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Abstract

Formal modeling and verification usually play an important role in system development pro-
cess. Thus one of the crucial steps in such a process is selection of an appropriate modeling
language that would faithfully capture essential features of the system under consideration.
Such features often include some kind of randomness as well as interaction between compo-
nents of the system. Also, many real-world systems operate with potentially unbounded data
structures such as stacks and queues. Stochastic games on graphs with infinitely many vertices
are a natural abstract model of such potentially infinite state systems with randomness and
interaction. From the point of view of modeling and verification, both game-theoretic aspects
and related algorithmic issues are of utmost importance. Even though the game theoretic issues
can be studied for the abstract class of stochastic games with infinitely many vertices, to deal
with algorithmic issues we have to concentrate on classes of finitely generated games.

This thesis surveys the author’s contribution to the area of stochastic processes and games
with countably infinite number of vertices. After dealing with fundamental game theoretic is-
sues for abstract stochastic games with reachability objectives, we concentrate on a rich class
of stochastic games with finitely many control states accompanied by a (first in, last out) stack
called stochastic pushdown games. Even though most problems concerning these games are
undecidable in general, we identify some important subclasses that may be efficiently solved.
Then we turn our attention to games with multiple counters called games on vector addition
systems with states, so far studied only in a non-stochastic variant. We identify an interesting
subclass of consumption games, which are useful in modeling resource critical systems. Fi-
nally, we extend our techniques to deal with planning problems for one processor, where tasks
may stochastically generate new tasks, and to solve stabilization problems for a special kind of
controlled queueing networks.

The thesis is composed of a collection of papers and an accompanying survey of the most
important results. The collection consists of four journal papers and five papers published in
proceedings of international conferences. In all papers of the collection, the contribution of the
author of this thesis is at least proportional to the number of co-authors. In all cases the author
contributed to all activities: discussions and formulation of problems, solution and writing.
Particularly, in papers on probabilistic pushdown systems, the contribution of the author is
more than the proportion, especially on the side of crucial ideas.
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Abstrakt

Formdlni modelovani a verifikace tvofi dileZitou soucast navrhu mnoha systémut. Jednim z
kli¢ovych krokt je tedy volba vhodného modelovaciho jazyka. Tato volba je silné zavisld na
potfebé vérné zachytit klicové aspekty modelovaného systému. Mezi takové aspekty Casto patii
jisty druh nahodnosti a také interakce jednotlivych ¢asti systému. Mnoho redlnych systémd
navic pracuje s potencidlné neomezenymi datovymi strukturami, jako jsou zdsobniky, fronty
apod. Stochastické hry na grafech s nekone¢né¢ mnoha vrcholy jsou prirozenym abstraktnim
modelem potencidlné nekonecné stavovych systémi, které vykazuji prvky nahodnosti a inter-
akce. Z pohledu modelovani a verifikace je dileZité studovat jednak teoretické aspekty téchto
her, jednak jejich algoritmické feSeni. Ackoliv teoretické aspekty mohou byt studovany pro ab-
straktni tfidu vSech stochastickych her s nekonecné mnoha vrcholy, pro algoritmickou analyzu
se musime omezit na rizné podtfidy konecné generovanych her.

Tato prace podava piehled autorova piinosu v oblasti stochastickych procest a her s
nekone¢né mnoha vrcholy. Poté, co shrneme fundamentdlni teoretické aspekty obecnych
stochastickych her, se budeme vénovat bohaté tfidé her s kone¢né mnoha kontrolnimi stavy
a zdsobnikem, které se nazyvaji stochastic pushdown games. Ackoliv jsou tyto hry v plné
obecnosti algoritmicky nefesitelné, identifikujeme n€kolik dilezitych podtiid, které mohou byt
feSeny pomoci efektivnich algorimt. Poté se budeme vénovat hrim dvou hraci s vice Citaci,
které se nazyvaji games on vector addition systems with states. ldentifikujeme podtiidu tak-
zvanych consumption games, které jsou vhodné pro modelovani systéma zavislych na nékolika
zdrojich. Pozdé€ji modifikujeme a rozsifime nase metody na feSeni problému planovani tikola
pro jeden procesor v prostiedi, kde ikoly mohou ndhodné generovat nové tikoly, a nakonec na
specidlni typ fizenych siti front.

Tato prace se skladd ze souboru ¢lankt spole¢né s prehledem nejdulezitéjsich vysledkd.
Soubor obsahuje Ctyfi ¢asopisecké publikace a pét ¢lanki publikovanych ve sbornicich me-
zindrodnich konferenci. Piinos autora této prace na uvedenych ¢ladncich odpovidd minimalné
poméru danému poctem spoluautorti. Ve vSech piipadech se autor této prace podilel na vSech
fazich tvorby Clanku, pocinaje diskuzi a stanovenim obsahu, pfes feSeni problémi, aZ po
samotné psani clanku. V pripadé praci o stochastic pushdown games je podil autora vyraznéjsi,
zejména co se tyce zdsadnich myslenek feSeni problémd.
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Chapter 1

Introduction

Formal verification utilizes mathematical methods to prove that a system satisfies desired pro-
perties. This comprises building a formal model of the system using a suitable modeling lan-
guage. Subsequently, the model is analyzed, using an appropriate verification tool.

The choice of a modeling language depends on the structure and features of the system
under consideration. Typical aspects that must be taken into account include randomness and
interaction. For example, a system controlling an aircraft should deal with randomness in its
environment (a direction and strength of wind) and interaction with other aircraft and control
systems on the ground. Such systems can be conveniently modeled using various types of
stochastic games and their extensions towards engineering applications. Subsequent analysis
of such models may exploit a large reservoir of methods from game theory. Game theory
is a rich area of mathematics with many applications in economics, robotics, game playing,
verification, etc. (see, e.g., [62, 50]). In this work we concentrate on specific types of games on
graphs that are especially useful in verification of systems that interact with their environment.

Another important line of research in formal methods is devoted to infinite-state systems.
The study is motivated by the fact that systems with potentially unbounded resources or data
structures cannot be faithfully modeled by finite-state systems. For example, recursive pro-
grams use (potentially) infinite stacks, queueing systems use unbounded queues, etc. There is
arich theory of discrete infinite-state systems with non-determinism (see e.g. [7]), but the study
of infinite-state systems with randomness and interaction is only at the beginning. This text is
a compilation of several works on such systems co-authored by the author of this thesis in
recent years.

As a formal foundation for our reasoning about infinite-state systems with randomness and
interaction we consider turn-based, discrete-time, zero-sum stochastic games, called shortly
stochastic games (SG), played on possibly infinite directed graphs (see Figure 1.1 for a simple
example of a countable SG).

Each vertex of the graph is owned either by one of the players, Max or Min, or by the ran-
dom environment. Intuitively, such a game starts by putting a token on some vertex. Subse-
quently, the token is moved from vertex to vertex either by one of the players or randomly (de-
pending on the owner of the vertex) which gives a sequence of vertices called a run. The win-
ning condition is usually specified by a set of winning runs of player Max; the goal of player
Max is to maximize the probability of winning, Min minimizes this probability. In most of
our work we concentrate on reachability objectives where the goal of player Max is to reach
a given set of vertices.

We start by investigating SG with reachability objectives from the point of view of classi-
cal game theory. That is, we consider existence of a value, optimal strategies, approximately
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Figure 1.1: A countable SG. The vertices M, M>, ... belong to Max, m, my, ... belong to Min,
the remaining vertices rg, ry, ... and 71, 7, . . . are stochastic. Every transition from a stochastic
state is labeled with a rational probability of being taken (e.g., the transition from r| to m; is
taken with the probability %).

optimal (or e-optimal) strategies, etc. The most interesting fact presented in this part is that
most results valid for finite SG break down when we allow infinitely many vertices. In addi-
tion, for the abstract class of games with infinitely many vertices, algorithmic problems cannot
be solved. As we are mostly interested in effective analysis of systems, we concentrate on
subclasses of SG that are finitely generated by various well motivated mechanisms.

Roughly speaking, games considered in most of this work can be seen as finite games en-
riched with potentially unbounded data structures such as stacks, counters, or queues. More
concretely, we consider simple stochastic pushdown games (i.e., games with an unbounded
stack), games with multiple counters, and systems for scheduling tasks together with con-
trolled branching queueing networks. Now we briefly outline these extensions, more precise
definitions will be provided at appropriate places in later chapters.

We start by adding a (last in, first out) stack to finite SG which yields stochastic pushdown
games (PDA-SG), that is games on graphs generated by pushdown automata, a standard model
of programs with recursion. A vertex of a PDA-SG, usually called a configuration, consists of
one out of finitely many control states and some stack contents (i.e., a string of stack symbols
from a finite stack alphabet). Transitions of the game may change the control state as well as
push and pop symbols onto and from the stack. An owner of each configuration is determined
by the control state and the top symbol of the stack.

As most algorithmic issues are undecidable for general PDA-SG, we consider two stan-
dard subclasses. The first subclass consists of stateless PDA-SG, called stochastic BPA games
(BPA-SG), whose configurations consist just of the stack contents. These games are closely
related to controlled versions of branching processes (a model of populations whose individu-
als may reproduce or die which is very useful in nuclear physics, genomics, computer science,
etc.) and stochastic context-free grammars (that are useful in natural language processing,
molecular biology, etc.) The second subclass is obtained by restricting PDA-SG to single
letter stack alphabet, which basically turns the stack into an unbounded counter, and we get
one-counter stochastic games (OC-SG). The counter is useful in modeling energy and other re-
sources, lengths of queues in some special cases of queueing systems, etc. We show that many
problems undecidable for PDA-SG become efficiently solvable for both BPA-SG and OC-SG.
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By generalizing from one-counter to multiple counter systems, we obtain games on so-
called vector addition systems (only non-stochastic variant of these games has been considered
so far). A configuration (i.e., a vertex) of such a game consists of one out of finitely many
control states and a vector of integer values of counters. In every step, the owner of the current
configuration, determined by the control state, chooses one of finitely many available tran-
sitions. Each transition changes the control state and the counter values by adding a fixed
“displacement” vector of integers to the vector of counter values. We consider these games to
be a natural model of resource critical systems where multiple resources may be consumed and
reloaded. Thus the objective of one player is to preserve the resources, i.e., to have all coun-
ters always positive, the other one strives to reach zero in one of the counters. Our motivation
with resource consummation leads us to introduce new symbolic components w to the dis-
placement vectors whose intuitive meaning is “add an arbitrarily large non-negative integer to
the counter”. For example, a transition with a displacement vector (—1, w) decreases the first
counter by one and allows to add an arbitrary amount to the second one. By introducing w
components, we obtain games on extended vector addition systems with states (eVASS games).
We prove that eVASS games are decidable, but the complexity is extremely high. So later we
introduce a special type of eVASS games, called consumption games, where displacement vec-
tors cannot contain positive integer components. This intuitively means that resources can be
reloaded only by means of w components. Surprisingly, this restriction drastically decreases
the complexity of analysis.

