “out of memory” or “out of patience”).

2. We try to run the model checker with several different optimization techniques
and parameter values.

3. When the model checker finally works and gives us an output, we find an error
in the model, correct it and start the process all over again.

Thus verification itself is automatic, but the verification process is not. In order to
manage successfully the verification process, an expert user is usually necessary. One
of the important issues is the selection of verification techniques and parameters (due
to the complementarity, as discussed above). This issue becomes even more press-
ing when we want to make use of a parallel environment. Even expert user cannot
efficiently manage concurrent verification runs on ten workstations.

Our aim is to automate this verification process and replace the expert user by an
automated “verification manager”. This goal is fundamentally based on previous two
themes: on experimental research, which enables us to get insight into to behaviour
of verification techniques, and study of complementarity, which enables us to device
strategies for the verification manager.

1.4 Contributions

Finally, we discuss individual papers which comprise this thesiﬂ Papers are ordered
by topic, i.e., papers with similar topic are grouped together. The first three papers
deal with benchmarks and state space properties, the second three papers describe
with evaluation of algorithms and with their complementarity, and the last three pa-
pers are concerned with automating the verification process.

1.4.1 BEEM: Benchmarks for Explicit Model Checkers

In this paper we present BEEM — BEnchmarks for Explicit Model checkers. The bench-
mark set includes more than 50 parametrized models (together with their correctness
properties), which makes it the most comprehensive benchmark set in the area of ex-
plicit model checking. Moreover, BEEM is not just a collection of models, it is also
accompanied by an comprehensive web portal, which provides detailed information
about all models and support for experiments. A specific novel feature of BEEM is the
inclusion of information about state space properties.

We use BEEM in several of our subsequent studies and BEEM has also quickly
gained popularity in the explicit model checking community. During three years since
it was launched, BEEM has been used in more than 30 published papers.

The paper was published in proceedings of SPIN Workshop 2007 [60] (extended
version of the paper appeared as a technical report [59]). The author of the thesis is
the sole author of the paper.

*Descriptions of papers are also repeated just before each paper in the collection.

7

1.4.2 Properties of State Spaces and Their Applications

State spaces are usually treated as directed graphs without any specific features. How-
ever, state spaces are generated from a rather small symbolic description (a model).
Thus it is conceivable that state spaces are not just arbitrary complicated directed
graphs. Motivated by this simple argument, we study the following questions: What
are typical properties of state spaces? What do state spaces have in common? Can state
spaces be modeled by random graphs? How can we apply properties of state spaces?
Can we exploit these typical properties to traverse a state space more efficiently? Are
state spaces similar to such an extent that it does not matter which models we choose
for benchmarking our algorithms?

We gather a large collection of state spaces and extensively study their structural
properties. Our results show that state spaces have several typical properties, i.e., they
are not arbitrary graphs. We discuss consequences of these results for model checking
experiments and we point out how to exploit typical properties in practical model
checking algorithms.

At first we performed this study with the use of state spaces generated by several
different model checkers. These results were published in proceedings of SPIN Work-
shop 2004 [56]. Later we have redone the experiment with models from BEEMEI and
extended the results. As part of this thesis we present the extended version which was
was published in the International Journal on Software Tools for Technology Transfer
(STTT) in 2008 [63]. The author of the thesis is the sole author of the paper.

1.4.3 Estimating State Space Parameters

In this paper we introduce the problem of estimation of state space parameters, ar-
gue that it is an interesting and practically relevant problem, and study several simple
estimation techniques. Particularly, we focus on estimation of the number of reach-
able states. Such estimation can be very useful in several ways, e.g., for tuning model
checking algorithms, for automating the verification process, as a practical informa-
tion for users, or as a criterion for selection of models for experiments.

Our techniques are based on our insight of typical properties of state spaces and
on the understanding of random walk behaviour (previous two papers). We study
techniques based on sampling of the state space and techniques that employ data min-
ing techniques (classification trees, neural networks) over parameters of breadth-first
search. We show that even through the studied techniques are not able to produce
exact estimates, it is possible to obtain usable information.

This paper was published as a work-in-progress paper at International Workshop
on Parallel and Distributed Methods in verifiCation (PDMC) in 2008 and as a technical
report [69]. The author of the thesis is one of two coauthors of the paper and has done
major part of both experiments and writing.

*Note that this work is closely connected to the BEEM project, because the studied properties of state
spaces are reported in detail on the BEEM web portal.

8

1.4.4 Enhancing Random Walk State Space Exploration

In this paper we study the behavior of random walk techniques in the context of
model checking. It turns out that it is rather difficult to understand the behaviour
of even the simple random walk. Using the insight gained by our study of simple ran-
dom walk, we propose several enhancements, e.g., combination with local exhaustive
search, caching, or pseudo-parallel walks.

Thorough this work we focus on important but often neglected experimental is-
sues like length of counterexamples, coverage estimation, and setting of parameters.
We also test algorithms on inputs of different types — except for state spaces generated
by explicit model checkers, we also use random graphs and regular graphs.

This paper was published in proceedings of Formal Methods for Industrial Critical
Systems (FMICS) in 2005 [64]. The author of the thesis is one of four coauthors of the
paper and has done major part of both experiments and writing.

1.4.5 Evaluation of State Caching and State Compression Techniques

In this paper we employ BEEM to thoroughly evaluate two well-studied techniques in
explicit model checking: state caching and state compression techniques. The goal of
these techniques is to reduce memory consumed by a model checker at the expense of
(hopefully slight) increase in running time. Both of these techniques were repeatedly
studied and refined in previous research.

We provide review of the literature, discuss trends in relevant research, and per-
form extensive experiments over models from BEEM. The conclusion of our review
and evaluation is that it is more important to combine several simple techniques in an
appropriate way rather than to tune a single sophisticated technique.

This paper was published as a technical report [68]. The author of the thesis is one
of three coauthors and has done data analysis and most of the writing.

1.4.6 Complementarity of Error Detection Techniques

In this paper we study the performance of techniques for error detection and we focus
particularly on the issue of complementarity. Using experimental evidence we argue
that it is not important to find the best technique, but to find a set of complemen-
tary techniques (as discussed in Section[1.3.2). We choose nine diverse error detection
techniques (e.g., depth-first search, directed search, random walk, and bitstate hash-
ing) and perform experiments over the BEEM set.

The topic is closely connected to the research in testing. Therefore, in our evalua-
tion we compare not just a speed of techniques, but also model coverage metrics that
are used in the testing domain. The result of our experiments show that the studied
techniques are indeed complementarity in several ways.

This paper was published in proceedings of International Workshop on Parallel
and Distributed Methods in verifiCation (PDMC) in 2008 [67]. The author of the thesis
is one of three coauthors of the paper and has done the analysis of data and most of
the writing.

1.4.7 Test Input Generation for Java Containers using State Matching

The topic of this paper lies on the border between model checking and testing. We
are concerned with test input generation for Java containers and we try to do it with
the use of explicit model checker (Java PathFinder). We compare several techniques:
exhaustive techniques based on explicit model checking, lossy techniques which are
based on explicit model checking but do not visit all states, and also random selection
of inputs. The basic metric used for comparison is testing coverage (more specifically,
we use a predicate coverage metric).

The first surprising result is that random selection, despite its simplicity, performs
surprisingly well. Nevertheless, more sophisticated techniques can beat random selec-
tion on complex inputs (e.g., implementation of a red-black tree). The most successful
technique seems to be the explicit search with abstract matching of states, but similarly
to our other evaluations it is not possible to declare a single universal winner.

This paper was published in proceedings of International Symposium on Interna-
tional Symposium on Software Testing and Analysis (ISSTA) in 2006 [55]. The author
of the thesis is one of three coauthors of the paper and has contributed particularly to
the experimental design, data analysis, and interpretation of results.

1.4.8 Fighting State Space Explosion: Review and Evaluation

This work comprises an important piece in our long term effort. It summarises both
the work in the area and our own experiences, and provides a basic argument for our
approach to automating the verification process.

In this paper we provide a systematic overview of techniques for fighting state
space explosion and we analyse trends in the relevant research. We also report on our
own experience with practical performance of techniques — the report is a concise sum-
mary of several other papers and technical reports [57,/58} 59, 67, 68]. Main conclusion
of the study is a recommendation for both practitioners and researchers: be critical to
claims of dramatic improvement brought by a single sophisticated technique, rather
use many different simple techniques and combine them.

This paper was published in proceedings of Formal Methods for Industrial Critical
Systems (FMICS) in 2008 [61]. The author of the thesis is the sole author of the paper.

1.4.9 Model Classifications and Automated Verification

In this paper we discuss the issue of automating the verification process, formulate the
verification meta-search problem, and propose the concept of a verification manager.
We also discuss general ideas for the realization of the verification manager.

On a specific level the paper is concerned with development of model classifica-
tions. Proposed classifications are based both on the syntax of the model (e.g., com-
munication mode, process similarity, application domain) and on properties of state
space (e.g., structure of SCC components, shape of the state space, local structure).
Classifications were derived from experimental study of models in the BEEM set.

This paper was published in proceedings of Formal Methods for Industrial Critical
Systems (FMICS) in 2007 [62]. The author of the thesis is the sole author of the paper.

10

1.4.10 Verification Manager: Automating the Verification Process

In this work we further develop the concept of a verification manager (as outlined in
Section [1.3.3). Particularly, we describe a practical realization of this concept for ex-
plicit model checking by building a tool EMMA (Explicit Model checking MAnager).
The design of the tool is based on our experiences with evaluation of individual tech-
niques (as discussed in other papers in the thesis), i.e., rather then developing few
sophisticated techniques, we employ a large number of simple techniques which are
executed in parallel.

We also discuss practical experience with the tool. We pay special attention to the
problem of selection of problems for experiments. This issue is important (but often
neglected) in all experiments, but it becomes crucial in evaluating strategies for the
verification manager, which are in principle meta-heuristics.

This paper was published as a technical report [66], short version of the paper was
published in proceedings of Model Checking Software (SPIN Workshop) in 2009 [65].
The author of the thesis is one of two coauthors and has done data analysis and most
of the writing.

11

12

Bibliography

[1] J. H. Anderson, Y.-J. Kim, and T. Herman. Shared-memory mutual exclusion:
major research trends since 1986. Distrib. Comput., 16(2-3):75-110, 2003.

[2] D. A. Atiya, N. Catano, and G. Liiettgen. Towards a benchmark for model check-
ers of asynchronous concurrent systems. In Fifth International Workshop on Auto-
mated Verification of Critical Systems: AVOCs, University of Warwick, United King-
dom, Sept. 12-13 2005.

[3] J. Barnat, L. Brim, and P. Rockai. Scalable multi-core 1tl model-checking. In Proc.
of SPIN Workshop, volume 4595 of LNCS, pages 187-203. Springer, 2007.

[4] J. Barnat, L. Brim, I. Cerna, P. Moravec, P. Rockai, and P. Sime¢ek. DiVinE - a
tool for distributed verification. In Proc. of Computer Aided Verification (CAV'06),
volume 4144 of LNCS, pages 278-281. Springer, 2006. The tool is available at

http://anna.fi.muni.cz/divine.

[5] J. Baumgartner, T. Heyman, V. Singhal, and A. Aziz. Model checking the IBM
gigahertz processor: An abstraction algorithm for high-performance netlists. In
Proc. of Computer Aided Verification (CAV 1999), volume 1633 of LNCS, pages 72—
83. Springer, 1999.

[6] G.Behrmann, K. G. Larsen, and R. Peldnek. To store or not to store. In Proc. of
Computer Aided Verification (CAV 2003), volume 2725 of LNCS. Springer, 2003.

[7] M. Ben-Ari. Principles of the Spin Model Checker. Springer, 2008.

[8] C. Bernardeschi, A. Fantechi, S. Gnesi, S. Larosa, G. Mongardi, and D. Romano.
A formal verification environment for railway signaling system design. Formal
Methods in System Design: An International Journal, 12(2):139-161, March 1998.

[9] G. Brat, K. Havelund, S. Park, and W. Visser. Java PathFinder-a second gen-
eration of a Java model-checker. In Workshop on Advances in Verification, pages
130-135, 2000.

[10] M. Calder and A. Miller. Using SPIN to Analyse the Tree Identification Phase of
the IEEE 1394 High-Performance Serial Bus (FireWire) Protocol. Formal Aspects of
Computing, 14(3):247-266, 2003.

[11] S. Christensen, L.M. Kristensen, and T. Mailund. A sweep-line method for state
space exploration. In Proc. of Tools and Algorithms for Construction and Analysis of
Systems (TACAS 2001), volume 2031 of LNCS, pages 450—464. Springer, 2001.

13

[12] J. C. Corbett. Evaluating deadlock detection methods for concurrent software.
IEEE Trans. Softw. Eng., 22(3):161-180, 1996.

[13] PR.D’Argenio, J.-P. Katoen, T.C. Ruys, and]. Tretmans. The bounded retransmis-
sion protocol must be on time! In Proc. of Tools and Algorithms for the Construction
and Analysis of Systems, volume 1217 of LNCS, pages 416—431. Springer-Verlag,
1997.

[14] Y. Dong, X. Du, Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A.
Smolka, O. Sokolsky, E. W. Stark, and D.S. Warren. Fighting livelock in the i-
protocol: A comparative study of verification tools. In Proc. of Tools and Algorithms
for Construction and Analysis of Systems, pages 74-88. Springer, 1999.

[15] Y. Dong and C. R. Ramakrishnan. An optimizing compiler for efficient model
checking. In Proc. of Formal Description Techniques for Distributed Systems and Com-
munication Protocols (FORTE XII) and Protocol Specification, Testing and Verification
(PSTV XIX), pages 241-256. Kluwer, B.V., 1999.

[16] B.Dutertre and V. Stavridou. Formal requirements analysis of an avionics control
system. Software Engineering, 23(5):267-278, 1997.

[17] M B. Dwyer, J. Hatcliff, M. Hoosier, V. P. Ranganath, Robby, and T. Wallentine.
Evaluating the effectiveness of slicing for model reduction of concurrent object-
oriented programs. In Proc. of Tools and Algorithms for the Construction and Analysis
of Systems, volume 3920 of LNCS, pages 73-89, 2006.

[18] J. C. Fernandez, M. Bozga, and L. Ghirvu. State space reduction based on live
variables analysis. Journal of Science of Computer Programming (SCP), 47(2-3):203—
220, 2003.

[19] M. B. Dwyer G. S. Avrunin, J. C. Corbett. Benchmarking finite-state verifiers.
International Journal on Software Tools for Technology Transfer (STTT), 2(4):317-320,
2000.

[20] H. Garavel, F. Lang, and R. Mateescu. An overview of CADP 2001. European
Association for Software Science and Technology (EASST) Newsletter, 4:13-24, 2002.

[21] H. Garavel, R. Mateescu, and I. Smarandache. Parallel state space construction
for model-checking. In Proc. SPIN Workshop, volume 2057 of LNCS, pages 217-
234. Springer, 2001.

[22]]J. Geldenhuys. State caching reconsidered. In SPIN, volume 2989 of LNCS, pages
23-38. Springer, 2004.

[23]]J. Geldenhuys and P. J. A. de Villiers. Runtime efficient state compaction in SPIN.
In Proc. of SPIN Workshop, volume 1680 of LNCS, pages 12-21. Springer, 1999.

[24] R. Gerth. Model checking if your life depends on it: A view from Intel’s trenches.
In Proc. SPIN workshop, volume 2057 of LNCS. Springer, 2001.

[25] P. Godefroid. Partial-order methods for the verification of concurrent systems: an ap-
proach to the state-explosion problem, volume 1032 of LNCS. Springer, 1996.

14

[26] P. Godefroid, G. J. Holzmann, and D. Pirottin. State space caching revisited. In
Proc. of Computer Aided Verification (CAV 1992), volume 663 of LNCS, pages 178-
191. Springer, 1992.

[27] J. Gregoire. State space compression in spin with GETSs. In Proc. Second SPIN
Workshop. Rutgers University, New Brunswick, New Jersey, 1996.

[28] A. Groce and W. Visser. Heuristics for model checking java programs. Software
Tools for Technology Transfer (STTT), 6(4):260-276, 2004.

[29]]J.F. Groote, A. Mathijssen, M. Reniers, Y. Usenko, and M. van Weerdenburg. The
formal specification language mCRL2. In Methods for Modelling Software Systems
(MMOSS), volume 6351 of Dagstuhl Seminar Proceedings, 2007.

[30] O. Grumberg and D. E. Long. Model checking and modular verification. ACM
Transactions on Programming Languages and Systems, 16(3):843-871, 1994.

[31] P. Haslum. Model checking by random walk. In Proc. of ECSEL Workshop, 1999.

[32] J. Hatcliff, M. B. Dwyer, and H. Zheng. Slicing software for model construction.
Higher Order Symbol. Comput., 13(4):315-353, 2000.

[33] K.Havelund, K. G. Larsen, and A. Skou. Formal verification of a power controller
using the real-time model checker uppaal. In ARTS ’99: Proceedings of the 5th
International AMAST Workshop on Formal Methods for Real-Time and Probabilistic
Systems, pages 277-298, London, UK, 1999. Springer-Verlag.

[34] T. Hoare. The ideal of verified software. In Proc. of Computer Aided Verification
(CAV'06), volume 4144 of LNCS, pages 5-16. Springer, 2006.

[35] G.]J. Holzmann. Algorithms for automated protocol verification. AT&T Technical
Journal, 69(2):32-44, 1990.

[36] G.]J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.

[37] G.]. Holzmann. An analysis of bitstate hashing. In Proc. of Protocol Specification,
Testing, and Verification, pages 301-314. Chapman & Hall, 1995.

[38] G.]. Holzmann, P. Godefroid, and D. Pirottin. Coverage preserving reduction
strategies for reachability analysis. In Proc. of Protocol Specification, Testing, and
Verification, 1992.

[39] G.]. Holzmann and D. Peled. An improvement in formal verification. In Proc. of
Formal Description Techniques VII, pages 197-211. Chapman & Hall, Ltd., 1995.

[40] G.J. Holzmann and D. Bosnacki. The design of a multicore extension of the spin
model checker. IEEE Transactions on Software Engineering, 33(10):659—-674, 2007.

[41] C.N. Ip and D. L. Dill. Better verification through symmetry. Formal Methods in
System Design, 9(1-2):41-75, 1996.

15

[42] M. Jones, E. Mercer, T. Bao, R. Kumar, and P. Lamborn. Benchmarking explicit
state parallel model checkers. In Proc. of Workshop on Parallel and Distributed Model
Checking (PDMC’03), volume 89 of ENTCS. Elsevier, 2003.

[43] M. D. Jones and]. Sorber. Parallel search for LTL violations. Software Tools for
Technology Transfer (STTT), 7(1):31-42, 2005.

[44] J.P. Krimm and L. Mounier. Compositional state space generation from Lotos
programs. In Proc. Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 1997), volume 1217 of LNCS, pages 239-258. Springer, 1997.

[45] A. Kuehlmann, K. L. McMillan, and R. K. Brayton. Probabilistic state space
search. In Proc. of Computer-Aided Design (CAD 1999), pages 574-579. IEEE Press,
1999.

[46] R. P . Kurshan, V. Levin, and H. Yenigiin. Compressing transitions for model
checking. In Proc. of Computer Aided Verification (CAV 2002), volume 2404 of LNCS,
pages 569-581. Springer, 2002.

[47] K.G. Larsen, F. Larsson, P. Pettersson, and W. Yi. Efficient verification of real-time
systems: Compact data structure and state-space reduction. In Proc. of Real-Time
Systems Symposium (RTSS'97), pages 14-24. IEEE Computer Society Press, 1997.

[48] K.G. Larsen, P. Pettersson, and W. Yi. Uppaal in a Nutshell. Int. Journal on Software
Tools for Technology Transfer, 1(1-2):134-152, October 1997.

[49] F. Lerda and R. Sisto. Distributed-memory model checking with SPIN. In Proc. of
SPIN workshop, volume 1680 of LNCS. Springer, 1999.

[50] F. Lerda and W. Visser. Addressing dynamic issues of program model checking.
In Proc. of SPIN Workshop, volume 2057 of LNCS, pages 80-102. Springer, 2001.

[51] M. Lindahl, P. Pettersson, and W. Yi. Formal Design and Analysis of a Gearbox
Controller. Springer International Journal of Software Tools for Technology Transfer
(STTT), 3(3):353-368, 2001.

[52] M. R. Lowry. Software construction and analysis tools for future space missions.
In Proc. Tools and Algorithms for Construction and Analysis of Systems (TACAS 2002),
volume 2280 of LNCS, pages 1-19. Springer, 2002.

[53] M. Mihail and C. H. Papadimitriou. On the random walk method for protocol
testing. In Proc. Computer Aided Verification (CAV 1994), volume 818 of LNCS,
pages 132-141. Springer, 1994.

[54] T. Mailund and W. Westergaard. Obtaining memory-efficient reachability graph
representations using the sweep-line method. In TACAS, volume 2988 of LNCS,
pages 177-191. Springer, 2004.

[55] C.Pasareanu, R. Pelanek, and W. Visser. Test input generation for java containers
using state matching. In Proc. of International Symposium on International Sympo-
sium on Software Testing and Analysis (ISSTA’06), pages 37-48. ACM, 2006.

16

[56] R.Pelanek. Typical structural properties of state spaces. In Proc. of SPIN Workshop,
volume 2989 of LNCS, pages 5-22. Springer, 2004.

[57] R. Peldnek. Evaluation of on-the-fly state space reductions. In Proc. of Mathe-
matical and Engineering Methods in Computer Science (MEMICS'05), pages 121-127,
2005.

[58] R. Pelanek. On-the-fly state space reductions. Technical Report FIMU-RS-2005-
03, Masaryk University Brno, 2005.

[59] R. Peldnek. Web portal for benchmarking explicit model checkers. Technical
Report FIMU-RS-2006-03, Masaryk University Brno, 2006.

[60] R. Peldnek. Beem: Benchmarks for explicit model checkers. In Proc. of SPIN
Workshop, volume 4595 of LNCS, pages 263-267. Springer, 2007.

[61] R. Pelanek. Fighting state space explosion: Review and evaluation. In Proc. of
Formal Methods for Industrial Critical Systems (FMICS’08), 2008. To appear.

[62] R. Peldanek. Model classifications and automated verification. In Proc. of Formal
Methods for Industrial Critical Systems (FMICS’07), volume 4916 of LNCS, pages
149-163. Springer, 2008.

[63] R. Pelanek. Properties of state spaces and their applications. International Journal
on Software Tools for Technology Transfer (STTT), 10(5):443-454, 2008.

[64] R. Pelanek, T. HanZl, I. Cern4, and L. Brim. Enhancing random walk state space
exploration. In Proc. of Formal Methods for Industrial Critical Systems (FMICS’05),
pages 98-105. ACM Press, 2005.

[65] R. Pelanek and V. Rosecky. Emma: Explicit model checking manager (tool pre-
sentation). In Proc. of Model Checking Software (SPIN’09), volume 5578 of LNCS,
pages 169-173. Springer, 2009.

[66] R. Pelanek and V. Rosecky. Verification manager: Automating the verification
process. Technical Report FIMU-RS-2009-02, Masaryk University Brno, 2009.

[67] R.Pelanek, V. Rosecky, and P. Moravec. Complementarity of error detection tech-
niques. ENTCS, 220(2):51-65, 2008.

[68] R. Peldnek, V. Rosecky, and J. Sedénka. Evaluation of state caching and state
compression techniques. Technical Report FIMU-RS-2008-02, Masaryk Univer-
sity Brno, 2008.

[69] R. Pelének and P. Simetek. Estimating state space parameters. Technical Report
FIMU-RS-2008-01, Masaryk University Brno, 2008.

[70] K. Qian and A. Nymeyer. Guided invariant model checking based on abstraction
and symbolic pattern databases. In Proc. of Tools and Algorithms for Construction
and Analysis of Systems (TACAS 2004), volume 2988 of LNCS, pages 487-511, 2004.

17

[71]]J. P. Self and E. G. Mercer. On-the-fly dynamic dead variable analysis. In Proc. of
SPIN Workshop, volume 4595 of LNCS, pages 113-130. Springer, 2007.

[72] M. Sighireanu and R. Mateescu. Verification of the link layer protocol of the ieee-
1394 serial bus (firewire). Software Tools for Technology Transfer (STTT), 2(1):68-88,
November 1998.

[73] W. Visser. Memory efficient state storage in SPIN. In Proc. of SPIN Workshop,
pages 21-35, 1996.

18

Chapter 2

BEEM: Benchmarks for explicit
model checkers

In this paper we present BEEM — BEnchmarks for Explicit Model checkers. The bench-
mark set includes more than 50 parametrized models (together with their correctness
properties), which makes it the most comprehensive benchmark set in the area of ex-
plicit model checking. Moreover, BEEM is not just a collection of models, it is also
accompanied by an comprehensive web portal, which provides detailed information
about all models and support for experiments. A specific novel feature of BEEM is the
inclusion of information about state space properties.

We use BEEM in several of our subsequent studies and BEEM has also quickly
gained popularity in the explicit model checking community. During three years since
it was launched, BEEM has been used in more than 30 published papers.

The paper was published in proceedings of SPIN Workshop 2007, extended ver-
sion of the paper appeared as a technical report:

e R. Peldnek. BEEM: Benchmarks for explicit model checkers. In Proc. of SPIN
Workshop, volume 4595 of LNCS, pages 263-267. Springer, 2007.

e R. Pelanek. Web Portal for Benchmarking Explicit Model Checkers. FIMU-RS-
2006-03, 39 pages, 2006.

19

BEEM: Benchmarks for Explicit Model Checkers

Radek Pelanek*

Department of Information Technologies, Faculty of Informatics
Masaryk University Brno, Czech Republic
{xpelanek}@fi.muni.cz

Abstract. We present BEEM — BEnchmarks for Explicit Model check-
ers. This benchmark set includes more than 50 parametrized models
(300 concrete instances) together with their correctness properties (both
safety and liveness). The benchmark set is accompanied by an compre-
hensive web portal, which provides detailed information about all models.
The web portal also includes information about state spaces and facilities
for selection of models for experiments.
The address of the web portal is http://anna.fi.muni.cz/models.

1 Introduction

The model checking field underwent a rapid development during last years. Sev-
eral new, sophisticated techniques have been developed, e.g., symbolic methods,
bounded model checking, or automatic abstraction refinement. However, for sev-
eral important application domains we cannot do much better than the basic
explicit model checking approach — brute force exhaustive state space search.
This technique is used by several of the most well-known model checkers (e.g.,
Spin, Murphi). The application scope of the explicit technique has been extended
significantly by progress in computer speed and algorithmic improvements and
many realistic case studies showed practical usability of the method. Even some
of the software model checkers (e.g., Java PathFinder, Zing) are based on the
explicit search.

There is also a significant body of research work devoted to the improve-
ment of explicit model checking. Unfortunately, many papers fail to convincingly
demonstrate the usefulness of newly presented techniques. In order to perform
high quality experimental evaluation, researchers need to have access to:

— tool in which they can implement model checking techniques,
— benchmark set of models which can be used for comparisons.

At the moment, there is a large number of model checking tools (see [4]),
but the availability of benchmark sets is rather poor. The aim of this work
is to contribute to the progress in this direction. We present BEEM — a new
benchmark set with a web portal.

* Partially supported by GA CR grant no. 201/07/P035.

D. Bosnacki and S. Edelkamp (Eds.): SPIN 2007, LNCS 4595, pp. 263267, 2007.
(© Springer-Verlag Berlin Heidelberg 2007

20

264 R. Peldnek

This short paper presents the main rationale and design choices behind BEEM.
Detailed documentation is given in a technical report [10], which presents de-
scription of the modeling language and used models, functionality and realization
of the web portal, and an example of an experimental application over the set.

2 Experimental Work in Model Checking

In order to support the need for benchmarks, we present an evaluation of ex-
periments in model checking papers. We have used a sample of model checking
publications; experiments in each of these publications were classified into one
of the following five categories:

Q1 Random inputs or few toy models.

Q2 Several toy models (possibly parametrized) or few simple models.

Q3 Several simple models (possibly parametrized) or one large case study.

Q4 An exhaustive study of parametrized simple models or several case studies.
Q5 An exhaustive study with the use of several case studies.

Table 1. presents the quality of experiments in papers from our sample (de-
tailed description of the classification and list of all used papers and their clas-
sification is given in [10]). Although the classification is slightly subjective, it
is clear from Table 1. that there is nearly no progress in time towards higher
quality of used models. This is rather disappointing, because more and more
case studies are available. Low experimental standards make it hard to assess
newly proposed techniques; the practical impact of many techniques can be quite
different from claims made in publications. This obstructs the progress of the
research in the field. Clearly, a good benchmark set is missing.

The need for benchmarking, better experiments, and thorough evaluation of
tools and algorithms is well recognized, e.g., experimentation is a key part of
Hoare’s proposal for a “Grand Challenge of Verified Software” [6]. There is also
significant interest in benchmarks in the model checking community (see e.g.,
Corbett [3], Avrunin et al. [5], Atiya et al. [1], Jones et al. [8]). Nevertheless,
the progress up to date has been rather slow. The main obstacle in developing

Table 1. Quality of experiments reported in model checking papers. We have used
a sample of 80 publications which are concerned with explicit model checking and
contain an experimental section (for details see [10]). For each quality category, we
report number of published papers in years 1994-2006.

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Qqu - - 1 1 1 1 1 3 2 4 2 1 1
Q - - 3 3 2 3 3 1 2 2 2 1 -
Q3 - 2 1 3 1 2 2 1 3 2 2 4 1
Q4 1 - - - 1 - 1 4 1 1 2 - 2
Qs - - - 1 - - - - 1 - 1

21

BEEM: Benchmarks for Explicit Model Checkers 265

model checking benchmarks is the absence of a common modeling language —
each model checking tool is tailored towards its own modeling language and even
verification results over the same example are often incomparable.

Although the development of benchmarks is difficult and the model checking
community will probably never have a universal benchmark set, we should try
to build benchmarks as applicable as possible and steadily improve our experi-
mental analysis. This is the goal of this work.

3 BEEM

Modeling Language. Models are implemented in a low-level modeling language
based on communicating extended finite state machines (DVE language, see [10]
for syntax and semantics). The adoption of a low-level language makes the man-
ual specification of models hard, but it has several advantages. The language has
a simple and straightforward semantics; it is not difficult to write own parser
and state generator. Models can be automatically translated into other modeling
languages — at the moment, the benchmark set includes also Promela models
which were automatically generated from DVE sources.

Models and Properties. Most of the models are well-known examples and
case studies. Models span several different application areas (e.g., mutual ex-
clusion algorithms, communication protocols, controllers, leader election algo-
rithms, planning and scheduling, puzzles). In order to make the set organized,
models are classified into different types and categories. The benchmark set
is large and still growing (at the moment it contains 57 parametrized mod-
els with 300 specified instances). Source codes of all models are publicly
available. Models are briefly described and include pointers to sources
(e.g., paper describing the case study), i.e., BEEMalso serves as an information
portal.

The benchmark set includes also correctness properties of models. Safety prop-
erties are expressed as reachability of a predicate, liveness properties are ex-
pressed in Linear temporal logic. Since an important part of model checking is
error detection, the benchmark set includes also models with errors (presence of
an error is a parameter of a model).

Tool Support. The modeling language is supported by an extensible model
checking environment — The Distributed Verification Environment (DiVinE)
[2]. DiVinE is both a model checking tool and a open and extensible library for
a development of model checking algorithms. Researchers can use this extensible
environment to implement their own algorithms, easily perform experiments
over the benchmark set, and directly compare with other algorithms in DiVinE.
Promela models can be used for comparison with the well-known model checker
Spin [7].

22

266 R. Peldnek

model description Manually
MDVE XML created

preprocessor,

model model
Promela DVE
State space .
generator Automatically
generated
state
space reachability
verification
analyzator
summary R st. space verification
statistics statistics results
st. space model <]
info = info =~
mn Web
interface
summary list of
. < .
info instances

Fig. 1. Overview of the realization of the web portal. The user provides two files:
parametrized model and its description. All other information is automatically gener-
ated.

Web Portal. The benchmark set is accompanied by an comprehensive web por-
tal, accessible at http://anna.fi.muni.cz/models, which facilitates the exper-
imental work. The web provides (see Fig 1. for overview of realization):

— presentation of all information about models, their parameters, and correct-
ness properties,

— detailed information about properties of state spaces of models [9] including
summary information,

— verification results,

— web form for selection of suitable model instances according to a given cri-
teria,

— instance generator, which can generate both DVE models and Promela mod-
els for given parameter values.

All data can be downloaded. Since model descriptions are systematic (XML
file), it is easy to write own scripts for manipulation with models and automation
of experiments.

23

4

BEEM: Benchmarks for Explicit Model Checkers 267

Summary

The aim of this paper is not to present “the ultimate benchmark set” but rather:

— to provide a ready-made set for those who want to compare different model

checking techniques and to facilitate experimental research,

— to encourage higher standards in model checking experiments,
— to stimulate the discussion about benchmarks in the model checking com-

munity.

Detailed description of the benchmarks set, example of an experimental appli-

cation, and direction for the future work can be found in the technical report [10].

Acknowledgement. I thank Pavel Krcal and to members of the DiVinE group,
particularly Ivana Cerna, Pavel Simecek and Jiti Barnat, for collaboration, dis-
cussions, and feedback.

References

10.

Atiya, D.A., Catano, N., Liiettgen, G.: Towards a benchmark for model checkers of
asynchronous concurrent systems. In: Fifth International Workshop on Automated
Verification of Critical Systems: AVOCs, University of Warwick, United Kingdom
(September 12-13, 2005)

. Barnat, J., Brim, L., Cern4, 1., Moravec, P., Rockai, P., Simecek, P.: Divine - a

tool for distributed verification. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 278-281. Springer, Heidelberg (2006), http://anna.fi.muni.cz/
divine

Corbett, J.C.: Evaluating deadlock detection methods for concurrent software.
IEEE Trans. Softw. Eng. 22(3), 161-180 (1996)

. Crhové, J., Kréél, P., Strejcek, J., Safranek, D., Simeéek, P.: Yahoda: the database

of verification tools. In: Proc. of TOOLSDAY affiliated to CONCUR 2002, FI MU
report series (2002) Accessible at http://anna.fi.muni.cz/yahoda/

Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Benchmarking finite-state verifiers.
International Journal on Software Tools for Technology Transfer (STTT) 2(4),
317-320 (2000)

Hoare, T.: The ideal of verified software. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 5-16. Springer, Heidelberg (2006)

Holzmann, G.J.: The Spin Model Checker, Primer and Reference Manual. Addison-
Wesley, Reading, Massachusetts (2003)

Jones, M., Mercer, E., Bao, T., Kumar, R., Lamborn, P.: Benchmarking explicit
state parallel model checkers. In: Proc. of Workshop on Parallel and Distributed
Model Checking (PDMC’03). ENTCS, vol. 89, Elsevier, Amsterdam (2003)
Pelanek, R.: Typical structural properties of state spaces. In: Graf, S., Mounier, L.
(eds.) Proc. of SPIN Workshop. LNCS, vol. 2989, pp. 5-22. Springer, Heidelberg
(2004)

Pelédnek, R.: Web portal for benchmarking explicit model checkers. Technical Re-
port FIMU-RS-2006-03, Masaryk University Brno (2006)

24

Chapter 3

Properties of state spaces and their
applications

State spaces are usually treated as directed graphs without any specific features. How-
ever, state spaces are generated from a rather small symbolic description (a model).
Thus it is conceivable that state spaces are not just arbitrary complicated directed
graphs. Motivated by this simple argument, we study the following questions: What
are typical properties of state spaces? What do state spaces have in common? Can state
spaces be modeled by random graphs? How can we apply properties of state spaces?
Can we exploit these typical properties to traverse a state space more efficiently? Are
state spaces similar to such an extent that it does not matter which models we choose
for benchmarking our algorithms?

We gather a large collection of state spaces and extensively study their structural
properties. Our results show that state spaces have several typical properties, i.e., they
are not arbitrary graphs. We discuss consequences of these results for model checking
experiments and we point out how to exploit typical properties in practical model
checking algorithms.

This paper was published in the International Journal on Software Tools for Tech-
nology Transfer (STTT) in 2008, preliminary version of this research was reported in
SPIN Workshop in 2004:

e R.Peldnek. Properties of state spaces and their applications. International Journal
on Software Tools for Technology Transfer, 10(5):443-454, 2008.

e R. Pelanek. Typical structural properties of state spaces. In Proc. of SPIN Work-
shop, volume 2989 of LNCS, pages 5-22. Springer, 2004.

25

Int J Softw Tools Technol Transfer (2008) 10:443-454
DOI 10.1007/s10009-008-0070-5

REGULAR CONTRIBUTION

Properties of state spaces and their applications

Radek Pelanek

Published online: 6 June 2008
© Springer-Verlag 2008

Abstract Explicit model checking algorithms explore the
full state space of a system. State spaces are usually treated
as directed graphs without any specific features. We gather
a large collection of state spaces and extensively study their
structural properties. Our results show that state spaces have
several typical properties, i.e., they are not arbitrary graphs.
We also demonstrate that state spaces differ significantly
from random graphs and that different classes of models
(application domains, academic vs. industrial) have differ-
ent properties. We discuss consequences of these results for
model checking experiments and we point out how to exploit
typical properties of state spaces in practical model checking
algorithms.

1 Introduction

Model checking is an automatic method for formal verifi-
cation of systems. In this paper we focus on explicit model
checking which is the state-of-the-art approach to verifica-
tion of asynchronous models (particularly protocols). This
approach explicitly builds the full state space of the model
(also called Kripke structure, occurrence or reachability
graph). The state space represents all (reachable) states of the
system and transitions among them. Verification algorithms
use the state space to check specifications expressed in a
temporal logic. The main obstacle of model checking is the
state explosion problem—the size of the state space can grow
exponentially with the size of the model description. Hence,

R. Peldnek was partially supported by GA CR grant no. 201/07/P035.

R. Peldnek (<)

Department of Information Technologies, Faculty of Informatics,
Masaryk University Brno, Brno, Czech Republic

e-mail: pelanek @fi.muni.cz

26

model checking algorithms have to deal with extremely large
graphs.

The classical model for large unstructured graphs is the
random graph model of Erd6s and Renyi [13]—every pair of
vertices is connected with an edge by a given probability p.
Large unstructured graphs are studied in many diverse areas
such as social sciences (networks of acquaintances, scientist
collaborations), biology (food webs, protein interaction net-
works), and computer science (Internet traffic, world wide
web). Recent extensive studies of these graphs revealed that
they share many common structural properties and that these
properties significantly differ from properties of random
graphs. This observation led to the development of more
accurate models for complex graphs (e.g., ‘small worlds’ and
‘scale-free networks’ models) and to a better understanding
of processes in these networks, e.g., spread of diseases and
vulnerability of computer networks to attacks. See [1] for an
overview of this research and further references.

1.1 Questions

In model checking, we usually treat state spaces as arbitrary
graphs. However, since state spaces are generated from short
descriptions, it is clear that they have some special properties.
This line of thought leads to the following questions:

1. What are typical properties of state spaces? What do state
spaces have in common?

2. Can state spaces be modeled by random graphs? Is it rea-
sonable to use random graphs instead of state spaces for
model checking experiments?

3. How can we apply properties of state spaces? Can we
exploit these typical properties to traverse a state space
more efficiently? Can some information about a state

@ Springer

444

R. Pelanek

space be of any use to the user or to the developer of
a model checker?

4. Are state spaces similar to such an extent that it does not
matter which models we choose for benchmarking our
algorithms? Is there any significant difference between
toy academical models and real life case studies? Are
there any differences between state spaces of models
from different application domains?

In this paper we address these questions by an experimen-
tal study of a large number of state spaces of asynchronous
systems.

1.2 Related work

Many authors point out the importance of the study of mod-
els occurring in practice [15]. But to the best of our knowl-
edge, there has been no systematic work in this direction. In
many articles one can find remarks and observation concern-
ing typical values of individual parameters, e.g., diameter
[7,37], back level edges [4,40], degree [18], stack depth [18].
Some authors make implicit assumptions about the structure
of state spaces [10,24] or claim that the usefulness of their
approach is based on characteristics of state spaces without
actually identifying these characteristics [39]. Another line
of work is concerned with visualization of large state spaces
with the goal of providing the user with better insight into a
model [17].

The paper follows on our previous research, particularly
on [29,31-34]. The paper syntheses common topics of these
works and present them in an uniform setting. The paper also
presents several new observations (e.g., labels in state spaces,
product graphs) and describes possible applications in more
detail.

1.3 Organization of the paper

Section 2 describes the benchmark set that we used to obtain
experimental results reported in the paper. Section 3 intro-
duces parameters of state spaces and presents results of mea-
surements of these parameters over the benchmark set.
Section 4 is concerned with parameters of state space tra-
versal techniques (breadth-first search, depth-first search, and
random walk). In Sect. 5 we compare properties of state
spaces from different classes (application domains, industrial
vs. toy, models vs. random graphs). Possible applications of
all the reported results are discussed in Sect. 6. Finally, the
last section provides answers to the questions raised above.

2 Background

In our previous study [29] we have used state spaces gene-
rated by six different model checkers. This study demonstrates

@ Springer

that most parameters are independent of the specification lan-
guage used for modeling and the tool used for generating a
state space. The same protocols modeled in different lan-
guages yield very similar state spaces.

For this study we use models from our BEnchmark set
for Explicit Model checkers (BEEM) [31]. Models in the set
are implemented in a low-level modeling language based
on communicating extended finite state machines (DVE lan-
guage). Most of the models are well-known examples and
case studies. Models span several different application areas
(e.g., mutual exclusion algorithms, communication proto-
cols, controllers, leader election algorithms, planning and
scheduling, puzzles).

The benchmark set includes more than 50 parametrised
models (300 concrete instances). For this study we use
instances which have state space sizes smaller than 150,000
states (120 instances). We use only models of restricted size
due to the high computational requirements of the performed
analysis. However, our results show that properties of state
space do not change significantly with the size of the state
space.

The benchmark set is accompanied by an comprehensive
web portal [31], which provides detailed information about
all models. The web portal also includes detailed informa-
tion about state spaces used in this paper. All the data about
properites of analyzed state spaces are available for down-
load (in XML format) and can be used for more detailed
analysis.

The DVE modeling language is supported by an extensible
model checking environment—The Distributed Verification
Environment (DiVinE) [5]. We use the environment to per-
form all experiments reported in this paper. The benchmark
set also contains (automatically generated) models in Pro-
mela, which can be used for independent experiments in the
well-known model checker Spin [21].

3 State space parameters

A state space is a relational structure which represents the
behavior of a system (program, protocol, chip, ...). It repre-
sents all possible states of the system and transitions between
them. Thus we can view a state space as a simple directed
graph G = (V, E, vg) with a set of vertices V, a set of
directed edges £ C V x V, and a distinguished initial vertex
vo. Note that we use simple graphs, i.e., graphs without self-
loops and multiple edges. This choice have a minor impact
on some of the reported results (e.g., degrees of vertices),
but it does not influence conclusions of the study. We also
suppose that all vertices are reachable from the initial vertex.
In the following we use graph when talking about generic
notions and state space when talking about notions which
are specific to state spaces of asynchronous models.

27

Properties of state spaces and their applications

445

200

50

10 20

5

| ==

Avg. degree

Max. out-degree Max. in—degree

Fig. 1 Degree statistics. Values are displayed with the boxplot method.
The upper and lower lines are maximum and minimum values, the mid-
dle line is a median, the other two are quartiles. Note the logarithmic
y-axis

3.1 Degrees

Out-degree (in-degree) of a vertex is the number of edges
leading from (to) this vertex. Average degree is the ratio
|E|/|V|. The basic observation is that the average degree is
very small—typically around 3 (Fig. 1). Maximal in-degree
and out-degree are often several times higher than the average
degree but with respect to the size of the state space they are
small as well. Hence state spaces do not contain any ‘hubs’. In
this respect state spaces are similar to random graphs, which
have Poisson distribution of degrees. On the other hand, scale
free networks discussed in the introduction are characterized
by the power-law distribution of degrees and the existence of
hubs is a typical feature of such networks [1].

