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Preface

Data mining and knowledge discovery are buzzwords for data analysis and
processing in both theoretical and applied computer science today. New
methods and algorithms are sought to help cope with the ever-growing
amount of data produced by modern society. This thesis contributes to these
fields by cultivating a particular data mining and data analysis method,
called Formal Concept Analysis (FCA). FCA is a modern and intensively
studied method for mining and analysis of object-attribute relational data
with strong mathematical foundations. Since its start in the 1980s it en-
joys an increasing interest and becomes increasingly popular in more and
more scientific communities of mathematicians, computer scientists, engi-
neers, and experts from various fields. During its development, FCA has
been applied in many different fields of both computer and non-computer
science areas.

The thesis summarizes and further comments on selected results of research
in the algorithms and applications of FCA conducted by the author at the
Department of Computer Science, Palacký University Olomouc, during the
years 2007–2012, with remarks to further results from years 2013–2014. In
the first years, the research was focused on the topic of applying FCA in
classification of data with the aim at developing a decision tree induction
method based on FCA. Then, due to a growing need that appeared in sev-
eral related problem areas, the focus moved to the development of efficient
algorithms for computing formal concepts–the basic units of data studied
in FCA–which could be effectively used in applications of FCA, most emi-
nently in data mining. In the last years and present the focus of the research
has been on applying FCA for preprocessing of data for other data mining
and machine learning methods. The aim was to use Boolean matrix factor-
ization, performed via the structures of FCA, as a method for solving the
feature extraction problem.

The thesis is composed of a compact introduction to FCA and a collection
of papers with commented summaries of results. The collection consists of
4 impacted journal papers and 6 peer-reviewed papers published in proceed-
ings of international conferences. The contribution of the author of this the-
sis in all of the papers is at least proportional to the number of (co-)authors,
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in 4 papers more than proportional and of 3 papers he is the only author.
The summaries, for the sake of consistency and self-containedness and also
to better show the relationships between the topics, contain also (shortened)
descriptions of the algorithms and methods developed in the respective pa-
pers. This includes also pseudocodes, illustrative examples, and sample
results from experimental evaluations.
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Chapter 1

Introduction

A huge amount of knowledge is stored in the currently available data. Typ-
ically, the data is hardly usable “as it is”. Therefore people try to find ways
to discover and extract the essential and most interesting bits of the knowl-
edge hidden in the data, in forms of relatively small and well-interpretable
structures or patterns which would be easier to use. This is a challenging
goal. Computer methods for retrieving such structures are commonly re-
ferred to as methods of data mining or knowledge discovery, and methods
for further transforming and analysis of the structures for further use then as
methods of data analysis. The intended purpose of the structures is to rep-
resent well the extracted knowledge for their usage by people. Since people
reason about things naturally in terms of concepts, a challenging goal is to
find an operational abstract notion of concept that naturally “exists in” or is
supported by the data. A formalization of concept formation is a basic issue
in several areas of science, e.g. psychology, sociology, cognitive sciences, etc.
The approaches to concept formation vary. The objects, which in the end
fall under a concept, can be grouped based on a defined similarity between
them. Such approach is utilized by classical clustering techniques [44, 96].
A different approach, used beside other methods by formal concept analysis,
is to define concepts by means of sharing attributes.