All of the above games are completely defined within the framework of SG. In the last chap-
ter we consider two formalisms that do not fall strictly within this framework but still closely
resemble (one player) games on graphs with countably many vertices. First, we consider so-
called task systems (TS), a simple model of scheduling tasks for execution on one processor
where tasks may randomly generate new tasks (computer systems with threads, branch and
bound algorithms, etc.) A configuration of such a system consists of a pool of unfinished tasks;
in every step a scheduler chooses a task to be executed which may, in turn, randomly generate
new tasks to the pool. We are interested in completion time, that is the total number of pro-
cessed tasks before the pool becomes empty, as well as in minimization of completion space
which is the maximal size of the pool during computation (which in turn is the sufficient size
of memory needed to store unfinished tasks during computation).

Lastly, we consider a continuous-time version of task systems which allows new tasks to
come from the outside, called controlled branching queueing networks (CBQN). CBQN fall
within the large framework of open queueing networks. From the point of view of queueing
theory, CBQN are an extension of standard Jackson’s networks with a control mechanism and
branching. This means that we allow tasks (or jobs) to generate new tasks according to actions
chosen by a scheduler. We consider the problem of stabilization of CBQN that is, roughly
speaking, the existence of a scheduler under which the average queue lengths stay finite.

1.1 Papers in the Collection

This text is intended as a standalone survey of the most important results of the papers listed
below and thus presents these results using unified notation. Therefore some notation used in
this text differs from the corresponding notation in the papers. The following papers are listed
in their order of appearance in this survey.
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Outline of the Thesis

This chapter is based on parts of papers [18, 21]. We introduce countable SG with
reachability objectives. Then we present fundamental results on determinacy of such
games, existence of optimal and winning strategies, etc. All results are presented both
for general SG and for subclasses with bounded branching degree. Results of this chapter
support most of our reasoning in later chapters where we consider special cases that can
be effectively analyzed. In the last part of this chapter we formulate standard algorithmic
problems concerning stochastic games on graphs that will occupy the central stage of
the rest of this thesis.

This chapter, based on papers [18, 21, 15, 12, 13], constitutes the core of the thesis.
Here the results on algorithmic analysis of PDA-SG with reachability objectives are pre-
sented. We start by summarizing existing undecidability results for general PDA-SG.
Subsequently, we concentrate on the subclasses of BPA-SG and OC-SG that admit ef-
ficient solution for some of the algorithmic problems formulated in Chapter 2. More
concretely, Section 3.1 presents results of [18, 21] on qualitative reachability in BPA-
SG, and Section 3.2 presents results of [15, 12, 13] on qualitative [15, 12] as well as
quantitative [13] reachability in OC-SG.

This chapter, based on papers [27, 22], deals with eVASS games. As opposed to PDA-
SG, these games are non-stochastic but still form a subclass of SG. We consider so-called
termination objectives, a special form of reachability, capturing depletion of resources.
We present results of [27] about decidability of eVASS games. In Section 4.2, we present
results of [22] on consumption games.

In this chapter, based on papers [25, 28], we present a formalism for modeling and analy-
sis of task systems (T'S) and CBQN. Concretely, in Section 5.1, we present the (discrete-
time) TS as studied in [25]. In Section 5.2, we treat the (continuous-time) CBQN
from [28].
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Chapter 2

Countable Stochastic Games

In this section we lay foundations for the rest of this text (except possibly the last chapter)
by defining stochastic games with countably many vertices and by studying their fundamental
game-theoretic properties. At the end of the chapter we also formulate standard algorithmic
problems that will be solved in later chapters for various subclasses of SG.

Syntax: A (countable) stochastic game (SG) G consists of

e acountable set of vertices V, partitioned into the vertices V of player Max, V., of player
Min, and stochastic vertices Vp,

e a transition relation — C V X V such that for every v € V there is some u satisfying

V—u,

e a map Prob taking each transition v —u with v € Vp to a positive rational number
Prob(v — u), so that forevery ve Vp: Y., _,, Prob(v—u) = 1.

A SG where V,, = 0 is called a maximizing Markov Decision Process (maximizing MDP),
similarly V5 = 0 defines a minimizing MDP. Finally, if V5 = V., = 0 we have a Markov Chain
(MC). A SG with Vp = 0 is called a two-player game.

A branching degree of a vertex v is the number of vertices u satisfying v — u. A game is
finitely-branching if all vertices have a finite branching degree.

Semantics: The game is initiated by putting a token on some vertex. The token is moved
from vertex to vertex by two players, Max and Min, who choose (possibly in random) the next
move in the vertices of V5 and V., respectively. In the vertices of Vp, the outgoing edges are
chosen randomly according to the probability distribution Prob. Playing this way for infinitely
many steps produces a run. Formally, a run is an infinite sequence of vertices w = vyv; - - - such
that for all i > 1 we have that v;_; — v;. A finite prefix vq - - - v¢ of a run is called a (finite) path.

Players choose their transitions according to fixed strategies. A strategy for player Max
is a function o which to each finite path w = vg--- v (also called a history in this context)
where v; € Vg, assigns a probability distribution on the set of transitions of the form vy — u.
In general, strategies may use complete history as well as randomization. We consider special
types of strategies obtained by restricting their use of memory and randomization. Namely,
a strategy o is called deterministic (D) if for each path w the distribution o-(w) assigns proba-
bility 1 to some transition. A strategy which is not deterministic is randomized (R). We call o
memoryless (M) if o-(w) depends only on the last vertex vg. A strategy which is not memoryless

7
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is history-dependent (H). Strategies for Min are defined similarly, just by substituting V5 with
Vo. Thus, we obtain the MD, MR, HD, and HR strategy classes, where HR are unrestricted
strategies and MD are the most restricted memoryless deterministic strategies. In what follows,
strategies of Max are denoted by o, 0, ..., strategies of Min by m, 7/, ... That is, e.g., 0 € MR
means that ¢ is an arbitrary memoryless deterministic strategy of player Max.

Objectives, the value and optimal strategies

An objective is a measurable ! set O of runs. Given strategies o and 7 of players Max and Min,
resp., an initial vertex v, and an objective O, we denote by P, ”(0) the probability that a run of
O initiated in v is produced when both players follow the strategies o and xr. In a maximizing
(or a minimizing) MDP we write just P (O) (or P;(O), resp.)

Player Max strives to maximize the probability of a given objective O, whereas player Min
strives to minimize it. > Formally, given an objective O and a vertex v, we define the value in v
by

Val(O,v) = supinfP]”"(0) = infsupP;”(0).
o /e /g o
The latter equality follows from Martin’s Blackwell determinacy theorem [59, 58]. Given € >
0, we say that a strategy o of player Max (or 7 of player Min) is e-optimal in v if inf, P " (0) >
Val(0,v) — € (or sup, Py ”"(0) < Val(O,v) + &, respectively). We say that a strategy is optimal
in v if it is 0-optimal in v.

We are mostly concerned with reachability objectives where the goal of player Max is to
maximize the probability of reaching a fixed set of vertices T. Denote by Reach(T') the set of
all runs that eventually visit a vertex of 7.

Standard issues: Following classical game theory, we are mostly interested in the following
issues:

1. Are there optimal strategies?

2. Are there special types of strategies, such as memoryless and/or deterministic, that are
g-optimal?

Related work and known results

There is of course vast literature on stochastic games and Markov decision processes with
finitely many vertices (for a survey of classical results see [50, 65], modern results about finite
stochastic games in verification and synthesis are surveyed, e.g., in [35, 33]). These games
have been studied with many objectives such as mean payoff, total reward, objectives speci-
fied by temporal logics, etc. In particular, for stochastic games with finitely many vertices
the following is well known:

Fact 2.0.1 ([50]). Consider a SG with finitely many vertices and a reachability objective. Then
both players have MD strategies that are optimal in all vertices.

'We assume a standard measurable space of runs generated by basic cylinders, i.e., sets of runs with a fixed
prefix. For details see, e.g., [8].

2Sometimes the goals of players in stochastic games are specified in a more general way using payoff functions
that assign numbers to runs. Given a payoff function f, the goal of Max (Min) is to maximize (minimize) the
expected value of f. Our notion of objective corresponds to payoff functions with values in {0, 1} which is sufficient
for our purposes.



2.1. COUNTABLE SG WITH REACHABILITY OBJECTIVES 9

Countable SG are a special case of finitely additive stochastic games studied in [58]. In
general, these games were studied with arbitrary Borel objectives, or Borel measurable payoft
functions. Determinacy of such games follows from the famous result of Martin, [59]. Such
general games do not posses other nice properties, such as existence of optimal strategies and
of special types of e-optimal strategies.

Countable stochastic games with special types of objectives, mostly mean payoff and ex-
pected total reward, have also been studied in literature. In particular, [65] contains some
sections (e.g., Section 6.10 and Section 8.10) on countable Markov decision processes. Some
results of [65] may be translated to reachability objectives, however, they are restricted to
Markov decision processes and some issues considered in our work, such as existence of win-
ning strategies, algorithmic problems and optimality for finitely branching games, are not co-
vered.

2.1 Countable SG with Reachability Objectives

One of the main issues addressed in [18, 21], is whether Fact 2.0.1 remains valid for SG with
infinitely many vertices. The answer is that, in general, for countable SG with reachability
objectives most of Fact 2.0.1 does not hold.

Let us fix a SG G, a vertex v of G and a reachability objective Reach(T). Proposi-
tion 4. of [18] implies the following.

(1) An optimal strategy for Max does not necessarily exist in v even though G is a ma-
ximizing MDP where branching degrees of all vertices are bounded by two and
Val(Reach(T),v) = 1 (see Figure 2 of [18]).

(2) Anoptimal strategy for Min does not necessarily exist in v even though G is a minimizing
MDP and Val(Reach(T),v) = 0 (see Figure 1 of [18]).

(3) MR strategies may be strictly weaker than HD strategies even though G is a minimizing
MDP. In fact, there is a minimizing MDP G in which the following holds:

— : 7T : 7T —
I = inf Pj(Reach(T)) > inf Pj(Reach(T)) = 0

(see Figure 1 of [18]).
The paper [18] shows that an analogy of (3) does not hold for maximizing MDP.

Proposition 2.1.1 ([18], Proposition 4. (4)). If G is a maximizing MDP, then

sup Py (Reach(T)) =  sup P (Reach(T))
ogeMD o€HR

To obtain an analogy of Proposition 2.1.1 for minimizing MDP, [18] proposes to restrict to
finitely-branching minimizing MDP, for which even stronger result can be proved.