The fact that state spaces are sparse is not surprising and
was observed long ago—Holzmann [18] gives an estimate 2
for average degree. It can be quite easily explained: the degree
corresponds to a ‘branching factor’ of a state; the branching
is due to parallel components of the model and to the inner
nondeterminism of components; and both of these are usu-
ally rather small. In fact, it seems reasonable to claim that in
practice |E| € O(]V]). Nevertheless, the sparseness is usu-
ally not taken into account either in the construction of model
checking algorithms or in the analysis of their complexity.

3.2 Strongly connected components

A strongly connected component (SCC) of G is a maximal
set of states C C V such that for each u, v € C, the vertex
v is reachable from u and vice versa. The quotient graph of
G is a graph (W, H) such that W is the set of SCCs of G
and (C1, C2) € H if and only if C; # C, and there exist
r € Ci,s € Cz such that (r,s) € E. The SCC quotient
height of the graph G is the length of the longest path in the

28

40

Frequency
20

10

r T T T T

0 20 40 60 80 100
Size of the largest component (%)

Fig. 2 Histogram of sizes of the largest SCC component in a state
space

quotient graph of G. Finally, a component is ferminal if it
has no successor in the quotient graph.

For state spaces, the height of the SCC quotient graph is
small. In all but one case it is smaller than 200, in 70% of
cases it is smaller than 50.

There is an interesting dichotomy with respect to the struc-
ture of strongly connected components, particularly concern-
ing the size of the largest SCC (see Fig. 2). A state space either
contains one large SCC, which includes nearly all states, or
there are only small SCCs. The largest component is usually
terminal and often it is even the only terminal.

3.3 Labels

So far we have considered state spaces as plain directed
graphs. However, state spaces do not have ‘anonymous’ edges
and states:

— Vertices are state vectors which consist of variable valua-
tions and process program counter values.

— Edges are labelled by actions which correspond to actions
of the model.

Distribution of edge labels is far from uniform. Typically
there are few labels which occur very often in a state space,
whereas most labels occur only in small numbers. More spe-
cifically, for most models the most often occurring label
appears on approximately 6% of all edges, the five most often
occurring labels appears on approximately 20% of all edges.
This result does not depend on number of labels, i.e., the 20%
ratio taken by the five most common labels holds approxi-
mately for both small models with thirty different labels as
well as for realistic models with hundreds of different labels.

State vectors can be divided into parts which correspond
to individual processes in the model (i.e., program counter of
the process and valuation of local variables). The number of
distinct valuations of these local parts is small, in most cases

@ Springer

446

smaller then 255, which means that the state of each process
can be stored in 1byte. Moreover, the distribution of differ-
ent valuations is again non-uniform, i.e., some valuations of
the local part occur in most states (typically valuations with
repeated value 0), whereas other valuations occur only in few
states.

The number of differences in state vectors of two adja-
cent vertices is small, typically the action changes the state
vector in 1-4 places. Distribution of these changes is again
non-uniform. This is not surprising since changes in the state
vector are caused by (non-uniformly distributed) labels.

For more details see the BEEM webpage [31], which con-
tains specific results for each model.

3.4 Local structure and motifs

As the next step we analyze the local structure of state spaces.
In order to do so, we employ some ideas from the analysis
of complex networks. A typical characteristic of social net-
works is clustering—two friends of one person are friends
together with much higher probability than two randomly
picked persons. Thus vertices have a tendency to form clus-
ters. This is a significant feature which distinguishes social
networks from random graphs.

In state spaces we can expect some form of clustering as
well—two successors of a state are more probable to have
some close common successor than two randomly picked
states. Specifically, state spaces are well-known to contain
many ‘diamonds’. We try to formalize these ideas and pro-
vide some experimental base for them.

The k-neighborhood of v is a subgraph induced by a set
of vertices with the distance from v smaller or equal to k.
The k-clustering coefficient of a vertex v is the ratio of the
number of edges to the number of vertices in the k-neighbor-
hood (not counting v itself). If the clustering coefficient is
equal to 1, no vertex in the neighborhood has two incoming
edges within this neighborhood. A higher coefficient implies
that there are several paths to some vertices within the neigh-
borhood. For state spaces, the clustering coefficient linearly
increases with the average degree. Most random graphs have
clustering coefficients close to 1.

Another inspiration from complex networks are so-called
‘network motifs’ [27,28]. Motifs are studied mainly in bio-
logical networks and are used to explain functions of net-
work’s components (e.g., function of individual proteins) and
to study evolution of networks.

We have systematically studied motifs in state spaces. We
find the following motifs to be of specific interest either
because of abundant presence or because of total absence
in many state spaces:

— Diamonds (we have studied several variations of struc-
tures similar to diamond, see Fig.3). Diamonds are well

@ Springer

R. Pelanek
Diamond 3-mond Diamond3x3 FFL
o
9, o oo © P90 0P 5 05 0 % °
%% o
®g° °©
£8 %° 5
21 o :
I
o © o ® 8
© o ©
S o
£ o o
s 2 o °
a o
o
og o
o | o
N o
o © °
o © °
$
(=2 ce o o °
:
1 2 3 4 5
Avg. degree

Fig. 4 Relationship between occurrence of diamonds and the average
degree. The occurrence of diamonds is reported as a ratio of the number
of states which are roots of some diamond to all states

known to be present in state spaces of asynchronous con-
current systems due to the interleaving semantics. Dia-
monds display an interesting dependence on the average
degree (Fig.4). There is a rather sharp boundary for value
2 of the average degree: for a state space with average
degree less than two there is a small number of diamonds,
for state spaces with average degree larger than two there
are a lot of them.

— Chains of states with just one successor. We have mea-
sured occurrences of chains of length 3, 4, 5. Chains occur
particularly in state spaces with average degree less than
two (i.e., their occurrence is complementary to diamonds).

— Short cycles of lengths 2, 3, 4, 5. Short cycles are nearly
absent in most state spaces.

— Feed forward loop (see Fig.3). This motif is a typical for
networks derived from biological systems [28]; in state
spaces it is very rare.

The bottom line of these observations is that the local
structure depends very much on the average degree. If the
average degree is small, then the local structure of the state
space is tree-like (without diamonds and short cycles, with
many chains of states of degree one). With the high average

29

Properties of state spaces and their applications

447

o
S]
(2]
o
uoji °
(3]
o
S 4 o °
£ «
(=)
6 o) @ o
£ 0 ° ° 3
P - o °o oo o
o %o cc
@ g R ©% N
| o
Rl o ° o © o ° o °
e e o Steawe,” °°
87 o o Qo0 °%°0 % o % . ®
° oo Go ° ° occ o @ aoﬂ °
o o 8000 ° o o ° 0°8 8 o
o
T T T T
1e+02 1e+03 1e+04 1e+05

States

Fig. 5 The BFS height plotted against the size of the state space. Note
the logarithmic x-axis. Three examples have BFS height larger than 300

degree, the state space has many diamonds and high cluster-
ing coefficient.

4 Properties of search techniques

In verification, the basic operation is the traversal of a state
space. Therefore, it is important to study not only ‘static’
parameters of state spaces but also their ‘dynamics’, i.e.,
properties of search techniques. Here we consider three basic
techniques for state space traversal and their properties.

4.1 Breadth-first search (BES)

Let us consider BFS from the initial vertex vg. A BES level
with an index k is a non-empty set of states with minimal dis-
tance from vg equal to k. The BF'S height is the largest index
of alevel. An edge (u, v) is a back level edge if v belongs to
a level with a lower or the same index as u. The length of a
back level edge is the difference between the indices of the
two levels.

In our benchmarks, the BFS height is small (Fig. 5). There
is no clear correlation between the state space size and the
BFS height; it depends rather on the type of the model.

The sizes of levels follow a typical pattern. If we plot the
number of states on a level against the index of a level we get
a BFS level graph." See Fig. 6. for several examples of BFS
level graphs. Note that in all cases the graph has a ‘bell-like’
shape.

The ratio of back level edges to all edges in a state space
varies between 0 and 50%; the ratios are uniformly distrib-
uted in this interval. Most edges are short—they connect two

! Note that the word ‘graph’ is overloaded here. In this context we mean
graph in the functional sense.

30

close levels (as already observed by Tronci et al. [40]). How-
ever, for most models there exist some long back level edges.

4.2 Depth-first search (DFS)

Next we consider the DFS from the initial vertex. The behav-
ior of DFS (but not the completeness) depends on the order
in which successors of each vertex are visited. Therefore we
have considered several runs of DFS with different orderings
of successors.

If we plot the size of the stack during DFS we get a stack
graph. Figure 6. shows several stack graphs; for more graphs
see [31]. The interesting observation is that the shape of
the graph does not depend much on the ordering of succes-
sors. The stack graph changes a bit of course, but the over-
all appearance remains the same. This suggests, that DFS
is rather ‘stable’ with respect to the ordering of successors.
Each state space, however, has its own typical stack graph;
compare to BFS level graphs, which all have more or less
bell-like shape.

For implementations of the breadth- and depth-first search
one uses queue and stack data structures. Figure 7. compares
the maximal size of a queue and a stack during the traversal.
The maximal size of a stack is smaller then maximal size of
a queue in 60% of cases, but the relative size of a queue is
always smaller than 25% of the state space size whereas the
relative size of a stack can go up to 100% of the state space
size. These results have implications for practical implemen-
tation of model checking tools (see Sect. 6).

4.3 Random Walk

Finally, we consider a simple random walk technique. The
technique starts in the initial state of the graph. In each step it
randomly chooses a successor of the current state and visits it.
If the current state does not have any successors the algorithm
re-starts from the initial state. The search also uses periodic
re-start in order to avoid the situation when the random walk
gets trapped in a small terminal strongly connected compo-
nent.

From the theoretical point of view the most relevant char-
acteristic of the random walk is the covering time, i.e., the
expected number of steps after which all vertices of the graph
are visited. For undirected graphs the covering time is poly-
nomial. For directed graphs the covering time can be expo-
nential. Even in those cases when it is not exponential, it is
still too high to be measured experimentally even for medium
sized graphs (hundreds of states). For this reason we have
measured the coverage, i.e., the ratio of vertices which were
visited after a given number of steps.

The coverage increases with the number of computation
steps in a log-like fashion, i.e., at the beginning of the compu-
tation the number of newly visited states is high and it rapidly

@ Springer

448

R. Peldnek
Fig. 6 BFS level graphs (first cambridge.3 leader.1
- 45 - - - - - - 4 - - - - - - - -
four) and stack graphs (second
four) 47 35
35 3
g 8 g 25
5 25 3
2 2 2
5 2} 15}
3 3 15
€ 15 F §
R E 1
05 0.5
0 0
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 8 90
BFS level BFS level
lifts.2 bakery.3
5 25
45 |
4t 2
35 g
8 3t 8 15
3 25| %’
5 5
3 20 g o
E 15 | 5
z z
1| 05
05
0 0
0 10 20 30 40 50 60 0 20 40 60 80 100 120
BFS level BFS level
cambridge.3 leader.1
20 e - - 05 - - - - - - -
Pyt
18 | 7 " 4 045 | 4
16 | f + 4 04 4
2 14t .ff *; < £ 035 |, 1
& | &
8 12t 7 " 1 8 03 L, e, -, <
5 fad | 8 e T
2 10f Hd * 1 Z025 [t h, n, Row . 1
5 # v 5 ’aﬁ*+’¢*&’f’+”“¢*t+w+ T, -
g 8 ’/,/ . 4 5 021 At R I S 4
£ L 4 £ L A R - tasl * 4
£ 6 y N E 0.15 M “1*3*”&2*{* o *:*J
4t P T B 01 P AR
/ ; KR
2 4 005 | [4
Vad 5
0 P S S 0
0 2000 4000 6000 8000 1000012000 1400016000 1800020000 0 2000 4000 6000 8000 10000 12000 14000 16000
Step Step
lifts.2 bakery.3
9 - - - - - 12 - - - - - -
sl ot etngs
g O 0 WW K]
—~ Tr 7 - — -,
S M- - 5 g N
g 6F . ¢ s b g 8f F, 4
2 + N 2 it pA
st . Doy g P -
D N P I .
5 4T Lot P2 A 5 P
o N oy N N P Fa 2 £ .
E afr 4o e aed S E a4 F L 1
El * Lt Yl s 2 #
24 AT A AN T e ; -
K LT e e e e, 2t) B 4
1k R P i
e + & 54
N b pEN
0 :
0 500 1000 1500 2000 2500 3000 0 5000 10000 15000 20000 25000 30000 35000
Step Step

decreases with time. After a threshold point is reached the
number of newly visited states drops nearly to zero. After
this point it is meaningless to continue in the exploration.
Our experience indicates that this happens when the num-
ber of steps is about ten times the size of the graph. This
is the basic limit on the number of steps that we have used
in our experiments. Figure 8 gives the coverage after this
limit. Note that the resulting coverage is very much graph-
dependent. In some cases the random walk can cover the

@ Springer

whole graph, whereas sometimes it covers less than 3% of
states.

A natural question is whether there is any correlation
between the efficiency (coverage) of the random walk and
structural properties of a state space. Unfortunately, it seems
that there is no straightforward correlation with any of the
above studied graph properties. The intuition for this nega-
tive result is provided by Fig.9. The two displayed graphs
have similar global graph properties, but the efficiency of the

31

Properties of state spaces and their applications 449
0 —
3\
o ’ w0 _
—_ QU o ° -
IS o
R v .
R . > o4
3 2 :
¢ o
3 o ° . L o0
= . e
0 4 o .
o o
o 1 r T T T T 1
40 60 80 100 0 20 40 60 80 100

Max. stack size (%)

Fig. 7 A comparison of maximal queue and stack sizes expressed as
percentages of the state space size

random walk is very different. While the first graph is easily
covered, the random walk will behave poorly on the second
one. Note that graphs of these types occur naturally in model
checking.

Finally, we measure the probability of visiting individual
states in order to find whether the probability of a visit has a
uniform distribution or whether some states are visited more
frequently than others. We find that the frequency of visits
has the power law distribution. Thus the probability that a
given state is visited is far from being uniform. This leads to
the conclusion that the subgraph visited by the random walk
cannot be considered to be a random sample of the whole
graph!

5 Comparisons

In this section we compare properties of state spaces of mod-
els from different classes.

5.1 Application domains

We have classified models according to their application
domains and studied the parameters of each class. State
spaces from each domain have some distinct characteristics;
see [31] for description of the classification and [32] for more
specific results.

— Mutual exclusion algorithms: state spaces usually contain
one large strongly connected component and contain many
diamonds.

— Communication protocols: state spaces are not acyclic,
have a large BFS height and long back level edges, usu-
ally contain many diamonds.

— Leader election algorithms: state spaces are acyclic and
contain diamonds.

32

Final coverage (%)

Fig. 8 Histogram of random walk coverage after number of steps equal
to 10 times the size of the state space. Frequency means the number of
state spaces for which the final coverage was in the given interval

— Controllers: state spaces have small average degree, a large
BFS height and long back level edges, usually contains
many diamonds.

— Scheduling, planning, puzzles: state spaces are often acy-
clic, with a very small BFS height, large average degree,
many short back level edges; state space are without prev-
alence of diamonds or chains.

We expect that similar distinct characteristic exists for
other application domains as well.

5.2 Random graphs

Let us compare properties of state spaces and properties of
random graphs, which are often used in experiments with
model checking algorithms. We use the classical ErdGs-Re-
nyi model of a random graph [13].

Although distances (BFS height, diameter) in state spaces
are small, distances in random graphs are even smaller. For
most state spaces we observe that there are only a few typical
lengths of back level edges and a few typical lengths of cycles
(this is caused by the fact that back level edges correspond to
specific actions in a model). However, random graphs have
no such feature.

State spaces are characterized by the presence (respec-
tively absence) of specific motifs, particularly diamonds
(respectively short cycles). More generally, state spaces
shows significant clustering and the size of k-neighborhood
grows (relatively) slowly. Random graphs do not have clus-
tering and the size of k-neighborhood grows quickly.

If we plot the size of the queue (stack) during BFS (DFS)
(as done in Fig. 6) then we obtain for each state space a spe-
cific graph, which s usually at least a bitragged and irregular.
In contrast, for most random graphs we obtain very similar,
smooth graphs.

@ Springer

450

Fig. 9 Graphs with similar properties but different random walk cov-
erage. The color correspond to probability of a visit by a random walk;
darker vertices have higher change of a visit.

Finally, we provide a specific example which demon-
strates how the use of random graphs can obfuscate experi-
mental analysis. Figure 10 demonstrates the correlation
between the average vertex degree and the random walk cov-
erage both for random graphs and model checking graphs.
There is a clear correlation for random graphs. For model
checking graphs such a correlation has not been observed. If
we did the experiments only with random graphs, we could
be misled into wrong conclusions about the effectiveness and
applicability of random walk technique.

5.3 Toy versus industrial examples

We have manually classified examples into three categories:
toy, simple, and complex. The major criterion for the classi-
fication was the length of the model description. State spaces
sizes are similar for all three categories, because for toy mod-
els we use larger values of model parameters (as is usual in
model checking experiments).

The comparison shows differences in most parameters.
Here we only briefly summarize the main trends; more
detailed figures can be found on the BEEM web page [31].

— The maximal size of the stack during DFS is significantly
shorter for complex models (Fig. 11).

— The BFS height is larger for state spaces of complex mod-
els. The number of back level edges is smaller for state
spaces of complex models but they have longer back level
edges.

— The average degree is smaller for state spaces of complex
models. Since the average degree has a strong correlation
with the local structure of the state space (see Sect. 3.4),
this means that also the local structure of complex and toy
models differs.

— Generally, the structure is more regular for state spaces of
toy models. This is demonstrated by BFS level graphs and
stack graphs which are smoother for state spaces of toy
models.

@ Springer

R. Pelanek
Random graphs
100 - z‘wn‘”,,,..
90} L b
s
80 L7 |
1+
70+ N 1
g eof e 1
o -
q>) 50 + R
+
8 o} 1
.
30+ . g
N
20+ g
+ B
10 + g
M +
0 L hi L L L L
1 15 2 25 3 35 4
Average degree
Model checking graphs
100 T . . : . .
+ + P
9 + g
+ * +
80 R g
N
70 f + N 4
8 el K PO |
g .
q>) 50 | P + i
2 + o+ + W .
O 40} N . E
#+
30 g
20 * ’ + . E
. ¥ .
10+ et s i
o +ls L M L L L L
1 2 3 4 5 6 7 8

Average degree

Fig. 10 Correlation between the average degree and random walk cov-
erage for random graphs and model checking graphs

These results stress the importance of having complex case
studies in model checking benchmarks. Particularly exper-
iments comparing explicit and symbolic methods are often
done on toy examples. Since toy examples have more regular
state spaces, they can be more easily represented symboli-
cally.

5.4 Product graphs

During the verification of temporal properties, algorithms
often work with the ‘augmented state space’ rather then
directly with the state space. Particularly, the verification
of linear temporal logic is based on the construction of so-
called product graph: a negation of a temporal logic formulae
is transformed into an equivalent Biichi automaton, a prod-
uct of a state space and the automaton is computed, and the
product graph is searched for accepting cycles [41]. What
are the properties of product graphs? Is there any significant
difference from properties of plain state spaces?

The BEEM benchmark [31] also contains temporal prop-
erties. We have used these properties to construct product

33

Properties of state spaces and their applications

451

100

80

60

40

Max. stack size (%)

e | |

T
complex

simple toy

Fig. 11 The maximal stack size (given in percents of the state space
size) during DFS. Results are displayed with the boxplot method (see
Fig. 1 for explanation)

graphs and we have studied their properties. Our experiments
indicate that the structure of product graphs is very similar to
structure of plain state spaces. Since the results are so simi-
lar, we do not provide explicit results and figures. The only
difference worth mentioning is that the height of the SCC
quotient graphs is slightly larger for product graphs, but it is
still rather small.

6 Applications

In previous sections we outlined many interesting properties
of state spaces. Are these properties just an interesting curi-
osity? Or can we exploit them in the verification process?
In this section we outline several possible applications of
described properties.

6.1 Algorithm tuning

Knowledge of typical properties of state spaces can be useful
for tuning the performance of model checking algorithms.

In Sect. 4 we demonstrate that the size of a queue (stack)
during the state space search can be quite large, i.e., it may
happen that the applicability of a model checker becomes
limited by the size of a queue (stack) data structure. There-
fore, it is important to pay attention to these structures when
engineering a model checker. This is already done in some
model checkers—SPIN can store part of a stack on disc [20],
UPPAAL stores all states in the hash table and maintains only
references in a queue (stack) [12].

Breadth-first search parameters (particularly BFS height
and sizes of BFS levels) can be used to set parameters of algo-
rithms appropriately: algorithms that exploit magnetic disk
often work with individual BFS levels [38]; random walk
search [33] and bounded search [23] need to estimate the
height of the state space; techniques using stratified caching

34

[16] and selective storing of states [6] can also take the shape
of the state space into account.

The local structure of a state space (e.g., presence or
absence of diamonds) can also be used for tuning param-
eter values, particularly for techniques which employ local
search, e.g., random walk enhancements [33,36], sibling
caching and children lookahead in distributed computation
[25], or heuristic search.

Typical motifs and state vector characteristics (number
of local states, number of changes in state vector) can be
employed for efficient storage of states (e..g, state compres-
sion [19]). The fact that distribution of edge labels is not
uniform is important for selection of a covering set of transi-
tions, which can be used for partial order reduction or selec-
tive storing [6].

6.2 Automation of verification

Any self-respecting model checker has a large number of
options and parameters which can significantly influence the
run-time of verification. In order to verify any reasonable
system, it is necessary to set these parameters properly. This
can be done only by an expert user and it requires lot of time.
Therefore, it is desirable to develop methods for automatic
selection of techniques and parameter values. We discuss in
detail two concrete examples.

6.2.1 Memory reduction techniques

The main obstacle to model checking is memory require-
ments. Researchers have developed a large number of
memory reduction techniques which aim at alleviating this
problem. Most of these techniques introduce time/memory
trade-offs. Each of these techniques has specific advantages
and disadvantages and is suitable only for some type of mod-
els (state spaces). State space parameters can be employed
for the selection of a suitable technique; in the following we
outline several specific examples.

The sweep line technique [11] deletes from memory states
that will never be visited again. This technique is useful only
for models with acyclic state spaces or with small SCCs. This
technique also requires short back level edges. The same
requirement holds for caching based on transition locality
[40].

For acyclic state spaces it is possible to use specialized
algorithms, e.g., dynamic partial order reduction [14] or a
specialized bisimulation based reduction [30, pp. 43—47].

For state spaces with many diamonds it is reasonable to
employ partial order reduction, whereas for state spaces with-
out diamonds this reduction is unlikely to yield significant
improvement. On the other hand, selective storing of states
[6] can lead to good memory reduction for state spaces with
many chains.

@ Springer

452

R. Pelanek

The heuristic algorithm based on bayesian meta heuris-
tic [35] works well for models with high average degree
(greater than 10). This fact calls into question the applica-
bility of the approach to industrial models (see Sect. 5.3). On
the other hand, the [O-efficient algorithm for model checking
[2] works better for models with small vertex degrees.

6.2.2 Cycle detection algorithms

Cycle detection algorithms are used for LTL verification.
Currently, there is a large number of different cycle detec-
tion algorithms, particularly if we consider distributed algo-
rithms for networks of workstations [3]. Analysis of state
space parameters can be helpful for an automatic selection
of a suitable algorithm.

For example, a distributed algorithm based on localiza-
tion of cycles [24] is suitable only for state spaces with small
SCCs (which are, unfortunately, not very common). Simi-
larly, the classical depth-first search based algorithm [22] can
be reasonably applied only for state spaces with small SCCs,
because for state spaces with large SCCs it tends to produce
very long counterexamples (long counterexamples are not
very useful in practice). On the other hand, the explicit one-
way-catch-them-young algorithm [9] has complexity O (nh),
where n is the number of states and / is the height of the
SCC quotient graph, i.e., this algorithm is more suitable for
state space with one large component. The complexity of
BFS-based distributed cycle detection algorithm [4] is pro-
portional to the number of back level edges.

6.3 Estimation of state space size

The typical pattern of the BES level graph (see Sect. 4.1) can
be used for estimating the number of reachable states. Such
an estimate has several applications: it can be used to set
verification parameters (e.g., size of a hash table, number of
workstations in a distributed computation) and it is also valu-
able information for the user of the model checker—at least,
users are more willing to wait if they are informed about the
remaining time [26].

We outline a simple experiment with state space size esti-
mation based on BFS levels. We generate a sample consisting
of the first k£ BFS levels. Then we estimate how many times
the number of reachable states is larger than the size of the
sample. More specifically, we do just an order of magnitude
estimate. Let R be the ratio of the total number of reach-
able states to the size of the sample. We use the following
three classes for estimates: class 1 (1 < R < 4), class 2
(4 < R <32),class 3 (32 < R).

We use three techniques for estimating the classification:
human, classification tree [8] and a neural networks. All tech-
niques are trained on a training set and then evaluated using
a different testing set. All three techniques achieve similar

@ Springer

results—the success rate is about 55%, with only about 3%
being major mistake (class 1 classified as class 3 or vice
versa). These results can be further improved by a combina-
tion with other estimation techniques and by using domain
specific information. See [34] for more details about this
experiment and for description of several other techniques
for estimating state space parameters.

7 Answers

Finally, we provide answers to questions that were raised in
the introduction and we discuss directions for the future work.
Although we have done our measurements on a restricted
sample of state spaces, we believe that it is possible to draw
general conclusions from the results. Results of measure-
ments are consistent—there are no significant exceptions
from reported observations.

What are typical properties of state spaces?

State spaces are usually sparse, without hubs, with one
large SCC, with small diameter and small SCC quotient
height, with many diamond-like structures.

These properties can not be explained theoretically. It is
not difficult to construct artificial models without these fea-
tures. This means that observed properties of state spaces
are not the result of the way state spaces are generated nor
of some features of specification languages but rather of the
way humans design/model systems.

Can state spaces be modeled by random graphs?

In Sect. 5.2 we have discussed many properties in which
state spaces differ from random graphs. Unfortunately, ran-
dom graphs are often used for experiments with model check-
ing algorithms. We conclude that random graphs have signif-
icantly different structure than state spaces and thus that this
practice can lead to wrong conclusions (see Sect. 5.2 for a
specific example). Thou shalt not do experiments on random
graphs.

Are state spaces similar to such an extent that it does not
matter which models we choose for benchmarking our
algorithms?

Although state spaces share some properties in common,
some can significantly differ. Behavior of some algorithms
can be very dependent on the structure of the state space. This
is clearly demonstrated by experiments with random walk.
For some graphs one can quickly cover 90% of the state
space by random walk, whereas for other we were not able
to get beyond 3%. So it is really important to test algorithms

35

Properties of state spaces and their applications

453

on a large number of models before one draws any conclu-
sions.

Particularly, there is a significant difference between state
spaces corresponding to complex and toy models. Moreover,
we have pointed out that state spaces of similar models are
very similar. We conclude that it is not adequate to perform
experiments just on few instances of some toy example. Thou
shalt not do experiments (only) on Philosophers.

How can we apply properties of state spaces?

Typical properties can be useful in many different ways.
In Section 6 we discuss two broad types of applications:

— Tuning of model checking algorithm, i.e., using the knowl-
edge of typical properties to improve the performance of
model checking algorithms.

— Automation of verification, i.e., using the knowledge of
parameter values to choose a suitable verification tech-
nique or algorithm.

‘We outline many specific examples of applications and we
believe that there are (potentially) many more. Moreover, we
outlined also one untypical application — estimation of the
state space size based on the typical behaviour of BFS.

Acknowledgements 1 thank Ivana Cerné, Pavel Krcal, and Pavel
Simegek for valuable discussions and comments on this project. I also
thank anonymous reviewers for their comments on the first version of
this paper.

References

1. Albert, R., Barabasi, A.L.: Statistical mechanics of complex net-
works. Rev. Modern Phys. 74(1), 47-97 (2002)

2. Bao, T., Jones, M.: Time-efficient model checking with magnetic
disk. In: Proceeding of Tools and Algorithms for the Construc-
tion and Analysis (TACAS’05), vol. 3440 of LNCS, pp. 526-540.
Springer, Heidelberg (2005)

3. Barnat, J., Brim, L., Cern4, I.: Cluster-based 1tl model checking of
large systems. In: Proceeding of Formal Methods for Components
and Objects (FMCO’05), Revised Lectures, vol. 4111 of LNCS,
pp. 259-279. Springer, Heidelberg (2006)

4. Barnat, J., Brim, L., Chaloupka, J.: Parallel breadth-first search
LTL model-checking. In: Proceeding Automated Software Engi-
neering (ASE 2003), pp. 106-115. IEEE Computer Society, New
York (2003)

5. Barnat, J., Brim, L., Cerné, 1., Moravec, P., Rockai, P., §imeéek,
P.: Divine—a tool for distributed verification. In: Proceeding of
Computer Aided Verification (CAV’06), vol. 4144 of LNCS, pp.
278-281. Springer, Heidelberg 2006. The tool is available at http://
anna.fi.muni.cz/divine

6. Behrmann, G., Larsen, K.G., Peldnek, R.: To store or not to store.
In: Proceeding Computer Aided Verification (CAV 2003), vol.
2725 of LNCS, pp. 433-445 (2003)

7. Biere, A., Cimatti, A., Clarke, E., Zhu, Y. Symbolic model check-
ing without BDDs. In: Proceeding Tools and Algorithms for the

36

12.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

. Breiman, L.: Classification and Regression Trees.

Construction and Analysis of Systems (TACAS 1999), vol. 1579
of LNCS, pp. 193-207 (1999)

CRC
Press, Boca Raton (1984)

. Cern4, 1., Pelanek, R.: Distributed explicit fair cycle detection. In:

Proceeding SPIN workshop, vol. 2648 of LNCS, pp. 49-73 (2003)

. Cheng, A., Christensen, S., Mortensen, K.H.: Model checking col-

oured petri nets exploiting strongly connected components. In:
Proceeding International Workshop on Discrete Event Systems,
pp. 169-177 (1996)

. Christensen, S., Kristensen, L.M., Mailund, T.: A Sweep-Line

Method for State Space Exploration. In: Proceeding Tools and
Algorithms for Construction and Analysis of Systems (TACAS
2001), vol. 2031 of LNCS, pp. 450-464 (2001)

David, A., Behrmann, G., Larsen, K.G., Yi, W.: Unification & shar-
ing in timed automata verification. In: Proceeding SPIN Workshop,
vol. 2648 of LNCS, pp. 225-229 (2003)

. Erdés, P, Renyi, A.: On random graphs. Publ. Math. 6, 290—

297 (1959)

. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for

model checking software. In: Proceeding of Principles of program-
ming languages (POPL’05), pp. 110-121. ACM Press, New York
(2005)

. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Benchmarking

finite-state verifiers. Int. J. Softw. Tools Technol. Transfer

(STTT) 2(4), 317-320 (2000)

. Geldenhuys, J.: State caching reconsidered. In: Proceeding of SPIN

‘Workshop, vol. 2989 of LNCS, pp. 23-39. Springer, Heidelberg
(2004)

. Groote, J.F.,, van Ham, F.: Large state space visualization. In: Pro-

ceeding of Tools and Algorithms for Construction and Analysis of
Systems (TACAS 2003), vol. 2619 of LNCS, pp. 585-590 (2003)

. Holzmann, G.J.: Algorithms for automated protocol verifica-

tion. AT&T Tech. J. 69(2), 32-44 (1990)

. Holzmann, G.J.: State compression in SPIN: Recursive indexing

and compression training runs. In: Proceeding SPIN Workshop.
Twente Univ. (1997)

Holzmann, G.J.: The engineering of a model checker: the gnu i-
protocol case study revisited. In: Proceeding SPIN Workshop, vol.
1680 of LNCS, pp. 232-244 (1999)

Holzmann, G.J.: The Spin Model Checker, Primer and Reference
Manual. Addison-Wesley, Reading (2003)

Holzmann, G.J., Peled, D., Yannakakis, M.: On nested depth first
search. In: Proceeding SPIN Workshop, pp. 23-32. American
Mathematical Society, New York (1996)

Kréal, P.: Distributed explicit bounded Itl model checking. In:
Proceeding of Parallel and Distributed Methods in verifiCation
(PDMC’03), vol. 89 of ENTCS. Elsevier, Amsterdam (2003)
Lafuente, A.L.: Simplified distributed LTL model checking by
localizing cycles. Technical Report 176, Institut fiir Informatik,
Universitit Freiburg, July (2002)

Lerda, F., Visser, W.: Addressing dynamic issues of program model
checking. In: Proceeding of SPIN Workshop, vol. 2057 of LNCS,
pp- 80—-102. Springer, Heidelberg (2001)

Maister, D.H.: The psychology of waiting lines. In: Czepiel J.A.,
Solomon M.R., Suprenant C. (eds.), The Service Encounter. Lex-
ington Books (1985)

Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S.,
Ayzenshtat, 1., Sheffer, M., Alon, U.: Superfamilies of evolved
and designed networks. Science 303(5663), 1538-1542 (2004)
Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D.,
Alon, U.: Network motifs: simple building blocks of complex net-
works. Science 298(5594), 824-827 (2002)

Pelanek, R.: Typical structural properties of state spaces. In: Pro-
ceeding of SPIN Workshop, vol. 2989 of LNCS, pp. 5-22. Springer,
Heidelberg (2004)

@ Springer

454

R. Pelanek

30.

31.

32.

33.

34.

35.

36.

Pelanek, R.: Reduction and Abstraction Techniques for Model
Checking. PhD thesis, Faculty of Informatics, Masaryk Univer-
sity, Brno (2006)

Peldnek, R.: Beem: Benchmarks for explicit model checkers. In:
Proceeding of SPIN Workshop, vol. 4595 of LNCS, pp. 263-267.
Springer, Heidelberg (2007)

Pelanek, R.: Model classifications and automated verification. In:
Proceeding of Formal Methods for Industrial Critical Systems
(FMICS’07) (2007). (To appear)

Pelanek, R., HanZl, T., Cemé, 1., Brim, L.: Enhancing random
walk state space exploration. In: Proceeding of Formal Methods for
Industrial Critical Systems (FMICS’05), pp. 98-105. ACM Press,
New York (2005)

Pelének, R., Simetek, P.: Estimating state space parameters. Tech-
nical Report FIMU-RS-2008-01, Masaryk University Brno (2008)
Seppi, K., Jones, M., Lamborn, P.: Guided model checking with
a bayesian meta-heuristic. In: Proceeding of Application of Con-
currency to System Design (ACSD’04), p. 217. IEEE Computer
Society, New York (2004)

Sivaraj, H., Gopalakrishnan, G.: Random walk based heuristic
algorithms for distributed memory model checking. In: Proceeding

@ Springer

37.

38.

39.

40.

41.

of Parallel and Distributed Model Checking (PDMC’03), vol. 89
of ENTCS (2003)

Stern, U.: Algorithmic Techniques in Verification by Explicit State
Enumeration. PhD thesis, Technical University of Munich (1997)
Stern, U., Dill, D.L.: Using magnatic disk instead of main memory
in the Murphi verifier. In: Proceeding Computer Aided Verification
(CAV 1998), vol. 1427 of LNCS, pp. 172—183 (1998)

Tronci, E., Penna, G.D., Intrigila, B., Venturini, M.: A probabilistic
approach to automatic verification of concurrent systems. In: Pro-
ceeding Asia-Pacific Software Engineering Conference (APSEC
2001), pp. 317-324. IEEE Computer Society, New York (2001)
Tronci, E., Penna, G.D., Intrigila, B., Zilli, M. V.: Exploiting transi-
tion locality in automatic verification. In: Proceeding Correct Hard-
ware Design and Verification Methods (CHARME 2001), vol. 2144
of LNCS, pp. 259-274 (2001)

Vardi, M.Y., Wolper, P.: An automata-theoretic approach to auto-
matic program verification. In: Kozen D. (eds.) Proceeding of Logic
in Computer Science (LICS ’86), pp. 332-344. IEEE Computer
Society Press, New York (1986)

37

38

Chapter 4

Estimating State Space Parameters

In this paper we introduce the problem of estimation of state space parameters, ar-
gue that it is an interesting and practically relevant problem, and study several simple
estimation techniques. Particularly, we focus on estimation of the number of reach-
able states. Such estimation can be very useful in several ways, e.g., for tuning model
checking algorithms, for automating the verification process, as a practical informa-
tion for users, or as a criterion for selection of models for experiments.

Our techniques are based on our insight of typical properties of state spaces and
on the understanding of random walk behaviour (previous two papers). We study
techniques based on sampling of the state space and techniques that employ data min-
ing techniques (classification trees, neural networks) over parameters of breadth-first
search. We show that even through the studied techniques are not able to produce
exact estimates, it is possible to obtain usable information.

This paper was published as a work-in-progress paper at International Workshop
on Parallel and Distributed Methods in verifiCation (PDMC) in 2008 and as a technical
report [69]. The author of the thesis is one of two coauthors of the paper and has done
major part of both experiments and writing.

39

7th International Workshop on Parallel and Distributed Methods in verifiCation

Estimating State Space Parameters

Radek Peldnek! Pavel Simecek 2

Faculty of Informatics
Masaryk University Brno, Czech Republic

Abstract

We introduce the problem of estimation of state space parameters, argue that it is an interesting and
practically relevant problem, and study several simple estimation techniques. Particularly, we focus on
estimation of the number of reachable states. We study techniques based on sampling of the state space
and techniques that employ data mining techniques (classification trees, neural networks) over parameters
of breadth-first search. We show that even through the studied techniques are not able to produce exact
estimates, it is possible to obtain useful information about a state space by sampling and to use this
information to automate the verification process.

Keywords: explicit model checking, state space parameters, state space size, data mining

1 Introduction

Explicit model checking is a state-of-the-art technique for verification of asyn-
chronous concurrent systems. This technique is based on construction of a reachable
part of a model state space. In this work we are concerned with techniques for es-
timation of state space parameters, particularly with estimation of the number of
reachable states. Estimation of state space parameters is not a typical problem in
verification. Nevertheless, we argue that it has a good motivation — there are even
several independent reasons to study this problem.

Tuning of model checking algorithms. Estimation of state space parameters can
be useful for tuning model checking algorithms, for example to select a suitable size
of hash table or cache [10], [7] or to choose a proper I/O efficient graph exploration
algorithm [11,4].

Parameter estimations are particularly useful in the distributed environment.
If we do not use enough workstations, then the computation runs out of memory.
If we use too many workstations, then the performance deteriorates due to unnec-
essary communication overhead [14]. Estimate of the number of reachable states

1 Partially supported by GA CR grant no. 201/07/P035.
2 Partially supported by GA CR grant no. 201/06/1338.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

40

PELANEK, SIMECEK

can help us choose the suitable number of workstations for a given model. Param-
eter estimations can also be used to select an appropriate reduction technique or
to choose an algorithm from several competing ones [18]. Another application in
a distributed environment is the selection of a suitable cycle detection algorithm.
There are many distributed cycle detection algorithms which can be used for LTL
verification of large models (see [2] for an overview); each of these algorithms is
suitable for a certain class of graphs.

Information for users. The run-time of a model checker is often long. It would
be very convenient for the user to have the estimation of the remaining time. Such
an estimation is not just of practical interest, it has also psychological advantages —
if users are informed about the remaining time, they are more willing to wait [13].

Selection of models for experiments. Experimentalists need a lot of models in
order to convincingly show advantages of novel techniques and to properly eval-
uate known techniques. It is often desirable to have models with a specific state
space size. Consider, for example, experiments with distributed algorithms and
algorithms which are concerned with memory consumption (state space caching,
external memory algorithms). For such experiments, it is needed to have models
with a state space size around the limits of a single machine. It is laborious and
computationally intensive to find models with specific state space size. Techniques
for estimating the reachable state space size can significantly speed up this effort
and thus lead to an improvement in experimental standards.

Our aims and contributions in this work are the following:

(i) Study of simple techniques for estimation of state space parameters. Particu-
larly, we study techniques based on sampling of the state space and techniques
that employ data mining techniques (classification trees, neural networks) over
parameters of breadth-first search.

(ii) Evaluation and comparison of techniques. We evaluate these techniques over
a large benchmarks set and compare their performance.

(iii) Summary of techniques potential. We formulate what is reasonable to expect
from studied techniques.

Note that most of the techniques presented in this work could be further im-
proved by careful tuning and optimisation, but that is not the aim of the presented
work.

Related Work The problem of estimating state space parameters did not re-
ceive much attention so far. Most of the relevant work deals only with techniques
based on analysis of model structure and was not very successful. Watson and
Desrochers [24] proposed a technique for estimation of the size of Petri nets based
on a static analysis of the net. Estimation is quite accurate, but it is limited to a
specific type of models. Chamillard et al. [6] proposed technique based on the linear
regression measures given by static metrics of the model. However, the technique
does not work very well. Peng and Makki [20] described a technique for compar-
ison of two state space sizes; their technique is independent of the specification
language. Sahoo et al. [22] use sampling of the state space to decide which BDD
based reachability technique is the best for a given model.

41

PELANEK, SIMECEK

2 Background

In this section we discuss the state space parameters that we are interested in. We
also describe the experimental data and the sampling techniques that we have used
for evaluation.

2.1 State Space Parameters

We view a state space as a simple directed graph G = (V, E, vg) with a set of vertices
V', a set of directed edges £ C V x V', and a distinguished initial vertex vy. Vertices
are states of the model, edges represent valid transitions between states. For our
purposes we ignore any labeling of states or edges. We are concerned only with the
reachable part of the state space.

An average degree of G is the ratio |E|/|V]. A strongly connected component
(SCC) of G is a maximal set of states C' C V such that for each u,v € C, the vertex
v is reachable from « and vice versa. Let us consider the breadth-first search (BFS)
from the initial vertex vg. A level of the BFS with an index k is a set of states with
distance from vy equal to k. The BFS height is the largest index of a non-empty
level. An edge (u,v) is a back level edge if v belongs to a level with a lower or the
same index as .

2.2 Ezxperimental Environment

Reported techniques are implemented in the DiVinE environment [3]. In order to
evaluate estimation techniques, we perform experiments over the BEEM benchmark
set [17]. The web portal of the benchmark set contains all the used models and it
also presents state space properties of models.

For the evaluation we use 160 models from the BEEM set. The state space size
of used models is between 20,000 and 20,000,000 states (note that for the evaluation
we use only models for which we are able generate the full state space). Used models
are divided randomly into a training set and a testing set, each of them contains
80 models. Reported estimation techniques are trained (calibrated) on the training
set and their success is measured over the testing set.

2.3 Sampling Techniques

All our estimation techniques are based on the following approach: we take a sample
of the state space and according to the information collected by this sample we do
the estimation. We use mainly the classical search techniques to make samples:

* breadth-first search (BFS) sample: first s states of BFS,

* depth-first search (DFS) sample: first s states of DFS (the size of stack was
limited to 10,000 states during the search),

e random walk (RW) sample of size s: we run random walks through the state
space until we find s states.

Beside these classical techniques, we also introduce a special kind of random
walk. The aim of this technique is to traverse a small, but representative portion of

3

42

PELANEK, SIMECEK

the state space. The technique uses a hash function to decide which states should
be stored and explored, therefore we denote it as Hash-RW. Unlike memoryless
random walk, it uses a state repository to recognize visited states. To increase the
probability that the walk visits states lying on various paths in various distances
from the initial state, the search traverses through up to C states in a parallel
fashion, where C' is a given constant number.