Formal Concept Analysis (shortly FCA), as a method of data mining and
data analysis, has been initiated by Rudolf Wille at TU Darmstadt in the
early 1980s, as part of his program of restructuring lattice theory [136]. The
method is based on the interpretation of concepts inspired by a traditional
understanding of concept which goes back to traditional Port-Royal logic [38,
67, 68]. According to Port-Royal, a concept has two parts—its extent and
intent. The extent is a collection of objects which fall under the concept
while the intent is a collection of attributes covered by the concept. For
instance, the extent of the concept “bird” is the collection of all birds (as
objects) while its intent consists of all properties (as attributes) of birds
like “flies”, “has feathers”, etc. FCA formalizes the notion of concept by
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the notion of a formal concept. A formal concept, in terms of FCA, is
an (ordered) pair of two collections (sets)—the collection of objects and
the collection of attributes, having the crucial (defining) property that the
collection of objects is the collection of all objects sharing all attributes
from the collection of attributes and, conversely, the collection of attributes
is the collection of all attributes shared by all objects from the collection of
objects.
Formal concepts introduced above are extracted from data which describe
objects by their attributes, i.e. form the so-called object-attribute relational
data. The collection of all formal concepts extracted from the data is the
basic output of FCA. The data comes usually in tabular form of a two-
dimensional data table in which rows correspond to objects and columns
correspond to attributes. Note that such form of data is a fundamental one
in data mining and data analysis and is also the basic one for relational
databases. In basic setting of FCA, a table entry for a particular object and
a particular attribute indicates the presence/absence of the attribute for the
object, i.e. the fact that the object “has” the attribute in the relation of
“having” between objects and attributes. The presence is usually denoted
by × (cross) or 1 in the table entry, the absence by an empty entry or 0. An
illustration of an input data table for FCA is depicted in Figure 1.1 (left).
Because of the two possible “values” of an attribute for each object, the at-
tributes are termed bivalent or binary attributes. More general attributes,
like categorical (nominal), ordinal, or numerical, are in FCA handled by
so-called conceptual scaling . This provides a particular transformation of
a data table with general attributes to a data table with binary attributes
which, in a certain sense, respects the original meaning of the attributes.
We refer to [51] for details. For graded (or fuzzy, as commonly called) at-
tributes several generalizations of (the ordinary) FCA to FCA with graded
(fuzzy) attributes (sometimes misleadingly called “fuzzy FCA”) have been
proposed [11, 17, 21, 23, 33, 78, 117, 139], see [12, 30] for an overview.
However, the most appealing seems to be the approach proposed indepen-
dently by Pollandt [117] and Belohlavek [9] which uses residuated scales of
grades [53, 58].
Some concepts are more general than others in that they apply to more ob-
jects and cover less attributes. For instance, the concept “mammal” is more
general than the concept “dog” which is more specific. Similarly for the con-
cepts “dog” and “labrador retriever”. This subconcept-superconcept hierar-
chy, studied already by Port-Royal, represents the specificity-generality re-
lationship and plays a fundamental role in FCA. The collection of all formal
concepts extracted from data together with the subconcept-superconcept hi-
erarchy is called the concept lattice of the data. A concept lattice is the basic
output of FCA for its applications. Concept lattices are usually depicted by
labeled line diagrams (Hasse diagrams). For illustration, the concept lat-
tice of the data table from Figure 1.1 (left) is depicted in Figure 1.1 (right).
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I 0 1 2 3 4 5 6 7

a × × × × ×
b × × × ×
c × × × × × ×
d × × ×
e × × × × × ×
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Figure 1.1: Object-attribute data table (left) and corresponding concept
lattice (right).

Note that the other output of FCA derived from the data is a non-redundant
base of particular attribute dependencies called attribute implications. The
implications are, however, not considered in this thesis hence not further
discussed.

FCA has been, right since its start in 1980s, applied in various fields. of
computer and non-computer sciences. Let us name just a few most-known
applications: classification [34, 47, 82, 92], database and information (cata-
log) systems [18, 37, 39, 42, 46, 97, 127], information retrieval (including web
retrieval) [35, 66, 69, 86, 119], software engineering [2, 41, 52, 124, 125, 131]
or psychology [25, 26] and sociology [22, 24, 140]. [35, 116] provide further
references and surveys. Important source of applications comes also from
within the data mining area itself (where attributes are usually called items
and intents of formal concepts are known as closed itemsets). Formal con-
cepts here appear as particular rectangular patterns in the data table, see
Section 1.1, where they play a crucial role and have a clear, direct interpre-
tation. In several data mining disciplines, FCA is used for preprocessing the
data, where the extracted formal concepts are not used directly (by users),
instead they are used as input for other data mining methods. For instance,
in [141] it has been shown that formal concepts can be used to find (non-
redundant) association rules [1, 91, 113, 134] (intents of formal concepts
with additional constraint on the number of objects are identified with the
so-called frequent closed itemsets) or, by [29], formal concepts can be used
to find good sub-optimal solutions for Boolean Matrix Factorization [65] and
Discrete Basis [95] problems (formal concepts represent factors).