Proposition 2.1.2 ([18]). If G is a finitely-branching minimizing MDP, Min has a MD strategy
which is optimal in v.

Very recently, the above results for MDP have been generalized to SG as described in the fol-
lowing remark.
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Remark 2.1.3. Results of [29] generalize Proposition 2.1.1 and Proposition 2.1.2 to SG. Con-
cretely, assume that in G all vertices of Min are finitely-branching. Then

e player Min has a MD strategy which is optimal in v,

e for player Max we have

(Tselg)D niel}-IfR Py (Reach(T)) = (Tseuf%)R nieI}IfR P (Reach(T))

For a more detailed discussion of determinacy in SG see [29].

Quantitative constraints

Although player Max does not necessarily have an optimal strategy in v, we may still ask
whether Max has a strategy o which satisfies a given constraint on the probability of Reach(T),
such as Py (Reach(T)) > % or P (Reach(T)) > %, against all strategies 7 of Min.

Generally, given ~ € {>,>} and r € [0, 1] and an objective O, we say that a strategy
o of player Max is (O, ~r)-winning in v if P)"(0) ~ r for all n. Similarly, a strategy 7 of
player Min is (O, ~r)-winning in v if P (0) + r for all o. The following is a corollary of
Theorem 3.3 of [21].

Theorem 2.1.4 ([21], Theorem 3.3). Assume that G is finitely-branching and consider
the reachability objective Reach(T). Given ~ € {>,>} and r € [0,1], one of the players
has a (Reach(T), ~r)-winning strategy in v.

Let us remark that combining techniques of [21] and [29] the above proposition may be
strengthened to games where only vertices of Min are finitely branching. However, this re-
sult has not been published yet.

2.2 Algorithmic Problems for Countable SG

We are mostly interested in algorithmic theory of SG. That is given (a finite representation of)
a SG G, a vertex v of G, and an objective O, we want to

1. compute or at least approximate 3 the value Val(O, v),
2. compute optimal or at least e-optimal strategies for a given £ > 0.

We also consider problems involving constraints: Given ~ € {>, >} and r € [0, 1],
1. decide whether Val(O, v) ~ r for a given v,

2. decide whether Max has a (O, ~r)-winning strategy in a given vertex and if yes, compute
it (or more generally, compute the set of all vertices in which Max has a (O, ~r)-winning
strategy).

3For most SG considered in this text where the stochastic environment is allowed (namely for PDA-SG, BPA-
SG, OC-SG and also, in a sense, task systems and CBQN) only approximation of the value is possible since the
value may be irrational. In fact, there is a very simple countable Markov chain, that can be implemented using all
above models, in which the probability of reaching a distinguished vertex is irrational (see either Figure 1 and Ex-
ample 2 of [23], or Theorem 3.2 (1) of [47]).
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If r € {0, 1}, the problems are called qualitative, otherwise, they are quantitative.

Of course, the above issues cannot be addressed for general games with infinitely many
vertices. We need to restrict ourselves to games that possess a finite representation. This is
the contents of this thesis, to study various well-motivated restrictions on countable SG that
admit effective (and in many cases efficient) algorithmic analysis. For start, let us recall a well
known result for finite SG:

Fact 2.2.1 ([37, 39]). Let G be a SG with finitely many vertices, let v be a vertex of G and let
Reach(T) be a reachability objective. Further, let ~ € {>,>} and let r € [0, 1] be a rational
constant. The value Val(Reach(T), v) is rational and the problem whether Val(Reach(T),v) ~ r
belongs to NP Nco-NP. If G is a maximizing or a minimizing MDP with finitely many vertices,
the value as well as optimal MD strategies can be computed in polynomial time.

Let us remark that for games with finitely many vertices the above facts hold for much more
complex objectives. However, in this work we are mostly interested in reachability so for other
objectives refer, e.g., to [35, 33, 38].
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Chapter 3

Stochastic PDA Games

In this chapter we summarize results of the papers [18, 21, 15, 12, 13] concerning stochas-
tic PDA games. We start with general stochastic PDA games and summarize mostly negative
results about their algorithmic analysis. Subsequently, we move to classes of stochastic BPA
games (Section 3.1 where papers [18, 21] are summarized) and to stochastic OC games (Sec-
tion 3.2 where papers [15, 12, 13] are summarized).

Syntax: A stochastic PDA game (PDA-SG) A consists of

o a finite set of control states Q and a finite stack alphabet T; together with a partition of
the set H := Q X I of heads into heads Hy of player Max, heads H,, of player Min, and
stochastic heads Hp,

e a finite set of transition rules of the form pX — ga, where p,q € Q are control states,
X e TI'is a stack symbol, and @ € I'* is a (possibly empty) sequence of stack symbols; we
assume that for every pX € H there is at least one transition rule of the form pX — ga,

e a map Prob taking each transition rule pX < ga with pX € Hp to a positive rational
number Prob(pX < qa), so that for every pX € Hp: 3. ,x 4o Prob(pX — qa) = 1.

A configuration is a pair pa where p € Q and a € I'".

A stochastic PDA game where H¢, = 0 is called a maximizing PDA Markov Decision Pro-
cess (maximizing PDA-MDP), similarly Hy = 0 defines a minimizing PDA Markov Decision
Process (minimizing PDA-MDP). Finally, if Hy = H¢ = 0 we have a probabilistic pushdown
automaton (pPDA).

Semantics: Each PDA-SG induces a countable SG where vertices are configurations and
transitions are determined naturally by transition rules:

o pXa—qgPa (here p,ge O, Xel,a,pel™)iff pX— g

e pe— peforevery p € Q

If pX € Hp, then Prob(pXa — gBa) = Prob(pX — gp3).

A configuration pXa is controlled by player Max (or Min, or the stochastic environment) if
the head pX belongs to Hy (or to H, or to Hp, respectively). Each configuration pe is owned
by Max.

13
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Intuitively, a run of a PDA-SG starts in some configuration and proceeds as follows: in
a configuration of the form pXa a transition rule of the form pX < ¢f is chosen either by one
of the players, or randomly according to Prob (depending on the head pX) and then the confi-
guration changes to gBa.

Objectives: PDA-SG have been considered mainly with reachability objectives. Of course, it
is easy to show that reachability of an arbitrary (possibly non-recursive) set of configurations is
undecidable, so the reachability problem is usually restricted to regular target sets, i.e., sets of
configurations ga accepted by finite state automata with the input alphabet Q U I" (that usually
read the configuration from right to left). By encoding the finite-state automaton accepting T
into the stack symbols (see [43]), reachability of a regular set 7' can be reduced to so called
termination, i.e., to reachability of any configuration with empty stack. Denote by Term the set
of all runs that visit a configuration with empty stack.

Related work and known results

There is vast literature on (non-probabilistic) pushdown automata since it is the fundamental
model of recursive programs used in theoretical computer science (see, e.g., [70] for an in-
troduction to PDA, for verification of PDA see, e.g., [11, 43, 31]). Also, (non-stochastic) two
player games on PDA have been extensively studied (see, e.g., [72, 2]). Probabilistic pushdown
automata have been well researched in recent years (see, e.g., [42, 47]); the author of this thesis
contributed to this topic with the papers [30, 26, 16, 19]. For a recent survey of modern results
on pPDA see [23].

PDA-SG are semantically equivalent to recursive stochastic games studied by Etessami &
Yannakakis in [45]. The following theorem summarizes, in a simplified form, the undecidabil-
ity results for the termination objectives.

Theorem 3.0.2 ([45]). Let pX be a head of a maximizing PDA-MDP A. For every fixed rational
ewith) < e < % the following problems are undecidable:

o [s Val(Term, pX) > 1 — €, or Val(Term, pX) < € ?

o Assume that one of the following is true: Either Val(Term, pX) = 1 and player Max has
an optimal strategy, or Val(Term, pX) < €. It is an undecidable problem to distinguish
the two cases.

Let pX be a head of a minimizing PDA-MDP A. For every fixed r € (0, 1], the problem whether
Val(Term, pX) < r is undecidable.

Theorem 3.0.2 implies that both the quantitative and qualitative problems with the termination
objective are undecidable and the value cannot be effectively approximated even for maximi-
zing PDA-MDP (and thus also for PDA-SG in general).

The only problem for which positive results have been obtained so far is termination with
positive probability. The reason is that this problem does not depend on exact transition proba-
bilities and thus standard results for (non-stochastic) two player PDA games apply.

Theorem 3.0.3 ([45]). Let pX be a head of a PDA-SG A. The problem whether
Val(Term, pX) = 0 belongs to EXPTIME. This problem is EXPTIME-hard even in the special
case when G is a minimizing PDA-MDP. When G is a maximizing MDP, the problem whether
Val(Term, pX) = 0 is decidable in polynomial time.

Theorem 3.0.2 motivates our study of subclasses of PDA-SG where the reachability problem
can be, at least partially, solved.



3.1. STOCHASTIC BPA GAMES 15
3.1 Stochastic BPA Games

BPA-SG form a subclass of PDA-SG without control states which means that the definition of
BPA-SG can be simplified as follows.

Syntax: A stochastic BPA game (BPA-SG) A consists of

e a set I' of (stack) symbols partitioned into symbols 'y of player Max, symbols I', of
player Min, and stochastic symbols I'p,

e a set of transition rules of the form X — «, where X € I' and a € I'*; we assume that for
every X € I there is a transition rule of the form X — «,

e a map Prob taking each rule X< a with X € I'p to a positive rational number
Prob(X — a), so that forevery X e I'p: Yy, Prob(X = a) = 1.

A configuration is a string of symbols usually denoted by «, 8, .. .

Maximizing and minimizing BPA-MDP are defined analogously to maximizing and miniz-
imizing PDA-MDP by removing players Min and Max, respectively. A probabilistic BPA is
a BPA-SG without the players Max and Min.

Semantics: The dynamics of a BPA-SG follows from the dynamics of PDA-SG, i.e., in a con-
figuration Xa the leftmost symbol X is rewritten according to a transition rule chosen either by
a player, or randomly. Formally, each BPA-SG induces a countable SG where the vertices are
configurations and the transitions are determined as follows: € = &, and Xa = fa iff X — S. If
X € I'p, then Prob(Xa — Ba) = Prob(X — ). Which player controls a given configuration «
depends on the leftmost symbol of @ (& is controlled by Max).

One of our aims is to study structure of optimal strategies. In the case of BPA-SG, we
identify some special classes of strategies based on their treatment of stack contents. Namely,
we say that a strategy is stackless memoryless (SM) if its decisions depend only on the top of
the stack symbol of the current configuration. Decisions of a regular strategy are determined by
the state of a fixed finite state automaton with the input alphabet I" after reading the current stack
content (note that stackless memoryless strategies are a very special case of regular strategies).