In essence, this random walk works in a similar way as BFS. BF'S works by levels:
after generation of level 4, level i+1 is generated using the successor function applied
to states in level ¢. Hash-RW works in the same way, but it tries to traverse only
a subset of states of size C from each level. The subset of states to traverse is
determined by a special decision function. The function computes a hash of a given
state and if it is smaller than a certain limit, it decides to store the state to the
repository and the exploration queue. The limit is updated after computation of
all successors of the last level to keep number of states in the next level close to
C. The aim of this decision function is to reduce the number of traversed back
level edges. In some cases the basic version of Hash-RW explores large portion of a
state space. Therefore, we use additional finishing conditions; these conditions are
described together with a specific usage of Hash-RW in Section 4.

3 Estimation of the Number of Reachable States

In this section we discuss techniques for estimating the number of reachable states
of a given model. Our preliminary experiments showed that simple techniques are
not able to produce accurate absolute estimates. Therefore, we classify models
in three classes and try to estimate these classes. In the following we introduce
the classification, discuss two approaches for the estimation of the classification
(one based on sampling and one based on BFS parameters), and then we combine
techniques and compare them.

3.1 Classification

Using simple techniques, it seems impossible to estimate the number of reachable
states with a high accuracy. However, for practical applications this is not neces-
sary. It is often sufficient to have an ‘order of magnitude’ estimate. Therefore, we
introduce three classes, which produce the order of magnitude estimate and study
techniques for estimating the classification. This approach also simplifies evaluation
and comparison of estimation techniques.

The classes are not defined in absolute terms (by number of states), but rather
relatively: we suppose that a sample of a state space is generated and we define
the classes with respect to how many times the total number of reachable states is
larger than the sample. We have two reasons to adopt this approach. Firstly, it
enables us to do meaningful experiments with estimation techniques on state spaces
of different sizes. Secondly, the speed of state generation significantly differs for
different models [17], i.e., the relative estimate is more useful for estimating the
model checker run time.

For our experiments, we have used three classes which we believe have practical
substantiation. Let R be the ratio of the total number of reachable states to the

4

43

PELANEK, SIMECEK

number of the taken sample:

e Class 1, 1 < R < 4. Models in this class can be verified. It should be sufficient
to just wait or to slightly tune the model checkers parameters (e.g., use a more
appropriate hash table size, turn on a reduction technique).

e Class 2, 4 < R < 32. To check a model in this class, it is necessary to use
an aggressive reduction technique and/or distributed computation. It should be
possible to verify the model as it is, but it may be a bit complicated.

* Class 3, 32 < R. Models in this class seem out of reach (if the sample is large).
It is probably necessary to apply abstraction to these models.

For calibration and evaluation of class estimation techniques we use training
and test data of the following form: input = model + sample size, output = class.
We have used several sample sizes for each model; both training and testing set
contained approximately 320 inputs. Note that we work only with models for which
we know the size of the state space, i.e., we know the correct class.

For each estimation technique we report: success rate — the ratio of inputs
correctly classified, major mistakes — the ratio of inputs classified totally incorrectly
(i.e., class 1 classified as class 3 or vice versa).

3.2 Techniques Based on Sampling

A straightforward approach for estimating the number of reachable states is the
following:

(i) Take two independent random samples of size s of reachable states.
(ii) Let the number of states which occur in both samples be .

(iii) Estimated number of reachable states is s/x (in other words, the ratio x/s is
expected to be close to s/n, where n is the number of reachable states).

However, this straightforward approach cannot be realized — without actually
generating all reachable states, there is no way to obtain two independent random
samples of reachable states. The straightforward way to obtain a random reachable
state is to use random walk from the initial state. However, the chance of picking
a state by this method is far from uniform [19], i.e., this method can not be used
to obtain a random sample.

Nevertheless, the outlined method can be used even if samples are not completely
independent and random. We use the BFS, DFS, and RW samples (as described
in Section 2). Results in Fig. 1. show the relation between the ratio z/s and
the correct estimate s/n. Results are show for all three combinations of the three
sampling methods, these results are obtained on the training set. Based on the data
from the training set we identify decision values which are used for the classification
of the testing set (more specifically, the decision values were identified automatically
with the use of R software [21]). For example, for the DFS x RW sampling method
we use the following values:

e If /s >=0.401 then output ‘C1’.
e If /s < 0.401 A x/s >=0.096 then output ‘C2’.

5

44

PELANEK, SIMECEK

o o
= o ® ol —
= ° g e ce (=2
g9 .. o £97
5] B Se° e 3] o
3 e 0%, 2
2o - PN 2o —_—
JERSH °° e o ° Lo i
E P o £ |
n $°0 2 %)
[T w, o o [T
oo 2 oo oo o
3 . N :
o] o %o °
o | o | - —
S 5
0.0 02 0.4 0.6 0.8 1.0 cl c2 c3
real sample size Class
o o
= ° o . g 2 — B
c o o ° e oo IR .
S3 . e e % T g 531 .
] o ° ° oo ° e ;
1) O P T O & ;
52 . ° <o 5ol .
£°] & o g oaTe o £° .
Z o ¢ o 2o 0 ° T N
2q| f %un:’é’ ° % o o B ; H
ES] et fo T xS 3
x 82 Good ° o x : §
» PR A n — —_—
LN @ 020 2@ o ;
Qo] s {‘,%5 8os oo |
s ‘ —
o] &*° =y :
© T T T T T © T T T
0.0 02 . . 0.8 1.0 cl c2 c3
real sample size Class
o o
S e o oo oo e mo o ogew S J— —]
[=2rY o, 5 0° =2
S31 ", L et 834
8 § . e L Tt 3 :
(23 o % e® o % 2o ;
= 85 | i
= W e 8% cac = 3 3
= Lredo 0 o = i
Esfiglll - g3 |
x H o o JR
I L &
Do | Tt " 0 . .
Rk gﬂ B 0 s
oo
o | o] -
St T T T T T = : : :
0.0 02 0.4 0.6 0.8 1.0 cl c2 c3
real sample size Class

Fig. 1. Figures on the left show scatter plot of the ratio of sample size to number of reachable states and
the relative size of intersection of two samples. Figures on the right show relative sizes of intersections for
each class using the boxplot method (the upper and lower lines are maximum and minimum values, the

middle line is a median, the other two are quartiles; circles mark outliers).

o If z/s < 0.096 then output ‘C3’.

Using this classification method, we classify the data in the testing set. Table 1.
gives results. It shows that the best results are obtained using the intersection of

DFS and RW samples — success rate is 72%.

3.8 Techniques Based on BES Parameters

The sizes of levels follow a typical pattern. If we plot the number of states on a
level against the index of a level we get a BFS level graph. Usually this graph has
a ‘bell-like’ shape [16] (see Fig. 2. for several such graphs; more BFS level graphs
are on the BEEM web page [17]). Our goal is to use the knowledge of this typical
behaviour of breadth-first search and to estimate the size of the state space based
on the first k£ BFS levels (k is determined by the size of a sample).

6

45

PELANEK, SIMECEK

BFS x DFS DFS x RW BFS x RW
El E2 E3 El E2 E3 El E2 E3
C1|31% 6% 0% C1|34% 2% 0% C1|25% 11% 0%
C2| 8% 19% 12% C2| 8% 29% 3% C2| 4% 31% 4%
C3| 3% 9% 12% C3| 3% 12% 9% C3| 3% 10% 11%

success rate 62%

major mistakes 3%

success rate 72%

major mistakes 3%

Table 1

success rate 67%

major mistakes 3%

Results of estimation techniques based on sampling. Rows (C1, C2, C3) are correct classifications,
columns (E1, E2, E3) are estimated classifications. Results are given as percents, numbers are rounded.

rether.6

80000

40000

lamport.2

"
SN
70000 ?‘ 35000 o Y
it 7 y
it / %
60000 P 30000 ; \
0 1 »] \
£ 50000 fij 1 £ 25000 7 Y
g ViR g i \
& i 1A > i |
S 40000 t 1 S 20000 i Y
3] i + 3 / ki
2 4 £ i 5
£ 30000 i E 15000 / \
2 h 2 ¢ Y
20000 1 10000 7 \
i \
4 \,
10000 Vi 5000 Fal ",
0 A 0 Lusmaet” M
0 50 100 150 200 250 300 350 400 0 10 20 30 40 5 60 70 80
Level Level
lifts.5 bakery.2
6000 1800
7
A 1600 /
5000 AN 2
[t 1400 i i
[i X
8 4000 Ad i, g 1200 / 1
= # Y k| / i
2 sl 1 2 1000 e R
o 3000 / i ° el A
H Ji | 8 800 7 1
E e \ E 1 Y
2 2000 I h! 2 600 7 \
£ §]
I 5 wr] i
1000 4 o / \
J"‘f * 20058 ¢ "
7 m
0 S 0

80 20 40

Fig. 2. BFS level graphs. For simple models the curve is smooth and bell-like, for more complex models
the graph is a bit ragged.

3.3.1 FEstimation by Human
As the first step, we have performed experiments with classification by human (one
of the authors). The human is shown a graph of first k levels (see Fig. 3. for
examples) and based on this information estimates the classification. Results in
Table 2. suggest that a human can perform classification reasonably well. This is
an interesting observation — it suggests that the BF'S level graph may be a useful
output of a model checker during the state space generation. Note that this is a
rather cheap operation both in terms of computation overhead and implementation
effort.

Based on the experience with human estimation, we choose the following param-
eters as inputs for automatic classification methods (let k& be the number of BFS
levels in the sample):

e LA — ratio of size of the last explored BFS level to the average size of the first
7

46

PELANEK, SIMECEK

production_cell.4 szymanski.2
3500 4000

3000 f 3500
2500 K 3000 7
2500
2000
2000

1500
1500

Number of states
Number of states

1000 o 1000
e 500 o

500

0 5 10 15 20 25 30 35 40 0 5 10 15 20
Level Level

rether.3 collision.2
600 70000

500 4 60000 =
5 F A
'

50000 /
400
40000 i

300 i
30000

Number of states

200

Number of states

20000

100 e 10000

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60
Level Level

Fig. 3. Examples of partial BFS level graphs as used for human classification.

k levels;

e LM — ratio of size of the last level to the maximal size of a level in the first k
levels;

e INF (inflexion) — boolean value, zero means that the difference of sizes of con-
secutive levels is increasing (up to k), i.e., there is no ‘inflection point’;

e HE (height estimate) — the ratio of k and an estimated BFS height; as an estimate
of the BFS height we use the median height from the training set of models of
the corresponding type (see Section 4.2).

8.8.2 Classification Tree
Classification tree [5] is a data mining technique used to predict membership of
cases in the classes of a categorical dependent variable from their measurements
on predictor variables. Classification tree is built through a binary recursive par-
titioning. Splitting conditions are determined automatically by an analysis of the
training data.

Fig. 4. shows a classification tree constructed on our training data (the tree was
constructed using R software [21]). Prediction results for the test data are given in
Table 2.

3.3.8 Neural Network
Neural network is a machine-learning technique that simulates a network of commu-
nicating nerve cells. The network is a weighted graph, the learning is accomplished
by modification of weights of edges. This process can be automated using a suitable
learning algorithm.

We use a neural network with:

e 4 input neurons (parameters LA, LM, INF, and HE),
8

47

PELANEK, SIMECEK

LM < 0.997

LA < 3.805

Fig. 4. Classification tree based on BFS parameters.

human classification tree neural net

El E2 E3 El E2 E3 El E2 E3
C1|21% 18% 2% C1]16% 20% 1% C1|23% 13% 1%
C2| 2% 18% 13% C2| 2% 24% 13% C2| ™% 25% 7%
C3| 3% 6% 1% C3| 0% 10% 14% C3| 2% 14% 7%

success rate 56% success rate 54% success rate 55%
major mistakes 5% major mistakes 1% major mistakes 3%
Table 2

Results of estimation techniques based on BFS parameters on on the test data. Rows (C1, C2, C3) are
correct classifications, columns (E1, E2, E3) are estimated classifications. Results are given as percents,
numbers are rounded.

e 4 hidden neurons,
* 3 output neurons (one for each class).

For implementation we use FANN library [15]. The network is trained on the
training data; we use the default learning algorithm of the FANN library. Results
for the test data are in Table 2.

3.4 Combinations and Comparison

Finally, we combine estimates produced by the five above presented automated
techniques (three sampling techniques, classification tree, and neural network). The
combined estimate is obtained in the following way:

¢ If four techniques agree on the estimate, we output the given class.

e If the estimates are divided between two neighbouring classes, we output ‘unde-
cided estimate’ (E12, E23).

e Otherwise, we output ‘don’t know’ (DN).
9

48

PELANEK, SIMECEK

El E12 E2 E23 E3 DN
Cl]18% 15% 2% 0% 0% 1%
C2| 1% 4% 19% % 0% 8%
C3| 0% 1% 4% 9% 5% 5%

Table 3
Combined estimations from the five presented automated techniques. ‘Exy’ means that the estimate is
between classes x and y, DN means don’t know.

Table 3. presents results obtained in this way. We see that there are no major
mistakes, the number of misses is low (7%), and at the same time the number of
undecided and don’t know results is reasonable.

Let us compare the studied techniques. Better results can be achieved using the
sampling approach: 70% success rate compared to 55% success rate of the BFS based
techniques. However, the sampling approach is less practical: it requires at least
two samples of the state space and it cannot be easily used on-the-fly (during the
state space generation). Techniques based on BFS parameters are less precise, but
they can be used very easily during the BFS traversal of the state space — after the
traversal of each BF'S level we just plug the data into the prefabricated classification
tree or neural network. Moreover, we suppose that it should be possible to further
improve BFS based techniques by considering more parameters for decision and by
incorporating domain specific information (i.e., by training techniques on similar
data as they will be applied to).

4 Estimation of Other Parameters

In this section we study techniques for estimation of some other state space param-
eters: the average degree, the BFS height, the number of back level edges, and the
size of the largest SCC.

4.1 Awverage Degree

The average degree usually corresponds to the amount of non-determinism in the
system, which substantially influences usefulness of partial order reduction [9]. Av-
erage degree can also be understood as a quotient of the number of edges and
the number of states. Since a complexity of many graph algorithms depends on a
number of edges, estimation of graph edges amount is crucial.

We found out that the vertex degree is almost evenly spread among all vertices
of the graph. Therefore, it should be possible to estimate the average degree from
quite a small sample of the state space. Fig. 5. shows estimation of the average
vertex degree gained by exploration of 5% of the state space. The figure shows
results computed by three sampling techniques: BFS, Hash-RW (with C' = 500)
and a simple random walk. For each technique we moreover compute ratios of an
estimate and a real value of an average degree and study their distribution. The
best results are provided by Hash-RW (standard deviation of the ratio is 0.17). BFS
also provides good results (standard deviation is 0.23). Estimates produced by the
random walk are poor (standard deviation is 0.44).

10

49

PELANEK, SIMECEK

BFS Hash-RW
16 T T T T T T T 16

14+ o 1 14+
12 & 1 12+ w

Estimates
Estimates

o N b O ®
°
o
o

(= N R
?
%
o

0 2 4 6 8 iO i2 i4 16 0 2 4 6 8 iO i2 i4 16
Real Values Real Values
Random Walk
16
14 +
12 +

Estimates

8

°
°

o
0 © o° ©
o % o
? o 5o
BT

of %o~ ©

o N A O ©

0 2 4 6 8 10 12 14 16
Real Values

Fig. 5. Graphs show an average degree from the whole state space (Real value) and an average degree from
a given sample (Estimate).

We conclude that average degree can be estimated quite easily, nevertheless it
matters which technique is used for sampling.

4.2 BFS Height

Estimation of BFS height can be used for estimation of state space size (see Sec-
tion 3.3). It can also be used to tune several verification techniques: setting depth
limit for random walk search [19] and explicit bounded search [12] ; or setting
parameters for techniques using stratified caching [8].

Models in our benchmark have BFS heights mostly between 20 and 600. This
interval can be further specified if we restrict to a certain type of models. Fig. 6.
shows BFS heights of models according to their type (in Section 3.3 we use median
values as BFS height estimates).

We provide also an estimation technique based on sampling. First, we reduce
BFS height estimation to the estimation of the largest BFS level index. Since we
expect bell-like shape of the BFS level graph (see Section 3.3), the largest level has
an index equal approximately to the half of the BFS height of a state space. Hence,
we can estimate the index of the largest level and multiply it by two.

To identify the index of the largest level, we use Hash-RW with a special finishing
condition. The basic idea of the finishing condition exploits estimation of BF'S level
widths from Hash-RW level widths and numbers of Hash-RW levels successors.
While absolute values of BF'S level sizes estimates are quite inaccurate, their relative
sizes are preserved — if real BF'S level sizes are growing with higher index, estimated
sizes are usually also growing and if real sizes are falling, estimated sizes are also

11

50

Fig. 6. BFS heights sorted by the type of the model. Results displayed using the boxplot method (see

PELANEK, SIMECEK

600
L
o

500
L

400
L

300
L

200
L

T

T T
communication-protocol controller

Fig. 1. for description).

leader-election

mutex puz;

zle

Largest level index estimates BFS height
300 T T
140
°
120 | 250
100 200
g g
e %7 ° ° E 1801 ° a0
B e “c e o i S S
MRS ° 100 @ %0 ° e
40 ° o 0 ° oo ® o
9% o °© ° 50 | °60 °
20 oﬁ@% 29% °% é °
o o
0 0
0 20 40 60 80 100 120 140 0 50 100 150 200 250 300
Real Vaues Real Vaues

Fig. 7. Estimation of the index of the largest level and BFS height (8 dots are outside the displayed area).

falling. Due to these estimates we are able to recognize local maximums in the
graph of BFS levels using Hash-RW. We ignore small local maximums (specified by
a constant which is derived from the training set — the local maximum is small
if it is up to 20% larger than the last BFS level size estimate) and the search is
stopped when a big local maximum is identified. During the reported experiments
Hash-RW explored 6.2% of the state space on average.

Fig. 7. shows estimates of the index of the largest BF'S level and the BF'S height.
It is apparent that computing the BFS height as a double of the index of the largest
BFS level brings an additional inaccuracy, but estimates are still reasonable. To
evaluate the estimates we again compute ratios of estimates and correct values and
their standard deviations. For the index of the largest level the standard deviation
is 0.72; for the BFS height the standard deviation is 0.84. This means that BFS
height estimates usually do not exceed double of the real height and they are rarely
lower than one fifth of the real height.

4.8 Back Level Edges

Some algorithms work more efficiently on models with no or only few back level
edges [1], [25]. Therefore, it can be useful to know a ratio of back level edges from
all edges in the graph.

12

51

PELANEK, SIMECEK

BFS Hash-RW
1 : : : : 1
08 E 08
o ° R
g o6l B o6t 0
3 B
= = .
E o4t ® £ o4t °
g H i °°
02 o 5%, o — 02 s L. 8
3 0% : S o 9°, ﬁ 0 N
NI R AL AR
0 02 04 06 08 1 0 02 04 06 08 1

Real Ratio Real Ratio

Fig. 8. Estimation of back level edges ratio.

Back level edge is a notion closely connected to BFS. There is a straightforward
method to determine how much back level edges is among all transitions — to
compute the number of all edges A and back level edges B in a sample given by
BFS limited to 5% of the state space. Then we estimate a ratio of back level edges
as B/A. Since the number of back level edges is naturally growing as more of the
state space is explored, our estimates are practically always below the real values
(see Fig. 8.) and the standard deviation of the ratio of estimated and real values is
0.42.

Hash-RW can be used as well. The standard deviation of the ratio is worse
(0.58), but the technique can find back level edges unreachable by limited BFS,
since back level edges are often hidden in high BF'S levels. Consequently, Hash-RW
is more successful in deciding, whether the given state space has any back level
edges or not (90% success rate for BFS, 99% success rate for Hash-RW).

4.4 Size of the Largest SCC

State spaces have a specific structure of strongly connected components [16], par-
ticularly with respect to the size of the largest SCC. In [18], we identify three main
classes of state spaces: acyclic state spaces, state spaces with small SCCs, and state
spaces with one large strongly connected component (more than 50% states). This
classification is relevant for example for selection of a distributed cycle detection
algorithm [2] or an SCC detection algorithm.

For estimating this classification we use simple random walk exploration [19].
We run 100 independent random walks through the state space. Each random walk
starts at the initial state and is limited to at most 2000 steps. During the walk
we store visited states, i.e., path through the state space. If a state is revisited
then a cycle is detected and its length can be easily computed. At the end of the
procedure, we return the length of the longest detected cycle.

Using training data we identified the following bounds for estimation:

e If the longest detected cycle is zero (i.e., no cycle is detected) then we estimate
that the state space is acyclic.

e If the longest detected cycle is shorter then 69 then we estimate that the state
space contains only small components.

e Otherwise, we estimate that the state space contains one large component.

13

52

PELANEK, SIMECEK

estimated estimated estimated

acyclic small components large component

acyclic 28% 0% 0%
small components 0% 16% 4%
large component 0% 18% 34%

Table 4
Results for SCC structure estimation technique.

Results of this estimation technique over testing data are in Table 4. The method
can safely distinguish between acyclic and cyclic state spaces, models with large
component are sometimes wrongly classified as models with small components.

5 Conclusions and Future Work

In this work we study simple techniques for estimation of state space parameters.
Particularly, we focus on techniques based on sampling of the state space. We
employ breadth-first search sample, depth-first search sample, random walk, and a
novel hash-RW technique. The main messages of our work are:

e Estimation of state space parameters is an interesting problem with applications
particularly in the distributed environment.

e Some parameters are easy to estimate (e.g., the average degree), other parameters
are rather difficult to estimate (e.g., the number of states, the number of back
level edges).

¢ Selection of a sampling technique matters. Each sampling technique is suitable
for estimation of different parameters.

¢ It seems not reasonable to expect accurate estimates of the number of reachable
states. However, when we restrict to three estimate classes and combine several
methods, we can get reasonable and useful results. Particularly, it is possible to
safely distinguish between huge state spaces and state spaces only slightly larger
than a taken sample.

There are several directions for the future work. In this work we restricted
our attention to simple techniques. It should be possible to get better estimates by
optimizing presented techniques, by parameter tuning, and by incorporating domain
specific information.

As an output for a user of a model checker, it would be useful to have on-the-
fly estimates of the number of states. Such estimates would be updated regularly
during the search (e.g., after the traversal of each BFS level). It would be interesting
to have an on-the-fly estimate as an absolute number and to study whether (how
fast) the estimate converges to the correct value.

Finally, our long term goal is to use parameter estimates for automation of the
verification process [18], i.e., for selection of verification techniques, algorithms, and
parameters values.

14

53

PELANEK, SIMECEK

References

[1] J. Barnat, L. Brim, and J. Chaloupka. Parallel breadth-first search LTL model-checking. In Proc. 18th
IEEE International Conference on Automated Software Engineering, pages 106-115. IEEE Computer
Society, 2003.

[2] J. Barnat, L. Brim, and 1. Cerna. Cluster-Based LTL Model Checking of Large Systems. In FMCO’05,
volume 4111 of LNCS, pages 259-279. Springer, 2006.

[3] J. Barnat, L. Brim, I. Cernd, P. Moravec, P. Rockai, and P. Simegek. DiVinE - A Tool for Distributed
Verification. In CAV’06, volume 4144 of LNCS, pages 278-281. Springer, 2006. The tool is available
at http://anna.fi.muni.cz/divine.

[4] Jiri Barnat, Lubos Brim, and Pavel Simecek. 1/O Efficient Accepting Cycle Detection. In Werner
Damm and Holger Hermanns, editors, CAV, volume 4590 of Lecture Notes in Computer Science, pages
281-293. Springer, 2007.

[5] L. Breiman. Classification and Regression Trees. CRC Press, 1984.
[6] A. Chamillard. An Empirical Comparison of Static Concurrency Analysis Techniques, 1996.

[7] P. C. Dillinger and P. Manolios. Enhanced Probabilistic Verification with 3Spin and 3Murphi. In Proc.
of SPIN Workshop, volume 3639 of LNCS, pages 272-276. Springer, 2005.

[8] J. Geldenhuys. State Caching Reconsidered. In Proc. of SPIN Workshop, volume 2989 of LNCS, pages
23-39. Springer, 2004.

[9] P. Godefroid. Partial-order methods for the verification of concurrent systems: an approach to the
state-explosion problem, volume 1032 of LNCS. Springer, 1996.

[10] M. Hammer and M. Weber. ”To Store or not to Store” Reloaded: Reclaiming Memory on Demand. In
Formal Methods for Industrial Critical Systems (FMICS’06), 2006. To appear.

[11] Irit Katriel and Ulrich Meyer. Elementary Graph Algorithms in External Memory. In Algorithms
for Memory Hierarchies, volume 2625 of Lecture Notes in Computer Science, pages 62-84, Berlin,
Germany, 2003. Springer.

[12] P. Kréél. Distributed Explicit Bounded LTL Model Checking. In Proc. of Parallel and Distributed
Methods in verifiCation (PDMC’03), volume 89 of ENTCS. Elsevier, 2003.

[13] D. H. Maister. The Psychology of Waiting Lines. In J. A. Czepiel, M. R. Solomon, and C. Suprenant,
editors, The Service Encounter. Lexington Books, 1985.

[14] Richard P. Martin, Amin M. Vahdat, David E. Culler, and Thomas E. Anderson. Effects of
communication latency, overhead, and bandwidth in a cluster architecture. SIGARCH Comput. Archit.
News, 25(2):85-97, 1997.

[15] S. Nissen. Implementation of a fast artificial neural network library. Technical report, Department of
Computer Science, University of Copenhagen, 2003.

[16] R. Peldnek. Typical Structural Properties of State Spaces. In Proc. of SPIN Workshop, volume 2989
of LNCS, pages 5-22. Springer, 2004.

[17] R. Peldnek. Web Portal for Benchmarking Explicit Model Checkers. Technical Report FIMU-RS-2006-
03, Masaryk University Brno, 2006. http://anna.fi.muni.cz/models.

[18] R. Peldnek. Model Classifications and Automated Verification. In Proc. of Formal Methods for
Industrial Critical Systems (FMICS’07), 2007. To appear.

[19] R. Peldnek, T. Hanzl, I. Cernd, and L. Brim. Enhancing Random Walk State Space Exploration. In
Proc. of Formal Methods for Industrial Critical Systems (FMICS’05), pages 98-105. ACM Press, 2005.

[20] W. Peng and K. Makki. On Reachability Analysis of Communicating Finite State Machines. In
Proc. of International Conference on Computer Communications and Networks (ICCCN ’95), page 58,
Washington, DC, USA, 1995. IEEE Computer Society.

[21] R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2006. ISBN 3-900051-07-0.

[22] D. Sahoo, J. Jain, S. K. Iyer, D. Dill, and E. A. Emerson. Predictive Reachability Using a Sample-Based
Approach. In Proc. of Correct Hardware Design and Verification Methods (CHARME’05), volume 3725
of LNCS, pages 388-392. Springer, 2005.

[23] Ulrich Stern and David L. Dill. Parallelizing the Mur¢ Verifier. In Orna Grumberg, editor, CAV,
volume 1254 of Lecture Notes in Computer Science, pages 256-278. Springer, 1997.

[24] J. F. Watson and A. A. Desrochers. A Bottom-Up Algorithm for State-Space Size Estimation of Petri

Nets. In Proc. of International Conference Robotics and Automation (ICRA’93), volume 1, pages
592-597. IEEE Computer Society Press, 1993.

[25] Rong Zhou and Eric A. Hansen. Breadth-First Heuristic Search. In Shlomo Zilberstein, Jana Koehler,
and Sven Koenig, editors, ICAPS, pages 92-100. AAAI, 2004.

15

54

Chapter 5

Enhancing Random Walk State
Space Exploration

In this paper we study the behavior of random walk techniques in the context of
model checking. It turns out that it is rather difficult to understand the behaviour
of even the simple random walk. Using the insight gained by our study of simple ran-
dom walk, we propose several enhancements, e.g., combination with local exhaustive
search, caching, or pseudo-parallel walks.

Thorough this work we focus on important but often neglected experimental is-
sues like length of counterexamples, coverage estimation, and setting of parameters.
We also test algorithms on inputs of different types — except for state spaces generated
by explicit model checkers, we also use random graphs and regular graphs.

This paper was published in proceedings of Formal Methods for Industrial Critical
Systems (FMICS) in 2005:

e R. Peldnek, T. HanZl, I. Cern4, and L. Brim. Enhancing random walk state space
exploration. In Proc. of Formal Methods for Industrial Critical Systems (FMICS’05),
pages 98-105. ACM Press, 2005.

The author of the thesis is one of four coauthors of the paper and has done major
part of both experiments and writing.

55

Enhancing Random Walk State Space Exploration -

Radek Pelanek

Tomas HanZl

lvana Cerna

LuboS Brim
Department of Computer Science, Faculty of Informatics
Masaryk University Brno, Czech Republic
{xpelanek,xhanzl,cerna,brimy@fi.muni.cz

ABSTRACT

We study the behavior of the random walk method in the
context of model checking and its capacity to explore a state
space. We describe the methodology we have used for ob-
serving the random walk and report on the results obtained.
We also describe many possible enhancements of the random
walk and study their behavior and limits. Finally, we dis-
cuss some practically important but often neglected issues
like counterexamples, coverage estimation, and setting of
parameters. Similar methodology can be used for studying
other state space exploration techniques like bit-state hash-
ing, partial storage methods, or partial order reduction.

Categories and Subject Descriptors

D.2.2 [Software Engeneering]: Software/Program Verifi-
cation—model checking

General Terms
Algorithms, Verification

Keywords

Random walk, State space exploration, Formal verification

1. INTRODUCTION

In this work, we are concerned with verification of closed
systems (i.e., systems given together with their environ-
ment). Verification of such system can be viewed as a search
in the state space of the system for an error state. There
are two basic approaches to the verification problem. Test-
ing explores some paths through the state space; the selec-
tion is almost exclusively based on informal and heuristical
methods or on a random choice. This approach is fast, has

*Research supported by the Grant Agency of Czech Repub-
lic grant No. 201/03/0509 and by the Academy of Sciences
of Czech Republic grant No. 1ET408050503

low memory requirements and is successful at finding obvi-
ous bugs. The disadvantages are that it is incomplete and
it often misses corner case bugs. Model checking explores
all paths through the state space. This approach can find
corner case bugs and can guarantee the correctness of the
system. The disadvantage is that it is very computationally
expensive. In this work we try to combine advantages of
both approaches: we take the random walk method (testing
approach) and try to enhance it with some exhaustiveness
(model checking approach). Particularly, we address the fol-
lowing issues:

e How successful is random walk at exploring state spaces?
How large portion of the state space can be effectively
explored by the basic random walk method? What is
the behavior of random walk on practical examples?
Can it be theoretically explained and predicted?

e How can we enhance random walk method by using
additional memory? Should the available memory be
used rather for local exhaustive searches or for caching
already visited states? What are the other possible
ways how to use the memory?

We use an experimental approach to address these issues.
We performed experiments on a large set of graphs corre-
sponding to state spaces of real systems as well as on random
and regular graphs. Our results are both positive and neg-
ative. On the positive side, we find that with the enhanced
random walk it is feasible to visit most states in the state
space with reasonable memory requirements (up to 20 times
smaller than for classical exhaustive search). On the nega-
tive side, we find that the behavior of random walk methods
is very dependent on the specific state space, that it is very
difficult to predict and that 100% state space coverage is not
usually possible.

Related Work

The random walk method was first applied to model check-
ing by West [24] who demonstrated on a case study that
the random walk could be a reasonable technique for find-
ing bugs in real models. Recently, random walk has been

Permission to make digital or hard copies of all or part of this work for used for verification in the model checker Lurch [18, 17].
personal or classroom use is granted without fee provided that copies areFormal foundation for model checking by random walk has
not made or distributed for profit or commercial advantage and that copies been given by Grosu and Smolka [9]

bear this notice and the full citation on the first page. To copy otherwise, t0 There is an extensive theoretical work about random walks
reput_)lis_h, to pg}st onfservers or to redistribute to lists, requires prior specific (in the mathematical setting a special case of Markov chains).
petmission anctor a 1ee. Unfortunately, most of the results concern undirected graphs

FMICS'05, September 5-6, 2005, Lisbon, Portugal. . :
Copyright 2005 ACM 1-59593-148-1/05/000%5.00. whereas the state spaces encountered in model checking are

98

56

represented as directed graphs. For directed graphs just pes-
simistic, exponential time bound on the expected coverage
time, is known. There have been several attempts to restrict
the class of models in order to guarantee the effectiveness
of the random walk, e.g., Eulerian directed graph [10] and
systems of symmetric dyadic flip flops [16]. Unfortunately,
the resulting classes of models are very small and are not of
practical interest in model checking.

Pure random walk does not use any memory at all working
with an actual state only and does not store any informa-
tion about previously visited parts of the state space. Partial
search methods presented in [12, 15, 13, 22, 21] can be seen
as enhancing the random walk by some additional memory.
Other partial search methods are based on bit-state hash-
ing [11] and on genetic manipulations [7].

The probabilistic approach is also employed by partial
storage methods. These methods cover the whole state
space and terminate. However, during the exploration only
some states are stored reducing thus the overall memory
requirements. Partial storage methods include state space
caching [6, 23, 5], selective storing [2], and the sweep line
method [3].

Guided search combines the random exploration with the
static analysis of the model. This approach has been used
for guiding toward an error state in A* search algorithm [14,
8, 4, 20] mainly.

A general experience based on all the above mentioned
works is that there is no universal solution in the frame-
work of the random walk based partial methods. The right
choice of a method and/or its parameters depends on the
application and its specific properties. In addition, most of
these papers propose a new single heuristic and demonstrate
its potential on a small set of examples. The experimen-
tal results reported are neither explained nor the proposed
method is compared to others.

The possible way how to make the random walk based
partial search universally applicable is thus not to come up
with ”just another heuristic”. What is really needed is a
formation of a systematic framework for comparing existing
methods accompanied with their exact evaluation on real-
life models. The benefit of having such a sound basis should
be a (semi-automatic or even automatic) method guiding
the user in tuning the random walk based search for the
given model.

Contributions

In this work we try to make a first step toward the above
stated goals. We thoroughly study the behavior of the ran-
dom walk method in model checking and its capacity to
explore the state space. We describe the methodology used
for comparing known heuristics and the obtained results.
We also describe many possible enhancements of the ran-
dom walk and study their behavior and limits. Based on
our experimental work we formulate guidelines for using the
random walk method in model checking, state its limits, and
detail what can and cannot be expected from the method.
Finally, we discuss some practically important but often ne-
glected issues like generating the counterexamples, cover-
age estimation, and setting of various parameters. Similar
methodology can be used for other state space exploration
techniques like bit-state hashing, partial storage methods,
or partial order reduction.

99

2. EXPERIMENTAL SETTING

The work presented in this paper relies on experiments. It
contains observations based on results of measuring various
characteristics related to the random walk technique, rather
than formal analytical theorems and statements. Therefore,
we start by describing the types of graphs that have been
used in our experiments. The graphs can be grouped into
the following three categories.

Random graphs

Random graphs have been used quite often to demonstrate
the behavior of model checking algorithms and techniques.
In [19] we have argued that graphs which occur in model
checking applications have different structural properties than
random graphs. Our experience is that the behavior of the
random walk on random graphs significantly differs from
that on model checking graphs (see Section 3). Therefore
we have used random graphs for comparisons only.

Regular graphs

Regular graphs (e.g., grids, chains, circles) are also unsatis-
factory as models of real-life systems. Nevertheless, regular
graphs are quite suitable for understanding the behavior of
algorithms. In our experiments we have used manually con-
structed regular graphs for testing (and usually falsifying)
hypothesizes about the behavior of the random walk.

Model checking graphs

Most of the experiments have been conducted on graphs
originated from real-life state spaces. We have used a large
set of graphs from our previous work [19]. These graphs
have been attained from six explicit model checking tools.
The list of all the models is given in Table 1, and all the
graphs can be downloaded from [1]. These graphs do not
contain any information about the model (neither atomic
propositions in states nor labels on edges). We have used
the model checking graphs to evaluate how much does the
random walk depend on structural properties of graphs.
Moreover, we have also performed several experiments on
graphs with nodes labeled by atomic propositions and ac-
tion names added to the edges. These state spaces have
been generated using our own explicit model checking tool
DiVinE. The graphs have been used in experiments focused
on the evaluation of the correspondence between the behav-
ior of the random walk and the properties of the models.
All the graphs used in experiments as well as details of
measurements can be found on the web page
http://fi.muni.cz/ xpelanek/random_walk/.

3. PURE RANDOM WALK

In this section we consider the basic form of the random
walk to perform the simple reachability task on a state space
graph. The algorithm starts in the initial state of the graph.
In each step it randomly chooses a successor of the current
state and visits it. If the current state does not have any
successors the algorithm re-starts from the initial state. The
algorithm terminates when a target state is found or when
some given in advance limit on the number of steps is ex-
ceeded. Similarly to other randomized algorithms, we al-
ways run the random walk several times to obtain expected
behavior.

57

From the theoretical point of view the most relevant char-
acteristic of the random walk is the covering time, i.e., the
expected number of steps after which all vertexes of the
graph are visited. For undirected graphs the covering time
is polynomial. For directed graphs the covering time can be
exponential. For restricted classes of directed graphs, like
Eulerian graphs or models of special protocols [16], the cov-
ering time is polynomial. These classes are too restrictive
to be of any practical interest for model checking.

Our goal is to find out how the random walk behaves on
graphs resulting from verification problems. Although the
covering time is not really exponential in practice, it is still
too high to be measured experimentally even for medium
sized graphs (hundreds of states). For this reason we have
measured the coverage, i.e., the ratio of vertexes which were
visited after a given number of steps to all states. In order to
get a deeper insight, we have investigated how various graph
properties can influence the coverage. Here we summarize
our observations. Unless stated otherwise, the observations
relates to experiments on model checking graphs.

Coverage

The coverage increases with the number of computation
steps in a log-like fashion, i.e., at the beginning of the com-
putation the number of newly visited states is high and
it rapidly decreases with time. After a threshold point is
reached the number of newly visited states drops nearly to
zero. After this point it is meaningless to continue in the ex-
ploration. Our experience indicates that this happens when
the number of steps is about ten times the size of the graph.
This is the basic limit on the number of steps that we have
used in our experiments.

Table 1 summarizes the coverage achieved by the pure
random walk on our set of model checking graphs. Note
that the resulting coverage is very much graph dependent.
In some cases the pure random walk can cover the whole
graph, sometimes it covers less than 1% of states.

Correlation with graph properties

In [19] we have studied typical structural properties of state
spaces. A natural question is whether there is any correla-
tion between the efficiency (coverage) of the random walk
and these properties. For example, we have examined the
relation between the coverage of the random walk and the
number of strongly connected components, the average de-
gree, the ratio of back level edges, and the frequency of
diamonds.

We have found out that there is no straightforward corre-
lation with any of these graph properties. The behavior of
the random walk is not determined by a single characteristic
of the given graph but rather by an interplay of several of
them. This means that it might not be possible to predict
the efficiency of the random walk just from the knowledge
of global properties of the state space. The intuition why
this is so is illustrated in Fig. 1. The two graphs have simi-
lar global graph properties, but the efficiency of the random
walk is very different. While the first graph is easily covered,
the random walk will behave poorly on the second one. Note
that graphs of these types occur naturally in model checking.

Another point we would like to stress is that using random
graphs for testing specific random walk based model check-
ing heuristics can be very misleading. Fig. 2 demonstrates
the correlation between the average vertex degree and the

58

100

Figure 1: Graphs with similar properties but differ-
ent random walk coverage.

random walk coverage both for random graphs and model
checking graphs. There is a clear correlation for random
graphs. For model checking graphs such a correlation has
not been observed.

Random gr aphs

100 . ! e
. EXRAR
% N
Lie
80 N
i
70 +
S « e
© .
a 50 +
S .
3 “
.
)
|
20 M
f.
10 *
+ +
¢
0 L L L L
h 1 2 25 B 35 4
Aver age degree
Model checking graphs
100 - . . - .
90 +
+ * N
wl .
.
70 f+
[. .
o ol i to
@ .
> 4 + + +
8 “f . .
N
3
20 + N +
+ 4+ +
w0} e i
[+ h

‘Aver age dégree’

Figure 2: Correlation between the average degree
and coverage for random graphs and model checking
graphs.

Distribution of visits

Our next goal is to find out whether the probability of vis-
iting a given state has an uniform distribution or whether
some states are visited more frequently than the others. We
have found out that the frequency of visits has the power
law distribution. Thus the probability that a given state is
visited is far from being uniform. This leads to the conclu-
sion that the subgraph visited by the random walk cannot
be considered to be a random sample of the whole graph!
We have tried to figure out reasons why some states are
visited much more often than the others. Similarly to the
global coverage, it turns out that there is no single reason.

Figure 3: Behavior of the random walk on a
diamond-like structure; darker vertices are visited
more often

The following explanations come from our experiments.

e If the graph contains many deadlock states, then states
with small depth (distance from the initial state) are
frequently visited as the random walk returns to the
initial state very often.

e If the random walk gets trapped in a small termi-
nal strongly connected component it continues visiting
states in this component only.

e Another scenario leading to frequent visits of states
with small depth is the presence of many long back
level edges.

e An uneven number of visits can be caused by the pres-

ence of diamond-like structures in the graph (see Fig. 3).

For the random walk it is very unlikely to get into the
corner of the diamond, but at the same time the prob-
ability of visiting the middle states is high. Diamond-
like structures are quite frequent in state spaces due
to the interleaving semantics.

We conclude that the power law distribution of visits is
a negative feature of the random walk. It means that the
random walk spends most of the time repeatedly visiting
just a few states. Several of the random walk enhancements
presented in the next section try to improve on this.

4. HOW TO ENHANCE RANDOM WALK?

In this section we describe several methods for improv-
ing the performance of the random walk. Generally, the
enhancements make more effective use of memory and/or
employ various heuristics to decide on the next direction of
the exploration. Most of the methods have been presented
previously, but usually in an ad hoc manner and without any
rationale. We provide a systematic overview of these meth-
ods and give grounds for particular methods. Typically, the
methods are intended to eliminate some of the negative fea-
tures of the random walk method in model checking. We
discuss experimental results and experiences as well.

4.1 Enhancement Methods

Re-initialization

Re-initialization helps to avoid the situation when the ran-
dom walk is getting trapped in a small terminal strongly

101

connected component. To this end the computation is pe-
riodically stopped and the walk returns to (is re-initialized
from) the initial state. The question is how to choose the
number of computation steps after which the random walk
should be re-initialized. If this limit is too small the algo-
rithm returns to the initial state too often and redundantly
revisits states with small depth. On the other hand, with a
large re-initialization limit we risk that the algorithm gets
trapped. In situations where the limit cannot be derived
from the model a randomly chosen limit performs better
than a fixed one.

In order to avoid revisits of states with small depth one
can use some of the available memory and store a set of
states from which the algorithm will be re-initialized. The
set can be for example computed as a frontier of a partial
breadth-first search. After re-initialization the algorithm is
re-started from a randomly chosen state from the stored set.

Local Exhaustive Search

Experiments with the model checking graphs provide an ev-
idence that the number of visits of individual states during
the random walk is distributed non-uniformly. To improve
on this it may be useful to combine the random walk with
a local exhaustive search. There are many possibilities how
to implement the idea.

At first, we have to decide when to start a local search.
The basic two possibilities are: after a predefined number
of computation steps and after a randomly chosen number
of steps (respecting a fixed probability distribution). Yet
another possibility is to use a heuristic to determine a stage
in the computation where the walk is near to a target state.

At second, we have to decide how to do the local search.
We can use breadth-first search, depth-first search, or their
clever combination. During the local search we either store
the respective data structure (queue, stack), or we tempo-
rally store all visited states. After finishing the local search
the random walk can either be re-initialized from the state
where the local search has been started, or from a state saved
in the respective data structure. The latter possibility gives
for example a higher chance to get into diamond corners.