Summed up, formal concept analysis, or the theory of concept lattices, as
it is sometimes referred to, is a well established and elaborated data mining
and data analysis method nowadays. Results on FCA and concept lattices
are being reported in premier conferences and journals on data mining and
data analysis. Its strong theoretical foundations, developed at TU Darms-
dadt and TU Dresden during the 1980s and start of 1990s, are summarized
in [51] which is a basic (and extensive) source for FCA. Some algorithms for
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computing formal concepts, concept lattices and a base of attribute implica-
tions from input data table, as well as a survey of applications, particularly
in information retrieval area, can be found in [35], another well-know book
on FCA and concept lattices. A good starting point to obtain information
on FCA is the “FCA Homepage” web page [118]. A brief formal introduction
to FCA theory is given in Section 1.1.

Outline of the thesis

The thesis consists of two main parts, commenting upon and summarizing
the research of the author on computing formal concepts and two applica-
tions of formal concepts.

The task to compute the collection of all formal concepts in the input object-
attribute relational data is a basic task in FCA which appears in virtually ev-
ery of its applications. Extracting formal concepts from the data is therefore
a crucial problem. In the history of FCA, and even before, quite many algo-
rithms for this task have been developed. The NextClosure algorithm [51] is
one of the simplest and is being used in comparisons as well as in introduc-
tory texts. The existing algorithms have recently became subject of criticism
because they were basically developed for middle-size data (thousands of ob-
jects and about a hundred of attributes). With growing size of data, the
performance is not satisfactory. This is often caused by non-efficient existing
implementations of the algorithms, usually as proof-of-correctness version by
their author(s) only. Another challenging problem in FCA is how to deal
with large-scale data (nowadays often termed “big data”). The problem has
become more important as FCA is becoming increasingly popular in the
data mining community.

Our results in algorithms for computing formal concepts are the con-
tent of Chapter 2. We start with the base algorithm upon which all further
described algorithms are based. Then we describe a parallel version of it and
an enhancement which significantly improves the performance of the base
algorithm. Then we show that the performance can be further increased by
preprocessing the input data prior to actual computation of formal concepts.
Finally, extending this idea, we come up with an algorithm with completely
novel approach which further reduces the amount of redundant formal con-
cept computation. Last but not least, we pay attention to implementation
issues (regarding data representation) which are so scarcely discussed in the
existing papers but have a considerable final impact on the real performance
of the algorithms.

The second part of the thesis, Chapter 3, is devoted to applying formal
concepts. We present two applications. The first one is in the the area of
classification of data. The usefulness of using FCA (and concept lattices) in
classification has been recognized by several authors [45, 47, 56, 82], under

http://www.upriss.org.uk/fca/fca.html
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the names of lattice-based or concept-based learning. FCA is used to create
various classification models or to preprocess input data for classification
models. We present a novel decision tree induction method which is based on
a straightforward idea of utilizing formal concepts of input data as nodes of
the decision tree constructed from the data. In contrast to other approaches
in the literature based on this idea, in our approach we utilize the closure
properties of formal concepts and the subconcept-superconcept hierarchy of
the concepts directly in the process of construction of the decision tree, as
opposed to as a preprocessing step or a basis for a new machine learning
method. To compute the formal concepts the (modified) algorithms from the
first part of the thesis can be used. An experimental evaluation indicates
good classification performance, in comparison to standard decision tree
induction and other classification methods.