Objectives: As in the case of PDA-SG, we are mostly concerned with reachability of regular
sets of configurations. As opposed to PDA-SG, reachability of a regular set cannot be easily
reduced to termination (i.e., reachability of empty stack). However, one may easily prove
that reachability of regular sets can be reduced to reachability of simple sets of configurations
determined by top most symbols of configurations. More precisely, a simple set 7" determined
by a set of heads 7' C I' U {&} consists of all configurations of the form By where 8 € T and
either B # ¢, or y = &. A finite-state automaton accepting a regular set of configurations 7’
can be efficiently encoded into stack symbols, which transforms 7’ to a simple set 7. Thus
for BPA-SG two problems are considered: the termination problem and reachability of a given
simple set.

Recall that by 7Term we denote the set of all runs that visit the configuration with empty
stack €. We denote by Reach(T), where T is a given simple set, the set of all runs that visit
a configuration of 7.
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Related work and known results

Stateless PDA, called basic process algebras (BPA) for historical reasons, are a standard model
in the hiearchy of process algebras (see [7]). Probabilistic BPA have been intensively stud-
ied in recent years, usually as a subclass of pPDA or recursive Markov chains, due to their
close relationship with branching processes and stochastic grammars (for details on this rela-
tionship see [48], for a recent survey of the most important results see [23]). They also allow
an efficient analysis using non-trivial numerical methods (see, e.g., [48, 23]). BPA-SG are
semantically equivalent to one-exit recursive stochastic games studied in [45, 46] where the
following theorem is proved.

Theorem 3.1.1 ([45, 46]). Let A be a BPA-SG. Both players have SMD strategies that are
optimal in every configuration of A. Let X be a symbol of A, let ~ € {>, >} and let r € [0, 1] be
a rational constant.

o The problem whether Val(Term, X) ~ r belongs to PSPACE. Moreover, the SQUARE-
ROOT-SUM ' problem is polynomially reducible to this problem.

o The problem whether Val(Term,X) = 0 is solvable in polynomial time, the problem
whether Val(Term, X) = 1 belongs to NP N co-NP.

o [n the special case when A is either a maximizing, or a minimizing BPA-MDP, the prob-
lem whether Val(Term,X) = 0 and the problem whether Val(Term,X) = 1 are both
decidable in polynomial time.

The papers [45, 46] also present algorithms for computing optimal strategies. The proof of
Theorem 3.1.1 relies on expressing the value of the BPA-SG using a system of non-linear
min/max equations. Resolving the min/max parts of the equations determines SMD optimal
strategies. For details see [45, 46].

3.1.1 The reachability problem for BPA-SG

In [18] we study BPA-MDP and in [21] BPA-SG with reachability objectives. It turns out that
reachability is very different from termination. Let us start with existence of optimal strategies.

Let A be a BPA-SG, let X be a symbol of A and let Reach(T') be a reachability objective
where T is a simple set. Example 6 of [18] proves the following.

e Player Max does not necessarily have an optimal strategy in X even if A is a maximizing
BPA-MDP and Val(Reach(T'), X) = 1. Moreover, existence of an optimal strategy for
Max in X together with Val(Reach(T),X) = 1 do not necessarily imply existence of
a SMD optimal strategy for Max in X.

e SMD strategies may be strictly weaker than MD strategies even though A is a minimizing
BPA-MDP. In fact, there is a minimizing BPA-MDP A in which the following holds:

1 _ _ e : T _
5= Val(Term, X) = ﬂler]}/IfD Py(Reach(T)) < nelgﬁfm Py(Reach(T)) = 1

'An instance of SQUARE-Roor-Sum is a tuple of positive integers aj, ..., a,, b, and the question is whether
Y1 va; < b. The problem is in PSPACE, and the best upper bound currently known is CH (counting hierar-
chy; see Corollary 1.4 in [1]). It is not known whether this bound can be further lowered to some natural Boolean
subclass of PSPACE, and a progress in answering this question might lead to breakthrough results in complexity
theory.
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For seemingly fundamental reasons, the value of the game cannot be easily expressed using
a system of non-linear equations as for termination. So most problems concerning quantitative
reachability are still open for BPA-SG.

In [18, 21] we concentrate on qualitative constraints on reachability. That is, we ask
whether player Max can reach T with probability equal to one (or greater than zero). The fol-
lowing two theorems summarize the most important “positive” results of both [18, 21].

Given a set of configurations 7" and ~r € {=1,>0}, we denote by Wr ., the set of all
configurations in which Max has a (Reach(T), ~r)-winning strategy.

Theorem 3.1.2 ([18, 21]). Let A be a BPA-SG, let T be a simple set of configurations, and let
~r € {=1,>0}.

o Each set Wr ., is regular and, moreover, the number of states of the corresponding au-
tomaton is independent of the size of the game.

(see Proposition 5.3 and Proposition 6.10 of [21])

o The membership to Wr =1 is in NP Nco-NP and a finite-state automaton accepting Wr =
is computable in polynomial time with NP N co-NP oracle. In the special case when
A is either a maximizing, or a minimizing BPA-MDP, the automaton is computable in
polynomial time.

(see Theorem 6.10 of [21] for BPA-SG and Theorems 8, 9, 10 and 11 of [18] for BPA-MDP)

o A finite-state automaton accepting Wr ¢ is computable in polynomial time.

(see Theorem 5.3 of [21])

The regular sets of configurations obtained in Theorem 3.1.2 are actually rather simple. They
may be described as follows:

o Wr.o = 8" Al™ where B = T' N Wrye),50 and A = I' N Wr . Intuitively, in symbols
of B, player Max may either force reaching 7" or termination with positive probability,
in symbols of A, player Max may force reaching T with positive probability. The sets B
and A can be computed using a relatively straightforward fixed-point algorithm.

o Wr—1 = D*CI' where O ="' Wryjg,=1 and C = I' N Wr —;. Computing the sets D and
C is the most intricate part of the solution (see [21]).

(Note that the winning sets for Min are complements of the above winning sets for Max due to
Theorem 2.1.4 and hence are also effectively regular.)

Theorem 3.1.3 ([18, 21]). Assume the same as in the previous theorem.

1. There is a regular strategy o for Max and a regular strategy m for Min such that o is
(Reach(T), =1)-winning for Max in all configurations of Wr =1 and m is (Reach(T), =1)-
winning for Min in all configurations of I'" \ Wr=. These strategies are computable
in polynomial time with NP N co-NP oracle. (For BPA-MDP they are computable in
polynomial time.)

(see Theorem 6.11 of [21], the claim for BPA-MDP is not explicitly stated in [21] but follows
from the proofs)
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2. There is a regular strategy o for Max and a SMD strategy n for Min such that o is
(Reach(T), >0)-winning for Max in all configurations of Wr >0, and n is (Reach(T), >0)-
winning for Min in all configurations of I'" \ Wr 9. These strategies are computable in
polynomial time.

(see Theorem 5.3 of [21])

Remark 3.1.4. In [18] we consider a bit more general version of reachability objectives, called
extended reachability objectives, with safety restrictions on paths reaching T. The main rea-
son for using more general objectives in [18] was to deal with qualitative PCTL objectives in
exponential time. However, extended reachability objectives can be easily reduced to the reach-
ability objectives in polynomial time. For details see [18].

3.2 Stochastic One-Counter Games

Each OC-SG can be seen as a PDA-SG with just one stack symbol. However, for technical
reasons we give a bit more general definition allowing negative counter values and use a slightly
different notation.

Syntax: A stochastic one-counter game (OC-SG) A consists of

e a set of control states Q, partitioned into states O of player Max, states Q¢ of player
Min, and stochastic states Qp,

e a set of transition rules 6 € Q X {—1,0, +1} X Q; we assume that for every p € Q there is
at least one transition rule of the form (p, d, g) € ¢,

e a map Prob taking each rule (p,d,q) € 6 with p € Qp to a positive rational number
Prob(p,d, q), so that for every p € Op: 3 (,.4.9es Prob(p,d,q) = 1.

A configuration is a pair (p, i) where p € Q and i € Z.
Subclasses of maximizing and minimizing OC-MDP are defined as for PDA-MDP by re-
moving players Min and Max, respectively.

Semantics: Each OC-SG induces a countable SG where the vertices are OC-SG configura-
tions and the transitions are determined as follows: (p,i) = (¢,i+d) iff (p,d,q) € 6. If p € Op,
then Prob((p,i) — (q,i+d)) = Prob(p,d, qg). Which player controls a given configuration (p, i)
is determined by the control state p.

Intuitively, a run starts in some configuration. In a configuration of the form (p, i) a tran-
sition rule of the form (p, d, g) is either chosen by one of the players, or randomly (depending
on the state p) and then the configuration changes to (g, i + d). This defines an infinite run on
configurations of the OC-SG.

As for BPA-SG, we identify special classes of strategies for OC-SG based on their treat-
ment of the counter. We say that a strategy is counterless if its decisions depend only on the
control state of the current configuration. Decisions of a counter-regular strategy in a confi-
guration of the form (p, i) are determined by the state of a fixed finite-state automaton with
a single letter input alphabet {a} after reading the word &', i.e., the string of a’s of length i.
The size of the counter-regular strategy is equal to the size of this automaton.
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We also define a special class of strategies with finite memory. Concretely, decisions of
a finite-memory strategy are determined by the state of a fixed finite-state automaton with the in-
put alphabet Q after reading the sequence of all control states visited in the history. The size of
the finite-memory strategy is equal to the size of this automaton.

Objectives: The main goal of [15, 12, 13] is to study termination objectives 2. As opposed
to PDA-SG, we distinguish two ways in which OC-SG may terminate:

o The selective termination objective: Given F C O, we define Term(F) to be the set of
all runs that reach a configuration of the form (g, 0) for some ¢ € F before reaching any
configuration with a non-positive counter value.

o The non-selective termination objective is defined by Term := Term(Q).

Related work and known results

There is a huge literature on verification of one-counter automata, that is (non-stochastic)
one-player OC-SG, see, e.g., [53, 71, 56]. (Non-stochastic) two-player one-counter games
have also been studied (see, e.g., [69, 27]). OC Markov chains, i.e., OC-SG without players,
have been considered in [44] (under the name quasi-birth-death processes) where efficient ap-
proximation algorithms are proposed for computing termination probabilities. Also, as we
show, there is a very tight connection between OC-SG and stochastic mean payoff games
(see, e.g., [50]). OC-SG can also be seen as a stochastic variant of energy games with one
resource (see, e.g., [34, 49]). In particular, our research on OC-SG is partially motivated by
modeling energy with the counter.