Some of the ideas presented above have been employed
by Sivaraj and Gopalakrishnan in [21] where the authors
combine the random walk and the breadth-first local search
in a distributed environment.

Caching

Caching helps to avoid too frequent re-visits of individual
states. Frequently visited states are stored in the cache with
a high probability. Again, there are several issues to be
considered here.

e How to manipulate the states in the cache? A state
in the cache either can be revisited by the random
walk with a smaller probability than the other states
or cannot be revisited at all.

How is the cache updated? There are two items to
be decided: what is the strategy for selecting a state
to be stored in and to be removed from the cache.
The most straightforward way is to use a randomized
management but it is also possible to make use of some
heuristics.

e How is the cache implemented? The basic option is a

59

standard hash table. Since the method is probabilistic
anyway there is no need to solve collisions and a lossy
compression to store states can be employed.

The caching method has been investigated mainly in con-
nection with the full exploration [6, 5, 23]. It is used in
situations where the available memory is not sufficient to
store all states. Tronci et al. [22] use caching with partial
search.

Pseudo-Parallel Walks

The pure random walk search maintains only one currently
visited state. Its performance can be increased if several
random searches are performed simultaneously in an inter-
leaving manner. In this case the method maintains an ar-
ray of current states and iteratively selects their successors.
This idea is closely related to the breadth-first search with
a restricted size of queue (sometimes called beam search).
Again, there are several issues to be decided here. Should
individual random walks try to avoid each other e.g., with
some kind of look-ahead? Are individual searches inter-
leaved in a regular or random fashion?

Parallelization of the random walk method has been ex-
amined in several papers under different names. Tronci et
al. [22] combine caching with a breadth-first search with
fixed sized queue. Sivaraj and Gopalakrishnan [21] combine
parallel walks and breadth-first search. Groce and Visser [8]
use beam search and combine it with heuristics based on
source code. Jones and Sorber [13] use parallel random
walks enhanced with a biological motivated heuristic for ver-
ification of LTL properties.

Traces

Traces provide yet another way how to enhance the random
walk method via more effective usage of the available mem-
ory. The concept is to store not just the currently visited
state but also the trace (path) from the initial state to the
current state. Though the traces are primarily useful for
reporting counterexamples, they can be used for effective
search. With the help of traces the search can move both in
forward and backward directions. This is useful for exam-
ple for models with many deadlock states where instead of
re-initialization the search can just move one step backward
and continue through another successor.

There are several possibilities how to store the traces dur-
ing the search.

e The full trace is stored as a list of states.

e A fragment of the full trace (e.g., each k-th state from
the full trace) is stored as a list of states.

The full trace or its fragment are stored in a com-
pressed way. The possibilities are to store list of ac-
tions, changes with respect to the predecessor, or the
ordinal of the successor (for most model checking state
spaces the maximal out-degree is less than sixteen [19]
and for these spaces it is sufficient to use four bits per
state to record the ordinal).

The compressed representation increases the time needed
for manipulating the trace, however it can extremely de-
crease the space requirements (in fact the size of a trace can
be approximately the same as the size of the current state).

60

102

Guiding

Guiding is a heuristic which helps to decide on the next di-
rection of the exploration. The idea is to use the semantics
of the model to prioritize some of the current state succes-
sors. This information can be used for guiding the search.
It helps to

e select a successor to be visited next,
e decide when to do a local exhaustive search,
e decide when and what to store into the cache, and

e select a current state whose successor is to be visited
next (for parallel walks).

As usually, there are many ways how to gain the informa-
tion from the model.

Measure the code coverage (e.g., branch, state, path
coverage) and prefer decisions leading to a higher cov-
erage [8].

For highly concurrent models try to maximize/minimize
the number of process inter-leavings and the number
of messages in buffers. Assign different probabilities
to individual concurrent processes [4, 8].

Estimate the distance of the currently visited state
from the target state and use this estimation for deci-
sions. This estimation can be computed by analyzing
components of the model [4, 14] or it can be approxi-
mated from the state space of a more abstract model
of the system [20].

Alternatively, the user can provide some indications,
e.g., by assigning fixed preferences to particular branches
in the code.

The guiding technique has been frequently used for guid-
ing the full search (A™ search).

4.2 Experiments

All of the above mentioned enhancements can be com-
bined in a huge number of ways. A combination is de-
termined by a choice of methods and allocation strategy
(how to allocate the available memory among different ob-
jectives like local exhaustive search, cache, pseudo-parallel
walks etc.).

It is clear that it is not feasible to perform exhaustive
comparison of all potential combinations. For our experi-
ments we have chosen combinations of methods and alloca-
tion strategies which seem to be intuitively plausible. Af-
terwards we have manually tuned some of the parameters.
A complete list of measurements and results is available at
http://fi.muni.cz/ xpelanek/random_walk/.

The main message gained from the experiments is that
there is no superior enhancement of the random walk method.
Each combination works well for different type of graphs.
Sometimes it happens that the enhanced method, which uses
relatively large amount of memory, performs worse then the
pure random walk. For practical verification it is therefore
very important not to stick to just one method!

Table 1 provides an overview of our observations. The ta-
ble compares the coverage accomplished by the pure random
walk with the best coverage we have been able to achieve

68 68 68 6°67 Jipou-py/[1ou

79 €1g G'6 90 00e8pLIques /urds 826 Q68 898 z0¢ oyoed /dped
L'88 L'88 T18 0T pox-diq/uds 668 6°€9 Tl 0TS GBuri/osewr
L°08 G665 TSy ge [oro1/dpeo 666 1°08 089 765 dqe/osew
7'S6 0°66 G¥6 z'8 Torqour /urds G'66 0°L6 976 029 gdaq /ourarp
118 ey 129 06 1-6-p00/dpen 968 082 ¢ €79 g-T-orwsu /ourAp
qel i&d) LG 0T 9 jur [000j01d-sout /dpeo £T8 T6L 6L 0%9 ug-HEET/[ow
09 68V 8Ge 701 1oyqre /rydmum 686 696 1°G6 969 €OJyT[o/oUIAIp
Q06 606 919 61 SUIYDRUL/OUIAID 1’16 088 L'99 L'99 ¢ryd/uids
626 928 %) el 3108 /utds P8 €e8 9°G. 9°0. [00030ad-daq /dpes
ves 1°08 L2 9VT g107eAd[0 /ose (i%d) 6cL 6L 012 s8y/urds
606 49 L'29 LT sows /urds 968 &) &) &) guosojod /rydimum
G08 v'8. 9°8¥ 691 0go[zznd /osewt 166 686 726 89/ ¢ S0 Tueos /dpen
8°66 8'66 1°€6 L'61 pox feuiStio-s-u/utds 0'96 0'96 0'68 L'8L por&doous/urds
S92 812 1°€a e1e 1e-g1-0d-pgaut/dpeo 116 1798 1798 798 ysepes /rydmur
9'86 026 L¢S 7'9% dqe-g)sey/utds 9'¢6 L'€6 116 898 GZ0TOTG-F-08pLiq /outarp
8€8 ey 162 eee [[ews /ourArp 76 906 106 118 poyoeo /rydanu
L'T6 L'16 188 9¥e Sunyejiero/dpes 046 6'96 £'€6 716 esq/dpeo
916 z's8 1792 0°ge G-Suri-gysey/uids 1°66 1°G6 €6 1°¢6 g3urprys/uids
626 618 9°0% cLe pordyd/uids 966 966 686 ae6 Topeo/uids
766 086 T'L6 6°C }1qouo,/ (10w c'66 €66 € L6 166 9-o1seq-[ryd /ourarp
0°00T 0°00T 699 0'€V gmi-gysoy/urds 766 766 €66 z66 Buoimjoy /(1w
002 z09 8°]F vev udse I AYH/dped 766 766 766 766 gyos /iydmuw
86/, 659 766 L'EV wmipowgg roys/dpeo 166 Q66 766 766 su/rydmu
&) 7'99 L'9G 67 ¢ros/iydimw 0°00T 0°00T 0001 866 EXE-ONYS /oUIAID
778 8°6L Vel s dqe/outarp 0°00T 0°00T 0001 0°00T xoqyey /(1o
€06 z'68 918 'Ly Nuosojed /uds 0001 0°00I 000T 0°00T oxed /osew
T°L8 G908 8¢ 7Ly T3porsout/rydanu 0°00T 0°00T 0001 0°00T glouLrey /ouIALp
crsog 93sog gisog MY eang [oPOIN crsog 93sog gisog MY eang [oPOIN

‘yoaess [[nJ
Jo sjuewaainbax Arowew Jo (gTIs9g) % GT pue ‘(91s9dg) %9 ‘(g1s9g) %€ 01 pardolIsad uollduwinsuod AIowawW YIIM POYIdW 1S9q JO 93BISA0D 99
pue 3em wiopuer aand jo o8eI8A0D oY) SOAIS 9[qe) 9y [opow yoes 1og ‘ydeiS o) jo azis x(] sdejs Jo Joquinu Jojye o8erorod Surynsay :T S[qel,

103
61

using enhanced random walk and limited resources. The
best coverage has been achieved for different graphs by dif-
ferent methods. The results reported in Table 1 have been
obtained without any kind of guiding. Note that for most
graphs it is feasible to cover more than 70% of states with
memory consumption between 3% and 6% of the memory
needed to perform the full search. We believe that it is
not possible to get much further without very good guiding
heuristics (which are difficult to compute automatically).
Our experience is that once we try a few different methods
we get quite close to the best coverage. Hence it seems that
there is no need to try large number of combinations.

Although there is no dominant combination of methods
and no universal way of choosing parameters, we can provide
some general guidelines about how to partition the available
memory among different methods. The good starting point
is:

e 10% for re-initialization states
e 10% for pseudo-parallel walks
e 20% for cache

e 60% for local exhaustive search

5. RELATED ISSUES

In this section we address related issues concerning the
practical applicability of the random walk based methods in
model checking.

5.1 How to find a (short) counterexample?

The goal of the reachability analysis is to decide reacha-
bility of some of the target states. If a target state is reach-
able then the task is to find a path into it (so called coun-
terexample). The methods discussed so far only decide the
reachability of a target state. Since the diameters of model
checking state spaces are typically small [19], there are short
counterexamples and the random walk method can be used
for their computations.

To find a counterexample one can use the trace technique,
see Section 4. To find a short counterexample one can either
use the local exhaustive search, start a new random walk,
or tune the parameters of the searching procedure so that
the states with a small depth are preferred.

Our experience indicates that in the case where an error
can be detected by the random walk it is feasible to find a
short counterexample by iterating the search several times.

5.2 How to estimate the coverage?

In a case when the random walk does not find any target
state the user cannot distinguish a correct model from an
erroneous one. An estimate of the searched fraction of the
state space could be of great value. However, this is very
difficult to provide.

Tronci et al. [22] try to estimate the fraction of the visited
states by saving random samples of the state space and by
measuring the number of visits of the sample states. Though
this routine works well on their few experiments, it is not
a generally valid technique. The part of the state space
used for the estimation is not a random sample, see Sec-
tion 3. Based on an observation of the states visited by a
random walk one cannot work out properties of the whole
state space.

62

104

Grosu and Smolka [9] give a Monte Carlo algorithm for
model checking which for given e guarantees that the proba-
bility that an error will be found by further random walks is
smaller than e. But this does not mean that the probability
of existence of an error is smaller than e. This discrep-
ancy does occur in real examples. Thus one may argue that
the guarantee given by their Monte Carlo algorithm can be
rather misleading.

Coverage metrics as encountered in the white-box testing,
e.g., statement, branch, or path coverage, can be used for
estimating the coverage. These metrics have well known
disadvantages: on the one side 100% statement coverage
does not imply 100% state space coverage, on the other side
we can have 100% state space coverage even with statement
coverage less than 100%. Nevertheless, the coverage metrics
can supply a useful information in practice.

5.3 How to choose a method and its parame-
ters?

As we have already stated there is no superior method
and combination of parameters. So the question is how to
choose an appropriate method for a given application. Here
we can provide two recommendations.

e Similar models have similar state spaces and on similar
state spaces the methods have similar behavior. It is
meaningful to narrow the model (e.g., by abstraction
or by setting smaller parameter values), generate its
full state space, test different random walk methods on
the narrowed state space, choose the one with the best
behavior and use the chosen method for the original
model.

e Try several methods and hope.

6. CONCLUSIONS AND FUTURE WORK

The paper provides an extensive overview of the random
walk in model checking and its possible enhancements and
studies the behavior of both the random walk and its en-
hancements on realistic model checking examples.

Our reflections on the method are both positive and neg-
ative. On the positive side, we have found out that with the
random walk it is feasible to visit most of the states in state
spaces which are notably larger (up to 20 times) compar-
ing to those than can be managed by classical full search.
Since there is no need for communication, the random walk
method can be performed in a distributed environment very
effectively. The distribution multiplies the feasibility of the
random walk by an additional factor.

On the negative side, we indicate that the full 100% cov-
erage is achievable (in a reasonable time) only for a few
models. Moreover, we argue that in the case that the ran-
dom walk fails to find an error it is not possible to provide
an accurate estimation of the coverage.

The comparison of different methods clearly shows that
none of them is superior. The choice of the best method is
model-dependent.

Table 2 summarizes the appropriateness of variants rela-
tive to the ratio of the available memory to the size of the
searched state space.

Future work aims at suggesting mechanisms for auto-
matic selection of appropriate methods and/or their param-
eters for a given application. To this end even broader and

Table 2: Appropriateness of methods relative to the
ratio of the available memory M to the size of the
searched state space S.

M/S Method Coverage

>1 full search, full storage full coverage
[0.1,1) full search, partial storage full coverage
[0.01,0.1) partial search high coverage
< 0.01 partial search low coverage

more extensive case studies can be at hand. Yet another
area deserving a deep insight is the application of the ran-
dom walk method for the verification of more complex prop-
erties than just reachability (particularly the accepting cycle
detection and LTL model checking).

7.

(1]
2]

3

4

[5

6

[7

B

9

(10]

(11]

(12]

(13]

REFERENCES

http://www.fi.muni.cz/"xpelanek/state_spaces.
G. Behrmann, K.G. Larsen, and R. Peldnek. To store
or not to store. In Proc. Computer Aided Verification
(CAV’08), volume 2725 of LNCS, 2003.

S. Christensen, L.M. Kristensen, and T. Mailund. A
Sweep-Line Method for State Space Exploration. In
Proc. of Tools and Algorithms for Construction and
Analysis of Systems (TACAS’01), volume 2031 of
LNCS, pages 450—464, 2001.

S. Edelkamp, A. L. Lafuente, and S. Leue. Directed
explicit model checking with HSF-SPIN. In Proc.
SPIN workshop, volume 2057 of LNCS, pages 57-79,
2001.

J. Geldenhuys. State caching reconsidered. In SPIN
Workshop, volume 2989 of LNCS, pages 23-39, 2004.
P. Godefroid, G.J. Holzmann, and D. Pirottin. State
space caching revisited. In Proc. of Computer Aided
Verification (CAV 1992), volume 663 of LNVS, pages
178-191, 1992.

P. Godefroid and S. Khurshid. Exploring very large
state spaces using genetic algorithms. In Proc. of
Tools and Algorithms for Construction and Analysis
of Systems (TACAS 2002), volume 2280 of LNCS,
pages 266-280, 2002.

A. Groce and W. Visser. Heuristics for model checking
java programs. International Journal on Software
Tools for Technology Transfer (STTT), 2004. to
appear.

R. Grosu and S. A. Smolka. Monte carlo model
checking. In Proc. of Tools and Algorithms for
Construction and Analysis of Systems (TACAS 2005),
volume 3440 of LNCS, pages 271-286. Springer, 2005.
P. Haslum. Model checking by random walk. In Proc.
of ECSEL Workshop, 1999.

G. J. Holzmann. An analysis of bitstate hashing. In
Proc. of Protocol Specification, Testing, and
Verification, pages 301-314, 1995.

G.J. Holzmann. Algorithms for automated protocol
verification. ATET Technical Journal, 69(2):32-44,
February 1990.

M.D. Jones and J.Sorber. Parallel random walk search
for LTL violations. In Proc. of Parallel and Distributed

105

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

(23]

(24]

Model Checking (PDMC 2002), volume 68 of ENTCS,
pages 156-161, 2002.

A. Kuehlmann, K. L. McMillan, and R. K. Brayton.
Probabilistic state space search. In Proc. of
Computer-Aided Design (CAD 1999), pages 574-579.
IEEE Press, 1999.

F. Lin, P. Chu, and M. Liu. Protocol verification using
reachability analysis: the state space explosion
problem and relief strategies. Computer
Communication Review, 17(5):126-134, 1987.

M. Mihail and C. H. Papadimitriou. On the random
walk method for protocol testing. In Proc.
Computer-Aided Verification (CAV 199/4), volume 818
of LNCS, pages 132-141, 1994.

D. Owen and T. Menzies. Lurch: a lightweight
alternative to model checking. In Proc. of Software
Engineering & Knowledge Engineering (SEKE’2003),
pages 158-165, 2003.

D. Owen, T. Menzies, M. Heimdahl, and J. Gao. On
the advantages of approximate vs. complete
verification: Bigger models, faster, less memory,
usually accurate. In Proc. of IEEE/NASA Software
Engineering Workshop (SEW’03), pages 75-81. IEEE,
2003.

R. Peldnek. Typical structural properties of state
spaces. In Proc. of SPIN Workshop, volume 2989 of
LNCS, pages 522, 2004.

K Qian and A. Nymeyer. Guided invariant model
checking based on abstraction and symbolic pattern
databases. In Proc. of Tools and Algorithms for
Construction and Analysis of Systems (TACAS 2004),
number 2988 in LNCS, pages 487-511, 2004.

H. Sivaraj and G. Gopalakrishnan. Random walk
based heuristic algorithms for distributed memory
model checking. In Proc. of Parallel and Distributed
Model Checking (PDMC’03), volume 89 of ENTCS,
2003.

E. Tronci, G. D. Penna, B. Intrigila, and M. Venturini.
A probabilistic approach to automatic verification of
concurrent systems. In Proc. of Asia-Pacific Software
Engineering Conference (APSEC 2001), 2001.

E. Tronci, G. D. Penna, B. Intrigila, and M. V. Zilli.
Exploiting transition locality in automatic verification.
In Proc. of Correct Hardware Design and Verification
Methods (CHARME 2001), volume 2144, pages
259-274, 2001.

C. H. West. Protocol validation by random state
exploration. In International Symposium on Protocol
Specification, Testing and Verification, 1986.

63

64

Chapter 6

Evaluation of State Caching and
State Compression Techniques

In this paper we employ BEEM to thoroughly evaluate two well-studied techniques in
explicit model checking: state caching and state compression techniques. The goal of
these techniques is to reduce memory consumed by a model checker at the expense of
(hopefully slight) increase in running time. Both of these techniques were repeatedly
studied and refined in previous research.

We provide review of the literature, discuss trends in relevant research, and per-
form extensive experiments over models from BEEM. The conclusion of our review
and evaluation is that it is more important to combine several simple techniques in an
appropriate way rather than to tune a single sophisticated technique.

This paper was published as a technical report [68]]. The author of the thesis is one
of three coauthors and has done data analysis and most of the writing.

65

Evaluation of State Caching and State
Compression Techniques*

Radek Pelanek, Vaclav Rosecky, and Jaroslav Sedénka

Department of Information Technology, Faculty of Informatics
Masaryk University Brno, Czech Republic

Abstract. We study two techniques for reducing memory consumption
of explicit model checking — state caching and state compression. In
order to evaluate these techniques we review the literature, discuss trends
in relevant research, and perform experiments over a large benchmark
set (more than 100 models). The conclusion of our evaluation is that it is
more important to combine several simple techniques in an appropriate
way rather than to tune a single sophisticated technique.

1 Introduction

In this work we are concerned with explicit model checking and verification of
safety properties. This approach is principally very simple — it is based on the
straightforward construction of the whole state space and on a simple reacha-
bility analysis of this state space. The technique is successful for verification of
asynchronous systems, particularly protocols.

The main problem of explicit model checking is the state space explosion
problem and hence large memory requirements of the technique. Researchers
proposed during the last 15 years many techniques aimed at reduction of the
memory consumption of explicit model checking. At this moment, there is a
large number of reduction technique proposals. However, from a practitioner
point of view, the situation is not satisfying:

— Research papers usually include only few experiments on selected models on
which the techniques bring (non-trivial) improvement. Our evaluation [22]
of on-the-fly reduction techniques shows that the improvement is often more
humble than claimed in research papers.

— Most reduction techniques involve some kind of trade-off (usually time-
memory) and they bring improvement on only some models. The trade-off
and the dependence of performance on model properties is not well under-
stood.

— Research papers usually compare a newly proposed technique only to the
standard algorithm and not to other reduction technique. It is also not clear
whether the impact of different reduction techniques combine.

* Partially supported by GA CR grant no. 201/07/P035.

66

1.1 Contribution

In this paper we focus on two techniques for reducing the memory consumption
of the explicit model checking: state caching and state compression. State caching
saves memory by deleting some visited states from memory; state compression
saves memory by compressing individual states in memory. We evaluate these
techniques in the following way:

— We review the literature and discuss trends in the relevant research.

— We perform experiments with caching and compression techniques over a
large benchmark set (BEEM [23]) and we present results of these experiments
and their interpretation.

— We analyze how the performance of the techniques depends on model and
state space parameters.

1.2 Context

This work is a part of our long term effort to make the verification process more
automatic, i.e., to automate the selection of reduction techniques and parame-
ters [24]. Our other works which contribute to this goal are the following:

— a general overview and evaluation of on-the-fly reduction techniques [22],

— evaluation of techniques for error detection [25],

— analysis of properties of state spaces [21],

— description and evaluation of techniques for estimating state space size and
other parameters [26].

2 Review of Literature

Before the discussion of related work we clarify the terminology that we use to
discuss the effect of techniques for reduction of memory consumption. We use the
notion ‘reduction ratio’ to denote the ratio between the memory consumption of
the reachability search with a memory reduction technique and the memory con-
sumption of the standard reachability. Some authors report ‘reduced by’ factor,
i.e., if we report ‘reduction ratio’ 80%, it means that the memory consumption
was ‘reduced by’ 20%.

State caching and compression techniques have been studied rather exten-
sively. The main works are the following:

— Holzmann [10,11] was the first to propose the state caching technique, but
he did not perform realistic evaluation of the technique.

— Godefroid et al. [8] focus on the relation of state caching and partial order
reduction. Their experiments are, however, limited to only few models.

— Geldenhuys [5] performs more extensive evaluation and compares many dif-
ferent caching strategies. However, this evaluation is done partly on random
graphs, which can be misleading (for argumentation against the use of ran-
dom graph see [21]).

67

proc EXPLORE(M)
add sg to Wait
while Wait # 0 do
remove s from Wait
explore (s)
foreach s — s’ do
if s’ & Visited then add s’ to Wait fi od

end

Fig. 1. The basic algorithm for exploring the state space.

— Similar approaches to state caching are selective storing of states during the
search [2] and the sweep line technique [3], which deletes only states that are
guaranteed to not be revisited.

— Holzmann [12] describes the state compression algorithm with training runs
in Spin model checker. Each part of the state space is compressed according
to a local table.

— Visser [28] describes a similar compression techniques as Holzmann [12] and
combines the compression technique with OBDD storage.

Table 1 gives the overview of these and several other most relevant papers.
From this table we can see the following general trends:

— There is a steady flow of publications about the topic (1-2 every year).

— At first, techniques were implemented in SPIN (and its predecessors), from
2000 onwards the scope of used tools is rather diverse.

— We expected that the (reported) reduction ratio would increase in time,
however there is no clear trend with time. The reported reduction ratio is
usually in the interval 5% to 80%.

— The quality of experiments (number and quality of used model and per-
formed experiments) is nearly constant, despite the improving availability of
realistic models.

3 Techniques

In this section we describe formally the context of our work and the state caching
and state compression techniques.

3.1 State Space Exploration

Figure 1 gives the basic state space exploration algorithms. It is just a simple
graph traversal algorithm, which uses two important data structures:

68

Table 1. Review of literature. Experiments on random graphs are not taken into
account. The ‘reported reduction ratio’ is only an approximate due to the use of
different metrics to measure memory consumption; the reduction ratio is given
only if enough experiments are reported in the paper. (*) The small reduction
ratio is due to combination with partial order reduction method.

paper year technique

10]
1]
16]
13]
8
2
9

19
12
17]

]
14
6
3
27]
18

[\

7
5

0
1
6
3
]
8
]
9
2
7
0
4
]
]
7
8
]
]
|
4]

[
[
[
[
[
[
[
[
[
[
2
[
[
[
[
[
[
[
[
[

1985 caching
1987 caching
1991 caching
1992 compression
1992 caching
1996 compression
1996 compression
1997 caching-like
1997 compression

1997 compression, caching-like

1998 compression
1999 compression
1999 compression
2001 caching-like
2001 caching-like
2001 compression
2003 caching-like
2003 compression
2004 caching

2005 compression

tool number reported
of models reduction ratio
Trace 1
Argos 2
unknown 0
SPIN 5 ~ 80%
SPIN 4 1-3% (*)
SPIN 5 5-25%
SPIN 3 ~ 80%
ARC 11 15-50%
SPIN 17 15-50%
Uppaal 10 5-25%
SPIN ? 20-60%
SPIN 14 ~ 15%
SPIN 7 40-60%
Design/CPN 3 5-80%
Murphi 20 ~ 60%
JPF 2 ~ 5%
Uppaal 9 5-80%
VT 4 15-50%
SPIN 18 5-50%
Helena 8 30-60%
4

69

— Visited is a set of states that were visited during the exploration. Since we
need to perform a test of membership in this data structure, the set is usually
represented by hash table.

— Wait is a set of states that need to be explored. The implementation of this
data structure determines the search order of the algorithm — usually either
breadth-first search (BFS) or depth-first search (DFS).

States are represented as vectors of bytes, which code the current location of
individual processes and values of variables.

3.2 State Caching

The basic idea of state caching is simple: if we run out of memory then we
remove some states from the data structure Visited. This, of course, has the
consequence of revisits of states and thus time increase. If we use depth-first
search, the method is still guaranteed to terminate. With breadth-first search
order we do not have such a guarantee in general.

Note that the name of the approach is slightly misleading, since it is not
caching in the usual sense of the word — states are not moved lower in the
memory hierarchy, they are simply deleted. However, in model checking the
technique is traditionally called this way [8,5].

Caching Strategies The main issue in application of state caching is to de-
termine states for removal from the cache. We call an algorithm for selection of
states a caching strategy. In our experiments we consider the following strategies
(see also [5]):

O (out-degree) States are removed according to the number of successors (out-
degree) of the state. The intuition behind the strategy is that states with
higher number of successors have higher probability that some of its successor
was forgotten.

I (in-degree) States are removed according to the number of visits (actual in-
degree) of the state. The intuition behind the strategy is that often visited
states will also be more visited in the future.

OI (out-degree, in-degree) The strategy takes into account both the out-degree
and the actual in-degree.

RAND (random) States are removed randomly.

SC (stratified caching) We assign to every stored state the depth on which it
was discovered (the length of the path from the initial state). States lying on
the same depth form stratas. We erase state s when the following predicate
is true (d is depth of a state s, k is a constant, initially k = 2):

dmodk #k—1

When no such state exists, the constant k is doubled, so there are additional
available stratas with states for erasing.

70

Table 2. Hufmann code used for the compression — part of the static code.

000

101 248 111111111010
21000 249 111111111011
3 1001 250 1111111111000
41010 251 1111111111001
5 1011 252 111111111101
6 11001 253 111111111110
7 11000 254 111111111111
8 1101 255 11100

3.3 State Compression

State vectors contain significant redundancy. Researchers proposed several tech-
niques that try to reduce the size of state vectors (see Section 2). Previous studies
suggest that these techniques achieve similar results, therefor we focus on the
most typical compression techniques — huffman coding.

Huffman coding [15] is a general loss-less compression method that is proven
to be memory-optimal when exact probabilities of each value usage are known.
The Huffman code can be constructed by the well-known algorithm [15].

Static Code In order to construct the Huffman code we need to know the
frequencies of individual values. Since prior to the reachability analysis we do
not have the knowledge of the frequencies, we cannot construct the optimal
Huffman code. Nevertheless, we can construct at least some Huffman code using
approximated frequencies.

A straightforward approach to compute this estimated frequencies is to take a
representative set of small models, compute frequencies of values in these models
and then compute a “static” Hufmann code. Part of this static Huffman code
(that we use in the experiments) is shown in Table 2.

Training Runs A more precise way of gathering value frequencies is to go
through a small part of the state space, i.e., to perform a short reachability. We
call this preliminary reachability a training run, as it is not supposed to walk
through the whole state space. After such training run we create Huffman trees
based on inaccurate probabilities.

There are several possibilities how to perform the training run. We consider
two basic approaches to sampling a state space during the training run: DFS
and BFS, each with a specified limit on a number of states to be searched.

4 Evaluation

Reported techniques are implemented in the DiVinE environment [1]. Experi-
ments were performed on 2GHz Intel Xeon Linux workstation with 16 GB RAM.

71

Evaluation was performed over the BEEM benchmark set [23]. The web por-
tal of the benchmark set contains all the used models and it also presents detailed
information about models. For our experiments we used 120 models, which fall
into following (BEEM) categories: 29 communication protocols, 18 controllers, 6
leader election algorithms, 26 mutual exclusion algorithms, 22 scheduling prob-
lems, 19 other; 26 complex case studies, 70 simple models, 24 toy examples.

In this section we report only summaries of results and their interpretation;
all results can be found on the following web page:

http://anna.fi.muni.cz/"xrosecky/mem_reduction/

We measured (computed) both the real memory consumption and the (theo-
retical) consumption of the storage data structures. The real memory consump-
tion is higher due to the additional implementation overheads. The distinction
between these two metrics is important because the used techniques can reduce
only the memory consumed by storage data structures. Each of these metrics
have its (dis)advantages — theoretical consumption of storage structures is less
implementation dependent, however real memory consumption is, at the end,
what really counts.

Nevertheless, our experiments show that these two metrics are rather well
correlated and that the main conclusions of our experiments are not dependent
on the used metric. In the following we use the real memory consumption. More
specifically, we report relative memory consumption with respect to standard
reachability.

4.1 Caching

For state caching there is a clear trade-off between memory consumption and
runtime. Figure 2 gives several examples of this trade-off. Since our focus is on
memory consumption, we use the following approach. We use a relative time
limit — 6 times the runtime of standard reachability. We run reachability with
caching with different cache sizes, cache sizes are also set relatively to the full
reachability (i - 10% of state space size). We consider the run successful if it
finishes within the given time limit.

Comparison of strategies We run the experiment for all caching strategies.
Since the performance of caching is dependent on the search order (BFS or
DFS), we also combined each strategy with both BFS and DFS order. We use
the following notation: BFS-SC means reachability search with BFS order and
SC caching strategy. Here we report only on 7 of these combined strategies, the
results are representative of the overall results:

— The overall results of different strategies are similar, nevertheless there is a
difference between different strategies (Fig. 3).

— There is no universally best strategy, strategies are to a certain degree com-
plementary; Figure 4 shows which techniques have similar behaviour.

72

—— elevator2.3
----- fischer.6
lamport.6
- leader_filters.7

Relative runtime
3
|

T T T T T T
0 20 40 60 80 100

Size of the cache

Fig. 2. Trade-off between size of the cache (reduction of memory consumption)
and runtime increase.

— The most successful strategies are the following (numbers indicate how many
times a technique achieves the best result): BES-SC (56), DFS-SC (37), BFS-
OI (14), DFS-OI (7).

— In 71% of cases the best strategy is successful with cache size 20% of less of
the full state space.

Dependence on a model The performance of caching depends on the model
— for some models we can use small cache, for other models we need to store
nearly all states. Which characteristics of the model influence the performance
of caching?

— Type of a model: for controllers, leader election algorithms, and communi-
cation protocols caching works well (10% cache is sufficient for more than
a half of these models), whereas for mutual exclusion algorithms caching
works poorly (at least 40% cache is necessary for more than a half of these
models).

— Average degree of the state space (correlation coefficient is 0.53): caching
works better for sparse state spaces (see Figure 5).

— BFS height of the state space (correlation coefficient is -0.43 with respect to
logarithm of the height): caching works better for state spaces with many
BFS levels (see Figure 5).

73

120
]
1
]

1 BFS-SC
DFS-SC
BFS-0OI
DFS-0I
BFS-I
BFS-O
BFS—-RAND

100
1
OooEEEN

Number ot models
60
1

40

20

o J L1 L1 L1 L1 L1 L1 L1 L1 Ll
100% 90% 80% 70% 60% 50% 40% 30% 20% 10%
Size of the cache

Fig. 3. Comparison of caching strategies. The graph shows the number of suc-
cesses for different strategies and cache sizes.

200
L

50
L

BFSSC
BFSOI
BFSO
BFSI
BFSRAND
DFSSC
DFSOI

Fig. 4. Clustering tree which shows similarity between caching techniques.

74

o
-
o
c @ |
S o o o
8
E o
3
go., 5 © © o 4
o ° o ° e
Pa) o oo
@®
[TRE o° 0 %o ©
£ S o . o e .
g © °© °° o
= o o
a <§° %oo ° °s o o
= o
I ° [ooo 1) °
Qfo 8 °o°, o © o
° o g ©° o
BoB #o°® Soo® °
o
S
T T T T T
2 4 6 8 10

Average degree

Fig. 5. Correlation between best results of caching techniques and average degree
of a state space.

<
-
o
c @ |
S o oo
=
Q.
€ o
3
C‘-°7 OO o o
80 o o o
oo

> 00 o °
g o o
o < | o °® o
£ o o °9 o o
(<] ° o
= 0o 00 © °
T o o & 0o °
K o o 8000 o 4
Q’N Oo (e} o

- o o -3} ©o o
X o 0% oo @ o ° (90 o

L)
o
° o ©op 00 Se Ro o 8
o
o
T T T T
4 6 8 10

BFS height (log)

Fig. 6. Correlation between best results of caching techniques and BFS height
of a state space.

10

75

4.2 Compression

The performance of state compression technique is not dependent on the search
order (we use BFS). For each model we run the compression technique with
static code and with codes obtained by analysis of 4 different training runs:
BFS (respectively DFS) with limit of 2% (respectively 15 %) of the state space.
Results of these experiments can be summarized as follows:

— The reduction ratio is in range 40% to 90%, typically 60% (see Figure 7).

— The reduction ratio is slightly better with the huffman code obtained from
training runs than with the static code (approximately 10% better) (see
Figure 7).

— Neither the type of the training run (BFS, DFS) nor the size of the training
run (2% or 15% of the state space) are important — the reduction ratio is
very similar (see Figure 7).

— The performance of state compression technique depends on state size —
there is very good linear correlation with logarithm of state size (see Figure 8,
correlation coefficient is -0.84).

— There is nearly no relation between the runtime increase and reduction of
memory consumption (cf. caching techniques).

— The performance of state compression technique is not related to the type
of model (cf. caching techniques).

4.3 Combination

Finally, we implemented and evaluated the combination of caching and com-
pression techniques. For the evaluation we used fixed strategies: BFS search
order with stratified caching and compression with dictionary computed by a
BFS training run (15% of the state space). The results are following (see also
Figure 9):

— Since the techniques are rather orthogonal, they combine well.
— The achieved reduction ratio is between 5% and 70% with median value 25%.
— Better results are achieved for complex case studies, particularly for leader

election and communication protocols, worse results are for mutual exclusion
algorithms.

5 Conclusions

In this paper we focus on two techniques for reducing memory consumption of
model checking algorithms: state caching and state compression.

11

76

Relative memory consumption

0.2

Relative memory consumption

0.4

1.0

0.8

0.6

0.4

0.0

1.0

0.8

0.6

0.2

Fig. 8. Correlation between state size and memory consumption

T
Static

Fig. 7. Compression:

T T
Training (2%) Training (15%)

static dictionary, training runs

o o
o 0o ° 6
© 8 o
o oog 0 o° °
e_ 8 o
o ° o
080 og o 1)
00 ©° o
%° © o %o o
o 5 o9 o o o
0000800 o O °
o @ 90°0° ©°
0(9 o o
o o °
o o © o
° o
o
o
T T T T T T
2.5 3.0 35 4.0 4.5 5.0

State size (log)

12

77

Relative memory consumption

Relative memory consumption

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

T T T T T T
protocol controller leader mutex other scheduling
T . T T
complex simple toy

Fig. 9. Results for combination of caching and compression

13

78

5.1 Evaluation of Effectiveness

We evaluate these techniques over a large set of models and reach the following
conclusions about their effectiveness:

— Caching strategies are to a certain degree complementary. Using an appro-
priate state caching strategy, the memory consumption can be in most cases
reduced to 10% to 30%. Using a fixed strategy (stratified caching with BFS
order), cache of the size 30% of the state space is sufficient in 3/4 of cases.

— Using state compression the memory consumption can be usually reduced
to approximately 60%. Using training runs (a short preliminary reachability
analysis) the performance of compression can be improved, but only slightly.

— The two techniques combine well.

— Effectiveness of state caching is related to average degree, height of the BFS
tree and the type of a model. Effectiveness of state caching differs for toy
models and real case studies.

— Effectiveness of state compression is very well correlated with state size, it
does not depend on other parameters.

5.2 Comparison with Related Work

Let us also put our work in the context of the numerous related work. Rather then
tuning a single implementation (as is the case of most of the related work), we try
several simple strategies and parameter values. We also use significantly larger
number of models than other studies and compare the performance on different
types of models. In this context, the results of our study are the following:

— Our review of the literature as well as our experimental results show that the
reduction ratio obtained by state caching and state compression techniques
is in most cases in the interval 10-80%, i.e., with the use of these techniques
it may be possible to traverse up to 10 times larger state space than by
standard search.

— Using simple and easy-to-implement techniques, we are able to achieve very
similar results as reported in other works which use more sophisticated ap-
proaches.

— The performance depends on used models — the choice of models does not
change the overall results fundamentally (smaller number of models may
be sufficient to get the basic insight), but with respect to comparison of
techniques the choice of models can be important. Caching and compression
techniques work better on realistic models than on academic toy examples.

5.3 Outlook

In the case of state caching and state compression techniques it seems better
to implement several simple technique than a single sophisticated one. Rather
than tuning a single technique, we should focus on methods for selecting an
appropriate simple techniques and choosing suitable parameter values.

14

79

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

J. Barnat, L. Brim, I. Cerna, P. Moravec, P. Rockai, and P. Simeéek. Divine - a tool
for distributed verification. In Proc. of Computer Aided Verification (CAV’06),
volume 4144 of LNCS, pages 278-281. Springer, 2006. The tool is available at
http://anna.fi.muni.cz/divine.

. G. Behrmann, K. G. Larsen, and R. Pelanek. To store or not to store. In Proc. of

Computer Aided Verification (CAV 2003), volume 2725 of LNCS. Springer, 2003.
S. Christensen, L.M. Kristensen, and T. Mailund. A Sweep-Line Method for State
Space Exploration. In Proc. of Tools and Algorithms for Construction and Analysis
of Systems (TACAS 2001), volume 2031 of LNCS, pages 450-464. Springer, 2001.

. S. Evangelista and J.-F. Pradat-Peyre. Memory efficient state space storage in

explicit software model checking. In Proc. of Model Checking Software (SPIN),
volume 3639 of LNCS, pages 43-57. Springer, 2005.

. J. Geldenhuys. State caching reconsidered. In Proc. of SPIN Workshop, volume

2989 of LNCS, pages 23-39. Springer, 2004.

J. Geldenhuys and P. J. A. de Villiers. Runtime efficient state compaction in SPIN.
In Proc. of SPIN Workshop, volume 1680 of LNCS, pages 12—21. Springer, 1999.
J. Geldenhuys and A. Valmari. A nearly memory-optimal data structure for sets
and mappings. In Proc. of Model Checking Software (SPIN), volume 2648 of LNCS,
pages 136-150. Springer, 2003.

P. Godefroid, G. J. Holzmann, and D. Pirottin. State space caching revisited. In
Proc. of Computer Aided Verification (CAV 1992), volume 663 of LNCS, pages
178-191. Springer, 1992.

J. Gregoire. State space compression in spin with GETSs. In Proc. Second SPIN
Workshop. Rutgers University, New Brunswick, New Jersey, 1996.

G. J. Holzmann. Tracing protocols. Bell System Technical Journal, 64(2413-
2434):336, 1985.

G. J. Holzmann. Automated protocol validation in argos: Assertion proving and
scatter searching. IEEE Trans. Softw. Eng., 13(6):683-696, 1987.

G. J. Holzmann. State compression in SPIN: Recursive indexing and compression
training runs. In Proc. of SPIN Workshop, 1997.

G. J. Holzmann, P. Godefroid, and D. Pirottin. Coverage preserving reduction
strategies for reachability analysis. In Proc. of Protocol Specification, Testing, and
Verification, 1992.

G. J. Holzmann and A. Puri. A minimized automaton representation of reachable
states. Software Tools for Technology Transfer (STTT), 3(1):270-278, 1998.

D. A. Huffman. A method for the construction of minimum redundancy codes.
Proc. of the Institute of Radio Engineers, 40(9):1098-1101, Sep 1952.

C. Jard and T. Jéron. Bounded-memory algorithms for verification on-the-fly. In
Proc. Computer Aided Verification (CAV’(91), volume 575 of LNCS, pages 192—
202. Springer, 1992.

K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. Efficient verification of real-
time systems: compact data structure and state-space reduction. In Proc. of IEEFE
Real-Time Systems Symposium, pages 14-24. IEEE Computer Society, 1997.

F. Lerda and W. Visser. Addressing dynamic issues of program model checking.
In Proc. of SPIN Workshop, volume 2057 of LNCS, pages 80-102. Springer, 2001.
A. N. Parashkevov and J. Yantchev. Space efficient reachability analysis through
use of pseudo-root states. In Proc. of Tools and Algorithms for Construction and
Analysis of Systems (TACAS ’97), volume 1217 of LNCS, pages 50-64. Springer,
1997.

15

80

20

21.

22.

23.

24.

25.

26.

27.

28.

B. Parreaux. Difference compression in spin. In Proc. of Workshop on automata
theoric verification with the SPIN model checker (SPIN’98), 1998.

R. Pelanek. Typical structural properties of state spaces. In Proc. of SPIN Work-
shop, volume 2989 of LNCS, pages 5-22. Springer, 2004.

R. Peldnek. Evaluation of on-the-fly state space reductions. In Proc. of Mathemat-
ical and Engineering Methods in Computer Science (MEMICS’05), pages 121-127,
2005.

R. Peldnek. Beem: Benchmarks for explicit model checkers. In Proc. of SPIN
Workshop, LNCS. Springer, 2007. To appear.

R. Peldnek. Model classifications and automated verification. In Proc. of Formal
Methods for Industrial Critical Systems (FMICS’07), 2007. To appear.

R. Peldnek, V. Rosecky, and P. Moravec. Complementarity of error detection
techniques. In Proc. of Parallel and Distributed Methods in verifiCation (PDMC),
2008. To appear.

R. Pelének and P. Simeéek. Estimating state space parameters. Technical Report
FIMU-RS-2008-01, Masaryk University Brno, 2008.

G. D. Penna, B. Intrigila, I. Melatti, E. Tronci, and M. V. Zilli. Exploiting transi-
tion locality in automatic verification of finite state concurrent systems. Software
Tools for Technology Transfer (STTT), 6(4):320-341, 2004.

W. Visser. Memory efficient state storage in SPIN. In Proc. of SPIN Workshop,
pages 21-35, 1996.

16

81

82

Chapter 7

Complementarity of Error Detection
Techniques

In this paper we study the performance of techniques for error detection and we focus
particularly on the issue of complementarity. Using experimental evidence we argue
that it is not important to find the best technique, but to find a set of complemen-
tary techniques (as discussed in Section[1.3.2). We choose nine diverse error detection
techniques (e.g., depth-first search, directed search, random walk, and bitstate hash-
ing) and perform experiments over the BEEM set.