The second presented application of formal concepts is in preprocessing of
data before the data is input to other data analysis technique. Usage of FCA
as a data preprocessing technique is often proposed in the literature [97, 133].
We present a novel method to utilize formal concepts for feature extraction
(creating new attributes). The method is based on the recently proposed
Boolean matrix factorization (BMF) method based on utilizing formal con-
cepts as factors [29]. The factors constitute new attributes. Such usage of
FCA has not yet been reported in the literature. The usefulness of this
method is demonstrated and evaluated again in the classification problem.
We demonstrate that the preprocessed data are better classified than the
original data. To compute the formal concepts which are used to create
new attributes (factors) we use a BMF algorithm that takes advantages (re-
garding performance) of the algorithms described in the first part of the
thesis.

List of papers

The summary descriptions of the algorithms and methods in Chapters 2
and 3 are based on the following papers (sorted by topic and within a topic
chronologically). For each paper in the list, numbers of citations (without
self-citations by any of co-authors) as of July 2015 and a contribution of
the author of this thesis to the paper are specified. In all cases the author
contributed to all activities during papers preparation. The papers are cited
in appropriate places in Chapters 2 and 3.
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[73]
p. 93

Krajca P., Outrata J., Vychodil V.: Parallel Recursive Algorithm
for FCA. In: Belohlavek R., Kuznetsov S. O. (Eds.): CLA 2008:
Proceedings of the Sixth Int. Conf. on Concept Lattices and Their
Applications, 71–82, Olomouc, Czech Rep., 10/2008. CEUR WS,
Vol. 433, indexed by Scopus
Citations (without self-citations): 1 Scopus, 40 total
The author’s contribution: 40 % – idea, algorithm, implementa-
tion, writing.
Base for Sections 2.2.1 and 2.2.2.

[74]
p. 105

Krajca P., Outrata J., Vychodil V.: Parallel Algorithm for Com-
puting Fixpoints of Galois Connections. Annals of Math-
ematics and Artificial Intelligence 59(2)(2010), 257–272.
DOI 10.1007/s10472-010-9199-5
IF: 0.430, citations (without self-citations): 3 WoS, 7 Scopus,
13 total
Full version of paper [73].
The author’s contribution: 40 % – idea, algorithm, implementa-
tion, writing.
Base for Sections 2.2.1 and 2.2.2.

[71]
p. 121

Krajca P., Outrata J., Vychodil V.: Advances in algorithms
based on CbO. In: Kryszkiewicz M., Obiedkov S. (Eds.): CLA
2010: Proceedings of the 7th Int. Conf. on Concept Lattices and
Their Applications, 325–337, Sevilla, Spain, 10/2010. CEUR WS,
Vol. 672, indexed by Scopus
Citations (without self-citations): 21 total
The author’s contribution: 33 % – algorithms, ideas, implementa-
tions, experiments, writing.
Base for Sections 2.2.3 and 2.3.2.

[111]
p. 135

Outrata J., Vychodil V.: Fast Algorithm for Computing Fix-
points of Galois Connections Induced by Object-Attribute Re-
lational Data. Information Sciences 185(1)(2012), 114–127.
DOI 10.1016/j.ins.2011.09.023
IF: 3.643, citations (without self-citations): 7 WoS, 10 Scopus,
14 total
Full version of part of paper [71].
The author’s contribution: 50 % – idea, algorithm, implementa-
tion, experiments, writing.
Base for Sections 2.2.1 and 2.2.3.
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[72]
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Krajca P., Outrata J., Vychodil V.: Computing formal concepts
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tion, writing.
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10/2007. CEUR WS, Vol. 331, indexed by Scopus
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The author’s contribution: 75 % – idea, algorithm, implementa-
tion, experiments, most of writing.
Base for Section 3.1.

[109]
p. 185

Outrata J.: Inducing decision trees via concept lattices. In: Trappl
R. (Ed.): Cybernetics and Systems 2008: Proceedings of the 19th
European Meeting on Cybernetics and Systems Research, 9–14, Vi-
enna, Austria, 3/2008.
Citations (without self-citations): 0 total
The author’s contribution: 100 %.
Base for Section 3.1.