3.2.1 Non-selective termination for OC-SG

Let us start with existence of optimal strategies for non-selective termination. It turns out that
the termination objective is much more intricate for OC-SG than for BPA-SG. Let A be an OC-
SG, let v = (p, i) be a configuration of A and consider the non-selective termination objective
Term.

e Player Max does not necessarily have an optimal strategy in v even if A is a maximizing
OC-MDP (see Example A.1 of [13]).

e Even though player Min always has an optimal MD strategy in v, there does not neces-
sarily exist a counterless optimal strategy for Min in v even if A is a minimizing OC-
MDP. Actually, the structure of optimal strategies for Min may be rather complicated. In
particular, as demonstrated by Theorem 3.7 of [6] for a very a special subclass of OC-
SG called solvency games 3, Min does not necessarily have a so-called “rich person’s”
strategy, i.e., a strategy which ignores the precise counter value whenever the value is
larger than some threshold. Moreover, no regularity in the choice of transitions w.r.t.

the counter value as well as the history has been observed so far.

2Note that in the case of OC-SG, reachability of a simple set of configurations can be easily reduced to termi-
nation. This is not always true for reachability of counter-regular sets which usually calls for some extension of
techniques used to solve termination.

3 As noted in [13], solvency games correspond to OC-MDP where there is only one control state, but there are
multiple actions that change the counter value, possibly by more than one per transition, according to a finite-support
probability distribution on integers associated with each action. It is not hard to show that these are subsumed by
minimizing OC-MDP.
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Due to these reasons we concentrate only on
e a qualitative version of the non-selective termination objective,

e an effective approximation of the value and on the computation of g-optimal strategies
for a given rational € > 0.

Solving qualitative non-selective termination for OC-SG

We concentrate only on termination with probability one since termination with positive pro-
bability does not depend on exact transition probabilities and thus can be solved using methods
for non-stochastic one counter games (see, e.g., [69, 27]). This objective was first considered
in [15] but only for maximizing OC-MDP. Later, in [12], the results have been extended to
OC-SG. Proposition 15 of [12] summarizes most of the known results *.

Theorem 3.2.1 ([12], Proposition 15). Let v = (p, i) be a configuration of an OC-SG A.

1. If Val(Term,v) = 1, then Max has a deterministic counterless strategy o which is optimal
inv.

2. If Val(Term,v) < 1, then Min has a deterministic finite-memory strategy n of size O(|Q|)
such that sup, Py (Term) < 1.

The strategies o and n are computable in polynomial time using NP N co-NP oracle. If A is
a maximizing or a minimizing OC-MDP, these strategies are computable in polynomial time.

The strategy 7 of Theorem 3.2.1 needs memory in general and is not necessarily optimal. As
an immediate corollary to Theorem 3.2.1 and Corollary 16 of [12] we obtain the following.

Corollary 3.2.2. The problem whether Val(Term,v) = 1 belongs to NP N co-NP and is at least
as hard as solving Condon’s [37] simple stochastic games >. For maximizing or minimizing
OC-MDP the problem belongs to P.

Now let us give an outline of the proof of Theorem 3.2.1. We proceed by reduction to other
types of objectives. In particular, we consider limit objectives where the goal is to make the
counter diverge to infinity and mean payoff objectives where the goal is to control the average
change of the counter value. For both limit and mean payoff objectives we provide a complete
game theoretic solution that may be of independent interest (see Theorem 3.2.3 below).

Limit and mean payoff objectives. In [12], we show that for large counter values the non-
selective termination is in a sense equivalent to the question whether the counter value reaches
all negative values, and non-termination is equivalent to divergence to +oo. This intuition is
formalized using the following limit objectives.

Given a run w and n > 1, we denote by C(w) the value of the counter in the n-th confi-
guration of w.

“Note that the complexity bounds for general OC-SG are not explicitly stated in Proposition 15 of [12]. However,
they can be easily obtained using similar trick as in the proof of Lemma 6.4 of [21].

5This is just a fancy name for the problem of deciding whether the value of a given SG with finitely many
vertices is greater than a given rational number.
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o The CoverNeg objective:
LimInf(= —o0) := {wisarun | liminf C"(w) = —co}
n—oo

Intuitively, a run belongs to LimInf(= —oo) iff the counter value eventually gets below
any fixed negative value (i.e., the run “covers” all negative numbers).

e The divergence objective :
LimInf(= +o0) := {wisarun | liminf C"™(w) = oo}
n—oo

Intuitively, a run belongs to Limlnf (= +oo) iff the counter value diverges to infinity.

We show that the divergence objective is equivalent to the positive long-run average change
of the counter value (similarly, the CoverNeg objective is closely related to the non-positive
long-run average change of the counter value) which gets us closer to the classical mean payoft
objectives for finite MDP as studied, e.g., in [65].

e The positive mean payoff objective :

1 <& . .
MeanInf(> 0) := {wisarun | liminf = » COw)-CDw) > 0}
n—oo n
i=1

Intuitively, this objective is satisfied by runs with positive long-run average change of
the counter value.

Observe that the mean payoff objectives do not take into account the exact counter value and
thus can be considered as objectives for SG played on control states of the OC-SG. Further, note
that our mean payoff objectives differ from the expected mean payoff studied in the literature. In
our case player Max maximizes the probability that the mean payoff satisfies a given constraint,
the classical objective is to maximize the expectation of the mean payoff.

Theorem 3.2.3 ([12]). Let v = (p,i) be a configuration of an OC-SG A and let O be an arbi-
trary limit or mean payoff objective.

1. The problem whether Val(O,v) > p for a given rational p € [0, 1] belongs to NP N
co-NP. On the other hand, even assuming that Val(O, v) € {0, 1}, the problem of deciding
whether Val(O,v) = 1 is at least as hard as solving the Condon’s simple stochastic
games. If A is an OC-MDP, then Val(O, v) can be computed in polynomial time.

2. Both players have deterministic counterless strategies that are optimal in v. If A is
an OC-MDP, these strategies are computable in polynomial time.

(For both 1. and 2. see Theorem 2 in the introduction of [12] and the discussion afterwards.)

®Both LimInf(= —co) and LimInf(= +o0) are special cases of the following limit objectives LimInf(~ ©o0) :=
{w | liminf,_. C®(w) ~ ©co} and LimSup(~ ©) := {w | limsup,_,., C"(w) ~ ©co}. Here ~ € {<,>,=} and
© € {+,—}. However, other combinations of ~ and © are redundant as they might be obtained from Limlnf(= —oo)
and LimInf(= +o0) by negating signs in transition rules and changing roles of players. (For example, by negating
the signs in transition rules, LimSup(= —co) is “equivalent” to LimInf(= +c0).)

"MeanInf(> 0) is a special case of Meanlnf(~r) = {w | liminf, . 1 37, C?(w) — C“"D(w) ~ r} and
MeanSup(~ r) := {w | limsup,_, 1 ¥, C?(w) - C"Y(w) ~ r}. Here ~ € {<,>,<,>} and r € R. In fact,
all objectives except Meanlnf(> 0) are redundant, as they can be obtained from Meanlnf(> 0) by negating signs,
subtracting r from the counter updates in transition rules and by changing the roles of players.
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Approximating the non-selective termination value for OC-SG

As we noted at the beginning of this section, optimal strategies for player Max do not neces-
sarily exist, and optimal strategies for player Min may be very complicated. Also, as noted
before, the value may be irrational. Nevertheless, in [13], we show that the value can be ef-
fectively approximated and that e-optimal strategies can be computed for every rational € > 0.
More precisely, we prove the following.

Theorem 3.2.4 ([13], Theorem 3.1). There is an algorithm that, given as input: an OC-SG A,
a configuration v = (p, i) and a (rational) approximation threshold € > 0, computes a rational
number r, such that |r—Val(Term, v)| < & and computes counter-regular deterministic strategies
for both players that are g-optimal in v. If A is an OC-MDP, the algorithm runs in exponential
time in the size of A, and in polynomial time in log(1/g) and log(i). If A is an OC-SG, the
algorithm runs in non-deterministic exponential time in the size of A.

The idea of the proof is to show that there is a threshold 7, such that for every configuration
(g,i) where i > t the probability of reaching zero counter value is either very small, or one.
Intuitively, it suffices to observe the long-run average change of the counter value when using
an approximately optimal strategy. If it is positive, the probability of reaching zero is very small
once we start with a sufficiently large counter value. Non-positive average change means that
almost all runs eventually reach zero. This is formally justified using a bit more advanced tools
of probability theory such as martingales. There are also several technical problems caused by
the rich structure of OC-SG that have to be dealt with.

3.2.2 Selective termination for OC-SG

Selective termination has been considered only in [15] and thus only for maximizing OC-MDP
and only in the qualitative version. This objective is even more difficult to deal with than
the non-selective one.

Let v = (q,i) be a configuration of an OC-MDP A. Even if A is a maximizing MDP and
Val(Term(F),v) = 1, player Max does not necessarily have an optimal strategy in v (as opposed
to the non-selective case where Max has a deterministic counterless optimal strategy whenever
the value is one). This implies that in the selective case the problem whether Val(Term(F),v) =
1 does not coincide with existence of a (Term(F), =1)-winning strategy in v.

Decidability of whether Val(Term(F),v) = 1 for a given v is still open even for OC-MDP
(in fact, this problem for OC-MDP has been shown to be BH-hard in [15] which has been
further improved to PSPACE-hardness in [52]).

Concerning existence of (Term(F), =1)-winning strategies, [15] proves the following.

Theorem 3.2.5 ([15], Theorem 4.2). Let A be a maximizing OC-MDP and let Term(F) be
a selective termination objective. Denote by W -1 the set of all configurations in which Max
has a (Term(F), =1)-winning strategy.

1. The set Wr—1 is regular ® and the automaton accepting W1 is computable in exponen-
tial time.

2. There is a counter-regular strategy for Max, computable in exponential time, which is
optimal in all configurations of Wr1.

8Regularity of a set of configurations is defined analogously to the counter-regular strategies, i.e., there must be
a finite-state automaton with a one letter input alphabet for each control state p which accepts a’ iff (p, i) belongs to
the set.
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The proof of the above theorem is based on a reduction to the non-selective case. Intuitively,
the regularity of Wr—; follows from the periodicity of Wg -1, that is from the fact that for each
control state p there are k,{ € N, computable in exponential time, such that for all i, j > &
satisfying i (mod £) = j (mod ¢) we have (¢q,i)) € Wr= iff (¢,j) € Wr=1. Reduction to
the non-selective termination then, roughly speaking, proceeds by encoding the regular struc-
ture of the counter into the control states. (Note that combining this idea, formally developed
in [15] with results of [12] on the non-selective termination for OC-SG, one may obtain a yet
unpublished solution to OC-SG.)
The paper [15] also provides the following lower bound.