The topic is closely connected to the research in testing. Therefore, in our evalua-
tion we compare not just a speed of techniques, but also model coverage metrics that
are used in the testing domain. The result of our experiments show that the studied
techniques are indeed complementarity in several ways.

This paper was published in proceedings of International Workshop on Parallel
and Distributed Methods in verifiCation (PDMC) in 2008:

e R. Peldnek, V. Rosecky, and P. Moravec. Complementarity of error detection
techniques. In Proc. of Parallel and Distributed Methods in verifiCation (PDMC),
volume of 220 ENTCS, 2008.

The author of the thesis is one of three coauthors of the paper and has done the
analysis of data and most of the writing.

83

Available online at www.sciencedirect.com

ScienceDirect Theoretical Commuter

Science

Electronic Notes in Theoretical Computer Science 220 (2008) 51-65
www.elsevier.com/locate/entcs

Complementarity of Error Detection
Techniques

Radek Pelanek,! Vaclav Rosecky' and Pavel Moravec?

Faculty of Informatics
Masaryk University Brno, Czech Republic

Abstract

We study explicit techniques for detection of safety errors, e.g., depth-first search, directed search, random
walk, and bitstate hashing. We argue that it is not important to find the best technique, but to find
a set of complementary techniques. To this end, we choose nine diverse error detection techniques and
perform experiments over a large set of models. We compare speed of techniques, lengths of reported
counterexamples, and also achieved model coverage. The results show that the studied set of techniques is
indeed complementary in several ways.

Keywords: explicit model checking, experimental evaluation, parallel execution

1 Introduction

There are many methods for checking correctness of computer systems, e.g., test-
ing, model checking, static analysis, theorem proving. Currently, these techniques
are being successfully combined and the border between them is more and more
blurred. Although the research community focuses mainly on verification, industry
is concerned with falsification: “Falsification comes before verification! Maximise
the number of found bugs per hour per spend euro.” [13]. In this work we study a
spectrum of falsification techniques between model checking and testing.

Nowadays there is a significant trend which should change the way we study
and evaluate verification and falsification techniques — a trend towards cheap and
widely available parallelism. Consequently, it is possible to run several techniques
in parallel, either on a single multi-core machine or on a network of workstations.
This has two important consequences:

1 Partially supported by GA CR grant no. 201/07/P035.
2 Partially supported by The Academy of Sciences of the CR grant no. 1ET408050503.

1571-0661/$ — see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.entcs.2008.11.013

84

52 R. Peldnek et al. / Electronic Notes in Theoretical Computer Science 220 (2008) 51-65

(i) Rather than focusing on “universal” techniques (suitable for both verification
and falsification), it is better to develop specialised techniques and run them
in parallel (either on two different machines or as independent threads on a
multi-core machine).

(ii) Rather than focusing on the search of “the best” technique, it is better to look
for a set of complementary techniques, such that each of these techniques works
well on different kind of models. Such a set of techniques can be again run in
parallel. Note that it is not necessary to know which technique works well for
which models.

Our goal in this work is to find a set of complementary techniques for error
detection of safety properties (plain reachability analysis). To this end, we study
techniques which lie on the spectrum between explicit model checking (systematic
traversal of a state space) and testing (exploration of sample paths through a state
space), e.g., breadth-first search, randomized depth-first search, bitstate hashing,
directed search, random walk, and under-approximations based on partial order
reduction. Our specific contributions are the following:

e We give an overview of explicit error detection techniques. We show that there
are several basic building blocks which are nearly orthogonal and which can be
combined in many ways. Previous studies usually focused on a specific technique.

e We choose nine diverse techniques, implement them in a single setting, and ex-
perimentally evaluate them over a large benchmark set. This is the first study
that compares a large number of different techniques. Previous studies compared
only two techniques or several variants of the same technique.

e We study the impact of model selection on results of experiments. Such analysis
has not been done in previous studies in this domain.

* We study the ability to detect specified errors, the length of counterexamples
and also the model coverage (as measured by coverage metrics). We focus on
complementarity with respect to these different aims. Previous studies focused
only on one of the described aspects.

Related work

One line of related work deals with study of a single error detection technique, e.g.,
bitstate hashing [11], directed search (also called guided search) [14,7], state-less
search [9], or random walk [22]. These works only compare a proposed technique
to a standard search technique (BFS, DFS).

Interesting line of recent research has focused on randomized techniques [6,5,24,23].
These papers show an interesting point: sometimes the effect of randomization
can overshadow the effect of sophisticated optimization techniques. These works,
however, usually compare only two techniques (e.g., random walk versus random
DFS [24], directed search versus randomized directed search [23]).

Another line of research is concerned with coverage metrics and test case genera-
tion, particularly with test input generation for Java containers [2,15,17,18]. These

85

R. Peldnek et al. / Electronic Notes in Theoretical Computer Science 220 (2008) 51-65 53

works are, however, often specific to a particular application domain (containers)
and consider only coverage metrics, not an error detection.

In this work we advocate the use of parallel computation. There is already a
large amount of research work devoted to application of parallel and distributed
computation in verification. Most of this work, however, focuses on parallelization
of one procedure. Such approach incurs significant communication overhead. We
advocate a different application of parallelism — several different procedures which
run completely independently.

Most of the related work share several deficiencies of the experimental work: poor
experimental data (only simple models or a small number of models is used), lack of
transparency and reproducibility (used models are not available, verified properties
are not stated, implementation details are veiled), comparisons are unfair (compared
techniques are programmed using different sets of programming primitives). In our
work we try to overcome these deficiencies.

Organization of the paper

Section 2 presents general building blocks of error detection techniques and de-
scribes the specific techniques that we compare. Section 3 describes the experimen-
tal methodology that we use (implementation details, used models, performance
measures). Section 4 presents main results of our experiments. Main points are
summarised in Section 5 and future directions are outlined in Section 6.

2 Overview of Techniques

Error detection techniques are based on several basic building blocks. Although
these building blocks are not completely independent, there is a large degree of
orthogonality and thus these building blocks can be combined in many ways. In this
section we give an overview of building blocks and specify which specific techniques
we use for the experimental evaluation. We also describe an artificial example which
illustrates complementarity of techniques.

2.1 Building Blocks of Error Detection Techniques

Fig. 1. gives a simplified general pseudocode of an error detection technique. A data
structure Wait holds states that are to be visited by the search. A data structure
Visited holds information about states that have already been visited. A technique
inserts the initial state to the Wait structure, then it repeatedly extracts some
state from the Wait structure, checks whether the state violates the property, takes
some successors in some order and if these successors are not matched within the
Visited structure then it adds these states to the Wait structure and updates the
Visited structure. However, there are many ways how to implement these general
operations (marked by italics in this paragraph).

86

54 R. Peldnek et al. / Electronic Notes in Theoretical Computer Science 220 (2008) 51-65

2.1.1 Selection of states
We need to specify the way how successors of the current state are selected (line 6):
e complete search: all successors are selected,

* incomplete search: only some successors are selected, e.g.,
- random selection of one state,
- selection of several states according to a heuristic function.

2.1.2 Search order

We need to specify in what order states are extracted from the Wait structure
(line 4):

 breadth-first search order (Wait implemented as a queue),

e depth-first search order (Wait implemented as a stack?),

e order given by a heuristic function (e.g., best first search).

2.1.83 State storage and matching
We need to specify what information to store in the Visited structure and how to
use this information (lines 7, 9). The most common approaches are the following:

e Visited is implemented as a standard set of states (usually implemented as hash
table which holds states in a collision list).

 Visited is a hash table which stores just one bit for each row in a table (i.e., no
collision detection), this technique is usually called bitstate hashing [11]. A more
general technique is based on bloom filters [4].

e Visited stores and performs matching on abstract states computed by a given
abstraction function [19].

 Visited data structure is not used at all (random walk or state-less search [9]).

3 We note that in order to get the exact depth-first search order, it is not sufficient to use the pseudocode
in Fig. 1. with Wait implemented as stack; it is necessary to slightly modify the code.

1 proc ErrorDetection(M, ¢)

2 insert initial state to Wait

s while not finished do

4 get s from Wait

5 if s violates ¢ then return path to s fi

6 foreach s’ € selected successors of s do

7 if s’ not matched in Visited

8 then insert s’ to Wait

9 update Visited with information about s’ fi
10 od od

Fig. 1. Basic pseudocode for error detection techniques.

87

R. Peldnek et al. / Electronic Notes in Theoretical Computer Science 220 (2008) 51-65 55

2.1.4 Repetition

For some techniques it is meaningful to do a repetition or refinement of the search.
Such techniques may be terminated (e.g., after reaching a time limit or filling a
hash table) and then be called again.

e No repetition or refinement. If a technique is deterministic and does not have
any parameters, then there is no point in repeating the search.

e Repetition with different seed. This is meaningful for techniques that use ran-
domization (e.g., random walk [22] or randomized DFS [3,24]).

e Repetition with changes of parameters (refinement of the search). This is mean-
ingful for techniques that have parameters which influence the above stated build-
ing blocks (e.g., size of hashing table for bitstate hashing [11], predicate abstrac-
tion function for matching based on abstraction [19]).

2.2 Techniques Used for Evaluation

The described building blocks can be combined in many ways. For our experimental
evaluation we select the following techniques and parameter values (Section 3.4
describes the methodology used for the selection of techniques and parameters):

BFS Breadth-first search.

DFS Depth-first search. Successors of a state are taken in a fixed order given by
the state generator.

RDFS Randomized depth-first search. Successors of a state are taken in a random
order [3,24].

RW Random walk. Classical random walk with a fixed length (500 states) and
repetition.

ERW Enhanced random walk. Combination of random walk with local exhaustive
BF'S [22]. The technique is parametrized by the probability that the local BFS is

started (0.004), the number of states explored by the BFS (5000 states), and the
number of random walk steps before reinitialization (500 states).

BITH Bitstate hashing with repetition [11,12]. The search uses DFS, in the first
iteration the size of a hash table is small (8000 bits) and in each repetition we
enlarge the size of hash table (multiply by 4).

DIRS Directed search with structural heuristic. The overall score for state is
defined as a sum of ranks for transitions, which lead to that state. Rank for a
transition is defined as a sum of count of read variables in its guard and count
of modified variables in its effect, plus one in a case of a communication. The
heuristic is inspired by [10].

DIRG Search directed by heuristic function given by the goal. We try to estimate
remaining length to reach some goal state. The heuristic function hg(s) for state
s and goal g is obtained by direct transformation of the goal (we use the same
transformation as [7,14]).

UPOR Under-approximation refinement based on partial order reduction [16]. The
88

56 R. Peldnek et al. / Electronic Notes in Theoretical Computer Science 220 (2008) 51-65

.../\ e

\Q(\ N

N

<

g

Fig. 2. An artificial example, the right part of the graph is comprised of a ‘big diamond’.

technique is based on an under-approximation of conditions of a correct partial
order reduction. Gradual refinement of such approximations generates a sequence
of subspaces of the original model such that the subspaces have increasing set of
behaviours. Approximations are based on BFS.

2.8 Illustration on an Artificial Example

Fig. 2. shows an example, which demonstrates typical features of state spaces of
realistic models although it is artificially constructed. Let us discuss the behaviour
of the three most classical techniques on this example:

e BFS quickly finds state A, whereas state C is found as the last one.

e DFS can quickly find state C, the detection of states A, B depends on the search
order, but with high probability the state A will be one of the last ones to be
found.

e RW does quickly find state C, state A will be also find reasonably quickly, but
the state B is difficult to reach by RW.

This example illustrates our main point: different techniques are complementary
— technique A may work well in case X but not in case Y while technique B may
work well in case Y but not in case X. The example also illustrates another often
neglected fact: the performance of error detection techniques depends not only on
models, but also on errors (goals) of interest.

3 Experimental Methodology

We try hard to make our experiments fair, transparent and reproducible. All the
experimental data are available at:

http://www.fi.muni.cz/ xrosecky/error_detection

The webpage contains implementation source codes, list of all models and their
source codes, verified properties, and all results. For the implementation we use the
Distributed Verification Environment (DiVinE) [1], which is also publicly available.
We have tried to make the comparison fair by paying special attention to implement
all techniques in similar and comparable way.

89

R. Peldnek et al. / Electronic Notes in Theoretical Computer Science 220 (2008) 51-65 57

3.1 Models and Errors

Models are specified as finite state machines extended with integer variables and
communication. We use models from the BEEM set (BEnchmarks for Explicit
Model checkers) [20]; some models have been slightly modified, particularly we
have seeded additional errors to models. The used models span several application
domains, particularly mutual exclusion algorithms, communication protocols, and
controllers. We use 54 models; all the used models have large state spaces — in
most cases the whole reachable state space does not fit into memory (explicitly
represented) and even the fastest error detection technique needs to visit thousands
of states before the error is detected.

Except for models, our techniques take as an input a goal for error detection
(a boolean expression). We search not only for real errors in erroneous versions of
models, but also for interesting states in correct versions of models. This is also
useful — for example the user may be interested how the protocol can get to a
certain configuration. However, in order to make the explanation simpler, in this
paper we always use the term “error detection”.

3.2 Performance Measures

As a main measure of technique’s performance we use the number of states processed
by the technique before a goal state is found. Other studies usually use time as a
main performance measure. However, time depends on a specific machine and
implementation and is not reproducible. We note that using number of processed
states as a performance metric is not completely fair, because techniques differ in
their speed of exploration (e.g., random walk is faster than search which stores and
matches states). However, this effect is not very significant and it does not distort
the main message of our results.

As a second measure we use the length of counterexample returned by a tech-
nique. The length is measured as a number of states in the counterexample.

As a third measure we consider coverage metrics. Coverage metrics are used
particularly in the testing community (see e.g. [2,15,17,18]). Coverage metrics mea~
sure the coverage of a model’s behaviour by a technique. We have selected four
different coverage metrics:

Statement coverage Counts the number of visited statements (positions of pro-
gram counters of every process in the model).

Branch coverage Counts the number of visited branches (transitions of every
process in the model).

Condition coverage Counts the number of combinations of truth values of ex-
pressions in conditions within each visited state.

Multiple condition coverage Counts within each visited state the number of
different truth values of all atomic expressions that occur in conditions.

In case of coverage metrics, we fix the number of states (50,000) and measure a
coverage achieved after this limit.

90

58 R. Peldnek et al. / Electronic Notes in Theoretical Computer Science 220 (2008) 51-65

RW ERW RDFS

s] | N

0 50000 100000 150000 0e+00 2e+05 4e+05 6e+05 0 50000 150000 250000 350000

0 2 4 6 8 10 12
0 2 4 6 8 10 12
0 2 4 6 8 10 12

Fig. 3. Histograms showing the number of processed states for 21 runs of three randomized techniques over
the model firewire_link.x1 (x-axis: states, y-axis: number of cases).

3.3 Randomized Techniques

Several of the studied techniques use randomization (RW, ERW, RDFS). For these
techniques we run 21 runs. Note that the results of these runs do not have a normal
distribution. For RW the results are usually more like Poisson distribution, for
RDEFS the results can fall into several distant regions, i.e., the technique can be
either very fast or very slow, but nothing in between (see Fig 3.). For this reason,
we do not report mean value and standard deviation, as is usual. Rather we use the
median value, because we consider it to be more meaningful (note that the median
can be used meaningfully even if there are several runs which do not terminate).
For a comparison of counterexamples we use a counterexample returned by the run
with median number of processed states.

3.4 Selection of Techniques and Parameters

In our experiments we use nine techniques, which are described in Section 2.2. To
select these nine techniques, we specified a large set of techniques that covered many
combinations of building blocks (see Section 2.1), particularly we tried different
values of parameters and different types of search order. Then we run a preliminary
version of experiments with all these techniques. Then we analyzed the correlations
among technique’s performance (in the same way as shown in Fig. 5) and we found
that techniques which differ only slightly (e.g., by parameter values) have very
similar performance. From each group of similar techniques we selected one with

good results (note that since we use several performance measures, we cannot say
which is “the best”).

4 Experiments

In this section we report the results of experiments. The results show complemen-
tarity of techniques in two aspects. At first, each technique works well on different
models. At second, the performance differs with respect to the number of visited
states, the length of reported counterexample, and the model coverage. We also
discuss the impact of selection of models on results.

91

R. Peldnek et al. / Electronic Notes in Theoretical Computer Science 220 (2008) 51-65 59

o _

[Te)

o |

<

o Hl Class 1

® 7] Bl Class2
O Class 3
[J Class 4

o |

a

10

BITH DIRS DIRG DFS RDFS UPOR ERW RW BFS

Fig. 4. Comparison of techniques for error detection.

4.1 Error Detection

In order to make the results easier to understand, we normalize the performance of
each technique for each verification problem (i.e., model and target goal) relatively
to the best technique for the verification problem. More specifically, we classify
the technique’s performance in one of 4 classes. Let N7 be the number of states
processed by a technique T and Np be the number of states processed by the
technique which is the best for a given verification problem. Then the performance
of T' over the problem is classified as follows:

Class 1 Np = Np
Class 2 Np < Ny <2-Np
Class 3 2-Ngp < Ny <10-Np
Class 4 10- Ng < Nr

Fig. 4. gives a summary of our experiments. For each technique we report
the number of cases in which it was classified to each class. There are significant
differences among techniques — BITH and DIRG are clearly more successful than
BFS. However, there is no dominant technique and for each technique there are
cases where it works well.

Fig. 5 illustrates the complementarity of studied techniques. In order to compute
correlations among techniques we consider normalized numbers of states processed
by each technique (Np/Nr). For each pair of techniques we compute the correlation
coefficient and visualise it by colors. The figure shows that there is a low degree of
correlation among studied techniques. To a certain extent, this result is caused by
our selection process (see Section 3.4).

Note that sometimes even similar techniques can yield different results. This
is particularly the case of DFS and RDFS. These techniques achieve very similar

92

60 R. Peldnek et al. / Electronic Notes in Theoretical Computer Science 220 (2008) 51-65
BFS UPORDIRG DIRS BITH DFS RDFS ERW

Correlation
coeficient
0.50 - 0.75
0.25 - 0.50
0.00 - 0.25
-0.25 — 0.00
-0.50 - -0.25

Fig. 5. Correlations among techniques. A light color means high correlation (techniques work/fail on same
verification problems), a dark color means low correlation (techniques work/fail on different verification

problems).
07 I I I
<
Q |
(s
o

BFS DIRG UPOR DIRS DFS BITH RDFS RW ERW

RW

ERW

RDFS

DFS

BITH

DIRS

DIRG

UPOR

50
I}

Class 1
Class 2
Class 3
Class 4

Odfmm

20

10

Fig. 6. Lengths of counterexamples produced by techniques. The graph uses the same type of classification
as for number of visited states.

overall results (see Fig. 4), but their performance is only loosely correlated, i.e.,
each of them works well on different models (see Fig 5).

4.2 Length of Counterezample

In applications, we are also concerned with the length of the counterexample.
Shorter counterexamples are easier to analyse and understand, therefore it is impor-
tant whether a technique returns short counterexamples. Fig. 6. gives a comparison
of techniques with respect to the length of produced counterexample (the same type
of classification as before is used). If BFS terminates, than it produces the short-
est possible counterexample (by definition of the technique). Two other techniques,

93

R. Peldnek et al. / Electronic Notes in Theoretical Computer Science 220 (2008) 51-65

Condition coverage

60 80 100

40

80 100

60

Multiple condition coverage

40

20

g

20

T

61

o - - -

BITH RW UPOR RDFS ERW DFS DIRS BFS UPOR BFS RW

BITH ERW RDFS DIRS DFS

Fig. 7. Comparison of techniques for two coverage metrics; the results are normalized by the best technique
(best = 100); results are shown using the boxplot method (minimum, 1st quartile, median, 3rd quartile,
maximum) and sorted by the median.

DIRG and UPOR (both are based on BFS), produce short counterexamples most of
the time. Other techniques are significantly worse. Note that DIRG is the only one
which produces short counterexamples and at the same time it is often successful,
i.e., there is a certain trade-off between the performance of a technique and a length
of computed counterexamples.

4.3 Coverage

All techniques can usually achieve the optimal coverage for statement coverage and
branch coverage, i.e., these metrics are not suitable for distinguishing the perfor-
mance of techniques. Results for condition coverage and multiple condition cover-
age, however, show more variability, see Fig. 7. Note that in this case we do not
use the DIRG technique, because there is no goal to guide the directed search.

Again, we see that there is no dominant technique, each technique works in some
cases and fails in others. The successfulness of techniques differs for the two coverage
metrics and it is different from successfulness for error detection. For example, the
UPOR and RW techniques, which do not work very well for error detection, are
quite good for achieving coverage. Only BITH technique has consistently good
results.

4.4 The Impact of Model Selection

How much does the selection of models influence results of our experimental study?
We study this question from several perspectives.

Some errors can be easily found by several techniques, whereas others can be
tackled efficiently only by one technique. This is illustrated in Fig. 8., which shows
that from the 54 cases, in 14 cases the selection of a technique is crucial (1 tech-
nique works well, other do not) and in another in 7 cases the selection is still very
important (only 2 techniques work well). On the other hand, in 7 cases the selection

of a technique is not very important because 4 from 9 techniques are in Class 1 or
Class 2.

94

62 R. Peldnek et al. / Electronic Notes in Theoretical Computer Science 220 (2008) 51-65

- L

| Nﬁm. R

xxxxxxxxx

Class 1
Class 2
Class 3
Class 4

OOomEm

Model

Fig. 8. The performance of techniques over individual models. Each column corresponds to one model and
shows the number of techniques in each class. The marked columns correspond to toy models.

Table 1
Performance for different types of models. For each model type and technique we report the average
classification (1 to 4 values).

model type DIRG DIRS RDFS DFS BITH UPOR ERW RW BFS

all 2.9 2.9 2.9 2.9 3.0 3.4 3.5 3.6 3.6
random half 2.6 2.9 2.5 3.0 3.2 3.6 3.5 3.6 3.7
mutex 3.2 3.6 2.4 3.5 3.0 4.0 3.3 3.5 4.0
protocols 2.8 3.2 3.4 3.0 2.9 3.3 3.7 3.5 3.8
toy 2.6 2.2 2.3 2.1 2.6 2.6 3.5 4.0 3.0
complex 3.2 2.8 3.4 3.0 2.6 3.0 3.7 3.4 3.9

Table 1. shows what happens when we restrict our attention to a specific type
of models. The table shows the average classification for each technique, compare
the first line in Table 1. with Fig. 4. The first row in the table gives the overall
results. The second row in the table gives the result for a randomly selected half of
the models. The results are similar to overall results; this supports our conviction
that our set of models is sufficiently large so that results are not influenced by the
selection of models.

BEEM [20] provides a classification according to application domain and ac-
cording to complexity of the model (as a toy, simple, and complex models). These
classifications are used in the rest of Table 1. When we consider only models from a
particular application domain we see that some techniques do not work at all (e.g.,
BFS and UPOR for mutual exclusion algorithms). Nevertheless, even in this case
there is no clear winner.

The restriction to toy/complex models shows how results of experiments can be
distorted by the usage of (only) toy models. For toy models, the average classifica-
tions are very low (compared to other model types). The low average classification
means that usually many techniques are successful on each model, i.e., that the
selection of a technique does not matter (see also Fig. 8). If we order techniques by
average classification, we get quite different order for toy and complex models.

95

R. Peldnek et al. / Electronic Notes in Theoretical Computer Science 220 (2008) 51-65 63

5 Summary

There is no single best technique. Never mind, it does not matter. Some tech-
niques work well for error detection (directed search, randomized DFS), other tech-
niques can achieve good coverage (bitstate hashing with refinement, random walk,
UPOR) or produce short counterexamples (BFS). However, given the accessibility
of hardware for parallel computation (multi-core processors, networks of worksta-
tions, clusters), we can run many techniques in parallel (independently, with no
communication overhead) and thus combine strength of different techniques.

It is important to focus also on complementarity of techniques, not just on their
perfectness. Tuning of parameters of a single technique, in order to make it as
fast as possible, is not a good way forward. Our experiences suggest that tuning of
parameters can improve the performance slightly, but it does not change whether the
technique works well on a model. A good example of advantageous complementarity
are the techniques BITH and DIRG, both of these techniques work quite well and
they complement each other (their performance is inversely correlated).

It is important to compare a new technique with a large number of previously
known techniques. Usual experimental approach is to compare a new technique
with one or two classical techniques; the focus is on showing an improvement over
some benchmark set. However, there may be different techniques which works
significantly better for many problems in the benchmark set than used classical
techniques and thus the reported improvement may be rather irrelevant. Therefore,
it is important to do the comparison with a nontrivial set of complementary tech-
niques. Our work suggests that for error detection the following set of well-known
and easy-to-implement techniques is reasonably complementary and should be used
in subsequent experiments: BFS, DFS, randomized DF'S, directed search, bitstate
hashing with refinement, and random walk.

Both models and goals have significant and hard to predict impact on the per-
formance of techniques. One of our original goals was to predict the performance
of techniques on a given model by parsing the syntax of the model and/or taking
a small sample of the state space. Now we consider this goal to be unrealistic,
mainly due to the impact of the goal on technique’s performance. Note that the
importance of a goal selection is neglected in previous studies (the goal is usually
not even stated).

Verification problems also differ in the number of techniques which work well
over them. For some problems it is not very significant which technique do we use,
all techniques need similar time to find the error. For some verification problems,
however, one technique can defeat other techniques utterly.

6 Future Work

In this work we analyse and evaluate only techniques for detection of safety er-
rors. Similar analysis, with the main goal of finding a set of good complementary

96

64 R. Peldnek et al. / Electronic Notes in Theoretical Computer Science 220 (2008) 51-65

techniques, should be done at least for the following, practically important cases*:

e verification of safety properties,
e falsification of liveness properties,

e verification of liveness properties.

In this work we advocate the use of parallel independent runs of several tech-
niques. The independence of individual runs means that there is no communication
overhead. However, it may be advantageous to collect and share some information
among different techniques, see [21,8] for general proposals of such a setting. It may
be interesting to implement a globally controlled parallel run using the techniques
discussed in this paper.

References

[1] J. Barnat, L. Brim, L. Cerné, P. Moravec, P. Rockai, and P. Simecek. Divine - a tool for distributed

verification. In Proc. of Computer Aided Verification (CAV’06), volume 4144 of LNCS, pages 278-281.
Springer, 2006. The tool is available at http://anna.fi.muni.cz/divine.

[2] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated testing based on java predicates. In

Proc. of International symposium on Software testing and analysis (ISSTA ’02), pages 123-133. ACM
Press, 2002.

[3] L. Brim, I. Cerné, and M. Necesal. Randomization helps in LTL model checking. In Proc. of PAPM-
PROBMIV Workshop, number 2165 in LNCS, pages 105-119. Springer, 2001.

[4] P. C. Dillinger, P., and Manolios. Bloom Filters in Probabilistic Verification. Formal Methods in
Computer-Aided Design (FMCAD), 3312:367-381, 2004.

[5] M B. Dwyer, S. Elbaum, S. Person, and R. Purandare. Parallel randomized state-space search. In

Proc. of International Conference on Software Engineering (ICSE ’07), pages 3-12. IEEE Computer
Society, 2007.

[6] M. B. Dwyer, S. Person, and S. Elbaum. Controlling factors in evaluating path-sensitive error detection
techniques. In Proc. of Foundations of software engineering (SIGSOFT ’06/FSE-14), pages 92-104.
ACM Press, 2006.

[7] S. Edelkamp, A. L. Lafuente, and S. Leue. Directed explicit model checking with HSF-SPIN. In Proc.
SPIN workshop, volume 2057 of LNCS, pages 57—-79. Springer, 2001.

[8] Y. Eytani, K. Havelund, S. D. Stoller, and S. Ur. Toward a Framework and Benchmark for Testing Tools

for Multi-Threaded Programs. Concurrency and Computation: Practice and Ezxperience, 19(3):267-279,
2007.

[9] P. Godefroid. Model checking for programming languages using verisoft. In Proc. of Principles of
programming languages (POPL °97), pages 174-186. ACM Press, 1997.

[10] A. Groce and W. Visser. Heuristics for model checking Java programs. Software Tools for Technology
Transfer (STTT), 6(4):260-276, 2004.

[11] G. J. Holzmann. An analysis of bitstate hashing. In Proc. of Protocol Specification, Testing, and
Verification, pages 301-314. Chapman & Hall, 1995.

[12] G.J. Holzmann and M.H. Smith. Automating software feature verification. Bell Labs Technical Journal,
5(2):72-87, 2000.

[13] T. Kropf. Software bugs seen from an industrial perspective or can formal methods help an automotive
software development?, 2007. Invited talk on CAV’07.

[14] A. L. Lafuente. Directed Search for the Verification of Communication Protocols. PhD thesis, Albert-
Ludwigs-Universitat Freinburg, 2003.

4 Note that there exist techniques which can cope with all of these cases. However, as we argue in Intro-
duction, such “universal” techniques are not very important from the practical point of view.

97

R. Peldnek et al. / Electronic Notes in Theoretical Computer Science 220 (2008) 51-65 65

[15] D. Marinov, A. Andoni, D. Daniliuc, S. Khurshid, and M. Rinard. An evaluation of exhaustive testing
for data structures. Technical Report LCS-TR-~921, MIT Computer Science and Artificial Intelligence
Laboratory, September 2003.

[16] P. Moravec. Approximations of state spaces reduced by partial order reduction. Submitted to
SOFSEM’08.

[17] C. Pasareanu, R. Peldnek, and W. Visser. Test input generation for red black trees using abstraction.
In Proc. of Automated Software Engineering (ASE’05), pages 414-417. ACM, 2005.

[18] C. Pasareanu, R. Peldnek, and W. Visser. Test input generation for java containers using state matching.
In Proc. of International Symposium on International Symposium on Software Testing and Analysis
(ISSTA’06), pages 37-48. ACM, 2006.

[19] C. Pasareanu, R. Peldnek, and W. Visser. Predicate abstraction with under-approximation refinement.
Logical Methods in Computer Science, 3(1), 2007.

[20] R. Peldnek. Beem: Benchmarks for explicit model checkers. In Proc. of SPIN Workshop, volume 4595
of LNCS, pages 263-267. Springer, 2007. Available at http://anna.fi.muni.cz/models.

[21] R. Peldanek. Model classifications and automated verification. In Proc. of Formal Methods for Industrial
Critical Systems (FMICS’07), 2007. To appear.

[22] R. Pelének, T. Hanzl, 1. Cern4, and L. Brim. Enhancing random walk state space exploration. In Proc.
of Formal Methods for Industrial Critical Systems (FMICS’05), pages 98-105. ACM Press, 2005.

[23] N. Rungta and E. G. Mercer. Generating counter-examples through randomized guided search. In
Model Checking Software, volume 4595 of LNCS, pages 39-57. Springer, 2007.

[24] N. Rungta and E. G. Mercer. Hardness for explicit state software model checking benchmarks. In Proc.
of Software Engineering and Formal Methods (SEFM’07). IEEE Computer Society, 2007.

98

Chapter 8

Test Input Generation for Java
Containers using State Matching

The topic of this paper lies on the border between model checking and testing. We
are concerned with test input generation for Java containers and we try to do it with
the use of explicit model checker (Java PathFinder). We compare several techniques:
exhaustive techniques based on explicit model checking, lossy techniques which are
based on explicit model checking but do not visit all states, and also random selection
of inputs. The basic metric used for comparison is testing coverage (more specifically,
we use a predicate coverage metric).

The first surprising result is that random selection, despite its simplicity, performs
surprisingly well. Nevertheless, more sophisticated techniques can beat random selec-
tion on complex inputs (e.g., implementation of a red-black tree). The most successful
technique seems to be the explicit search with abstract matching of states, but similarly
to our other evaluations it is not possible to declare a single universal winner.

This paper was published in proceedings of International Symposium on Interna-
tional Symposium on Software Testing and Analysis (ISSTA) in 2006 [55], preliminary
version of the research was reported as a short paper in Automated Software Engi-
neering in 2005:

e C. Pasareanu, R. Pelanek, and W. Visser. Test input generation for java con-
tainers using state matching. In Proc. of International Symposium on International
Symposium on Software Testing and Analysis (ISSTA'06), pages 37-48. ACM, 2006.

e C. Pasareanu, R. Peldnek, and W. Visser. Test input generation for red black
trees using abstraction. In Proc. of Automated Software Engineering (ASE’05),
pages 414-417. ACM, 2005.

The author of the thesis is one of three coauthors of the paper and has contributed
particularly to the experimental design, data analysis, and interpretation of results.

99

Test Input Generation for Java Containers
using State Matching

Willem Visser
RIACS/NASA Ames

wvisser@email.arc.nasa.gov

ABSTRACT

The popularity of object-oriented programming has led to
the wide use of container libraries. It is important for the re-
liability of these containers that they are tested adequately.
We describe techniques for automated test input genera-
tion of Java container classes. Test inputs are sequences
of method calls from the container interface. The tech-
niques rely on state matching to avoid generation of re-
dundant tests. FEzhaustive techniques use model checking
with explicit or symbolic execution to explore all the possi-
ble test sequences up to predefined input sizes. Lossy tech-
niques rely on abstraction mappings to compute and store
abstract versions of the concrete states; they explore under-
approximations of all the possible test sequences.

We have implemented the techniques on top of the Java
PathFinder model checker and we evaluate them using four
Java container classes. We compare state matching based
techniques and random selection for generating test inputs,
in terms of testing coverage. We consider basic block cover-
age and a form of predicate coverage - that measures whether
all combinations of a predetermined set of predicates are
covered at each basic block. The exhaustive techniques can
easily obtain basic block coverage, but cannot obtain good
predicate coverage before running out of memory. On the
other hand, abstract matching turns out to be a powerful
approach for generating test inputs to obtain high predicate
coverage. Random selection performed well except on the
examples that contained complex input spaces, where the
lossy abstraction techniques performed better.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and De-
bugging

General Terms

Reliability, Experimentation, Verification

Copyright 2005 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by a contractor or
dfiliate of the U.S. Government. As such, the Government retains a nonex-
clusive, royalty-free right to publish or reproduce this article, or to alow
others to do so, for Government purposes only.

ISSTA'06 July 17-20, 2006, Portland, Maine, USA.

Copyright 2006 ACM 1-59593-263-1/06/0007 ...$5.00.

100

Corina S. Pasareanu
QSS/NASA Ames

Moffett Field, CA 94035, USA Moffett Field, CA 94035, USA

pcorina@email.arc.nasa.gov

37

Radek Pelanek
Masaryk University
Brno, Czech Republic
xpelanek@fi.muni.cz

Keywords

Software Model Checking, Unit Testing, Symbolic Execu-
tion, Abstraction, Random Testing

1. INTRODUCTION

Object oriented programming is fast becoming the paradigm
of choice in everything from web applications to safety crit-
ical flight control software in the next generation of NASA
manned missions. Modern object oriented languages typi-
cally come with libraries of container classes that are heav-
ily reused without much concern given to the correctness of
these container implementations. To ensure the reliability
of systems built with such containers, they must be tested
adequately. The large number of test inputs for thorough
testing makes automated test input generation imperative.

This paper presents techniques for automated test input
generation of container classes that use state matching to
avoid generation of redundant tests. Test inputs are se-
quences of method calls from the container interface, that
cover the relevant structural and behavioral aspects of the
code. We use a model checker to ezhaustively try all combi-
nations of method calls and parameters to these calls up to a
specified limit, but after each call the state of the container
is examined to see if it can be “matched” with a previously
stored state; if so, that sequence is discarded, if not the
search continues with the next call.

During this search the testing coverage is measured and
whenever new coverage is obtained the sequence of calls to
achieve that coverage is recorded. We consider basic block
coverage, as a representative example of simple structural
coverage, and a form of predicate coverage [3] which mea-
sures the coverage of all the combinations of program pred-
icates; predicate coverage is more difficult to achieve than
basic block coverage.

The large amount of input data necessary to test the con-
tainers made us investigate an alternative technique, which
uses symbolic, rather than explicit, execution, i.e. instead of
concrete parameters to interface method calls it uses sym-
bolic parameters. Symbolic execution [22] manipulates sym-
bolic states, representing sets of concrete states, and parti-
tions the input domain of the interface methods into non-
overlapping subdomains, according to different paths that
are taken during symbolic execution. Therefore, this tech-
nique has the potential to yield significant improvement over
the “explicit” exhaustive technique. We describe a method
for examining when a symbolic state is subsumed by another
symbolic state. This is used for state matching to determine
whether a test specific sequence can be discarded by the

model checker. Furthermore, we show that this approach
scales better than the exhaustive explicit technique.

Even with state matching, the number of test sequences
that needs to be explored with the explicit or symbolic tech-
niques quickly becomes intractable — due to the state space
explosion problem. We therefore define abstraction map-
pings to be used for state matching, to further reduce the
state space explored by the model checker. More precisely,
for each explored state, the model checker computes and
stores an abstract version of the state, as specified by the
abstraction. State matching is then used to determine if an
abstract state is being re-visited. This technique is lossy,
since parts of the feasible input sequences can be discarded
due to abstraction. We introduce here a simple but powerful
abstraction that records only the structure or shape of the
container, while it discards the data stored in the container.
We show that this lossy technique is the most effective with
respect to coverage achieved.

We have implemented the techniques in a unified frame-
work and we evaluate them on several container classes.
The framework is built on top of the Java PathFinder [19,
28] model checker that already supports symbolic execu-
tion. Our framework also incorporates a technique based
on random selection — and we use it as a point of compar-
ison with the other techniques. As mentioned, we evaluate
the techniques in terms of basic block and predicate cov-
erage achieved by the generated test sequences. Predicate
coverage is motivated by the observation that certain sub-
tle program errors (that go undetected in the face of 100%
basic block coverage) may be due to complex correlations
between program predicates [3]. Therefore predicate cover-
age is a good addition to basic block coverage for evaluating
test input generation strategies.

Although there is a lot of related work (presented in Sec-
tion 6), we are not aware of a framework or a study that
implements and compares explicit and symbolic techniques
for test input generation with random selection in terms of
structural coverage, let alone in terms of predicate coverage,
as we do here.

The contributions of the paper are the following:

e Framework for test input generation for Java container
classes. The framework incorporates explicit and sym-
bolic techniques and uses state matching to avoid gen-
eration of redundant tests.

e Automated support for shape abstraction to be used
during state matching. The abstraction can be used
with both explicit and symbolic techniques. The ab-
straction is shown to be the most effective, as com-
pared to all the other techniques.

Evaluation of test generation approaches on four non-
trivial Java container classes measuring the perfor-
mance in achieving both a simple structural coverage
and a form of predicate coverage. The evaluated ap-
proaches range from exhaustive testing, partition test-
ing using symbolic execution and random testing.

2. BACKGROUND

We describe here the Java PathFinder (JPF) tool [19, 28]
and its extension with a symbolic execution capability. Sec-
tion 4 shows how to use JPF for test input generation.

38

2.1 JavaPathFinder

JPF is an explicit-state model checker for Java programs
that is built on top of a custom-made Java Virtual Machine
(JVM). JPF handles all the Java language features and it
also supports program annotations that are added to the
programs through method calls to a special class Verify.
We used the following methods from Verify:

beginAtomic() ... endAtomic() specify that the execution of
the enclosed block should proceed atomically.

random(n) returns values [0, n| nondeterministically.

ignorelf(cond) forces the model checker to backtrack when
cond evaluates to true.

By default, JPF stores all the explored states and it back-
tracks when it visits a previously explored state. Alterna-
tively, the user can customize the search (by forcing the
search to backtrack on user-specified conditions) and it can
specify what part of the state (if any) to be stored and used
for matching. We used these features to implement our test
generation techniques that use model checking with abstract
matching and random search. JPF also supports various
search heuristics [13], that can be used to guide the model
checker’s search.

2.2 Symbolic Execution

Symbolic execution [22] allows one to analyze programs
with un-initialized inputs. The main idea is to use sym-
bolic values, instead of actual data, as input values and to
represent the values of program variables as symbolic ex-
pressions. As a result, the outputs computed by a program
are expressed as a function of the symbolic inputs.

The state of a symbolically executed program includes the
(symbolic) values of program variables, a path condition (PC)
and a program counter. The path condition is a (quantifier
free) boolean formula over the symbolic inputs; it accumu-
lates constraints which the inputs must satisfy in order for
an execution to follow the particular associated path.

In previous work [21], we have extended JPF to perform
symbolic execution for Java programs. The approach han-
dles dynamically allocated data, arrays, and multi-threading.
Programs are instrumented to enable JPF to perform sym-
bolic execution; concrete types are replaced with correspond-
ing symbolic types and concrete operations are replaced with
calls to methods that implement corresponding operations
on symbolic expressions. A Java implementation of the
Omega library [25] is used to check satisfiability of numeric
path conditions (for linear integer constraints).

3. TEST INPUT GENERATION

In this section we present our framework for generating
test inputs for Java container classes. We illustrate our ap-
proach on a Java implementation of a binary search tree (see
Figure 1). Each tree has a root node. Each node has an
integer elem field and left and right children. Values are
added and removed from the tree using the add and remove
methods respectively.

A test input for BinTree consists of a sequence of method
calls in the class interface (e.g. add and remove), with cor-
responding method arguments, that builds relevant object
states and exercise the code in some desired fashion. Here
is an example of a test input for BinTree:

101

class Node { ...
public int elem;
public Node left, right;
}
public class BinTree {
private Node root;

public void add(int x) { ... }
public boolean remove(int x) { ... }

}

Figure 1: Java declaration of a binary tree

M, N
'
ENV

M = sequence length
N = max parameter values

/

MODEL CHECKING
Java PathFinder

SUT API

add
remove

Java container

—> Test Suite

Figure 2: Test Generation Framework

BinTree t = new BinTree();
t.add(1); t.add(2); t.remove(l);

3.1 Framework

The framework for test input generation is illustrated in
Figure 2. For each container (the system under test SUT)
we built a nondeterministic environment ENV, i.e. a test
driver that executes all sequences of API method calls up
to a user-specified size M. JPF is used to enumerate all these
sequences. The model checker’s state matching capability
avoids the exploration (and generation) of redundant tests.

The framework implements the following techniques (they
are described in detail in the next section):

e exhaustive explicit execution with state matching
e explicit execution with abstract matching

e symbolic execution with subsumption checking

e symbolic execution with abstract matching

e random selection (no state matching).

For the techniques that use explicit execution or random
selection, the user also needs to specify the range of val-
ues for the method parameters [0, N-1]. N is not needed
when performing symbolic execution, since in this case the
methods are executed with symbolic parameters.

3.2 Testing Coverage

The model checker analyzes the nondeterministic environ-
ment and it generates method sequences that achieve the
desired testing coverage. We use basic block coverage, as a
representative example of a widely used structural coverage
measure. At each basic block, we also measure the cov-
erage of all the combinations of a set of predicates chosen

102

39

static
static

int M; /* sequence length */
int N; /* parameter values */

static BinTree t = new BinTree();
public static void main(String[] args) {...
1: for (int i=0;i<M;i++) {
Verify.beginAtomic();
int v = Verify.random(N-1);
switch (Verify.random(1)) {
case 0: t.add(v); break;
case 1: t.remove(v); break;
}
7: Verify.endAtomic();
8: /* Verify.ignorelf (store(abstractMap(t))); */
L

DO WN

Figure 3: Environment for explicit search

from conditions in the source code. We refer to the latter
as predicate coverage, although it is strictly speaking only
a simplified version of the predicate coverage as defined in
[3] — where all predicates in the code are used rather than a
subset as done here. For our purposes this is sufficient, since
we are not measuring the adequacy of a test suite, but rather
use it as a measure to compare test generation strategies.

The code of the methods is instrumented to record the
coverage, e.g. basic block or predicate coverage. Whenever
the model checker executes an uncovered block (or a new
predicate combination), it outputs the current test sequence.

‘We should note that basic block coverage is a simple struc-
tural coverage whereas predicate coverage requires more be-
haviors (paths) to be followed through the code to obtain
good coverage — this is in part due to the predicates coming
from different portions of the code.

Also note that we have no way of computing the optimal
predicate coverage for each SUT (hence we will refer to the
highest observed coverage as the optimal). We use the rate
of increase in the number of predicate combinations covered
to evaluate whether a particular testing technique is helpful
in covering paths not previously executed.

3.3 Testing Oracles

Method post-conditions can be used as test oracles to
check the correctness of container methods. JPF also sup-
ports partial correctness properties given as assertions in the
code and temporal logic specifications. In the experiments
reported in this paper, we used JPF to check just absence
of run-time errors, e.g. absence of uncaught exceptions.

4. TEST GENERATION TECHNIQUES

In this section we describe the techniques that are imple-
mented in the test input generation framework, namely ex-
haustive explicit execution, explicit execution with abstract
matching and symbolic execution (with subsumption check-
ing and with abstract matching). We also describe how to
use random selection for test input generation and we dis-
cuss the search order used in the model checker.

4.1 *“Classical” Exhaustive Explicit Execution

We illustrate this technique using the BinTree example in-
troduced in the previous section. The testing environment

12300400500 12300400500

Figure 4: Abstraction recording shapes

is illustrated in Figure 3. The environment executes atomi-
cally all the sequences of add and remove methods up to the
pre-specified sequence size M. The input values are chosen
nondeterministically from range [0, N-1]. Line 8 is dis-
cussed in Section 4.2. As discussed, “classic” explicit state
model checking is then used to search the state space of the
program defined in Figure 3. The model checker’s default
state matching capability is used to avoid exploration and
generation of redundant test sequences.

This straightforward approach does not scale well for large
values of M and N — the number of possible test sequences be-
comes quickly intractable (the state space explosion prob-
lem). One way to address this problem is to use heuristic
search; JPF supports several heuristics (guided search, beam
search). Another solution is to perform explicit execution
with abstract matching as described below.

4.2 Explicit Execution with Abstract Matching

The idea is to use the model checker to perform the ex-
plicit execution of all the possible method sequences (as
above) but to store abstract versions of the explored program
states, and use these abstract states to perform state match-
ing (and to backtrack if an abstract state has been visited
before). This effectively explores an under-approximation of
the space of possible method executions.

In order to apply this technique for BinTree we use the
environment illustrated in Figure 3, in which statement 8:
Verify.ignorelf (store(abstractMap(t))) is included.

abstractMap computes an abstraction of the concrete con-
tainer state of the binary tree referenced by t;

store directs the model checker to store the computed ab-
straction;

Verify.ignoreIf directs the model checker to backtrack if
it has seen this abstraction before.

Note that state matching is now performed only on the
state of the container object (referenced by t). This allows
us to abstract away the information that is irrelevant to test
generation, i.e. the values of local variables i and v are no
longer considered to be part of the state.

JPF provides automated support for two powerful abstrac-
tions, that we have found useful in the analysis of containers.

e The shape abstraction records only the (concrete) heap
shape of a container, while it abstracts away the data
fields from each container element. The abstraction
is illustrated in Figure 4, which depicts two binary

40

static int M; /* sequence length */

static BinTree t = new BinTree();
public static void main(String[] args) {...
1: for (int i=0;i<M;i++) {
Verify.beginAtomic();
SymbolicInt v = new SymbolicInt(’’v’’+i);
switch (Verify.random(1)) {
case 0: t.add(v); break;
case 1: t.remove(v); break;
}
Verify.endAtomic();
8: Verify.ignorelf (checkSubsumptionAndStore(t));
} o}

DO WN

~

Figure 5: Environment for symbolic search

search trees. Circles denote tree nodes; numbers in-
side circles denote the elem values; null nodes are not
represented. The trees have the same heap shape -
hence they will be matched during model checking
(although the actual elem values are not the same).
Heap shapes are represented in a normalized form, as
sequences of integers (depicted in rectangles in Fig-
ure 4), and are obtained through a process called lin-
earization [18, 32]. The linearization of an object (e.g.
the tree root) starts from the root and traverses the
heap in depth first search order; it assigns a unique
identifier to each object and it backtracks when it de-
tects a cycle; null pointers have values 0. Comparing
shapes reduces to comparing sequences. Linearization
has complexity O(n) (where n is the number of heap
nodes that are reachable from the root) and it can be
performed efficiently during garbage collection.

The complete abstraction records the shape of the con-
tainer together with all the data fields from each con-
tainer element. Strictly speaking, this is not really an
abstraction (there is no information loss) but rather
a canonical complete encoding of the container state,
similar to the linearization used for representing the
complete concrete heap (shape plus data), to achieve
heap symmetry reduction in model checking [18].

4.3 Symbolic Execution with State Matching

The test generation techniques that we have presented
so far use concrete values for the method parameters. We
now present an alternative technique, which assigns sym-
bolic values for the input parameters, and it uses JPF to
perform symbolic execution of the data structure’s methods.
The model checker manipulates symbolic states which de-
scribe sets of concrete states. As a result, this technique has
the potential to yield significant improvements over explicit
execution techniques.

To generates test inputs for BinTree (with symbolic exe-
cution) we use the environment illustrated in Figure 5. The
environment is similar to what we had before, except now
the type of variable v is SymbolicInt (rather than int) and
v is assigned a new symbolic value each time the for loop is
executed. Moreover, the code of the add and remove meth-
ods is instrumented to enable JPF to perform symbolic ex-
ecution. State matching (line 8) is discussed below.

103

Shape: 12300400500

PC: vo < v1 A vz > v2A
v3 < vo A vz < vgA\
vs < v1 A vUs > VoA
vg < Vo

Figure 6: A symbolic state

Here is an example of a generated test sequence:

BinTree t = new BinTree();
t.add(v0);t.add(vl); t.remove(v2);

PC: v2 == vl && v2 < vO && vl < vO;
Solution: vO: 1, vi: 0, v2: 0;

The path condition (PC) encodes the constraints on the
input parameters. JPF also solves the constraints and it
provides numeric solutions to be used as the concrete pa-
rameters for the actual test input. Our implementation is
currently handling linear integer constraints. Other numeric
domains could be handled similarly (provided the availabil-
ity of appropriate decision procedures).

Let us now analyze a symbolic object state at line 8 - as
illustrated in Figure 6. In each node, we write the symbolic
value of the elem field, e.g. e; : vo means that the elem
field of node 1 (e1) has symbolic value vg (vg...vs denote
the symbolic values that were given as input parameters).
The path condition encodes the constraints on the input
values, and it may refer to symbolic values that are no longer
stored in the tree, e.g. vs. Intuitively, this means that this
particular tree was created by a sequence that contained a
remove call which removed value vs from the tree.

For state matching, we normalize the representation for
symbolic states, using existential quantifier elimination. In-
tuitively, we are only interested in the relative order of the
elements in the tree. For the example presented in Figure 6,
we write the following constraints:

Two, v1, V2, Vs, V4, U5
e1 =voNex=v3/ANe3 =v2 ANeg =vg Aes =v1 A PC

We use the Omega library for existential quantifier elimina-
tion, which results in the following simplified constraints:

e1 >eaNex >ez3Nex<esNes >e;p Neg <er

The normalized symbolic state (shape plus simplified con-
straints) is used for state storing and comparison. A sym-
bolic state encodes all the concrete states that have the same
shape and whose elements satisfy the constraints.

Since symbolic states represent multiple concrete states,

state matching involves checking subsumption between states.

Let s1 and s2 be two symbolic states, and let (s1) and y(s2)
denote the sets of concrete states represented by s; and s
respectively. A symbolic state s1 subsumes another symbolic
state sa, written s1 O s2, if the set of concrete states repre-
sented by s contains the set of concrete states represented
by sa, i.e. y(s1) 2 v(s2)-

We check subsumption of two object states by checking
that they have the same shape (as given by linearization)
and that there is a valid implication between the correspond-
ing constraints - we use the Omega library for checking va-

104

41

Constraints:

e1>ez Nea>ez Aea<es Nes>er < e1>exNex>ezNegx<es Aes>eq

Figure 7: Two symbolic states

lidity. For example, in Figure 7, Old state O New state: they
have the same shape and the following implication is valid:

e1 >exNex >esNea<eqgNes > e
<=e1 >eaNex >ez3Nex <egNes > er

In our framework, we have implemented bi-directional sub-
sumption checking (line 8 in Figure 5). Let news denote a
new symbolic object state, and let olds denote a previously
visited and stored symbolic state:

e If olds O news, then checkSubsumptionAndStore re-
turns true and the model checker backtracks.

e If news 2 old, then old, is replaced with news (news is
“more general” than olds), checkSubsumptionAndStore
returns false and the model checker’s search contin-
ues (it does not backtrack).

Note that for each heap shape, we would like to store a
disjunction of constraints, i.e. to store unions of symbolic
states. In this case the bi-directional subsumption checking
would no longer be needed. However, a small technicality
prevents us (a bug in the Java implementation of the Omega
library that JPF uses).

We should also note that symbolic execution can be used
with abstract matching, i.e. replace line 8 in Figure 5 with
Verify.ignorelf (store(abstractMap(t))). In particular,
the model checker can use only the shape of a symbolic ob-
ject state, for storing and matching, while discarding the
numeric constraints (see the shape abstraction in the previ-
ous section).

4.4 Random Selection

The environment that we use for random selection is sim-
ilar to the one presented in Figure 3, except that the nonde-
terminism is solved by random choice. When one (random)
run is completed the search is restarted from the initial state
and this process is repeated up to a user specified limit. In
our experiments, we set the limit on the number of runs to
1000. Random search can be run stand-alone or using JPF
— for our experiments we chose to run it inside of JPF. Note
that due to technical reasons of JPF implementation, states
are stored during the search (but they are never used).

45 Search Order

When considering an approach that uses state matching
to prune the search space of test input sequences up to a
fized length we should note that we prefer to use breadth-
first search order (BFS) rather than depth-first search (DFS)
order. The reason is that DFS can miss portions of the state

space due to matching states that were created by a shorter
sequence with those previously generated by a longer se-
quence (which was truncated due to hitting the length limit).
This problem is amplified when considering abstract state
matching, i.e. when matching states that are not necessarily
identical. Therefore, all the test input generation techniques
(besides random search) are used with BFS. Of course BFS
also has the desirable characteristic that it produces shorter
input sequences.

5. EVALUATION

As mentioned, we used the JPF model checking tool (ver-
sion 3) to implement our testing framework. In particular,
we used the listener mechanism [19] to observe the sequences
of API calls performed and output the sequence when a spe-
cific coverage goal is reached. This test listener keeps track
of the coverage obtained and calculates the average test in-
put length. The user can specify on the command line the
techniques to be used during the analysis. For the exper-
iments we also added a facility to run tests described in a
configuration file. The results of each run are collected in
a file and a script generates a latex table with the results
sorted by coverage.

5.1 Experimental Set-up

As a system under test we used Java implementations of
four container classes: binary tree (BinTree — 154 LOC),
binomial heap (BinomialHeap — 355 LOC), Fibonacci heap
(FibHeap — 286 LOC), and red-black tree (extracted from
java.util.TreeMap — 580 LOC). The methods of these classes
were instrumented to measure basic block coverage (which
implies statement coverage). At each basic block, we also
measure predicate coverage. As mentioned, we have no way
of computing the optimal predicate coverage. Therefore, we
refer to the highest obtained coverage as optimal. Also note
that our coverage numbers are absolute and not percentages
as is commonly the case for test adequacy measures.

Note that we only focus here on obtaining code coverage
and not on finding errors — this was a conscious decision to
avoid bias from different fault seeding approaches. However
in the future we would like to investigate whether the tests
that obtain high coverage are also likely to detect faults.

Each container class is augmented with an environment
as described in Section 4. For BinTree and TreeMap we only
considered add and remove API calls. For FibHeap we also
considered removeMin and for BinomialHeap we considered
add, remove, extractMin and decreaseKey(x,y). We con-
sidered these additional methods to determine the sensitiv-
ity of the techniques to the complexity of the environment.

‘We compare all the techniques described in the previous
section. We divide the techniques into two categories: ez-
haustive and lossy. Exhaustive techniques include: explicit
state model checking, explicit execution with complete ab-
stract matching (i.e. linearization of a structure with all
fields included) and symbolic execution with subsumption
checking. Lossy techniques include: explicit and symbolic
execution with abstract matching based only on shape and
random selection.

For the techniques that use abstract matching, the or-
der in which the state successors are generated can impact
the search performance significantly. Therefore, we consider
here successors taken in random order and we repeat each
experiment 10 times. We run each technique for different

42

values of sequence length M (from 1 to 30). For techniques
which perform explicit execution we also need to specify the
number of input parameters (N). In order to make the ex-
periments tractable, we always set M = N. Note that this
decision is quite justified in the context of containers, since
the sequence length typically defines the size of the con-
tainer, if each value added to the container is unique. If M >
N then containers of size M cannot be generated. For random
search we considered sequences up to length 50 and for each
length we perform 1000 runs — as with the other lossy tech-
niques each configuration is repeated 10 times. Since we use
longer sequences for random it might be argued that M = N
is unfair, and therefore we did some additional experiments
where M > N when using random search (discussed later in
the section).

5.2 Results

The results for exhaustive vs. lossy techniques measuring
basic block and predicate coverage are reported in Tables 1—-
4. These results were produced from more that 10000 runs
that took two months CPU time to complete. The results
are split into four tables to show the difference in basic block
coverage and predicate coverage during exhaustive and lossy
search. The exhaustive experiments were preformed on a
2.66GHz Pentium machine running Linux and the lossy ex-
periments on a 2.2Ghz Pentium running Windows 2000. In
all cases memory was limited to 1GB.

For each technique we report the best result, i.e. the best
coverage that was obtained at the shortest sequence length
without running out of memory. Due to the randomization
in the lossy techniques, it may happen that some results
are obtained “luckily”. We report only “stable” results, i.e.
results achieved by all runs with a given parameter. The ex-
ception is random selection, where we report the best result,
even if it happened only on one run. It turned out that the
best results were always stable (of course excluding those for
random selection), i.e. all 10 runs reported the same results.

We report the coverage, the sequence length (the mini-
mum sequence length at which the coverage was obtained),
the time taken (in seconds), memory used (in MB) and the
average test sequence length. For the lossy techniques, the
time, memory and average length are calculated by taking
an average of the 10 runs. Numbers in bold show the maxi-
mum sequence length for which exhaustive results could be
obtained.

5.3 Discussion

We will follow each discussion segment with some concrete
conclusions (given in italics).

5.3.1 Exhaustivevs. lossy techniques

It is interesting to first note the complexity of some of
the analyzed containers. For example, one needs sequences
of length 14 to obtain basic block coverage (therefore also
statement coverage) for BinomialHeap — 21 is the optimal
coverage. From the exhaustive techniques only the symbolic
execution approach using subsumption achieved this cover-
age. For FibHeap the optimal coverage is 25 and none of
the exhaustive techniques could obtain this coverage before
running out of memory. For BinTree and TreeMap the ex-
haustive techniques fared better and only model checking
failed to get the optimal coverage for TreeMap. It is inter-
esting to note that the two cases for which the exhaustive

105

Table 1: Exhaustive Techniques — Basic Block Coverage

Container Technique Coverage | Seq. Length | Time (s) | Memory (MB) | Avg. Length ‘
Model Checking 14 3 1 4 2.2
BinTree Complete Abstraction 14 3 1 3 2.2
Symbolic Subsumption 14 3 1 4 2.2
Model Checking 17 5 35 129 2.8
BinomialHeap | Complete Abstraction 17 5 8 29 2.8
Symbolic Subsumption 21 14 910 1016 4.2
Model Checking 20 5 55 214 3.7
FibHeap Complete Abstraction 24 7 8 19 4.2
Symbolic Subsumption 24 7 15 54 4.2
Model Checking 37 6 38 243 4.2
TreeMap Complete Abstraction 39 7 9 34 4.3
Symbolic Subsumption 39 7 15 22 4.3
Table 2: Lossy Techniques — Basic Block Coverage
[Container | Technique | Coverage [Seq. Length [Time (s) | Memory (MB) | Avg. Length |
Shape Abstraction 14 4 1 3 2.2
BinTree Symbolic Shape Abstraction 14 3 1 4 2.2
Random Selection 14 3 7 3 2.4
Shape Abstraction 21 15 7 8 4.3
BinomialHeap | Symbolic Shape Abstraction 21 14 1084 1016 4.2
Random Selection 21 32 59 9 13.2
Shape Abstraction 25 12 26 34 4.4
FibHeap Symbolic Shape Abstraction 25 12 216 608 4.5
Random Selection 25 25 41 9 10.2
Shape Abstraction 39 10 2 6 4.6
TreeMap Symbolic Shape Abstraction 39 7 7 22 4.3
Random Selection 39 10 18 5 7.1

techniques fare better have simpler environments than the
two cases where these techniques perform less well. All the
lossy techniques achieved the optimal basic block coverage
and where comparable, they achieved it faster and with less
memory than the exhaustive techniques.

We anticipated that the exhaustive techniques would eas-
ily generate all tests to obtain basic block coverage — this is
clearly not the case. The lossy techniques seem better suited
for achieving code coverage. “Classic” model checking scales
poorly even for the basic block coverage.

5.3.2 Symbolic execution

With the exception of BinTree — which is the simplest
example — none of the exhaustive techniques obtain the op-
timal predicate coverage. With one exception, the symbolic
execution with subsumption performs the best of the ex-
haustive techniques for both coverage measures. This is to
be expected since the symbolic reasoning covers infinitely
more cases than the explicit execution.

Symbolic execution with subsumption checking is, as an-
ticipated, the most effective exhaustive technique. For the
TreeMap ezxample it achieves good predicate coverage, even
considering the lossy techniques.

5.3.3 Abstract matching

State matching based on the shape abstraction is a lossy
technique that performs the best of all the techniques: not
only does it obtain the highest coverage (joint with others
in some cases), but it obtains it for shorter sequences and
it is faster. Only random selection, that essentially has no

106

43

memory footprint, uses less memory when coverage is the
same. We conjecture that for the analyzed containers, the
shape is a very accurate representation of its state and hence
the shape abstraction is appropriate here. It is an open
question whether this will hold for general programs — it is
likely to be the case for programs that manipulate complex
data.

The complete abstraction that takes the shape and all
fields into account performs almost as well, but uses more
time and memory. This technique also performs consistently
better than “classic” model checking which is closely re-
lated, but takes more than just the state of the container
in consideration for state matching. Note that the complete
abstraction also includes what is called a (data) symmetry
reduction in model checking [18], and points to the fact that
this kind of reduction is very useful in analyzing containers
through API calls as we do here.

Shape abstraction as a means for state matching performs
better than the other techniques considered. We conjecture
that for the analyzed containers, the shape is a very accurate
representation of its state. When doing test input generation
for programs that manipulate complex data, this should be
tried before other, more expensive, techniques.

5.3.4 Randomselection

This is a traditional approach to test case generation; it is
not based on state matching, hence it is the dual of the other
methods suggested here and forms a useful point of compari-
son. Interestingly, in the related literature, it is almost never
included in this kind of comparison. Here random search got

Table 3: Exhaustive Techniques — Predicate Coverage

Container Technique Coverage | Seq. Length | Time (s) | Memory (MB) | Avg. Length ‘
Model Checking 54 6 81 251 3.5
BinTree Complete Abstraction 54 14 84 3.5
Symbolic Subsumption 54 6 19 39 3.5
Model Checking 34 5 43 130 3.4
BinomialHeap | Complete Abstraction 39 6 93 365 3.8
Symbolic Subsumption 84 14 954 1016 6.8
Model Checking 31 5 59 208 4.0
FibHeap Complete Abstraction 89 11 733 1016 6.8
Symbolic Subsumption 76 9 187 582 6.1
Model Checking 55 6 38 229 4.5
TreeMap Complete Abstraction 95 10 271 844 5.8
Symbolic Subsumption 104 12 594 896 6.3
Table 4: Lossy Techniques — Predicate Coverage
[Container | Technique | Coverage [Seq. Length [Time (s) | Memory (MB) | Avg. Length |
Shape Abstraction 54 9 4 11 3.6
BinTree Symbolic Shape Abstraction 54 6 21 35 3.5
Random Selection 54 8 15 4 6.2
Shape Abstraction 101 29 42 26 9.0
BinomialHeap | Symbolic Shape Abstraction 84 14 1050 1016 6.8
Random Selection 94 48 85 13 32.8
Shape Abstraction 93 15 243 292 7.1
FibHeap Symbolic Shape Abstraction 92 13 539 1016 6.9
Random Selection 90 39 65 12 20.2
Shape Abstraction 106 20 281 1016 7.2
TreeMap Symbolic Shape Abstraction 102 13 1309 1016 6.2
Random Selection 106 39 78 17 25.5

the optimal basic block coverage, but as expected for longer
sequence lengths than the other techniques. In two cases,
it also got the optimal predicate coverage, but for the other
two it got considerably less than optimal. Again it is in-
teresting to note that the two it fared worse in are the two
examples with more complex environments (BinomialHeap
and FibHeap). This supports the belief that random selec-
tion suffers when the environment is not only large, but only
a (small) subset of the options will produce the desired re-
sult: note that the environment for basic block coverage is
the same as for predicate coverage, but predicate coverage
requires very particular sequences to obtain high coverage.

It is probably human nature to want the simplest solu-
tion also to perform the best. With this in mind we also
wanted to improve on the results obtained for random selec-
tion. It was conjectured that picking M = N might adversely
affect random search since the number of choices increase at
higher values of M and N although the space of useful values
(i.e. the ones that can obtain the optimal coverage) in-
crease much slower. Therefore we repeated the experiments
for predicate coverage with M being fixed at the value we
found the coverage from Table 4, but with N being brought
down from M to the smallest value we knew could still get
the coverage according to the other results obtained. For
example for TreeMap this meant running with M = 39 and
N varying from 39 down to 20 (a conservative lower-bound
seen for the shape abstraction analysis).

Note that these results are somewhat biased towards get-
ting good results for random selection. Ironically, the re-
sults indicate that random selection is less effective, when

we add one more dimension to the quality criteria, namely,
frequency of highest coverage obtained. Originally we mea-
sured the coverage once during any run of the random se-
lection, and that is what is reported in Table 4. However
doing all the additional experiments, and taking into ac-
count only runs that could obtain the optimal coverage we
found that the percentage chance of getting the optimal cov-
erage for random (note, not necessarily the optimal cov-
erage for all techniques) were as follows: 1.5%(6/400) for
TreeMap, 0.38%(2/520) for FibHeap and 0.17%(1/600) for
BinomialHeap. Note that again the reduction in chance of
finding optimal coverage follows the order of the complexity
of the environments, where TreeMap’s environment is sim-
pler than FibHeap’s environment which in turn is simpler
than BinomialHeap’s environment.

Considering the likelihood of obtaining the optimal results,
random search performed poorly for obtaining high predicate
coverage. We believe that the reason is that the input search
space is complex/large and only a selected subset gives opti-
mal results; in these situations the techniques based on shape
abstractions yielded superior results.

5.3.5 Complex data structures as input parameters

Here we did not consider API calls that take structured
data as input. In prior work [30] we analyzed TreeMap with
structured inputs with a black-box test input generation
technique similar to Korat [7] and a white-box symbolic ex-
ecution technique based on lazy initialization. These tech-
niques would be applicable in the current evaluation too.
However, we believe that it is unlikely that they would scale

107

to large enough structures to get the optimal coverage ob-
tained here. Furthermore, we believe that random search
will also not work well for complex data, since the domain
of possible structures will be very large, whereas the subset
of these that are valid structures will be small. However, we
need to do more experiments to validate these claims.

5.3.6 Challenge

In addition to the techniques and results reported here we
also performed some experiments using the heuristic search
facilities in JPF [13]. For the most part, the results were
similar to what was reported here. However, using heuris-
tic search for FibHeap with symbolic shape abstraction pro-
duced predicate coverage of 141 for sequence length 23 (bet-
ter coverage than any other result here). This result indi-
cates that there are more interesting test input generation
techniques that need to be explored. In light of this we
will make all our sources available on the JPF open-source
website [19] for others to try additional techniques.

6. RELATED WORK

The work related to the topic of this paper is vast, and
for brevity we only highlight here some of the closely related
work. The most closely related works to ours are tools (and
techniques) that generate test sequences for object oriented
programs. We summarize them first.

JTest [20] is a commercial tool that generates test se-
quences for Java classes using “dynamic” symbolic execu-
tion, which combines concrete and symbolic execution over
randomly generated paths. Unlike our work, this tool gener-
ates tests that may be redundant (exercise the same code),
with little guarantees in terms of testing coverage. However,
as we have seen in our experiments, random selection turns
out to be pretty effective.

The AsmLT model-based testing tool [12] uses concrete
state space exploration techniques and abstraction mappings,
in a way similar to what we present here. Rostra [32] also
generates unit tests for Java classes, using bounded-exhaustive
exploration of sequences with concrete arguments and ab-
straction mappings. While both these tools require the user
to provide the abstraction mappings, we provide automated
support for shape abstractions that we have found very use-
ful (see the experiments).

In previous work [30], we showed how to use model check-
ing and symbolic execution to generate test inputs to achieve
structural coverage for code that manipulates complex data
structures, such as TreeMap. The approach was used in
a black-box fashion (but it required an input specification
written as a Java predicate — similarly to the Korat [7] tool)
or in a white-box fashion (in which case only the source code
for the method under test was needed). However, this ap-
proach was not used to generate method sequences (as we do
here), but rather to build complex input structures that ex-
ercise the analyzed code in the desired fashion. Similarly, [4]
discusses techniques to build complex input for testing red
black tree implementation. On the other hand, Symstra [33]
is a test generation tool that uses symbolic execution and
state matching for generating test sequences for Java code —
this is similar to our technique that uses symbolic execution
and subsumption checking. Our paper contributes a novel
combination of symbolic execution with abstraction, evalua-
tion on Java container classes in terms of predicate coverage
and comparison with random testing.

108

45

In a short paper [29], we discuss the use of explicit state
model checking and abstractions for generating input test
sequences for red black trees. In this paper we extend that
work in several ways: we discuss the use of abstraction in
the context of symbolic execution for test input generation
and we provide an extensive evaluation using several Java
container implementations (in addition to red black trees).

The Korat [7] tool, see also TestEra [23], supports non-
isomorphic generation of complex input structures. Unlike
the work presented here, this tool requires the availability of
constraints representing these inputs. Korat uses constraints
given as Java predicates (e.g. repOK methods encoding class
invariants). Similarly, TestEra [23] uses constraints given in
Alloy to generate complex structures.

The ASTOOT tool [9] requires algebraic specifications to
generate tests (including oracles) for object oriented pro-
grams. The tool generates sequences of interface events
and checks whether the resulting objects are observation-
ally equivalent (as specified by the specification). Although
here we were only interested in generating test sequences,
using an algebraic specification to check the functional re-
quirements of the code is a straightforward extension.

A set of techniques, not investigated in this paper, use
optimization based techniques (e.g. genetic algorithms) for
automated test case generation [27, 5]. In the future, we
plan to compare these optimization based techniques with
the state matching based techniques that are implemented
in our framework.

The work presented here is related to the use of model
checking for test input generation [1, 10, 15, 17]. In these
works, one specifies as a (temporal) property that a specific
coverage cannot be achieved and a model checker is used
to produce counterexample traces, if they exists, that then
can be transformed into test inputs to achieve the stated
coverage. Our work shows how to enable an off-the-shelf
model checker to generate test sequences for complex data
structures. Note that our techniques can be implemented in
a straightforward fashion in other software model checkers
(e.g. [11, 8)).

Recently two popular software model checkers, BLAST
and SLAM, have been used for generating test inputs with
the goal of covering a specific predicate or a combination of
predicates [6, 3]. Both these tools use over-approzimation
based predicate abstraction and use some form of symbolic
evaluation for the analysis of (spurious) abstract counterex-
amples and refinement. We use under-approzimation based
abstraction — hence no spurious behavior is explored. The
work in [3] describes predicate coverage as a new testing
metric — we use a simplified version here; [3] also describes
ways to measure when the optimal predicate coverage has
been achieved (this a direction for future work that we would
like to pursue).

The idea of using abstractions during model checking has
been explored before. In [16], the abstractions need to be
provided manually, while [24] uses automatic predicate ab-
straction for state matching during the the explicit execu-
tion of concurrent systems. In [2] we present a method for
checking subsumption during symbolic execution; further-
more, shape abstractions are used to prune the search state
space. Subsumption checking in [2] is more general than here
(it handles partially initialized heap structures and summary
nodes). However the abstractions in [2] can only handle lists
and arrays, and not tree structures as we do here.

There is a lot of work on comparing random with par-
tition testing in terms of cost effectiveness, e.g. [31, 14].
The verdict is still uncertain: [31] seems to suggest that
random testing could be superior to partition testing un-
der certain assumptions, while [14] suggests that, under dif-
ferent assumptions, partition testing is superior. Although
fairly preliminary, we hope that our experiments will shed
some light on this controversy, in the context of testing of
data structures. Abstract matching can be seen as a form
of partition testing (the state space explored by the model
checker is partitioned according to the abstraction mapping)
and seems superior to the other techniques.

7. CONCLUSIONS

We presented test input generation techniques that use
state matching to avoid generation of redundant tests. The
techniques range from exhaustive techniques such as classic
model checking and symbolic execution with subsumption
checking, through lossy abstraction techniques that use the
shape of a container for state matching. We evaluated the
techniques in terms of testing coverage achieved by the gen-
erated tests and we also compared them to random selection.

For the simple basic block coverage the exhaustive tech-
niques are comparable to the lossy ones while for predicate
coverage (which is more difficult to achieve) the lossy tech-
niques fared better at obtaining high coverage. Random
selection performed well except on the examples that con-
tained complex input spaces, where the shape abstractions
performed better. However, one should not lose sight of the
strong guarantees that an exhaustive search, such as sym-
bolic execution with subsumption, can provide: up to the
maximum sequence length that allows exhaustive analysis,
one can show that the implementation is free of errors.

For the future, we plan to investigate whether the shape
abstraction that proved to be effective here, will also work
for generating tests for other (more general) Java programs.
‘We also plan to investigate other abstractions for our frame-
work, e.g. abstractions used in shape analysis [26], and we
plan to extend our evaluation to Java methods that take
complex data structures and arrays as inputs.

Another direction for future research is to investigate the
use of predicate abstraction for the automatic generation of
different abstraction mappings. Towards this end, we plan
to extend our work on automatic derivation of under ap-
proximation based abstractions [24], where we used a (back-
ward) weakest precondition based calculation for automatic
abstraction refinement. In the current setting we plan to
adapt this algorithm to use (forward) symbolic execution.

8. REFERENCES

(1] P. Ammann, P. E. Black, and W. Majurski. Using
model checking to generate tests from specifications.
In Proc. 2nd IEEE International Conference on
Formal Engineering Methods, 1998.

S. Anand, C. S. Pasdreanu, and W. Visser. Symbolic
execution with abstract subsumption checking. In
Proc. 13th International SPIN Workshop, 2006.

(3] T. Ball. A theory of predicate-complete test coverage
and generation, 2004. Microsoft Research Technical
Report MSR-TR-2004-28.

T. Ball, D. Hoffman, F. Ruskey, R. Webber, and L. J.
White. State generation and automated class testing.

2

[4

46

Softw. Test., Verif. Reliab., 10(3):149-170, 2000.

A. Baresel, M. Harman, D. Binkley, and B. Korel.
Evolutionary testing in the presence of loop-assigned
flags: A testability transformation approach. In Proc.
ACM/SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA), 2004.

D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala,
and R. Majumdar. Generating tests from
counterexamples. In Proc. 26th International
Conference on Software Engineering (ICSE), 2004.
C. Boyapati, S. Khurshid, and D. Marinov. Korat:
Automated testing based on Java predicates. In Proc.
International Symposium on Software Testing and
Analysis (ISSTA), pages 123-133, July 2002.

J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu,
Robby, S. Laubach, and H. Zheng. Bandera:
Extracting finite-state models from Java source code.
In Proc. 22nd International Conference on Software
Engineering (ICSE), June 2000.

[9] R.-K. Doong and P. G. Frankl. The ASTOOT
approach to testing object-oriented programs. ACM
Transactions on Software Engineering and
Methodology (TOSEM), 3(2):101-130, 1994.

A. Gargantini and C. Heitmeyer. Using model
checking to generate tests from requirements
specifications. In Proc. 7th European Software
Engineering Conference, Held Jointly with the 7th
ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE), 1999.

P. Godefroid. Model checking for programming
languages using VeriSoft. In Proc. 2/th Annual ACM
Symposium on the Principles of Programming
Languages (POPL), pages 174-186, Paris, France,
Jan. 1997.

W. Grieskamp, Y. Gurevich, W. Schulte, and

M. Veanes. Generating finite state machines from
abstract state machines. In Proc. International
Symposium on Software Testing and Analysis
(ISSTA), pages 112-122, July 2002.

A. Groce and W. Visser. Heuristics for model checking
Java programs. STTT Journal, 6(4), December 2004.
W. J. Gutjahr. Partition testing vs. random testing:
The influence of uncertainty. IEEE Transactions on
Software Engineering, 25(5):661-674, 1999.

M. P. E. Heimdahl, S. Rayadurgam, W. Visser,

D. George, and J. Gao. Auto-generating test
sequences using model checkers: A case study. In
Proc. 3rd International Workshop on Formal
Approaches to Testing of Software (FATES),
Montreal, Canada, Oct. 2003.

G. J. Holzmann and R. Joshi. Model-driven software
verification. In Proc. 11th International SPIN
Workshop, 2004.

H. S. Hong, I. Lee, O. Sokolsky, and H. Ural. A
temporal logic based theory of test coverage and
generation. In Proc. 8th International Conference on
Tools and Algorithms for Construction and Analysis
of Systems (TACAS), Grenoble, France, April 2002.
R. Tosif. Exploiting heap symmetries in explicit-state
model checking of software. In Proc. 16th IEEE
International Conference on Automated Software
Engineering (ASE), Nov. 2001.

5

6

7

8

(10]

11

(12

(13]

(14]

(15]

[16]

(17]

(18]

109

[19]

[20]
21]

(22]

(23]

[24]

[25]

[26]

[27]

Java PathFinder.
http://javapathfinder.sourceforge.net.

JTest. http://wuw.parasoft.com/jsp/home. jsp.

S. Khurshid, C. S. Pasareanu, and W. Visser.
Generalized symbolic execution for model checking
and testing. In Proc. 9th International Conference on
Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), 2003.

J. C. King. Symbolic execution and program testing.
Commaunications of the ACM, 19(7):385-394, 1976.
D. Marinov and S. Khurshid. TestEra: A novel
framework for automated testing of Java programs. In
Proc. 16th IEEE International Conference on
Automated Software Engineering (ASE), San Diego,
CA, Nov. 2001.

C. S. Pasareanu, R. Pelanek, and W. Visser. Concrete
model checking with abstract matching. In Proc. 17th
International Conference on Computer Aided
Verification (CAV), 2005.

W. Pugh. The Omega test: A fast and practical
integer programming algorithm for dependence
analysis. Communications of the ACM, 31(8), Aug.
1992.

M. Sagiv, T. Reps, and R. Wilhelm. Solving
shape-analysis problems in languages with destructive
updating. ACM Transactions on Programming
Languages and Systems (TOPLAS), January 1998.

P. Tonella. Evolutionary testing of classes. In Proc.
International Symposium on Software Testing and
Analysis (ISSTA). ACM Press, 2004.

110

47

28]

29]

30]

(31]

(32]

33]

W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. In Proc. 15th IEEE International
Conference on Automated Software Engineering
(ASE), Grenoble, France, 2000.

W. Visser, C. S. Pasareanu, and R. Pelanek. Test
input generation for red black trees using abstraction
(short presentation). In Proc. 20th IEEE/ACM
International Conference on Automated Software
Engineering (ASE), 2005.

W. Visser, C. S. Pasareanu, and S. Khurshid. Test
input generation in Java Pathfinder. In Proc.
International Symposium on Software Testing and
Analysis (ISSTA), 2004.

E. J. Weyuker and B. Jeng. Analyzing partition
testing strategies. IEEE Transactions on Software
Engineering, 17(7):703-711, 1991.

T. Xie, D. Marinov, and D. Notkin. Rostra: A
framework for detecting redundant object-oriented
unit tests. In Proc. 19th IEEE International
Conference on Automated Software Engineering
(ASE), 2004.

T. Xie, D. Marinov, W. Schulte, and D. Notkin.
Symstra: A framework for generating object-oriented
unit tests using symbolic execution. In Proc. 11th
International Conference on Tools and Algorithms for

Construction and Analysis of Systems (TACAS), 2005.

Chapter 9

Model Classifications and
Automated Verification

In this paper we discuss the issue of automating the verification process, formulate the
verification meta-search problem, and propose the concept of a verification manager.
We also discuss general ideas for the realization of the verification manager.

On a specific level the paper is concerned with development of model classifica-
tions. Proposed classifications are based both on the syntax of the model (e.g., com-
munication mode, process similarity, application domain) and on properties of state
space (e.g., structure of SCC components, shape of the state space, local structure).
Classifications were derived from experimental study of models in the BEEM set.

This paper was published in proceedings of Formal Methods for Industrial Critical
Systems (FMICS) in 2007:

e R. Pelanek. Fighting state space explosion: Review and evaluation. In Proc. of
Formal Methods for Industrial Critical Systems (FMICS’08), 2008.

111

Model Classifications and Automated
Verification

Radek Peldanek*

Department of Information Technologies, Faculty of Informatics
Masaryk University Brno, Czech Republic
xpelanek@fi.muni.cz

Abstract. Due to the significant progress in automated verification,
there are often several techniques for a particular verification problem.
In many circumstances different techniques are complementary — each
technique works well for different type of input instances. Unfortunately,
it is not clear how to choose an appropriate technique for a specific in-
stance of a problem. In this work we argue that this problem, selection of
a technique and tuning its parameter values, should be considered as a
standalone problem (a verification meta-search). We propose several clas-
sifications of models of asynchronous system and discuss applications of
these classifications in the context of explicit finite state model checking.

1 Introduction

One of the main goals of computer aided formal methods is automated verifica-
tion of computer systems. In recent years, very good progress has been achieved
in automating specific verification problems. However, even automated verifica-
tion techniques like model checking are far from being a push-button technology.
With current verification techniques many realistic systems can be automatically
verified, but only if applied to the right level of abstraction of a system and if
suitable verification techniques are used and right parameter values are selected.

The first problem is addressed by automated abstraction refinement tech-
niques and received lot of attention recently (e.g., [1,9]). The second problem,
however, did not receive much attention so far and there are only few works in
this direction. Ruys and Brinksma [38] describe methodology for model checking
‘in the large’. Sahoo et al. [39] use sampling of the state space to decide which
BDD based reachability technique is the best for a given model. Mony et al. [29]
use expert system for automating proof strategies. Eytani et al. [11] give a high-
level proposal to use an ‘observation database’ for sharing relevant information
among different verification techniques.

Automation of the verification process is necessary for practical applicability
of formal verification. Any self-respecting verification tool has a large number
of options and parameters, which can significantly influence the complexity of
verification. In order to verify any reasonable system, it is necessary to set these

* Partially supported by GA CR grant no. 201/07/P035.

S. Leue and P. Merino (Eds.): FMICS 2007, LNCS 4916, pp. 149-163, 2008.
© Springer-Verlag Berlin Heidelberg 2008

112

150 R. Peldnek

parameters properly. This can be done only by an expert user and it requires lot
of time. We believe that the research focus should not be only on the development
of new automated techniques, but also on an automated selection of an existing
technique.

1.1 Verification Meta-search

So far most of the research in automated verification has been focused on ques-
tions of the verification problem: given a system S and a property (or speci-
fication) ¢, determine whether S satisfies p. This is a search problem — an
algorithm searches for an incorrect behaviour or for a proof. Research has been
focused on solving the problem for different formalisms and optimizing it for the
most useful ones.

We believe that it is worthwhile to consider the following problem as well: given
a system and a property, find a technique 7" and parameter values p such that 7'(p)
can provide answer to the verification problem. This can be viewed as a verification
meta-search problem. Let an entity responsible for the verification meta-search be
called a verification manager. The manager has the following tasks:

1. Decide which approach to the verification should be used, e.g., symbolic
versus explicit approach, whether to use on-the-fly verification or whether
to generate the full state space and then perform verification, etc.

2. Combine relevant information obtained from different techniques, see e.g.,
Synergy approach [18] for combination of over-approximation and testing.

3. Choose among different techniques (implementations) for a particular veri-
fication task and set parameters of a chosen technique.

In this work we focus mainly on the third task of the manager. To give a
practical example of this task, we provide two specific cases. Firstly, consider on-
the-fly memory reduction techniques — the goal of these techniques is to reduce
memory requirements of exhaustive finite state verification. Examples of such
techniques are partial order reduction, symmetry reduction, state compression,
and caching. Each of these techniques has its merits and disadvantages, none of
them is universal (see [32] for an evaluation). Moreover, most of these techniques
have parameters which can tune a time/memory trade-off. Secondly, consider
algorithms for accepting cycle detection on networks of workstations, which are
used for LTL verification of large finite state models. Currently there are at least
five different algorithms, each with specific disadvantages and parameters [2].

At the moment the verification manager is usually a human expert. Expert can
perform this role rather well, however such ‘implementation’ of the verification
manager is far from automated. There has been attempts to facilitate the human
involvement, e.g., by using special purpose scripting languages [25], but such
an approach automatizes only stereotypical steps during the verification, not
decisions.

The problem can be addressed by an expert system, which perform the meta-
search with the use of a set of rules provided by experts. Example of such rules
may be:

113

Model Classifications and Automated Verification 151

— If the model is a mutual exclusion protocol then use explicit model checking
with partial order reduction.

— If state vector is longer then 30 bytes, then use state compression.

— If the state space is expected to contain a large strongly connected com-
ponent, then use cycle detection algorithm X else use cycle detection algo-
rithm Y.

Another option is to employ an adaptive learning system which remembers
characteristics of verification tasks and their results and learns from its own
experiences.

1.2 The Need for Classifications

At this moment, it is not clear what rules should the verification manager use.
But more fundamentally, it is not even clear what criteria should be used in
rules. Whatever is the realization of the manager, the manager needs to make
decision based on some information about an input model. The information used
for this decision should be carefully chosen:

— If the information was too coarse, the manager would not be able to choose
among potentially suitable techniques.

— If the information was too detailed, it would be very hard for the manager
to apply its expertise and experiences.

We believe that an appropriate approach is to develop several categorical clas-
sifications of models and then use these classification for manager’s decisions. To
be applicable, it must be possible to determine suitable techniques for individual
classes of the classification. Moreover, it must be possible to determine a class of
a given model without much effort — either automatically by a fast algorithm
or easily by user judgement.

In this work we focus on asynchronous concurrent systems, for the evaluation
we use models from the BEEM set [35]. For asynchronous concurrent systems
one of the most suitable verification techniques is explicit state space explo-
ration. Therefore, we focus not only on analysis of a model structure, but also
on the analysis of state spaces. In this work we propose classifications based on a
model structure (communication mode, process similarity, application domain)
and also classifications based on properties of state spaces (structure of strongly
connected components, shape and local structure of a state space). We study re-
lation of these classifications and discuss how they can be useful for the selection
of suitable techniques and parameters (i.e., for guiding the meta-search).

The restriction to explicit model checking techniques limits the applicability
of our contribution. Note, however, that even for this restricted area, there is a
very large number of techniques and optimizations (there are at least 80 research
papers dealing with explicit model checking techniques, see [34] for a list). More-
over, the goal of this work is not to present the ultimate model classification,
but rather to pinpoint a direction, which can be fruitful.