Theorem 3.2.6 ([15], Theorem 4.3). The membership to W~ is PSPACE-hard.
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Chapter 4

Games with Multiple Counters

This chapter presents results of two papers [27, 22]. In Section 4.1, we introduce eVASS games
and then, in Section 4.1.1, outline the most important results of [27] about their algorithmic
analysis. Later, in Section 4.2, we present consumption games, a subclass of eVASS games
studied in [22], and show that they can be efficiently analyzed.

4.1 eVASS Games

Syntax: A k-dimensional eVASS game consists of

e a finite set of control states Q, together with a partition into the states QO of player Max
and states Q. of player Min,

e a finite set of transitions T, and two functions @ : T — Qand § : T — Q mapping
each transition to its source and target state, respectively; we assume that every state is
a source of at least one transition,

e a transition displacement mapping 6 : T — (Z U {w})* which maps each transition to its
displacement vector.

A configuration is an element of Q x N¥. We write p¥ to denote a generic configuration where
p € Q and ¥ € NX, (In what follows we denote by ¥, the ¢-th component of a given vector .)

A k-dimensional VASS game is a k-dimensional eVASS game where w components are not
allowed in displacement vectors.

Semantics: A k-dimensional eVASS game induces a two-player game whose states are con-
figurations of Q x N¥, partitioned into sets Qg X N* and Q. x N¥ controlled by players Max
and Min, respectively. The transition relation of the two-player game is naturally induced by
transitions of the eVASS game: pvV — gl iff there is ¢ € T such that

e p=qa(t)and g = B(¢)

e forevery 1 < ¢ < k we have that iy — Vy is either an (arbitrary) non-negative integer, or
equal to o(t), depending on whether 6(f); = w, or not.
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Intuitively, a run of such a game starts in some configuration. In a configuration of the form
pV, the player controlling pv chooses

e atransition ¢t € T satisfying a(¢) = p,

e a vector d such that for every 1 < ¢ < k we have v, + CZ} > 0 and either d} > 0, or
CZ[ = 0(t)¢ depending on whether 6(¢); = w, or not.

Then the configuration changes to gii where ¢ = B(f) and i = V + d. This produces an infinite
run on configurations of Q x N¥,

Objectives: eVASS games generate two-player games that are technically a special case of
simple stochastic games studied in Chapter 2. So the objectives remain to be sets of runs. Given
an objective O, we say that a strategy of player Max (or of player Min) is O-winning if player
Max (or player Min) has a strategy which induces a run of O no matter what player Min (or
player Max, resp.) does.

The objective which we consider for eVASS games, and which is intuitively described in
the introduction, is in fact a dual of a multicounter generalization of the termination objective.
More precisely, the objective of Max is to avoid configurations with zero in the counters, which
is a kind of a safety objective. As for the termination of one-counter games, we consider two
variants, the selective as well as the non-selective one.

o The selective zero-safety objective: Given F C Q define SafeObj(F) to be the set of all
runs that never reach a configuration of the form ¢V where ¢ € F and v; = 0 for some
1<i<k.

e The non-selective zero-safety objective is defined by SafeObj := SafeObj(Q); that is
SafeObj contains all runs where no counter is decreased to zero.

Note that if SafeObj(F) is the objective of player Max, the objective of player Min is a variant
of selective termination, that is Min strives to reach a configuration with zero in some counter
and with the control state in F.

We denote by Wing(F) and Win(F) the sets of configurations of Q x N¥ in which players
Max and Min, respectively, have SafeObj(F)-winning strategies (we omit the argument F in
the non-selective case).

Related work and known results

One-player VASS games correspond to Petri nets, an extensively studied and widely applied
modeling formalism (see, e.g., [64, 67]). A solution of one-player VASS games with zero-
safety objectives belongs among classical results [66, 68]. VASS games can also be seen as
a special case of monotonic games considered in [3] where it is shown that monotonic games
are undecidable (as opposed to eVASS games).

VASS games are also closely related to multi-energy games (see [34, 49], both papers
have been published after [27]). Some problems for the multi-energy games can be reduced
to related problems for eVASS games. (For a more extensive survey of more loosely related
abstract formalisms see the “related work™ parts of [27, 22].)
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4.1.1 Solving eVASS games with zero-safety objectives

In this subsection we present the main results of [27]. We start with undecidability of the
selective case and then concentrate on complexity of the non-selective one.

In [27], the type of the transition displacement mapping & is restricted ' to
§5: T — {-1,0, 1, w}k. Note that this restriction does not affect decidability of studied problems
as any update d € Z may be simulated by |d| individual steps changing the counter one by one.
However, some complexity results may be altered if binary encoded transition displacement
mappings are considered. In the rest of Section 4.1.1 we assume that § : T — {-1,0, I, w}*.

In order to be able to decide a winner of a game, we need the following determinacy of
eVASS games which follows from the Martin’s determinacy theorem [59].

Proposition 4.1.1. Q x N* = Wing(F) U Wine(F)

Undecidability of selective zero-safety

The following undecidability result is presented in Section 3 of [27] (as Proposition 4) using
a relatively straightforward reduction from the halting problem for two-counter machines.

Proposition 4.1.2 ([27], Proposition 4). The problem of deciding the winner in 2-dimensional
VASS games with the selective zero-safety objectives is undecidable. For 3-dimensional eVASS
games, the same problem is highly undecidable (i.e., beyond the arithmetical hierarchy).

Complexity of non-selective zero-safety

Let us concentrate on the non-selective zero-safety objective. Note that most of our motiva-
tion with resource consumption is preserved and, in addition, we obtain games that can be
effectively solved.

Observe that now the set Wing is upward closed, i.e., given p¥ in Wing we have pii € Wing
for every @ > V. Similarly, Wing, is downward closed. It follows from Dickson’s lemma [41]
that Wing can be finitely represented by the finite set of its minimal elements denoted by Ming.
The main result of [27], proved as Theorem 10, is the following.

Theorem 4.1.3 ([27], Theorem 10). Given a k-dimensional eVASS game, the set Ming is com-
putable in (k — 1)-exponential time.

Very rough idea of the proof is following: First, we show that if all counter values are larger
than some threshold (exponential in the size of the game), then the winning strategies do not
depend on the counters, i.e., for pv € Wing there is a winning strategy for Max in pv whose
decisions depend only on control states. The same holds for pV¥ € Wine and player Min.
Subsequently, we consider configurations in which some of the counters may be “small”, i.e.,
below the threshold. The idea is to encode the values of the “small” counters into control
states and thus reduce to the previous problem. This is, of course, very rough idea, there are
several obstacles to overcome. In particular, the “small” counters should be added gradually,
the proof proceeds by induction on the number of counters, which together with the exponential
threshold leads to the (k — 1)-exponential upper bound.

As a corollary of Theorem 4.1.3 we obtain that 2-dimensional eVASS games are solvable in
(singly) exponential time. This result has been recently improved in [32], using rather involved
arguments, to the following form.

Theorem 4.1.4 ([32]). Given a 2-dimensional eVASS game, the set Ming is computable in
polynomial time.

'We define eVASS games more generally in this survey to obtain the consumption games as a special case.
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4.2 Consumption Games

2

A k-dimensional consumption game ~ is a k-dimensional eVASS game where the transition

displacement mapping ¢ is of the type 6 : T — (ZSO U {w})k, here Z=0 is the set of all non-
positive whole numbers.

In other words, in consumption games the counters (in this context called resources) can
only be increased (we say reloaded) using the w updates. Intuitively, this models systems
where resources are consumed but sometimes can be immediately reloaded to maximum (such
as gas in cars). See [22] for description of applications and concrete examples.

Objectives: For consumption games we consider two objectives. The first one is precisely
the non-selective zero-safety objective for eVASS games. The other one, the cover objective,
is motivated by minimization of sufficient battery capacities (or capacities of other resource
reservoirs).

o The zero-safety objective: Define SafeObj to be the set of all runs that never reach a con-
figuration of the form ¢V, where V; = 0 for some 1 < i < k.

e The cover objective: Define CoverObj to be the set of all runs w of SafeObj satisfy-
ing the following condition: Assuming that gi is the initial configuration of w, every
configuration pV visited by w satisfies v < i.

(Intuitively, we start with resources loaded to the maximal capacity. Players may use w
to increase the corresponding counter only up to the initial value.)

Given a control state p, we denote by Safe(p) (or Cover(p)) the set of all vectors ¥ such that
in p¥ player Max has a SafeObj-winning strategy (or CoverObj-winning strategy, resp.) Con-
cerning the sets Safe(p) and Cover(p) we deal with the following problems:

1. Emptiness: Decide whether the set is non-empty.

2. Membership: Decide whether a given vector ¥ belongs to the set. Further, decide whether
Vis a minimal vector of the set.

3. Minimal vectors: Compute all minimal elements of the set.

Theorem 4.2.1 ([22]). Let p be a control state of a k-dimensional consumption game with n
control states. Denote by € the maximal |6(t);| over all transitions t and all 1 < i < k such that
8(1)i € Z=0 (i.e., € is the largest decrease of a counter possible in one step).

1. The emptiness problem for Safe(p) is co-NP-complete and solvable in O(k! - n**1) time.

2. Both the membership problem, i.e., the problem whether V € Safe(p), as well as the prob-
lem whether V is a minimal vector of Safe(p) are PSPACE-hard and solvable in time
A - (k- € - n)°® where |V is the encoding size of V.

3. The set of minimal vectors of Safe(p) is computable in time (k - € - n)°®.

(For 1. see Theorem 5. of [22]. For 2. and 3. see Theorem 10 of [22].)

2The definition of consumption games used in [22] is syntactically different from the one presented in this text
but the two definitions are fully equivalent (in a well-defined sense) and there are linear-time translations between
them.
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Theorem 4.2.2 ([22]). Assume the same as in the previous theorem.
1. The emptiness problem for Cover(p) is co-NP-complete and solvable in O(k! - n**') time.

2. The membership problem, i.e., the problem whether V € Cover(p), is PSPACE-hard and

solvable in time O(A* - n?) where A = Hf.‘zlv,-. The problem whether V is a minimal
element of Cover(p) is PSPACE-hard and solvable in time O(k - A2 - n?).

3. The set of minimal vectors of Cover(p) is computable in time (k - € - n)0**".
(For 1. see Theorem 5. of [22]. For 2. and 3. see Theorem 12 of [22].)

Note that for a fixed dimension k all the above problems are solvable in polynomial time. This
means a radical improvement against the known complexity bounds for general eVASS games
presented in Theorem 4.1.3. Also, in [22] we provide incremental algorithms for solving some
special cases of consumption games. These algorithms may stop much earlier than predicted by
the theoretical time bound. These special cases are one-player games and so-called decreasing
games in which every resource must be consumed (i.e., decreased) on every cycle in control
states of the game. The decreasing games are still well motivated as most resources are steadily
consumed and it is usually not possible to avoid consummation by cycling among some states.
This observation together with the fast incremental algorithms further improves applicability
of our results.
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Chapter 5

Task Systems and CBQN

In this chapter we present results of two papers, [25, 28]. We start, in Section 5.1, with
the (discrete-time) task systems of [25]. Then, in Section 5.2, we move on to the (continuous-
time) controlled branching queueing networks of [28].