114

152 R. Pelanek

2 Background

Used models. For the evaluation of properties of practically used models we
employ models from the benchmark set BEEM [35]. This set contains large num-
ber of models of asynchronous systems. The set contains classical models studied
in academic literature as well as realistic case studies. Models are provided in
a low-level specification language (communicating finite state machines) and in
Promela [20]. For our study we have used 115 instances obtained by instantiation
of 57 principally different models.

State spaces. For each instance we have generated its state space. We view a
state space as a simple directed graph G = (V, E, vg) with a set of vertices V', a
set of directed edges £ C V x V, and a distinguished initial vertex vgy. Vertices
are states of the model, edges represent valid transitions between states. For our
purposes we ignore any labeling of states or edges. We are concerned only with
the reachable part of the state space.

Let us define several parameters of state spaces. We use these parameters
for classifications. We have also studied other parameters (particularly those
reported in [31]), but these parameters do not lead to interesting classification.

An average degree of G is the ratio |E|/|V|]. A strongly connected component
(SCC) of G is a maximal set of states C' C V such that for each u,v € C, the
vertex v is reachable from u and vice versa. Let us consider the breadth-first
search (BFS) from the initial vertex vg. A level of the BFS with an index k is
a set of states with distance from vy equal to k. The BFS height is the largest
index of a non-empty level, BFS width is the maximal size of a BFS level. An
edge (u,v) is a back level edge if v belongs to a level with a lower or the same
index as u. The length of a back level edge is the difference between the indices
of the two levels.

Reduction techniques. In the following, we often mention two semantics based
reduction techniques. Under the notion partial order reduction (POR) we con-
sider all techniques which aim at reducing the number of explored states by
reducing the amount of interleaving in the model, i.e., we denote by this notion
not just the classic partial order reduction technique [16], but also other related
techniques, e.g., confluence reduction [5], simultaneous reachability analysis [30],
transition compression [24]. Symmetry reduction techniques aim at reducing the
number of explored states by considering symmetric states as equivalent, see
e.g. [22].

3 State Space Classifications
We consider three classifications based on properties of state spaces. Two of them

are based on “global” properties (structure of SCC and shape), one is based on
“local” features of state spaces.

115

Model Classifications and Automated Verification 153

3.1 Structure of SCC Components

There is an interesting dichotomy with respect to structure of strongly connected
components, particularly concerning the size of the largest SCC (see Fig. 1). A
state space either contains one large SCC, which includes nearly all states, or
there are only small SCCs. Based on this observation, we propose the following
classification:

A type (acyclic): a state space is acyclic, i.e., it contains only trivial components
with one state,

S type (small components): a state space is not acyclic, but contains only small
components; more precisely we consider a state space to be of this type if
the size of the largest component is smaller then 50% states.

B type (big component): a state space contain one large component, most
states are in this component.

In order to apply the classification for automated verification, we need to be
able to detect the class of a model without searching its full state space. This can
be done by random walk exploration [36], for example by the following simple
method based on detection of cycles by random walk. We run 100 independent
random walks through the state space. Each random walk starts at the initial
state and is limited to at most 500 steps. During the walk we store visited states,
i.e., path through the state space. If a state is revisited then a cycle is detected
and its length can be easily computed. At the end, we return the length of the
longest detected cycle. Fig. 1 shows results of this method. For the class A the
longest detected cycle is, of course, always 0. For the class S the longest detected
cycle is usually between 10 and 35, for the class B it is usually above 30. This
illustrates that even such a simple method can be used to quickly classify state
spaces with a reasonable precision.

What are possible applications of this classification? For the A type it is
possible to use specialized algorithms, e.g., dynamic partial order reduction [12]
or bisimulation based reduction [33, p. 43-47]. The sweep line method [8] deletes
from memory states, which will never be visited again. This method is useful
only for models with state spaces of the type A or S.

The performance of cycle detection algorithms', which are used for LTL ver-
ification, is often dependent on the SCC structure. For example a distributed
algorithm based on localization of cycles is suitable only for S type state spaces;
depth-first search based algorithm [21] can also be reasonably applied only for S
type state spaces, because for B type state spaces it tends to produce very long
counterexamples, which are not practical. On the other hand, (explicit) one-way-
catch-them-young algorithm [6] has complexity O(nh), where h is height of the

! Note that cycle detection algorithm are usually executed on the product graph with
a formula [42] and not on the state space itself. However, our measurements indicate
that the structure of product graphs is very similar to structure of plain state spaces.
The measurements were performed on product graphs included in the BEEM [35]
set.

116

154 R. Peldnek

o o
Bl <3
A 5
° _
>0 S
om
c [}
[
> o
21 3 |
= (9]
[T
o o
o
24 =5 .
j—,—,—,_,—‘_ﬁ ; e —]
o o - —

0 20 40 60 80 100 A B S
Size of the largest component (%)

Fig. 1. The first graph shows the histogram of sizes of the largest SCC component
in a state space. The second graph shows the longest detected cycle using random
walk; results are grouped according to class and presented using a boxplot method
(lines denote minimum, 25th quartile, median, 75th quartile and maximum, circles are
outliers).

SCC quotient graph, i.e., this algorithm is more suitable for B type state spaces.
Similarly, the classification can be employed for verification of branching time
logics (e.g., the algorithm in [7] does not work well for state spaces consisting of
one SCC).

3.2 Shape of the State Space

We have found that several global state space parameters are to certain extent
related: average degree, BF'S height and width, number and length of back level
edges. In this case the division into classes is not so clear as in the previous case.
Nevertheless, it is possible to identify two main classes with respect to these
palrametelrs2 :

H type (high): small average degree, large BFS height, small BFS width, few
long back level edges.

W type (wide): large average degree, small BF'S height, large BFS width, many
short back level edges.

This classification can be approximated using an initial sample of the BFS
search. The classification can be used in similar way as the previous one. Sweep
line [8] and caching based on transition locality [37] work well only for state
spaces with short back level edges, i.e., these techniques are suitable only for W
type state spaces. On the other hand, the complexity of BFS-based distributed
cycle detection algorithm [3] is proportional to number of back level edges, i.e.,
this algorithm works well only on H type state spaces.

For many techniques the H/W classification can be used to set parameters
appropriately: algorithms which exploit magnetic disk often work with individ-
ual BFS levels [41]; random walk search [36] and bounded search [23] need to

2 Note that this classification is not complete partition of all possible state spaces. The
remaining classes, however, do not occur in practice. The same holds for as several
other classifications which we introduce later.

117

Model Classifications and Automated Verification 155

Diamond 3-mond Diamond 3x3 FFL

Fig. 2. Illustrations of motifs

estimate the height of the state space; techniques using stratified caching [15]
and selective storing of states [4] could also take the shape of the state space
into account.

3.3 Local Structure

Now we turn to a local structure of state spaces, particularly to typical sub-
graphs. Recently, so called ‘network motifs’ [28,27] were intensively studied in
complex networks. Motifs are studied mainly in biological networks and are used
to explain functions of network’s components (e.g., function of individual pro-
teins) and to study evolution of networks.

We have systematically studied motifs in state spaces. We have found the
following motifs to be of specific interest either for abundant presence or for total
absence in many state spaces: diamonds (we have studied several variations of
diamond-like structures, see Fig. 2), which are well known to be present in state
spaces of asynchronous concurrent systems due to the interleaving semantics;
chains of states with just one successor, we have measured occurrences of chains
of length 3, 4, 5; short cycles of lengths 2, 3, 4, 5, which are not very common in
most state spaces; and feed forward loop (see Fig. 2), which is a typical motif for
networks derived from biological systems [28], in state spaces it is rather rare.

We have measured number of occurrences of these motifs and studied cor-
relations of their occurrences. With respect to motifs we propose the following
classes:

D type (diamond): a state space contains many diamonds, usually no short
cycles and only few chains of feed forward loops,

C type (chain): a state space contains many chains, very few diamonds or short
cycles,

O type (other): a state space either contains short cycles and/or feed forward
loops, chains are nearly absent, diamonds may be present, but they are not
dominant.

Identification of these classes can be performed by exploration of a small sam-
ple of the state space. This classification can be used to choose among memory
reduction techniques. For D type state spaces it is reasonable to try to employ
POR, whereas for C type state spaces this reduction is unlikely to yield signif-
icant improvement. On the other hand, for C type state spaces good memory

118

156 R. Peldnek

Fig. 3. Correlation matrix displaying correlation of 116 state spaces. Light color means
positive correlation, dark color means negative correlation. The first matrix shows
correlation with respect to average degree, BFS height and width, number and length of
back level edges (all parameters are normalized). The second matrix shows correlations
with respect to presence of studied motifs.

reduction can be obtained by selective storing of states [4]. The classification
can be also used for tuning parameter values, particularly for technique which
employ local search, e.g., random walk enhancements [36,40], sibling caching and
children lookahead in distributed computation [26], heuristic search.

3.4 Relation Among State Space Classifications

Table 1. presents number of models in different combinations of classes. Specific
numbers presented in the table are influenced by the selection of used models.
Nevertheless, it is clear that presented classifications are rather orthogonal, there
is just slight relation between the shape and the local structure.

4 Model Classifications

Now we turn to classifications based directly on a model. At first, we study
classifications according to model structure, which are relevant particularly with
respect to reduction techniques based on semantics (e.g., partial order reduction,
symmetry reduction). Secondly, we study models from different application do-
mains and show that each application domain has its characteristics with respect
to presented classifications.

4.1 Model Structure

Classifications based on structure of a model are to some extent dependent on a
specific syntax of the specification language. There are many specification lan-
guages and individual specification languages significantly differ on syntactical
level. However, if we restrict our attention to models of asynchronous systems,
we find that most specification languages share the following features:

119

Model Classifications and Automated Verification 157

— a model is comprised of a set of processes,
— a process can be viewed as a finite state machine extended with variables,
— processes communicate either via channels or via globally shared variables.

We discuss several possible classifications based on these basic features. Cate-
gorization of a model according to these classifications can be determined auto-
matically by static analysis of a model. This issue is dependent on a particular
specification language and it is rather straightforward, therefore, we do not dis-
cuss it in detail.

Communication Mode. With respect to communication we can study the
predominant mean of communication (shared variables or channels) and the
communication structure (ring, line, clique, star). It turns out that these two
features are coupled, i.e., with respect to communication we can consider the
following main classes:

DV type (dense, variable): processes communicate via shared variables, the
communication structure is dense, i.e., every process can communicate with
(nearly) every other process,

SC type (sparse, channel): processes communicate via (buffered) channels, the
communication structure is rather sparse, e.g., ring, star, or tree.

N type (none): no communication, i.e., the model is comprised of just one
process.

This classification is related particularly to partial order reduction techniques.
The classification is completely orthogonal to state space classifications (see
Table 1.).

Process Similarity. A common feature in models of asynchronous systems is
the occurrence of several similar processes (e.g., several participants in a mu-
tual exclusion protocol, several users of an elevator, several identical nodes in a
communication protocol). By ‘similarity’ we mean that processes are generated
from one template by different instantiations of some parameters, i.e., we do not
consider symmetry in any formal sense (cf. [22]). With respect to similarity, a
reasonable classification is the following:

S2 type. All processes are similar.
S1 type. There exists some similar processes, but not all of them.
SO type. There is no similarity among processes.

This classification is clearly related to symmetry reduction. It can also be
employed for state compression [19]. This classification is again orthogonal to
state space classifications and only slightly correlated with the communication
mode classification (S1 is related to SC, S2 is related to DV), for details see
Table 1.

120

158 R. Peldnek

Table 1. Relations among classifications. For each combination of classes we state
the number of models in the combination. In total there are 115 classified models, all
models are from the BEEM set [35]. Reported state space classifications are based on
traversal of the full state space.

Stat lassificati . .
ate space classincations Model classifications

al H W D O C al S2 S1 SO
all 115 58 57 75 23 17 A 115 41 39 35
A 24 10 14 19 3 2 DV a1 31 9 4
S 37 18 19 21 9 7 sC 6l 10 30 o1
B 54 30 24 35 11 8 N 0 o o 10
H 58 433 12
W 57 32 20 5

State space versus model classifications

al A S B H W D O C
all 115 24 37 54 58 57 75 23 17
S2 41 10 9 22 20 21 37 3 1
S1 39 8 17 14 20 19 20 10 9
S0 35 6 11 18 18 17 18 10 7
DV 44 8 12 24 20 24 33 6)
SC 61 12 22 27 36 25 40 10 11
N 10 4 3 3 2 8 2 7 1

Other. We briefly mention several other possible classifications and their
applications:

— Data/Control intensity of a model (Is a model concerned with data manip-
ulation and arithmetic?); related to abstraction techniques [17,1,9], which
focus on reducing the data part of the model.

— Tightly/Loosely coupled processes (What is the proportion of interprocess and
intraprocess computation?); important for thread-modular techniques [13].

— Length of a state vector; relevant particularly for state compression tech-
niques [19].

4.2 Application Domain

Finally, we discuss application domains of asynchronous concurrent systems.
Table 2. presents relations among application domains and previously discussed
classifications. The table demonstrates that models from each application do-
main have specific characteristics. Knowledge of these characteristics can be
helpful for the development of (commercial) verification tools specialized for
a particular application domain. Beside that, characteristics of models can be
used to develop templates and design patterns [14,10], which can facilitate the
modeling process.

Mutual exclusion algorithms. The goal of a mutual exclusion algorithm is to
ensure an exclusive access to a shared resource. Models of these algorithms usu-
ally consist of several nearly identical processes which communicate via shared

121

Model Classifications and Automated Verification 159

Table 2. Relation of state space classification and model type

SCC struct. shape local struct comim. proc. sim.

all A S B HWOCD OSCDV N S2 S1 S0

all 115 24 37 57 58 57 17 75 23 61 44 10 41 39 35
com. protocol 24 0 10 14 15 9 5 18 1 24 o o0 o0 7 17
controller 17 1 7 915 2 3 12 2 12 5 0 0 13 4
leader el. 12 12 0 0 6 6 012 0 8 4 0 9 3 O
mutex 28 0 8 2013 15 0 25 3 2 26 028 0 O
sched. 18 9 3 6 4 14 2 5 11 2 6 10 1 5 12
other 16 2 9 5 5 11 7 3 6 13 3 0 3 11 2

variables; communication structure is either clique or ring; individual processes
are usually rather simple. State vectors are relatively short; state space usually
contains one big strongly connected component, with many diamonds. POR and
symmetry reduction may be useful, but careful modeling may be necessary in
order to make them applicable.

Communication protocols. The goal of communication protocols is to ensure
communication over an unreliable medium. The core of a model is a sender
process, a receiver process, and a bus/medium; the communication structure is
therefore usually linear (or simple tree). Processes communicate by handshake;
shared variables are not used. Processes are not similar, sender /receiver processes
can be rather complicated. State vectors are rather long; state space is not
acyclic, it is rather high, often with many diamonds. POR is usually applicable.

Leader election algorithms. The goal of leader election algorithms is to choose
a unique leader from a set of nodes. Models consist of a set of (nearly) identi-
cal processes, which are rather simple. Processes are connected in a ring, tree,
or arbitrary graph; communication is via (buffered) channels. State spaces are
acyclic with diamonds. POR, symmetry reduction, and specialized techniques
for acyclic state spaces [12] may be applicable.

Controllers. Models of controllers usually have centralized architecture: a con-
troller process communicates with processes representing individual parts of the
system. The controller process is rather complex, other processes may be sim-
ple. The communication can be both by shared variables and handshake. State
vectors are rather long; state spaces are high, usually with diamonds. Due to the
centralized architecture semantics-based reduction techniques are hard to apply.

Scheduling, planning, puzzles. Planning and scheduling problems and puz-
zles are not the main application domain of explicit model checkers. Neverthe-
less, there are good reasons to consider them together with asynchronous sys-
tems (similar modeling formalism, research in combinations of model checking
and artificial intelligence techniques). Models often consist of just one process.

122

160 R. Peldnek

Planning, scheduling problems have wide state space without prevalence of dia-
monds or chains. State spaces are often acyclic.

Other application domains. Similar characterizations can be provided for
many other application domains. Examples of other often studied application
domains are cache coherence protocols, device drivers or data containers.

5 Conclusions and Future Work

We argue that it is important not just to develop (narrowly focused) techniques
for automated verification, but also to automatize the verification process, which
is currently usually performed by an expert user. To this end, it is desirable to
have classifications of models. We propose such classifications for asynchronous
systems; these classifications are based on properties of state spaces and on struc-
ture of models. We also discuss examples of applications of these classifications;
particularly the following two types of application:

— indication of suitable techniques to use for verification of the given model,
— setting suitable parameter values for the verification.

In the paper we provide several specific examples of such application; we note
that these are just examples, not a full list of possible applications. The presented
classifications are also not meant to be the final classifications of asynchronous
systems. We suppose that further research will expose the need for other classifi-
cation or for the refinement of presented classification. Moreover, for other appli-
cation domains and verification techniques (e.g., synchronous systems, symbolic
techniques, bounded model checking) it will be probably necessary to develop
completely new classifications. Nevertheless, we believe that our approach can
provide valuable inspiration even for this direction.

This work is a part of a long term endeavour. We are continuously developing
the benchmark set BEEM [35]. Using the presented classification, we are working
on experimental evaluation of the relation of classes and performance of differ-
ent techniques. We are also developing techniques for estimation of state space
parameters from samples of a state spaces, such estimations (e.g., the size of a
state space), can be useful for guiding the verification meta-search. Finally, the
long term goal is to develop an automated ‘verification manager’, which would
be able to learn from experience.

References

1. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate
abstraction of ¢ programs. In: Proc. of Programming Language Design and Imple-
mentation (PLDI 2001), pp. 203-213. ACM Press, New York (2001)

2. Barnat, J., Brim, L., Cernd, I.: Cluster-based 1tl model checking of large systems.
In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005.
LNCS, vol. 4111, pp. 259-279. Springer, Heidelberg (2006)

123

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Model Classifications and Automated Verification 161

Barnat, J., Brim, L., Chaloupka, J.: Parallel breadth-first search LTL model-
checking. In: Proc. Automated Software Engineering (ASE 2003), pp. 106-115.
IEEE Computer Society, Los Alamitos (2003)

Behrmann, G., Larsen, K.G., Pelanek, R.: To store or not to store. In: Hunt Jr.,
W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725. Springer, Heidelberg (2003)
Blom, S., van de Pol, J.: State space reduction by proving confluence. In: Brinksma,
E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 596-609. Springer, Hei-
delberg (2002)

Cerna, 1., Peldnek, R.: Distributed explicit fair cycle detection. In: Ball, T., Ra-
jamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 49-73. Springer, Heidelberg
(2003)

Cheng, A., Christensen, S., Mortensen, K.: Model checking coloured petri nets
exploiting strongly connected components. Technical Report DAIMI PB — 519,
Computer Science Department, University of Aarhus (1997)

Christensen, S., Kristensen, L.M., Mailund, T.: A Sweep-Line Method for State
Space Exploration. In: Margaria, T., Yi, W. (eds.) ETAPS 2001 and TACAS 2001.
LNCS, vol. 2031, pp. 450-464. Springer, Heidelberg (2001)

Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A.; Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154-169. Springer, Heidelberg (2000)

Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: Proc. Workshop on Formal Methods in Software Prac-
tice, pp. 7-15. ACM Press, New York (1998)

Eytani, Y., Havelund, K., Stoller, S.D., Ur, S.: Toward a Framework and Bench-
mark for Testing Tools for Multi-Threaded Programs. Concurrency and Computa-
tion: Practice and Experience 19(3), 267-279 (2007)

Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Proc. of Principles of programming languages (POPL 2005), pp. 110—
121. ACM Press, New York (2005)

Flanagan, C., Qadeer, S.: Thread-modular model checking. In: Ball, T., Rajamani,
S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 213—224. Springer, Heidelberg (2003)
Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, Reading (1995)
Geldenhuys, J.: State caching reconsidered. In: Graf, S., Mounier, L. (eds.) SPIN
2004. LNCS, vol. 2989, pp. 23-39. Springer, Heidelberg (2004)

Godefroid, P.: Partial-order methods for the verification of concurrent systems: An
approach to the state-explosion problem. LNCS, vol. 1032. Springer, Heidelberg
(1996)

Graf, S., Saidi, H.: Construction of abstract state graphs with pvs. In: Grumberg,
0. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72-83. Springer, Heidelberg (1997)
Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Syn-
ergy: A new algorithm for property checking. In: Proc. of Foundations of software
engineering, pp. 117-127. ACM Press, New York (2006)

Holzmann, G.J.: State compression in SPIN: Recursive indexing and compression
training runs. In: Proc. of SPIN Workshop (1997)

Holzmann, G.J.: The Spin Model Checker, Primer and Reference Manual. Addison-
Wesley, Reading, Massachusetts (2003)

Holzmann, G.J., Peled, D., Yannakakis, M.: On nested depth first search. In: Proc.
SPIN Workshop, pp. 23-32. American Mathematical Society, Providence, RI (1996)

124

162

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

R. Pelanek

Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods in
System Design 9(1-2), 41-75 (1996)

Kréal, P.: Distributed explicit bounded 1tl model checking. In: Proc. of Parallel
and Distributed Methods in verifiCation (PDMC 2003). ENTCS, vol. 89. Elsevier,
Amsterdam (2003)

Kurshan, R.P., Levin, V., Yenigiin, H.: Compressing transitions for model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 569-581.
Springer, Heidelberg (2002)

Lang, F.: Compositional verification using svl scripts. In: Katoen, J.-P., Stevens,
P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 465—469. Springer, Heidelberg (2002)
Lerda, F., Visser, W.: Addressing dynamic issues of program model checking. In:
Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 80-102. Springer, Heidelberg
(2001)

Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, 1., Sheffer,
M., Alon, U.: Superfamilies of evolved and designed networks. Science 303(5663),
1538-1542 (2004)

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network
motifs: Simple building blocks of complex networks. Science 298(5594), 824-827
(2002)

Mony, H., Baumgartner, J., Paruthi, V., Kanzelman, R., Kuehlmann, A.: Scalable
automated verification via expert-system guided transformations. In: Hu, A.J.,
Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 159-173. Springer, Hei-
delberg (2004)

Ozdemir, K., Ural, H.: Protocol validation by simultaneous reachability analysis.
Computer Communications 20, 772-788 (1997)

Pelanek, R.: Typical structural properties of state spaces. In: Graf, S., Mounier, L.
(eds.) SPIN 2004. LNCS, vol. 2989, pp. 5-22. Springer, Heidelberg (2004)
Pelanek, R.: Evaluation of on-the-fly state space reductions. In: Proc. of Mathemat-
ical and Engineering Methods in Computer Science (MEMICS 2005), pp. 121-127
(2005)

Pelanek, R.: Reduction and Abstraction Techniques for Model Checking. PhD the-
sis, Faculty of Informatics, Masaryk University, Brno (2006)

Pelanek, R.: Web portal for benchmarking explicit model checkers. Technical Re-
port FIMU-RS-2006-03, Masaryk University Brno (2006),
http://anna.fi.muni.cz/models/

Peldnek, R.: Beem: Benchmarks for explicit model checkers. In: Bosnacki, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263-267. Springer, Heidelberg
(2007)

Pelanek, R., Hanzl, T., Cern4, I., Brim, L.: Enhancing random walk state space
exploration. In: Proc. of Formal Methods for Industrial Critical Systems (FMICS
2005), pp. 98-105. ACM Press, New York (2005)

Penna, G.D., Intrigila, B., Melatti, 1., Tronci, E., Zilli, M.V.: Exploiting transition
locality in automatic verification of finite state concurrent systems. Software Tools
for Technology Transfer (STTT) 6(4), 320-341 (2004)

Ruys, T.C., Brinksma, E.: Managing the verification trajectory. International Jour-
nal on Software Tools for Technology Transfer (STTT) 4(2), 246-259 (2003)
Sahoo, D., Jain, J., Iyer, S.K., Dill, D., Emerson, E.A.: Predictive reachability
using a sample-based approach. In: Borrione, D., Paul, W. (eds.) CHARME 2005.
LNCS, vol. 3725, pp. 388-392. Springer, Heidelberg (2005)

125

40.

41.

42.

Model Classifications and Automated Verification 163

Sivaraj, H., Gopalakrishnan, G.: Random walk based heuristic algorithms for dis-
tributed memory model checking. In: Proc. of Parallel and Distributed Model
Checking (PDMC 2003). ENTCS, vol. 89 (2003)

Stern, U., Dill, D.L.: Using magnetic disk instead of main memory in the Murphi
verifier. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 172-183. Springer,
Heidelberg (1998)

Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Kozen, D. (ed.) Proc. of Logic in Computer Science (LICS 1986),
pp. 332-344. IEEE Computer Society Press, Los Alamitos (1986)

126

Chapter 10

Fighting State Space Explosion:
Review and Evaluation

This work comprises an important piece in our long term effort. It summarises both
the work in the area and our own experiences, and provides a basic argument for our
approach to automating the verification process.

In this paper we provide a systematic overview of techniques for fighting state
space explosion and we analyse trends in the relevant research. We also report on our
own experience with practical performance of techniques — the report is a concise sum-
mary of several other papers and technical reports [57,/58, 59,67, 68]. Main conclusion
of the study is a recommendation for both practitioners and researchers: be critical to
claims of dramatic improvement brought by a single sophisticated technique, rather
use many different simple techniques and combine them.

This paper was published in proceedings of Formal Methods for Industrial Critical
Systems (FMICS) in 2008:

e R. Pelanek. Model classifications and automated verification. In Proc. of Formal
Methods for Industrial Critical Systems (FMICS’07), volume 4916 of LNCS, pages
149-163. Springer, 2008.

127

Fighting State Space Explosion:
Review and Evaluation

Radek Pelanek*

Department of Information Technology, Faculty of Informatics
Masaryk University Brno, Czech Republic
xpelanek@fi.muni.cz

Abstract. In order to apply formal methods in practice, the practitioner
has to comprehend a vast amount of research literature and realistically
evaluate practical merits of different approaches. In this paper we focus
on explicit finite state model checking and study this area from practi-
tioner’s point of view. We provide a systematic overview of techniques
for fighting state space explosion and we analyse trends in the research.
We also report on our own experience with practical performance of tech-
niques. Our main conclusion and recommendation for practitioner is the
following: be critical to claims of dramatic improvement brought by a sin-
gle sophisticated technique, rather use many different simple techniques
and combine them.

1 Introduction

If you are a practitioner who wants to apply formal methods in industrial critical
systems, you have to address following problems: Which of the many approaches
should I use? If I want to improve the performance of my tool, which of the
techniques described by researchers should I use? Which techniques are worth
the implementation effort? These are important questions which are not easy to
answer, nevertheless they are seldom addressed in research papers.

Research papers rather propose a steady flow of novel techniques, improve-
ments, and optimizations. However, the experimental work reported in research
papers has often poor quality [59] and it is difficult to judge the practical merit of
proposed techniques. The goal of this paper is to provide an overview of research
and realistic assessment of practical merits of techniques. The paper should serve
as a guide for a practitioner who is trying to answer the above given questions.

It is not feasible to realize this goal for the whole field of formal verification
at once. Therefore, we focus on one particular area (explicit model checking)
and give an overview of research in this area and report on practical experience.
Even though our discussion is focused on one specific area, we believe that our
main recommendation — that it is better to combine several simple techniques
rather than to focus on one sophisticated one — is applicable to many other
areas of formal methods.

* Partially supported by GA CR grant no. 201/07/P035.

D. Cofer and A. Fantechi (Eds.): FMICS 2008, LNCS 5596, pp. 37-52, 2009.
© Springer-Verlag Berlin Heidelberg 2009

128

38 R. Pelanek

Explicit model checking is principally very simple — a brute force traversal
of all possible model states. Despite the simplicity of the basic idea, explicit
model checking is still the best approach for many practically important areas
of application, e.g., verification of communication protocols and software. The
popularity of the approach is illustrated by large number of available tools (e.g.,
Spin, CADP, mCRL2, Uppaal, Divine, Java PathFinder, Helena) and widespread
availability of courses and textbooks on the topic (e.g., [10]).

The main obstacle in applying explicit model checking in practice is the state
space explosion problem. Hence, the research focuses mainly on techniques for
fighting state space explosions — during the last 15 years more than 100 papers
have been published on the topic, proposing various techniques for fighting state
space explosion. What are these techniques and how can we classify them? What
is the real improvement brought by these techniques? Which techniques are
practically useful? Which techniques should a practitioner study and use?

We try to answer these questions, particularly we provide the following:

— We overview techniques for fighting state space explosion in explicit model
checking and divide them into four main areas (Section 2).

— We review and analyse research on fighting state space explosion, and discuss
main trends in this research (Section 3).

— We report on our own practical experience with application and evaluation
of techniques for fighting state space explosion (Section 4).

— Based on the review of literature and our experience, we provide specific
recommendation for practitioner in industry (Section 5).

The main aim of this paper is to present and support the following message:
Rather than optimizing the performance of a single sophisticated technique, we
should use many different simple techniques, study how to combine them, and
how to run them effectively in parallel.

2 Overview of Techniques for Fighting State Space
Explosion

Fig. 1. gives an algorithm EXPLORE which explores the reachable part of the
state space. This basic algorithm can be directly used for verification of simple
safety properties; for more complex properties, we have to use more sophis-
ticated algorithms (e.g., cycle detection [72]). Nevertheless, the basic ideas of
techniques for fighting state space explosion are similar. For clarity, we discuss
these techniques mainly with respect to the basic EXPLORE algorithm.

The main problem of explicit state space exploration is state space explo-
sion problem and consequently memory and time requirements of the algorithm
EXPLORE. Techniques for fighting state space explosion can be divided into four
main groups:

129

Fighting State Space Explosion: Review and Evaluation 39

proc EXPLORE(M)
Wait = {so}; Visited = ()
while Wait # () do
get s from Wait
explore state s
foreach s’ € successors of s do
if s’ ¢ Visited then
add s’ to Wait
add s to Visited fi od
od
end

Fig. 1. The basic algorithm which explores all reachable states. Data structure Wait
(also called open list) holds states to be visited, data structure Visited (also called
visited list, closed list, transposition table, or just hash table) stores already explored
states.

Reduce the number of states that need to be explored.

Reduce the memory requirements needed for storing explored states.

Use parallelism or distributed environment.

Give up the requirement on completeness and explore only part of the state
space.

L e e

In the following we discuss these four types of approaches and for each of them
we list examples of specific techniques.

2.1 State Space Reductions

When we inspect some simple models and their state spaces, we quickly notice
significant redundancy in these state spaces. So the straightforward idea is to
try to exploit this redundancy and reduce the number of states visited during
the search. In order to exploit this idea in practice, we have to specify which
states are omitted from the search and we have to show the correctness of the
approach, i.e., prove that the visited part of the state space is equivalent to the
whole state space with respect to some equivalence (typically bisimulation or
stutter equivalence).

State based reductions. State based reductions exploit observation that if two
states are bisimilar then it is sufficient to explore successors of only one of them.
The reduction can be performed either on-the-fly during the exploration or by a
static modification of the model before the exploration. Examples of such reduc-
tions are symmetry reduction [12,20,43,44,70,74], live variable reduction [21,69],
cone of influence reductions, and slicing [19,35].

Path based reductions. Path based reductions exploit observation that some-
times it is sufficient to explore only one of two sequences of actions because they
are just different linearizations of “independent” actions and therefore have the

130

40 R. Pelanek

same effect. These reductions try to reduce the number of equivalent interleav-
ings. Examples of such reductions are transition merging [18,48], partial or-
der reduction [27,33,40,63,64], 7-confluence [11], and simultaneous reachability
analysis [55].

Compositional methods. Systems are often specified as a composition of sev-
eral components. This structure can be exploited in two ways: compositional
generation of the state space [46] and assume-guarantee approach [22,32,66].

2.2 Storage Size Reductions

The main bottleneck of model checking are usually memory requirements. There-
fore, we can save some memory at the cost of using more time, i.e., by employing
some kind of time-memory trade-off. The main source of memory requirements
of the algorithm EXPLORE is the structure Visited which stores previously vis-
ited states. Hence, techniques, which try to lower memory requirements, focus
mainly on this structure.

State compression. During the search, each state is represented as a byte
vector which can be quite large (e.g., 100 bytes). In order to save space, this
vector can be compressed [25,26,30,39,49,56,73] or common components can be
shared [38]. Instead of compressing individual states, we can also represent the
whole structure Visited implicitly as a minimized deterministic automaton [41].

Caching and selective storing. Instead of storing all states in the structure
Visited, we can store only some of these states — this approach can lead to
revisits of some states and hence can increase runtime, but it saves memory.
Techniques of this type are for example:

— caching [24,28,65], which deletes some currently stored states when the mem-
ory is full,

— selective storing [9,49], which stores only some states according to given
heuristics,

— sweep line method [15,54,68], which uses so called progress function; this
function guarantees that some states will not be revisited in the future and
hence these states can be deleted from the memory.

Use of magnetic disk. Simple use of magnetic disk leads to an extensive
swapping and slows down the computation extremely. So the magnetic disk have
to be used in a sophisticated way [7,8,71] in order to minimize disk operations.

2.3 Parallel and Distributed Computation

Another approach to manage a large number of states is to use even more brute
force — more processors.

Networks of workstations. Distributed computation can be realized most
easily by network of workstations connected by fast communication medium

131

Fighting State Space Explosion: Review and Evaluation 41

(i.e., workstations communicate by message passing). In this setting the state
space is partitioned among workstations (i.e., each workstation stores part of the
data structure Visited) and workstations exchange messages about states to be
visited (Wait structure), see e.g., [23,50,51]. The application of distributed envi-
ronment for verification of liveness properties is more complicated, because clas-
sical algorithms are based on depth-first search, which cannot be easily adapted
for distributed environment. Hence, for verification of liveness properties we have
to use more sophisticated algorithms, see e.g., [1,2,3,5,13,14].

Multi-core processors. Recently, multi-core processors become widely avail-
able. Multi-core processors provide parallelism with shared memory, i.e., the
possibility to reduce run-time of the verification by parallel exploration of sev-
eral states, see e.g., [4,42].

2.4 Randomized Techniques and Heuristics

If the memory requirements of the search are too large even after the application
of above given techniques, we can use randomized techniques and heuristics.
These techniques explore only part of the state space. Therefore, they can help
only in the detection of an error; they cannot assist us in proving correctness.

Heuristic search (also called directed or guided search). States are visited
in an order given by some heuristics, i.e., Wait list is implemented as priority
queue [31,47,67]. Different heuristic approach is to use genetic algorithm which
tries to ‘evolve’ a path to a goal state [29].

Random walk and partial search. Random walk does not store any infor-
mation and always visits just one successor of a current state [34,60]. This basic
strategy can be extended in several ways, e.g., by visiting a subset of all succes-
sors (instead of just one state), storing some states in the Visited structure, or
combining random walk with local breadth-first search, see e.g., [36,45,52,53,60].

Bitstate hashing. The algorithm does not store whole states but only one bit
per state in a large hash table [37]. In a case of collision some states are omitted
by the search. A more involved version of this technique is based on Bloom
filters [16,17].

3 Research Analysis

What are the trends in the research literature about techniques for fighting state
space explosion? Is the quality of experimental evidence improving? How signif-
icant is the improvement reported in research papers? How is this improvement
changing over time?

3.1 Research Papers

In order to answer the above given questions, we have collected and analyzed
large set of research papers. More specifically, we collected research papers that

132

42 R. Pelanek

12 T T
total —+—
state space reduction ---x---
storage size reduction ------
parallel and distributed &

10 F randomized and heuristic —-®-

7777777 | =] Bl 8 . /g d
oW s i ¥ S Vi .
1994 1996 1998 2000 2002 2004 2006

Fig. 2. Numbers of publications; note that some papers can be counted in two
categories

describe techniques for fighting state space explosion in explicit model checking
of finite state systems!.

The collection contains more than 100 papers — these papers were obtained
by systematically collecting papers from the most relevant conferences and by
citation tracking. The full list of reviewed papers, which includes all papers
referenced above, is freely available?. The collection is certainly not complete,
but we believe that it is a good sample of research in the area.

Fig. 2. shows the number of publications in each year during the last 13 years.
Although there are rises and downfalls, the overall flow of publications on the
topic is rather steady. The figure also shows that all four areas described in the
previous section are pursued concurrently.

3.2 Quality of Experiments

Although some of the considered research is rather theoretically oriented (e.g.,
partial order reduction), all considered techniques are in fact heuristics which
aim at improving performance of model checking tools. So what really matters is
the practical improvement brought by each technique. To assess the improvement

! In few cases we also include techniques which are not purely explicit, but target the
similar application domain (i.e., the experiments are done on same models as for
other included papers).

2 http://www.fi.muni.cz/~xpelanek/amase/reductions.bib

133

Fighting State Space Explosion: Review and Evaluation 43

i1 ne ofJEefomf - @ W O M
| pogonnopmufuf|
: D o O O & =
2o Doe00eQOEE
T JofeofJOJOoo® nE B = B

quality of experiments

Fig. 3. The first graph shows the quality of experiments reported in model checking
papers during time. The size of a box corresponds to a number of published papers
in a given year and quality category. The second graph shows the relation between
experiment quality and citation impact; citation impact is divided into three categories:
less than 10 citations, 10-30 citations, more than 30 citations; only publication before
2004 are used.

it is necessary to perform experimental evaluation. Only good experiments can
provide realistic evaluation of practical merits of proposed techniques.

In order to study the quality of experiments, we classify experiments in each
paper into one of four classes, depending on the number and type of used
models?:

1. Random inputs or few toy models.

2. Several toy models (possibly parametrized) or few simple models.

3. Several simple models (possibly parametrized) or one large case study.
4. Exhaustive study of parametrized simple models or several case studies.

Fig 3. presents the quality of experiments in papers from our sample. The figure
shows that the quality on average is not very good and, what is even more
disappointing, that there is slow progress in time, although many realistic case
studies are available (see [59] for more detailed discussion of these issues).

Since there is a large number of techniques, it is important to compare per-
formance of novel techniques with previously studied one. However, analysis of
our research sample shows that only about 40% papers contain some compari-
son with similar techniques; this ratio is improving with time, but only slowly.
Moreover, the comparison is usually only shallow.

Our analysis also shows one encouraging trend. Fig. 3. shows that there is
a relation between quality of experiments and citation impact of a paper —
research with better experiments is more cited.

3.3 Reported Improvement

Before the discussion of improvements reported in research papers, we clarify
the terminology that we use to measure this improvement. We use the notion

3 The classification is clearly slightly subjective. Nevertheless, we believe that the main
conclusions of our analysis do not depend on the subjective factor.

134

44 R. Pelanek

4

o o OE 0O 0O

I 000 060 [

vooJRERENEEREE

-1 De 0 JEem B n -

1994 1996 1998 2000 2002 2004 2006 2008 1 2 3 4
quality of experiments

4

3
3

2
reported resuits

reported results

[0B
il
N R
' il

Fig. 4. Reported improvement with respect to time and quality of experiments

‘reduction ratio’ to denote the ratio between the memory consumption of the
technique for fighting state space explosion and the memory consumption of the
standard reachability (exploration of full reachable state space). Some authors
report ‘reduced by’ factor, i.e., if we report ‘reduction ratio’ 80%, it means that
the memory consumption was ‘reduced by’ 20%. Note that in this section we
analyze reduction ratios as reported by authors, not what we consider realistic
reduction ratios of techniques.

For clarity of presentation, we again divide the reported reduction ratios into
four classes:

1. Reported reduction ratio is 50% or worse (or sometimes good but sometimes
worse than 100%).

2. Reported reduction ratio is in most cases 10%-50%.

. Reported reduction ratio is in most cases 1%-10%.

4. Reported reduction ratio is better than 1% (or exponential improvement is
reported or only out-of memory for full search is reported, i.e., reduction
ratio is impossible to assess).

w

Fig. 4. shows that in most cases the reported reduction is in the second category
(reduction between 10% and 50%). The relation with the quality of experiments
clearly demonstrates that this is also the most realistic evaluation — better re-
sults are often caused by poor experiments, not by special features of techniques.

There is no clear trend with respect to time, i.e., it seems that novel techniques
do not significantly improve on performance of previous techniques. This does
not automatically mean that the recent research is misguided. In some cases
novel technique provides principally different way how to obtain the reduction
and can be combined with previously proposed techniques in orthogonal way.
Novel technique can also extend the application domain of previously studied
techniques.

As we already mentioned, the research in this domain is purely practically mo-
tivated. However, the amount of research into certain topic is not really related
to its practical merit. For example, our experience (described in next section)
shows that the dead variable reduction brings similar improvement as partial or-
der reduction. Nevertheless, there are significantly more research papers about

135

Fighting State Space Explosion: Review and Evaluation 45

partial order reduction than about dead variable reduction. This is probably
not due to the practical merits of partial order reduction, but because it can be
extensively studied theoretically.

4 Practical Experience

In this section we report on our experience with techniques for fighting state
space explosion. Our experience is based on large-scale research studies, which
are described in stand-alone publications. Here we provide only a brief descrip-
tion of these studies and present their main conclusions. Technical details can
be found in cited papers.

Our experience report obviously does not cover all techniques for fighting state
space explosion. However, we cover all four areas described in Section 2 and the
main conclusions are in all cases similar, so we believe that it is reasonable to
generalize our experience.

4.1 On-the-fly State Space Reductions

We evaluated several techniques for on-the-fly state space reductions. Setting of
this study (see [57] for details):

— Implementation: publicly available implementations of explicit model check-
ers (Spin, Murphy, DiVinE).

— Models: models included in tool distributions plus few more publicly avail-
able case studies.

— Techniques: dead variable reduction, partial order reduction, transition
merging, symmetry reduction.

When we measured the performance of techniques over realistic models, we found
that the reduction ratio is usually worse than what is reported in research pa-
pers — research papers often use simple models with artificially high values of
model parameters. More specifically, the main results of our evaluation are the
following: dead variable reduction works on nearly all models, reduction ratio is
usually between 10% and 90%; partial order reduction works only in some cases,
reduction ratio is between 5% and 90%; transition merging works in similar cases
as partial order reduction, it is weaker but easier to realize, reduction ratio is
usually between 50% and 95%; symmetry reduction works only for few models
(symmetric ones), reduction ratio is usually between 8% and 50%.
Our main conclusion from this study are the following:

— Each technique is applicable only to some types of models. No technique
works really universally; more specialized techniques yield better reduction.

— On real models, no single technique is able to achieve reduction ratio sig-
nificantly under 5%. Claims about drastic reduction, which occur in some
papers, are not really appropriate.

— Since there are many techniques and many of them are orthogonal, most
models can be reduced quite significantly.

136

46 R. Pelanek

4.2 Caching and Compression

From the area of ‘storage size reduction’ techniques we evaluated two techniques
for reducing memory consumption of the data structure Visited. Setting of this
study (see [62] for details):

— Implementation: all techniques are implemented in uniform way using the
DiVinE environment [6] (source codes are publicly available).

— Models: 120 models from BEEM (BEnchmarks for Explicit Model check-
ers) [59].

— Techniques: state caching with 7 different caching strategies, state compres-
sion with Huffman coding (two variants: static code and code computed by
training runs).

In the study we also reviewed previous research on storage size reduction tech-
niques. We found that using proper parameter values with our simple and easy-
to-implement techniques, we were able to achieve very similar results to those
reported in other works which use far more sophisticated approaches. Concrete
results of the evaluation are the following:

— Caching strategies are to a certain degree complementary. Using an appro-
priate state caching strategy, the reduction ratio is in most cases 10% to
30%.

— Using state compression, the reduction ratio is usually around 60%.

— The two techniques combine well.

4.3 Distributed Exploration

From the area of parallel and distributed techniques we report on the basic
distributed approach to explicit model checking: we have a network of worksta-
tions connected by fast Ethernet, workstations communicate via message passing
(MPT library), state space is partitioned among workstations. In this setting the
reduction ratio is clearly bounded by 1/n, where n is the number of workstations.
In practice the reduction ratio is worse because of communication overhead. Here
we report on results of our evaluation, however the results are rather typical in
this area.
Setting of this study (see [58] for details):

— Implementation: the DiVinE tool (public version).

— Models: 120 models from BEEM (BEnchmarks for Explicit Model check-
ers) [59)].

— Techniques: distributed reachability on 20 workstations.

In this study the speedup varies from 2 to 12, typical value of the speedup is
between 4 and 6 (i.e., reduction ratio around 20%). We also found that the
speedup is negatively correlated with the speed of successor generation by the
tool.

137

Fighting State Space Explosion: Review and Evaluation 47

4.4 Error Detection Techniques

From the area of ‘randomized techniques and heuristics’ we have chosen 9 tech-
niques and evaluated their performance. In this case we do not study the reduc-
tion ratio, because it is not known — the experiments are done on models for
which the standard reachability is not feasible. Therefore, we focus on relative
performance of techniques and on the issue of complementarity.

Setting of this study (see [61] for details):

— Implementation: all techniques are implemented in uniform way using the
DiVinE environment [6] (source codes are publicly available),

— Models: 54 models (with very large state space) from BEEM [59].

— Techniques: breadth-first search, depth-first search, randomized DFS, two
variants of random walk, bitstate hashing with repetition, two variants of
directed search, and under-approximation refinement based on partial order
reduction.

For the evaluation we used several performance measures: number of steps
needed to find an error, length of reported counterexample, and coverage metrics.
The main results of this study are the following:

— There is no single best technique. Results depend on used performance met-
rics, even for a given metric, the most successful technique is the best one
only over 25% of models.

— It is important to focus on complementarity of techniques, not just on their
overall (average) performance. For example, in our study the random walk
technique had rather poor overall performance, but it was successful on
models where other techniques fall, i.e., it is a useful technique which we
should not discard.

5 Conclusions

This paper is concerned with techniques for fighting state space explosion prob-
lem in explicit model checking. We review the research in the area during the
last 15 years (more than 100 research papers) and report on our practical experi-
ence. As a result of our review we identify four main groups of techniques: state
space reductions, storage size reductions, parallel and distributed computation,
randomization and heuristics. These four groups are rather orthogonal and can
be combined; within each group techniques are often based on similar ideas and
their combination can be difficult.

The review of research shows that despite a steady flow of publications on the
topic, the progress is not very significant — in fact the reduction ratio reported
in research papers stays practically the same over the last 15 years. This analysis
stresses the need for good practical evaluation. However, realistic evaluation of
research progress is complicated by rather poor experimental standards and by
unjustified claims by researchers.

138

48 R. Pelanek

Results reported in research papers often make an impression of dramatic
improvements. Our practical experience suggests that it is not realistic to get
better reduction ratio than 5% with a single technique, in fact in most cases the
obtained reduction ratio is between 20% and 80%. Nevertheless, this does not
mean that techniques for fighting state space explosion are not useful. Techniques
of different types can be combined, and together they might be able to bring a
significant improvement.

Our experience also suggest that simple techniques are often sufficient. The
performance obtained by sophisticated techniques is often similar to performance
of basic techniques from each area. Complicated techniques often achieve better
results only for specialized application domains. This observation can be also
supported by analysis of techniques implemented in model checking tools. Tools
usually implement basic versions of many techniques, sophisticated techniques
are often implemented only in a tool used by authors of the technique.

To summarise, we propose following recommendations for those who want to
apply model checking in practice:

— Use large number of simple techniques of different types.

— Do not try to find ‘the best’ technique of a specific type. Try to find a
set of simple complementary techniques and run all of them (preferably in
parallel).

— Be critical to claims in research papers, particularly if the experimental ev-
idence is poor.

— Use sophisticated techniques only if they are specifically targeted at your
domain of application.

— Focus on combination of orthogonal techniques.

Researchers, we believe, should focus not just on the development of novel tech-
niques, but also on issues of techniques combination, selection, and efficient
scheduling: How to select right technique for a given model? In what order we
should try available techniques? Can information gathered by one technique be
used by another techniques?

Acknowledgment

I thank Véclav Rosecky, Pavel Moravec, and Jaroslav Sedénka for cooperation
on practical evaluation of techniques.

References

1. Barnat, J., Brim, L., Cerng, I.: Property driven distribution of nested DFS. In:
Proc. of Workshop on Verification and Computational Logic, number DSSE-TR-
2002-5 in DSSE Technical Report, pp. 1-10. University of Southampton, UK (2002)

2. Barnat, J., Brim, L., Chaloupka, J.: Parallel breadth-first search LTL model-
checking. In: Proc. of Automated Software Engineering (ASE 2003), pp. 106-115.
IEEE Computer Society, Los Alamitos (2003)

139

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

Fighting State Space Explosion: Review and Evaluation 49

Barnat, J., Brim, L., Chaloupka, J.: From distributed memory cycle detection to
parallel LTL model checking. ENTCS 133(1), 21-39 (2005)

Barnat, J., Brim, L., Rockai, P.: Scalable multi-core LTL model-checking. In:
Bosnacki, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 187-203.
Springer, Heidelberg (2007)

Barnat, J., Brim, L., Stiibrnd, J.: Distributed LTL model-checking in SPIN. In:
Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 200-216. Springer, Heidelberg
(2001) 5 .

Barnat, J., Brim, L., Cerna, I., Moravec, P., Rockai, P., Simecek, P.: Di-
VinE - a tool for distributed verification. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 278-281. Springer, Heidelberg (2006),
http://anna.fi.muni.cz/divine

Barnat, J., Brim, L., Simeéek, P.: I/o efficient accepting cycle detection i/o efficient
accepting cycle detection. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 281-293. Springer, Heidelberg (2007)

Barnat, J., Brim, L., Simeéek, P., Weber, M.: Revisiting resistance speeds up i/o-
efficient 1t] model checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 48—62. Springer, Heidelberg (2008)

Behrmann, G., Larsen, K.G., Pelanek, R.: To store or not to store. In: Hunt Jr.,
W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 433-445. Springer, Hei-
delberg (2003)

Ben-Ari, M.: Principles of the SPIN Model Checker. Springer, Heidelberg (2008)
Blom, S., van de Pol, J.: State space reduction by proving confluence. In: Brinksma,
E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 596-609. Springer, Hei-
delberg (2002)

Bosnacki, D.: A light-weight algorithm for model checking with symmetry reduction
and weak fairness. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648,
pp. 89-103. Springer, Heidelberg (2003)

Brim, L., Cern4, I., Kréal, P., Pelanek, R.: Distributed LTL model checking based
on negative cycle detection. In: Hariharan, R., Mukund, M., Vinay, V. (eds.)
FSTTCS 2001. LNCS, vol. 2245, pp. 96-107. Springer, Heidelberg (2001)

Cerna, 1., Peldnek, R.: Distributed explicit fair cycle detection. In: Ball, T., Ra-
jamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 49-73. Springer, Heidelberg
(2003)

Christensen, S., Kristensen, L.M., Mailund, T.: A sweep-line method for state space
exploration. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp.
450-464. Springer, Heidelberg (2001)

Dillinger, P.C., Manolios, P.: Bloom filters in probabilistic verification. In: Hu,
A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 367-381. Springer,
Heidelberg (2004)

Dillinger, P.C., Manolios, P.: Fast and accurate bitstate verification for SPIN. In:
Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 57-75. Springer,
Heidelberg (2004)

Dong, Y., Ramakrishnan, C.R.: An optimizing compiler for efficient model check-
ing. In: Proc. of Formal Description Techniques for Distributed Systems and Com-
munication Protocols (FORTE XII) and Protocol Specification, Testing and Veri-
fication (PSTV XIX), pp. 241-256. Kluwer, Dordrecht (1999)

Dwyer, M.B., Hatcliff, J., Hoosier, M., Ranganath, V.P.: Evaluating the effective-
ness of slicing for model reduction of concurrent object-oriented programs. In: Her-
manns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 73-89. Springer,
Heidelberg (2006)

140

50

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

R. Pelanek

Emerson, E.A.; Wahl, T.: Dynamic symmetry reduction. In: Halbwachs, N., Zuck,
L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 382-396. Springer, Heidelberg
(2005)

Fernandez, J.C., Bozga, M., Ghirvu, L.: State space reduction based on live vari-
ables analysis. Journal of Science of Computer Programming (SCP) 47(2-3), 203—
220 (2003)

Flanagan, C., Qadeer, S.: Thread-modular model checking. In: Ball, T., Rajamani,
S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 213-224. Springer, Heidelberg (2003)
Garavel, H., Mateescu, R., Smarandache, I.: Parallel state space construction for
model-checking. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 217-234.
Springer, Heidelberg (2001)

Geldenhuys, J.: State caching reconsidered. In: Graf, S., Mounier, L. (eds.) SPIN
2004. LNCS, vol. 2989, pp. 23-38. Springer, Heidelberg (2004)

Geldenhuys, J., de Villiers, P.J.A.: Runtime efficient state compaction in SPIN. In:
Dams, D.R., Gerth, R., Leue, S., Massink, M. (eds.) SPIN 1999. LNCS, vol. 1680,
pp. 12-21. Springer, Heidelberg (1999)

Geldenhuys, J., Valmari, A.: A nearly memory-optimal data structure for sets and
mappings. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp.
136-150. Springer, Heidelberg (2003)

Godefroid, P.: Partial-order methods for the verification of concurrent systems:
an approach to the state-explosion problem. In: Godefroid, P. (ed.) Partial-Order
Methods for the Verification of Concurrent Systems. LNCS, vol. 1032, p. 142.
Springer, Heidelberg (1996)

Godefroid, P., Holzmann, G.J., Pirottin, D.: State space caching revisited. In:
Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 178-191.
Springer, Heidelberg (1993)

Godefroid, P., Khurshid, S.: Exploring very large state spaces using genetic algo-
rithms. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp.
266-280. Springer, Heidelberg (2002)

Gregoire, J.: State space compression in spin with GETSs. In: Proc. Second SPIN
Workshop, Rutgers University, New Brunswick, New Jersey (1996)

Groce, A., Visser, W.: Heuristics for model checking java programs. Software Tools
for Technology Transfer (STTT) 6(4), 260-276 (2004)

Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans-
actions on Programming Languages and Systems 16(3), 843-871 (1994)

Gueta, G., Flanagan, C., Yahav, E., Sagiv, M.: Cartesian partial-order reduction.
In: Bosnacki, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 95-112.
Springer, Heidelberg (2007)

Haslum, P.: Model checking by random walk. In: Proc. of ECSEL Workshop (1999)
Hatcliff, J., Dwyer, M.B., Zheng, H.: Slicing software for model construction. Higher
Order Symbol. Comput. 13(4), 315-353 (2000)

Holzmann, G.J.: Algorithms for automated protocol verification. AT&T Technical
Journal 69(2), 32-44 (1990)

Holzmann, G.J.: An analysis of bitstate hashing. In: Proc. of Protocol Specification,
Testing, and Verification, pp. 301-314. Chapman & Hall, Boca Raton (1995)
Holzmann, G.J.: State compression in SPIN: Recursive indexing and compression
training runs. In: Proc. of SPIN Workshop (1997)

Holzmann, G.J., Godefroid, P., Pirottin, D.: Coverage preserving reduction strate-
gies for reachability analysis. In: Proc. of Protocol Specification, Testing, and Ver-
ification (1992)

141

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Fighting State Space Explosion: Review and Evaluation 51

Holzmann, G.J., Peled, D.: An improvement in formal verification. In: Proc. of
Formal Description Techniques VII, pp. 197-211. Chapman & Hall, Ltd., Boca
Raton (1995)

Holzmann, G.J., Puri, A.: A minimized automaton representation of reachable
states. Software Tools for Technology Transfer (STTT) 3(1), 270-278 (1998)
Holzmann, G.J., Bosnacki, D.: The design of a multicore extension of the spin model
checker. IEEE Transactions on Software Engineering 33(10), 659-674 (2007)

Tosif, R.: Symmetry reduction criteria for software model checking. In: Bosnacki,
D., Leue, S. (eds.) SPIN 2002. LNCS, vol. 2318, pp. 22-41. Springer, Heidelberg
(2002)

Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods in
System Design 9(1-2), 41-75 (1996)

Jones, M.D., Sorber, J.: Parallel search for LTL violations. Software Tools for
Technology Transfer (STTT) 7(1), 31-42 (2005)

Krimm, J.P., Mounier, L.: Compositional state space generation from Lotos pro-
grams. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 239-258.
Springer, Heidelberg (1997)

Kuehlmann, A., McMillan, K.L., Brayton, R.K.: Probabilistic state space search.
In: Proc. of Computer-Aided Design (CAD 1999), pp. 574-579. IEEE Press, Los
Alamitos (1999)

Kurshan, R.P., Levin, V., Yenigiin, H.: Compressing transitions for model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 569-581.
Springer, Heidelberg (2002)

Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Efficient verification of real-time
systems: Compact data structure and state-space reduction. In: Proc. of Real-Time
Systems Symposium (RTSS 1997), pp. 14-24. IEEE Computer Society Press, Los
Alamitos (1997)

Lerda, F., Sisto, R.: Distributed-memory model checking with SPIN. In: Dams,
D.R., Gerth, R., Leue, S., Massink, M. (eds.) SPIN 1999. LNCS, vol. 1680, p. 22.
Springer, Heidelberg (1999)

Lerda, F., Visser, W.: Addressing dynamic issues of program model checking. In:
Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 80-102. Springer, Heidelberg
(2001)

Lin, F.; Chu, P., Liu, M.: Protocol verification using reachability analysis: the
state space explosion problem and relief strategies. Computer Communication Re-
view 17(5), 126-134 (1987)

Mihail, M., Papadimitriou, C.H.: On the random walk method for protocol testing.
In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 132-141. Springer, Heidelberg
(1994)

Mailund, T., Westergaard, W.: Obtaining memory-efficient reachability graph
representations using the sweep-line method. In: Jensen, K., Podelski, A. (eds.)
TACAS 2004. LNCS, vol. 2988, pp. 177-191. Springer, Heidelberg (2004)
Ozdemir, K., Ural, H.: Protocol validation by simultaneous reachability analysis.
Computer Communications 20, 772-788 (1997)

Parreaux, B.: Difference compression in SPIN. In: Proc. of Workshop on automata
theoric verification with the SPIN model checker (SPIN 1998) (1998)

Pelanek, R.: Evaluation of on-the-fly state space reductions. In: Proc. of Mathemat-
ical and Engineering Methods in Computer Science (MEMICS 2005), pp. 121-127
2005

;el{mlk, R.: Web portal for benchmarking explicit model checkers. Technical Re-
port FIMU-RS-2006-03, Masaryk University Brno (2006)

142

52

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

R. Pelanek

Pelanek, R.: BEEM: Benchmarks for explicit model checkers. In: Bosnacki, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263-267. Springer, Heidelberg
(2007)

Pelanek, R., Hanzl, T., Cern4, I., Brim, L.: Enhancing random walk state space
exploration. In: Proc. of Formal Methods for Industrial Critical Systems (FMICS
2005), pp. 98-105. ACM Press, New York (2005)

Pelanek, R., Rosecky, V., Moravec, P.: Complementarity of error detection tech-
niques. In: Proc. of Parallel and Distributed Methods in verifiCation (PDMC)
(2008)

Pelének, R., Rosecky, V., Sedénka, J.: Evaluation of state caching and state com-
pression techniques. Technical Report FIMU-RS-2008-02, Masaryk University Brno
(2008)

Peled, D.: Combining partial order reductions with on-the-fly model-checking. In:
Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377-390. Springer, Heidelberg
(1994)

Penczek, W., Szreter, M., Gerth, R., Kuiper, R.: Improving partial order reductions
for universal branching time properties. Fundamenta Informaticae 43(1-4), 245-267
(2000)

Penna, G.D., Intrigila, B., Melatti, 1., Tronci, E., Zilli, M.V.: Exploiting transition
locality in automatic verification of finite state concurrent systems. Software Tools
for Technology Transfer (STTT) 6(4), 320-341 (2004)

Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams. Logics and models of concurrent systems, 123-144 (1985)

Qian, K., Nymeyer, A.: Guided invariant model checking based on abstraction
and symbolic pattern databases. In: Jensen, K., Podelski, A. (eds.) TACAS 2004.
LNCS, vol. 2988, pp. 497-511. Springer, Heidelberg (2004)

Schmidt, K.: Automated generation of a progress measure for the sweep-line
method. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
192-204. Springer, Heidelberg (2004)

Self, J.P., Mercer, E.G.: On-the-fly dynamic dead variable analysis. In: Bosnacki,
D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 113-130. Springer, Hei-
delberg (2007)

Sistla, A.P., Godefroid, P.: Symmetry and reduced symmetry in model checking.
In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 91-103.
Springer, Heidelberg (2001)

Stern, U., Dill, D.L.: Using magnetic disk instead of main memory in the murphi
verifier. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 172-183. Springer,
Heidelberg (1998)

Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Kozen, D. (ed.) Proceedings of the First Annual IEEE Symposium
on Logic in Computer Science (LICS 1986), pp. 332-344. IEEE Computer Society
Press, Los Alamitos (1986)

Visser, W.: Memory efficient state storage in SPIN. In: Proc. of SPIN Workshop,
pp. 21-35 (1996)

Wahl, T.: Adaptive symmetry reduction. In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 393—405. Springer, Heidelberg (2007)

143

144

Chapter 11

Verification Manager: Automating
the Verification Process

In this work we further develop the concept of a verification manager (as outlined in
Section [1.3.3). Particularly, we describe a practical realization of this concept for ex-
plicit model checking by building a tool EMMA (Explicit Model checking MAnager).
The design of the tool is based on our experiences with evaluation of individual tech-
niques (as discussed in other papers in the thesis), i.e., rather then developing few
sophisticated techniques, we employ a large number of simple techniques which are
executed in parallel.

We also discuss practical experience with the tool. We pay special attention to the
problem of selection of problems for experiments. This issue is important (but often
neglected) in all experiments, but it becomes crucial in evaluating strategies for the
verification manager, which are in principle meta-heuristics.

This paper was published as a technical report, short version of the paper was
published in proceedings of Model Checking Software (SPIN Workshop) in 2009:

e R. Peldnek and V. Rosecky. EMMA: Explicit Model Checking Manager (Tool
Presentation). In SPIN Workshop on Model Checking Software, volume 5578 of
LNCS, pages 169-173. Springer, 2009.

e R. Pelanek, V. Rosecky. Verification Manager: Automating the Verification Pro-
cess. FIMU-RS-2009-02, 17 stran, 2009.

The author of the thesis is one of two coauthors and has done data analysis and
most of the writing.

145

Verification Manager: Automating the
Verification Process*

Radek Pelanek and Vaclav Rosecky

Department of Information Technology, Faculty of Informatics
Masaryk University Brno, Czech Republic
pelanek,xrosecky@fi.muni.cz

Abstract. Although model checking is usually described as an auto-
matic technique, the verification process with the use of model checker
is far from being fully automatic. With the aim of automating the verifi-
cation process, we elaborate on a concept of a verification manager. The
manager automates some step of the verification process and enables
efficient parallel combination of different verification techniques. We de-
scribe a realization of this concept for explicit model checking and discuss
practical experience. Particularly, we discuss the problem of selection of
input problems for evaluation of this kind of tool.

1 Introduction

Model checking consists of three phases: modeling, specification, and algorithmic
verification. The first two are acknowledged to involve manual effort and user
expertise, although researchers have proposed several techniques to automate
these steps [2,4,7]. The third step is standardly considered to be fully automatic.
We argue that in practice even the third step requires significant manual effort
and user expertise and that it is important to focus on automating even this
step.

1.1 Motivation for Automating the Verification Process

Given a model and a specification, model checking algorithmically checks all
possible behaviours of the model and gives us ‘yes’ or ‘no’ answer. In practice,
however, model checking techniques often reach a limit (on time or memory
consumption) and do not give any clear answer. To obtain an answer, it is
sometimes necessary to restore to a more abstract model, but in many cases it
is sufficient to suitably tune parameters of the model checker. Hence the process
of using a model checker can be quite elaborate and far from automatic.

In order to successfully verify a model, it is often necessary to select appro-
priate techniques and parameter values. The selection is difficult, because there
is a very large number of different heuristics and optimization techniques — our

* Partially supported by GA CR grant no. 201/07/P035.

146

review of techniques [17] found more than 100 papers just in the area of ex-
plicit model checking. These techniques are often complementary and there are
non-trivial trade-offs which are hard to understand. In general, there is no best
technique. Some techniques are more suited for verification, other techniques
are better for detection of errors. Some techniques bring good improvement in
a narrow domain of applicability, whereas in other cases they can worsen the
performance [17]. The user needs a significant experience to choose good tech-
niques.

Moreover, models are usually parametrized and there are several properties
to be checked. Thus the process of verification requires not just experience, but
also a laborious effort, which is itself error prone.

Another motivation for automating the verification process comes from trends
in the development of hardware. Until recently, the performance of model check-
ers was continually improved by increasing processor speed. In last years, how-
ever, the improvement in processors speed has slowed down and processors de-
signers have shifted their efforts towards parallelism [9]. This trend poses a chal-
lenge for further improvement of model checkers. A classic approach to applica-
tion of parallelism in model checking is based on distribution of a state space
among several workstations (processors) [8,11,25]. This approach, however, in-
volves large communication overhead. Given the large number of techniques and
hard-to-understand trade-offs, there is another way to employ parallelism: to run
independent verification runs on individual workstations (processors) [9,17,20].
This approach, however, cannot be efficiently performed manually. We need to
automate the verification process.

1.2 Ouwur Proposal: Verification Manager

In our overview study of techniques for fighting state space explosion, we reached
the following conclusion [17]: “Simple techniques are often sufficient. Rather then
optimizing the performance of sophisticated techniques, we should use simple
techniques, and study how to combine these simple techniques, and how to run
them effectively in parallel.” In this work we try to realize this idea.

We propose a concept of a verification manager. Verification manager is a tool
which automates the verification process. As an input it takes a (parametrized)
model and a list of properties. Then it employs available resources (hardware,
verification techniques) to perform verification — the manager distributes the
work among individual workstations, it collects results, and informs the user
about progress and final results. Decisions of the manager (e.g., which technique
should be started) are governed by a ‘verification strategy’. The verification
strategy needs to be written by an expert user, but since it is generic, it can
be used on many different models. In this way even a layman user can exploit
experiences of expert users. The general concept of verification manager is further
developed in Section 2.

As a proof of concept we introduce a prototype of the verification manager for
an area of explicit model checking — Explicit Model checking MAnager (EMMA).
Realization of EMMA is described in Section 3. We also describe experiences

147

with EMMA over models from the benchmark set BEEM [16]. Our experiences
with evaluation raise some methodological issues — it turns out that it is quite
difficult to perform fair evaluation of this kind of tool. These experiences are
described in Section 4.

1.3 Related work

This paper is part of our long term effort. We have developed the BEEM bench-
mark set [16] and using this benchmark set we have performed several evaluation
studies [20,21]. With the use of these studies we have provided overview of tech-
niques for fighting state space explosion [17]. In one of our publications [18] we
have already suggested the basic concept of a verification manager. In this work
we integrate all this previous progress and provide realization of the manager,
which is based on insight gained from previous studies.

The most related work by other researchers is by Holzmann et al. Holzman
and Smith [10] describe a tool for automated execution of verification runs for
several model parameters and correctness properties; they use one fixed verifi-
cation technique. Recently, Holzmann et al. [9] proposed ‘swarm verification’,
which is based on parallel execution of many different techniques. Their ap-
proach, however, does not allow any communication among techniques and they
do not discuss the selection of techniques that are used for the verification (ver-
ification strategy).

Owen et al. [13,14] discuss complementarity issues in verification and propose
to combine different tools. They illustrate the principles on large case studies.
The approach is, however, not automated. Garavel and Lang [6] propose a script-
ing language for description of verification strategies for automating the process
of compositional verification. The script calls techniques sequentially and has to
be written specifically for each model (as opposed to our approach in which the
strategy can be used universally and which executes techniques in parallel).

There are several other works, which employ similar ideas in different context
or on a more abstract level. Sahoo et al. [23] use sampling of the state space to
decide which BDD based reachability technique is the best for a given model.
Mony et al. [12] use expert system for automating proof strategies. Eytani et
al. [5] give a high-level proposal to use an ‘observation database’ for sharing
relevant information among different verification techniques.

2 Verification Manager

In this section we discuss the general proposal for the verification manager and
verification strategy. In the next section we introduce a concrete realization of
these concepts.

2.1 Verification Meta-Search

Most of the research in automated verification is focused on the verification
search problem: given a model M and a property ¢, determine whether M

148

available
hardware

verification
problem

verification
strategy

N/

-

verlflcatlon
manager

verification

techniques

strategy improvement

RN

long-term
log

output

Fig. 1. Verification manager — context.

satisfies ¢, i.e., the aim is to search for an incorrect behaviour or for a proof. We
believe that it is worthwhile to consider the verification meta-search problem [18]
as well: given a model and a property, find a technique 7" and values p of its
parameters such that 7'(p) can provide an answer to the verification problem.
This can be viewed as a stand-alone search problem which uses algorithms for the
verification problem as black-boxes. Our aim is to study methods for performing
this meta-search and heuristics to guide the search.

We call an entity responsible for the verification meta-search a wverification
manager and a heuristic for the meta-search a verification strategy.

2.2 Functionality of the Manager

Let us be more specific about the functionality of the verification manager.
Figure 1 gives the context, in which the manager operates:

Verification problem A model and a list of properties. The model may be
parametrized, in such a case the input also contains list of instances (de-
scribed by values of model parameters).

Verification strategy A heuristic for the meta-search problem (see below).

Verification techniques Available techniques which can be used for verifica-
tion.

Available hardware Hardware available for verification (e.g., a network of
workstations).

Output Running report about progress and final report about results.

Long-term log Stored data about performance of techniques. It can be used
for improvement of strategy and for collecting benchmarking data (see dis-
cussion in Section 4).

Basic functionality of the verification manager consists of starting and stop-
ping verification tasks. When starting a task, manager decides which technique

149

with what parameter values should be run on what computer. This decision is
based on verification strategy, currently available hardware, and results obtained
so far. There are several ways in which a technique can terminate:

— The technique simply finishes.

— Timeout specified by verification strategy is reached and manager forces the
technique to terminate.

— Based on intermediate results manager concludes that all results for a given
model instance are already known, and therefore it terminates the technique.

Manager also collects all results and presents them to the user.

Note that this is just a basic functionality, that we are able to realize at this
moment (see Section 3). We believe that in future it is feasible and meaningful
to further expand the functionality of the manager, e.g., by using static analysis
to analyze a model, or by employing several tools and incorporating translation
among specification languages into the manager (see future work in Section 5).

2.3 Verification Strategy

The verification manager performs the verification meta-search by starting and
terminating verification tasks. But how should it proceed with the meta-search?
Which techniques should be called? The “meta state space” cannot be searched
exhaustively — taking into account parameters of techniques, the meta state space
is infinite. Experimental results reported in research papers and overall experi-
ence of the community suggest that there is no optimal deterministic method to
search the meta state space. We therefore need some heuristic for the meta-search
— a verification strategy. This strategy should be optimized for an application
domain of interest using a feedback from a long-term log.

There are two extreme approaches to realization of a verification strategy.
The first one is to use “hard-wired” strategy, i.e., to include the strategy as an
integral part of the manager and to encode it in a high-level programming lan-
guage. The advantage of this approach is that we can encode arbitrary strategy
in this way. The disadvantage is that the basic functionality of the manager
is not separated from the heuristics and therefore it is harder to develop the
strategy and to improve it with the use of feedback.

The second extreme approach is to let the manager construct the strategy on
its own. With this approach we specify just the list of available techniques and
some learning algorithm (e.g., classifier system or genetic algorithm) and we let
the manager to construct a strategy by learning. This approach would require
very large amount of data to work well. At this moment, we are not convinced
that this approach would lead to better strategy than strategy constructed by
human expert. Nevertheless, this approach may be useful in the long-term ap-
plication of manager (learning with the use of feedback from long-term log).

We believe that a reasonable way is between these two approaches. We fix
a basic skeleton of the strategy (e.g., priority based scheme) and implement
support for this skeleton into the manager. Specifics of the strategy (e.g., order

150

of techniques, values of parameters) are specified separately in a simple format —
this specification of strategy can be easily and quickly (re)written by an expert
user.

3 Implementation: EMMA

In previous section we discussed the general concept of verification manager.
Now we introduce a concrete implementation of the concept. Since this is the
first step in this direction, we restrict our attention to explicit model checking
and detection of safety errors. Our implementation is called EMMA (Explicit
Model checking MAnager) and is available at:

http://anna.fi.muni.cz/~xrosecky/emma_web

3.1 Architecture

EMMA is based on the Distributed Verification Environment (DiVinE) [3]. All
used verification techniques are implemented in C++ with the use of DiVinE en-
vironment. At the moment, we use the following techniques: breadth-first search,
depth-first search, random walk, directed search, bitstate hashing (with refine-
ment), and under-approximation based on partial order reduction. All techniques
are publicly available either as a part of the DiVinE library or as a part of another
published study [20,21]. Other techniques can be easily incorporated.

The manager itself is implemented in Java. At the moment manager supports
as the underlying hardware a network of workstations connected by Ethernet.
Communication is based on SSH and stream socket, it consists of the following
messages (messages are encoded in XML):

— manager — workstation:

e initialization of a particular verification technique,
e forced termination of a verification technique (e.g., timeout),

— workstation — manager:

e intermediate result when an error is detected,
e final results after termination of a technique.

The verification manager EMMA takes the following inputs (in correspon-
dence with Figure 1): strategy (see below), list of available techniques, list of
available workstations, and description of a parametrized model. Model descrip-
tion consists of model source code (in DVE format [15]) and XML file describing
parameter values and properties (compatible with the BEEM project [16]).

During the verification the manager outputs intermediate results and infor-
mation about the progress of verification. At the end of the verification the
manager provides all results and summary information.

151

<strategy>

<total-timeout>1800</total-timeout>

<run>
<algorithm>random_walk</algorithm>
<timeout>50</timeout>
<params>

<param>
<name>max_depth</name>
<value>500</value>
</param>

</params>

</run>

<run>
<algorithm>random_dfs</algorithm>
<timeout>10</timeout>

</run>

<run>
<algorithm>bfs_reach</algorithm>
<timeout>60</timeout>

</run>

</strategy>

Fig. 2. Example of a strategy.

3.2 Strategy

Strategy description is given in the XML format. Specifically, we use two files to
describe the strategy (see Fig. 2):

1. specification of verification techniques — this file contains for each technique:
— name of a technique,
— way to call the technique (i.e., name of executable file which should be
called and its options),
— list of parameters and their default values.
2. specification of a strategy — the verification strategy itself, i.e., specification
of which techniques should be called, in what order.

For the first evaluation we use a simple priority-based strategies. For each
technique we specify priority, timeout, and parameter values; techniques are
executed in order according to their priorities.

The architecture of EMMA is built in such a way, that it can easily cope
with more sophisticated strategies, particularly ‘verification in phases’. With this
approach, techniques are divided into several phases; in each phase techniques are
called in parallel (e.g., in priority-based order); phases are executed sequentially.
This approach provides the following possibilities:

— Start with a quick ‘error detection phase’ (many diverse error detection tech-
niques) and then continue with a long ‘verification phase’ (few optimized
technique for traversing the whole state space).

152

— We can have two consecutive phases with same techniques, based on result
of the first phase we can modify priorities, timeouts, and parameter values
for the second phase — employing the observation that different instances of
a same parametrized model have similar state space properties and similar
techniques work for them [19].

4 Experiences

In this section we report our (qualitative) experiences from using EMMA and
we discuss why it is difficult to provide fair quantitative evaluation of the tool
and different strategies.

4.1 General Experiences

We have done experiments with models from BEEM [16], using 4 workstations
connected with fast Ethernet. The experiments were done with parametrized
models with usually about 5 models and several properties to be checked. We
set a overall timeout for the verification to 30 minutes. The general experiences
are the following:

— Most of the results are obtained quickly (usually within the first minute).
This stresses the usefulness of running report about results.

— The manager significantly simplifies the use of model checker for parametrized
models even for an experienced user — this contribution is not easily mea-
surable, but is very important for practical applications of model checkers.

4.2 Examples of Executions

EMMA distribution contains a script for visualization of executions. These visu-
alizations can be used for better understanding of functionality of EMMA and
for development and improvement of verification strategies.

Figure 3 shows a diagrams of a executions of two strategies over two mod-
els (more examples of visualizations are given on the tool web page). Firewire
link [24] is a model of a communication protocol with many reachable proper-
ties!, Szymanski protocol [1] is a mutual exclusion protocol with several versions,
most of which are correct, i.e., specified properties are not reachable.

Strategy A consists of a large number of ‘error detection’ techniques with
a short timeout. Strategy B consists of just one technique — simple depth first
search with long timeout. On a Firewire model, which has many reachable goals,
strategy A is much more successful: from 60 verification problems it can provide
answer to 58 of them, whereas strategy B can answer only 45 of them; strategy
A is moreover faster. On the other hand, on a Szymanski protocol, for which
it is necessary to traverse the whole state space, the simple strategy B is more

153

Strategy A: Firewire (58/60) Strategy B: Firewire (45/60)

9

6

T 1 T T 1
0 92 184 0 267 535

seconds seconds
Strategy A: Szymanski (21/24) Strategy B: Szymanski (23/24)

T T 1
0 89 178 0

seconds seconds 53
[directed search [] enhanced rw [] full reach
[l dfs bithash refinement| | bfs |:| nothing found
v []dfs [] something found
[] ua_por

Fig. 3. Illustration of EMMA executions on 4 workstations for two models and
two strategies. Each line corresponds to one workstation; numbers in boxes are
identifications of model instances.

successful: from 24 verification problems it can answer 23 of them, whereas
strategy A can answer only 21 of them.

These examples illustrate a more general issue with evaluation of a verifica-
tion manager. How should we select input problems for evaluation?

4.3 Selection of Input Problems

Selection of input problems is an important, but often neglected issue in ex-
perimental evaluation. This issue is important even for evaluation of several
techniques of the same type — see for example [20] for discussion of the influence
of model selection (toy versus complex models) in the evaluation of error de-
tection techniques. Selection of input problems becomes even more crucial issue
when evaluating verification meta-search.

! Most of these properties are not errors, but just protocol configurations for which
we want to check reachability.

154

By the selection of input data we determine to large extend the results that we
obtain from experiments. When we use mainly models without errors, strategies
which focus on verification are more successful than strategies tuned for finding
errors. When we use models with many easy-to-find errors, there are negligible
differences among strategies and we can be tempted to conclude that the choice
of strategy does not matter. When we use models with just few hard-to-find
errors, there are significant differences among strategies; the success of individual
strategies is, however, dependent very much on a choice of particular models and
errors. The preceding statements are not just speculations, they are observations
based on our experiences with EMMA. By suitable selection of input problems we
could “demonstrate” (even using quite large set of inputs) both that “verification
manager brings significant improvement” and “verification manager is rather
useless”.

So what are the ‘correct’ input problems? The ideal case, in our opinion,
is to use a large number of realistic case studies from an application domain
of interest; moreover, these case studies should be used not just in their final
correct versions, but also in developmental version with errors. However, this
ideal is not realizable at this moment — although there is already a large number
of available case studies in the domain of explicit model checking, developmental
versions of these case studies are not publicly available.

The employment of verification manager could help to overcome this problem.
The long-term log can be used to archive all models and properties for which
verification was performed (of course with user’s content). Data collected in this
way can be latter used for evaluation.

4.4 Comparison of Strategies

We have performed comparison of different strategies by running EMMA over
(different selections of) models from BEEM [16] (probably the largest collection
of models for explicit model checkers). Due to the above described bias caused
by selection of models, we do not provide numerical evaluation, but only general
observations:

— For models with many errors, it is better to use strategy which employs
several different (incomplete) techniques.

— For models, which satisfy given property, it is better to use strategy which
calls just one simple state space traversal technique with a large timeout.

— If two strategies are comprised of same techniques (with just different pri-
orities, timeouts), there can be a noticeable difference among them, but
this difference is usually less than order of magnitude. Note that differences
among individual verification techniques are often larger than order of mag-
nitude [20].

Suitable verification strategy depends on the application domain and also on
the “phase of verification” — different strategies are suitable for early debugging
of a model and for final verification. Thus the expected usage of tool like EMMA
is the following:

10

155

— Expert user does a bit of experimenting over particular application domain
and writes few strategies and hints on how to use them.
— These strategies can be then easily used by other users.

5 Conclusions and Future Work

We argue that although model checking technique is automatic, the verification
process with the use of model checker is rather complicated and involves signifi-
cant human expertise. In order to automatize this process, we propose a concept
of a verification manager. We also introduce a realization of this concept for
explicit model checking (EMMA tool). Experience show that:

— The manager significantly enhances the usability of a model checker, even
for an experienced user (particularly for parametrized models with several
properties).

— The performance of the different verification strategies depends on selected
input problems. It is difficult to perform fair evaluation of this kind of tool.

— We should not expect to find a universal strategy, rather we should look for
different strategies for different application domains and verification phases.
It should, however, be sufficient to have just few strategies, so that it is easy
to select a suitable one even for an inexperienced user.

In order to evaluate a verification manager in a more quantitative way, it
is necessary to collect a benchmark of developmental versions of models with
realistic and hard-to-find errors (current benchmarks contain mainly correct final
version of models). A proposed ‘long-term log’ of the verification manager can
be an appropriate way to collect such a benchmark.

This is just first step towards automatized execution of verification tech-
niques. There are several important directions for future research:

— For the first prototype we restricted our attention only to detection of safety
errors. However, the approach can be directly used also for verification of
properties expressed in temporal logic. The approach should be particu-
larly useful for verification of LTL properties, since there are many different
algorithms and each is suitable for a different purpose (error detection, ver-
ification). We also plan to add other techniques such as state caching, state
compression, and partial order reduction.

— The architecture of EMMA is designed in such a way, that it should be
possible to employ several model checking tools (with the use automatic
translator between specification languages). This extension should improve
performance and allow further expansion of applicability (e.g., symbolic tech-
niques).

— The manager could use static analysis and estimators [22] to guide the veri-
fication meta-search.

— Using the data from the long-term log, it could be interesting to study ways
for automatic construction (improvement) of verification strategy by ma-
chine learning.

11

156

— By analysis of result, manager should be able to provide additional informa-

tion for the user, e.g., which errors are simple (hard) to find.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

J. H. Anderson, Y.-J. Kim, and T. Herman. Shared-memory mutual exclusion:
major research trends since 1986. Distrib. Comput., 16(2-3):75-110, 2003.

T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani. Automatic predi-
cate abstraction of ¢ programs. In Proc. of Programming Language Design and
Implementation (PLDI 2001), pages 203-213. ACM Press, 2001.

J. Barnat, L. Brim, I. Cernd, P. Moravec, P. Rockai, and P. Simeéek. DiVinE - a
tool for distributed verification. In Proc. of Computer Aided Verification (CAV’06),
volume 4144 of LNCS, pages 278-281. Springer, 2006. The tool is available at
http://anna.fi.muni.cz/divine.

. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided

abstraction refinement. In Proc. of Computer Aided Verification (CAV 2000),
volume 1855 of LNCS, pages 154-169. Springer, 2000.

. Y. Eytani, K. Havelund, S. D. Stoller, and S. Ur. Toward a Framework and Bench-

mark for Testing Tools for Multi-Threaded Programs. Concurrency and Compu-
tation: Practice and Ezperience, 19(3):267-279, 2007.

H. Garavel and F. Lang. Svl: A scripting language for compositional verification.
In Proc. of Formal Techniques for Networked and Distributed Systems (FORTE
’01), pages 377-394. Kluwer, B.V., 2001.

G. J. Holzmann and M. H. Smith. Software model checking: extracting verification
models from source code. Softw. Test., Verif. Reliab., 11(2):65-79, 2001.

G.J. Holzmann and D. Bosnacki. The design of a multicore extension of the spin
model checker. IEEFE Transactions on Software Engineering, 33(10):659-674, 2007.
G.J. Holzmann, R. Joshi, and A. Groce. Tackling large verification problems with
the swarm tool. In Proc. of Model Checking Software: The SPIN Workshop, volume
5156 of LNCS, pages 134—-143. Springer, 2008.

G.J. Holzmann and M.H. Smith. Automating software feature verification. Bell
Labs Technical Journal, 5(2):72-87, 2000.

F. Lerda and R. Sisto. Distributed-memory model checking with SPIN. In Proc.
of SPIN workshop, volume 1680 of LNCS. Springer, 1999.

H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman, and A. Kuehlmann. Scal-
able automated verification via expert-system guided transformations. In Proc. of
Formal Methods in Computer-Aided Design (FMCAD’04), volume 3312 of LNCS,
pages 159-173. Springer, 2004.

D. Owen, D. Desovski, and B. Cukic. Effectively combining software verification
strategies: Understanding different assumptions. In Proc. of International Sym-
posium on Software Reliability Engineering (ISSRE ’06), pages 321-330. IEEE
Computer Society, 2006.

D.R. Owen. Combining Complementary Formal Verification Strategies to Improve
Performance and Accuracy. PhD thesis, West Virginia University, 2007.

R. Pelanek. Web portal for benchmarking explicit model checkers. Technical
Report FIMU-RS-2006-03, Masaryk University Brno, 2006.

R. Peldnek. BEEM: Benchmarks for explicit model checkers. In Proc. of SPIN
Workshop, volume 4595 of LNCS, pages 263—267. Springer, 2007.

12

157

17.

18.

19.

20.

21.

22.

23.

24.

25.

R. Pelanek. Fighting state space explosion: Review and evaluation. In Proc. of
Formal Methods for Industrial Critical Systems (FMICS’08), 2008. To appear.

R. Peldnek. Model classifications and automated verification. In Proc. of Formal
Methods for Industrial Critical Systems (FMICS’07), volume 4916 of LNCS, pages
149-163. Springer, 2008.

R. Pelanek. Properties of state spaces and their applications. International Journal
on Software Tools for Technology Transfer (STTT), 10(5):443-454, 2008.

R. Pelanek, V. Rosecky, and P. Moravec. Complementarity of error detection
techniques. In Proc. of Parallel and Distributed Methods in verifiCation (PDMC),
2008.

R. Peldnek, V. Rosecky, and J. Sedénka. Evaluation of state caching and state
compression techniques. Technical Report FIMU-RS-2008-02, Masaryk University
Brno, 2008.

R. Peldnek and P. Simeéek. Estimating state space parameters. Technical Report
FIMU-RS-2008-01, Masaryk University Brno, 2008.

D. Sahoo, J. Jain, S. K. Iyer, D. Dill, and E. A. Emerson. Predictive reachability
using a sample-based approach. In Proc. of Correct Hardware Design and Verifi-
cation Methods (CHARME’05), volume 3725 of LNCS, pages 388-392. Springer,
2005.

M. Sighireanu and R. Mateescu. Verification of the link layer protocol of the
ieee-1394 serial bus (firewire). Software Tools for Technology Transfer (STTT),
2(1):68-88, November 1998.

U. Stern and D. L. Dill. Parallelizing the Mury verifier. In Proc. of Computer
Aided Verification (CAV 1997), volume 1254 of LNCS, pages 256-267. Springer,
1997.

13

158

	Experimental Research in Explicit Model Checking: Commentary
	Introduction
	State of the Art
	Main Themes
	Contributions

	BEEM: Benchmarks for explicit model checkers
	Properties of state spaces and their applications
	Estimating State Space Parameters
	Enhancing Random Walk State Space Exploration
	Evaluation of State Caching and State Compression Techniques
	Complementarity of Error Detection Techniques
	Test Input Generation for Java Containers using State Matching
	Model Classifications and Automated Verification
	Fighting State Space Explosion: Review and Evaluation
	Verification Manager: Automating the Verification Process