5.1 Scheduling of Stochastically Generated Tasks

As noted in Section 1, we consider systems of tasks where every task can stochastically gener-
ate a set of new subtasks. Tasks can be of different types and each type has a fixed probability
distribution on (types of) newly generated subtasks.

Syntax: A task system (TS) consists of
o a finite set I of task types,
e a finite set of transition rules of the form X < 8, where X € I and 3 is a multiset ! of
task types from I" containing at most two elements; we assume that for every X there is

at least one rule of the form X — 3,

e amap Prob taking each transition rule X < S to a positive rational number Prob(X — (3),
so that for every X € I': Yy, Prob(X — ) =1,

e an initial task type Xp.

Example 5.1.1. Consider a task system with two types of tasks X, Y, here X is initial, and
the following transition rules:

0.2 0.3 0.5 0. 0.3
XS (X)), XD XY, X0, YhX), Y

Here, e.g., a task of the type X may generate two new tasks of the type X (with prob. 0.2), or
one task X and one Y (with prob. 0.3), or no other task (with prob. 0.5).

'In what follows, we denote by (X, ...,X,) the (finite) multiset containing precisely Xi,...,X,. Note that
the order of elements does not play any role. For example, the multiset containing two A’s and one B can be
described, e.g., by (A, A, B) as well as by (A, B, A).
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Semantics

Intuitively, tasks are executed by one processor. In every step, a processor selects a task from
a pool of unprocessed tasks, processes it, and puts the newly generated tasks (if any) back into
the pool. The pool initially contains only one task of the initial type Xp, and the next task to
be processed is selected by a scheduler. In [25], we consider two types of scheduling for task
systems, online and offfine.

Online schedulers make their decisions possibly based on the history of the computation,
similarly to strategies in stochastic games. In particular, the scheduler does not have any infor-
mation about the future (except the fixed probabilities of transition rules).

On the other hand, offline schedulers have a complete information not only about the history
but also about the future. That is, every offline scheduler knows how all stochastic choices
will be resolved. Note that the capability to predict the future behavior is not completely
impractical, the scheduler may, for example, inspect the source code of tasks to determine
which subtasks will be generated. Also, an optimal offline scheduler may be used as a yardstick
for measuring performance of online schedulers.

Offline Scheduling: Executions of a task system are modeled as family trees (or execution
trees). Intuitively, a family tree is a finite binary tree whose nodes are tasks; a node is labeled
with the type of its task. The initial task is the root, children of a task are the tasks generated
by it. Given a family tree, a scheduler decides in what order the tree should be traversed.

We formally define a family tree t to be a pair (N, L) where N C {0, 1}* is a finite binary
tree (i.e., a finite prefix-closed set of words over {0, 1}) and L : N — I' is a labeling such that
the root € € N is labeled with the initial task type Xy, i.e., L(¢) = Xy, and every node w € N
satisfies one of the following conditions:

e wis aleaf and L(w) <— 0,
e or w has a unique child w0 and L(w) < (L(w0)),

e or w has two children w0, wl and L(w) — (L(w0), L(w1)).

(Here we assume a fixed ordering on the elements of (L(w0), L(w1)).)

Note that every node of a given family tree ¢ is associated with some transition rule which
generates its children. We denote by P(#) the product of the probabilities of all these transition
rules.

In general, the sum of P(¢) over all trees ¢t does not have to be one. So, in what follows we
assume that this sum is one, and hence that P is a probability distribution on the family trees.
This assumption is equivalent to demanding that the initial task is finished (together with all
its subtasks) with probability one. For technical reasons we also assume that all task types are
reachable from the initial task type. Proposition 1 of [25] shows that both these conditions can
be decided in polynomial time.
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Example 5.1.2. 7o illustrate the concept of family trees, consider the task system from Exam-
ple 5.1.1 which induces, e.g., the following family trees t| and t,:

n: .
/0 /O
X X
€ €
Y X X X
\
1—11 1—— 10
\Y X
11 — 110

Consider the tree t|. The root is associated with X — (X, Y), the leaf 0 with X — 0, the node 1
with Y — X and the leaf 11 with X — (0. Thus, the probability P(t;) is 0.3 - 0.5 - 0.7 - 0.5. The
probability P(t,) is equal t0 0.2 -0.5-0.3-0.5-0.7 - 0.5.

A scheduler now prescribes in which order the family tree should be traversed. Formally, given
a tree t, its derivation is a sequence s; = s, = --- = §; where each s; is a set of nodes of
the tree ¢ defined as follows:

e 51 = {€} contains just the root of ¢ and s = 0,

e forevery 1 <i <k, there is anode [; € s; such that s;.1 = (s5; \{/;}) US where S is the set
of all children of /;.

Elements of s; are the tasks waiting to be processed in the i-th step. The node /; is the rask
processed in the i-th step.

An (offline) scheduler o assigns to a family tree ¢ a derivation o (¢) of r. We denote by o (¢)[i]
the task processed in the i-th step of o (¢).

For example, the tree #, in Example 5.1.2 allows the following derivation:
{e},{0, 1},{0,10, 11}, {10, 11},{10, 110}, {10}, d. That is, in the second step, the task 1 of the
type X is processed and generates two new tasks: 10 of type X and 11 of type Y. In the third
step, the task O is processed and generates no new tasks.

Online scheduling: In [25], the online schedulers are introduced as a special class of offline
schedulers (see the beginning of Section 4 of [25]).

A scheduler o is online if for all pairs of family trees t = (N, L) and ¢’ = (N’, L") the fol-
lowing holds: If for some i we have

e 0()=(51 = = 8> Siy1 = -+ = k)

eol)=(1=> =85>, >5)

1

where every node n € s; U --- U s; is labeled with the same task type in both ¢ and 7', i.e.,
L(n) = L'(n), then o(¢)[i] = o(¢')[i], i.e., the task processed in the i-th step of o(¢) is the same
as the task processed in the i-th step of o (¢’).

This intuitively means that whenever o traverses a completely similar part of two family
trees (that is the same nodes with the same labels), then o~ chooses the same task to be executed
next. In yet another words, this definition simply says that decisions of the online scheduler are
determined only by the part of the family tree which has already been traversed, that is, loosely
speaking, the past of the computation.
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Objectives: Efficiency of schedulers is usually measured in terms of two values: completion
time and completion space. First let us consider the completion time. We define a random vari-
able T which for a given family tree returns the length of its derivation (note that all derivations
of a given tree have the same length).

Due to a close relationship between probabilistic BPA (i.e., BPA-SG without players) and
TS with so-called depth-first schedulers (i.e., schedulers that process tasks in the last in, first out
order), the variable T can be analyzed using a large collection of tools developed for the proba-
bilistic BPA. In particular, using methods described in [23], one may decide in polynomial time
whether the expected value E(T) is finite or infinite. In the former case the TS is called subcri-
tical and in the latter critical. These notions play a crucial role in the analysis of the completion
space (see below). The paper [23] also develops tools for quantitative analysis of T such as
algorithms approximating E(7") and the cumulative distribution function of 7.

However, as T does not depend on scheduling, the paper [25] concentrates on the comple-
tion space, i.e., the maximal number of unfinished tasks concurrently waiting for execution.
Given a derivation (s; = s, = ... = sy) of a family tree 7, we define the size of the derivation
to be max{|si|, ..., |sk|} where each |s;| is the size of the set of nodes s;. For every scheduler o,
we define a random variable S which given a family tree ¢ returns the size of the derivation
o(t). We define a random variable S °” which given a family tree ¢ returns min, S (¢), that is
the minimal size of a derivation of . Roughly speaking, the offline scheduling is concerned
with S 7, i.e., with minimizing the completion space over all schedulers. The online scheduling
considers only S where o ranges over online schedulers.

We are concerned with the following questions:

o Are the expected values E(S°?) and E(S 7) finite or infinite?

e How large are the “tail” probabilities P(S°? > k) and P(S” > k) ? Are they exponentially
bounded?

Related work and known results

As noted above, task systems with a special type of depth-first schedulers are equivalent to
probabilistic BPA. They are also closely related to the classical model of multi-type branching
processes (or Galton-Watson processes) that have been studied for more than one hundred years
(see, e.g., [54, 4]). The main difference between the branching processes and our task systems
is that in branching processes all “tasks” in the pool are performed simultaneously in parallel
as opposed to task systems in which just one task is performed (branching processes, of course,
have a completely different motivation, the “tasks” are individuals of some species that either
die, or reproduce in every step).

The problem of scheduling tasks for a multiprocessor but without stochastic branching has
been extensively studied (see, e.g., [63, 9]; we provide more references in the introduction
of [25]). An extension of our stochastic task systems towards multiprocessor planning has not
been considered yet. This direction seems to be very interesting; in particular, in the multipro-
cessor case, planning may affect not only space but also time.

5.1.1 Offline Scheduling

Let us consider the variable S°? returning the minimal completion space for every family
tree. Surprisingly, there is a close connection between the probability distribution of S°7 and
the Newton’s method for approximating a zero of a differentiable function.
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Consider a function f : RI' = R defined by

K = Y pereVz+ ) opevr+ ) p

P P P
X—Y,Z) X—(Y) X0

The function f has the least fixed-point @ which plays a fundamental role in analysis of proba-
bilistic recursive systems 2. It has recently been shown in [48, 57] that /i can be computed by
applying the Newton’s method to f(#) — #. Concretely, i = limj_,, #*) where

> > -1 =y
7O =0  and D =3O 4 (1-JfEO) - (FGP) - 3D)

Here J f(\'z’ (Y is the Jacobian matrix of partial derivatives of f evaluated at ¥, [ is the identity
matrix and 0 = (0, ..., 0). Surprisingly, in [25] we prove the following.

Theorem 5.1.3 ([25], Theorem 1 and Corollary 2). Assuming that u = (1,...,1) (i.e., that all
tasks are finished with probability one), for the initial task type Xy and every k > 0,

PSP <k) = ¥y

Moreover, there are real numbers ¢ > 0 and 0 < d < 1 such that for all k > 0,
PSP >k < c-df
which implies that E(SP) = Y72 k-P(SP? =k) = 22, P(S? >k) < oo

The last inequality is in striking contrast with online scheduling where the expectation can be
infinite no matter what the online scheduler is doing.

5.1.2 Online Scheduling

Now let us concentrate on online schedulers. Note that even though all tasks are finished under
an online scheduler o~ with probability one, the expected value of S may still be infinite.

In [25], we characterize a finiteness of E(S ) using the concept of criticality. Recall that
a TS is critical if the expected time to finish the initial task (together with all its subtasks) is
infinite, i.e., BE(T) = oco. Otherwise, it is subcritical. Theorem 6 of [25] shows that subcriticality
characterizes finiteness of the expected completion space.

Theorem 5.1.4 ([25], Theorem 6). If the system is critical, then E(S?) = oo for all online
schedulers o. If the system is subcritical, then B(S7) < oo for all online schedulers o (since
also the expected time to finish the initial task is finite).

Now let us concentrate on the probability distribution P(S” > k). In [25], we derive expo-
nential bounds on P(S7 > k) for subcritical task systems under a mild technical restriction of
compactness (for definition see Section 4 of [25]). As noted in [25], every task system can be
compactified in such a way that for every online scheduler in the compactified system there
is an online scheduler in the original one with nearly the same distribution on the completion
space (see Proposition 4. of [25]). The following is a simplified version of Theorem 2 and
Proposition 5 from [25].

20One may prove that jIy is precisely the probability with which a task of the type X is ever finished. Due to our
assumptions we have that @ = (1, ..., 1).
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Theorem 5.1.5 ([25], Theorem 2 and Proposition 5). Assuming that the task system is subcri-
tical (and compact), there exist rational numbers c¢,d € (1,00) and ¢’,d" € (0, c0), computable
in polynomial time, such that for all online schedulers o and all k > 1 the following holds
ck+§——1 < P72k < % (5.1)

Note that the bounds of Theorem 5.1.5 hold over all online schedulers. The paper [25] pro-
vides sharper bounds for a subclass of so-called light-first schedulers. Intuitively, a light-first
scheduler always picks tasks with the least expected completion time. Note that in general such
schedulers might not be optimal for completion space but it seems to be a good heuristics (at
least better bounds on P(S > k) can be derived as shown in Theorem 4 of [25]).

We also identify a subclass of continuing task systems > for which the supremum of all d’s
satisfying the inequality (5.1) of Theorem 5.1.5 can be efficiently approximated (up to a given
error tolerance).

3A task X is continuing if there are no rules of the form X < (¥) and, moreover, for every rule of the form
X — (Y, Z) we have that either Y = X, or Z = X.
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5.2 Controlled Branching Queueing Networks

In [28] we consider a mix of our task systems and Jackson’s queueing networks called con-
trolled branching queueing networks (CBQN). For background on queueing networks see, e.g.,
[10]. Very briefly, a queueing network is a network of interconnected servers that process tasks
(usually called jobs in this context). Each server has a queue in which jobs are waiting to be
processed. Once a job is processed by a server, it is either finished, or sent to a randomly chosen
(according to a fixed probability distribution) server for further processing. In open queueing
networks, new jobs may also come to the network from the outside. The network works in
real-time, in a basic version the rates of incoming jobs as well as the rates in which servers
perform the jobs are fixed. One of the most important questions concerning queueing networks
is the question of stability which intuitively means that servers manage to process their jobs
and no queue explodes (see below for a more precise definition).

As oppossed to the standard model of queueing networks, CBQN allow a limited amount
of external control and branching of jobs, i.e., we allow jobs to stochastically generate new
jobs. As opposed to task systems, CBQN allow external jobs to enter the system and jobs are
processed in real-time.

Syntax: A controlled branching queueing network (CBQON) with n € N queues consists of
e an arrival rate of jobs uy,

e an arrival production function Proby : N* — [0, 1]; we assume that Probg is non-zero
only on a finite set Ry € N" and that } g, Proby(¥) = 1,

e a set of n queues, denoted by numbers i = 1,...,n, that contain jobs waiting to be
processed by servers, each with a gueue rate y; € (0, 00),

o a finite set of actions E; for every queue i € {1,...,n} 4
e a production function Prob;(&;) : N" — [0, 1] for every queue i = 1,...,n and every
action ¢; € E;; we assume that Prob;(¢;) is non-zero only on a finite set R;(&;) € N" and

that ¥ e, ¢, Probi(é)(V) = 1.

A configuration is a vector ¥ € N” where each X; specifies the number of jobs waiting in
the queue i.

Semantics: A run starts in the configuration 0 = (0,...,0) where all queues are empty. At
any point of time, one of the following events may take place: either jobs arrive to the network
from the outside, or a job from some queue is processed by the corresponding server. Both
the inter-arrival as well as processing times of servers are exponentially distributed. The rate
of arrivals is ug and the rate of processing jobs from the queue i is y;.

The arrival of jobs from the outside technically means that new jobs are generated to
the queues according to Proby. More precisely, if the arrival event takes place, a vector ¥
is randomly chosen from Ry (with prob. Proby(¥)) and then V/; jobs are added to the queue j for
every jef{l,...,n}.

“In [28] the set of actions is denoted by X; and the individual actions by ;. However, in this text the notation is
changed due to collisions with the notation for schedulers from previous chapters.
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Whenever a job from queue i is processed by a server, new jobs are randomly generated to
the queues according to Prob;(&;) where &; is the current action selected by a scheduler. More
precisely, a vector V is randomly chosen from R;(¢;) (with prob. Prob;(£;)(¥)) and then ¥; jobs
are added to the queue j for every j € {1,...,n}.

We consider randomized history-dependent (late) schedulers that choose actions randomly,
according to an arbitrary distribution which may possibly depend on the complete history of
the run, whenever either an arrival, or a processing event occurs.

Formally, a network induces a continuous time Markov decision process whose state space
is N and the action setis E = Z; X - - - X E,,, for precise definitions see [28].

Example 5.2.1. Consider a CBON with two queues 1,2. Define uo := 1. This means that, on
average, new jobs arrive to the network once per a time unit.

Define Ry = {(1,2),(0,2)} and define Probg to assign Proby(1,2) = 0.4 and Proby(0,2) =
0.6. Then every time new jobs come to the network, it is either the case that three jobs arrived,
one to the queue 1 and two to 2 (with prob. 0.4), or only two jobs arrived, both to the queue 2
(with prob. 0.6).

Define iy = 2 and pp = 4. This implies that, on average, two jobs from the queue 1 and
four jobs from the queue 2 are processed per time unit.

Define Z1 to be {&,&'). This means that a scheduler controlling the network may choose
(anytime) from two “modes” of the queue 1.

Define R1(¢) = {(1,0),(0, 1)} and R(&") = {(1,1)}. Further, define Prob;(£)(1,0) = 0.3
and Prob((£)(0,1) = 0.7, and Prob;(¢')(1,1) = 1. Now whenever a job from the queue 1 is
processed and the action ¢ is currently chosen by the scheduler, then either one new job is
generated to the queue 1 (with prob. 0.3), or one new job goes to the queue 1 (with prob. 0.7).
If the action &' is chosen, then one new job goes to the queue 1 and one to the queue 2.

Objectives: As noted at the beginning of this section, one of the fundamental issues in queue-
ing theory (and in the general theory of stochastic processes) is stochastic stability of a given
system. There exist various formal definitions of stability for stochastic systems (for discussion
see, e.g., Section 3 in [61]).

We use the following notion of ergodicity to define stable CBQN. A scheduler is ergodic
if almost all runs leaving the configuration 0 return back to 0 and the expected return time is
finite. More precisely, fixing a scheduler o, we denote by X(r) € N” the current configuration
in time ¢ (i.e., the vector of sizes of all queues in time f) and define a random variable R by

R = inf{t>0]|%n=0, 3 <t:R)#0)

The scheduler o is ergodic if E(R) < co. One may easily show that then the expected total
size of the queues between the first two visits to 0 is finite as well, i.e., the network does not
explode. Our goal is to compute an ergodic scheduler o.

One may also be interested in the (limit) distribution of the size of the queues. Given
X € N", P(X(f) = X) is the probability that the configuration of the CBQN is X in time ¢ under
the fixed scheduler o-. If the limit 7(%) := lim;_. P(X(#) = X) exists for every ¥ € N" and
Yean (X)) = 1, then 7 : N* — [0, 1] is called the stationary distribution. Note that the
stationary distribution 7 may not exist in general. We show that if there is an ergodic scheduler,
then there is also an ergodic scheduler with the stationary distribution.
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Related work and known results

As pointed out above, there is a huge amount of literature on fundamentals of queueing net-
works (see, e.g., [10, 36]) and also their applications in computer science (see, e.g., [73, 40,
74]). A modern version of the original paper by Jackson (first published in 1963) is [55].

Controlled queueing networks have also been studied. Some authors propose to control
just the inflow of jobs (e.g., [5]), others, such as [60, 51], propose to control assignment of jobs
to servers. The latter work influenced our choice of the control model where branching of jobs
and also the assignment to servers is controlled by the scheduler.

Of course, CBQN are closely related to BPA-SG (via their relationship with task systems)
and hence also other models of branching systems. For a more detailed description of related
work see the Related work paragraph of Section 1. of [28].

5.2.1 Stabilization of CBQN in polynomial time

We show that if there is an ergodic scheduler, then there is a static randomized ergodic sched-
uler. A randomized scheduler is static if its distribution on actions is fixed and does not change
in time. The main result of [28] is the following

Theorem 5.2.2. Let N be a CBON with n queues. It is decidable in polynomial time whether
there exists an (arbitrary) ergodic scheduler for N. If it exists, one can compute, in polynomial
time, a static randomized ergodic scheduler for N with a stationary distribution © such that
there exists an exponential moment of the total number of waiting jobs, i.e., there is 6 > 0 such
that the following sum is finite Y zen exp(0l|X)(X). (Here ||X]| = X, |X| is the 1-norm of X.)

To prove Theorem 5.2.2 we generalize the concept of traffic equations (see, e.g., [28]) from
the theory of Jackson networks (that is CBQN without branching). Intuitively, the traffic equa-
tions express the fact that the inflow of jobs to a given queue must be equal to the outflow.
Remarkably, the traffic equations characterize the stability of the Jackson network. More pre-
cisely, a Jackson network is ergodic if and only if there is a solution of the traffic equations
whose components are strictly smaller than the rates of the corresponding queues (we call such
a solution deficient). We show how to extend the traffic equations so that they characterize the
stability of CBQN.

In [28] we start with uncontrolled branching networks and add control later on. So first,
we set up the traffic equations for uncontrolled branching networks and show that if there is
a deficient solution of these equations, then the network is ergodic. This result is of independent
interest and requires the construction of a suitable Lyapunov function. Then we generalize
the traffic equations to controlled branching networks (we obtain a traffic linear program) and
show that any ergodic scheduler determines a deficient solution. This solution naturally induces
a static scheduler, which, when fixed, determines an uncontrolled network with deficiently
solvable traffic equations.
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