[14]
p. 191

Belohlavek R., De Baets B., Outrata J., Vychodil V.: Inducing
decision trees via concept lattices. Int. Journal of General
Systems 38(4)(2009), 455–467. DOI 10.1080/03081070902857563
IF: 0.611, citations (without self-citations): 9 WoS, 14 Scopus,
19 total
Full version of paper [13].
The author’s contribution: 65 % – idea, algorithm, implementa-
tion, experiments, most of writing.
Base for Section 3.1.
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[110]
p. 205

Outrata J.: Preprocessing input data for machine learning by
FCA. In: Kryszkiewicz M., Obiedkov S. (Eds.): CLA 2010: Pro-
ceedings of the 7th Int. Conf. on Concept Lattices and Their Ap-
plications, 187–198, Sevilla, Spain, 10/2010. CEUR WS, Vol. 672,
indexed by Scopus
Citations (without self-citations): 4 total
The author’s contribution: 100 %.
Base for Section 3.2.

[108]
p. 217

Outrata J.: Boolean factor analysis for data preprocessing
in machine learning. In: Draghici S., Khoshgoftaar T. M.,
Palade V., Pedrycz V., Wani M. A., Zhu X. (Eds.): Proceed-
ings of The Ninth Int. Conf. on Machine Learning and Applica-
tions (ICMLA 2010), 899–902, Washington, D.C., USA, 12/2010.
DOI 10.1109/ICMLA.2010.141, indexed by Scopus, included in
CORE Conference Ranking (rank C)
Citations (without self-citations): 7 Scopus, 11 total
The author’s contribution: 100 %.
Base for Section 3.2.

Other selected papers of the author

The following are further selected papers of the author related to topics of
the thesis. A short characteristics is given for both papers.

Belohlavek R., De Baets B., Outrata J., Vychodil V.: Computing the lattice
of all fixpoints of a fuzzy closure operator. IEEE Trans. Fuzzy Systems
18(3)(2010), 546–557. DOI 10.1109/TFUZZ.2010.2041006
IF: 2.695, citations (without self-citations): 19 WoS, 31 Scopus, 34 total

– An extension of the Lindig’s NextNeighbor/UpperNeighbor algorithm [87]
to compute the lattice of all fixpoints of a closure operator, in particular
the concept lattice of object-attribute data, from the setting of Boolean
attributes to graded (fuzzy) attributes [9, 10].

Bělohlávek R, Dvořák J., Outrata J.: Fast factorization by similarity in for-
mal concept analysis of data with fuzzy attributes. Journal of Computer
and System Sciences 73(6)(2007), 1012–1022. DOI 10.1016/j.jcss.2007.03.016
IF: 1.185, citations (without self-citations): 9 WoS, 14 Scopus, 22 total

– Fuzzy concept lattice factorization by similarity relation directly from
input data with graded (fuzzy) attributes (without the need to compute
the whole concept lattice) in the approach of FCA with graded (fuzzy) at-
tributes [9, 10].
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1.1 Preliminaries in formal concept analysis

Before going to the main parts of the thesis, let us first summarize for-
mally the basic notions of formal concept analysis (FCA) which were used
informally in the introduction. We assume here basic knowledge of some no-
tions from algebra (binary relations, partial orders, complete lattices, Hasse
diagrams).

An object-attribute data table can be identified with a triplet 〈X,Y, I〉 where
X is a (finite) non-empty set of objects, Y is a (finite) non-empty set of
attributes, and I ⊆ X×Y is a binary relation between set X of objects and
set Y of attributes. In the relation, 〈x, y〉 ∈ I indicates that object x has
attribute y. In the table, used to visualize the relation, objects correspond
to table rows, attributes correspond to table columns, and if 〈x, y〉 ∈ I then
the table entry corresponding to row x and column y contains (usually) ×
or 1, otherwise it contains blank symbol or 0. In terms of FCA, 〈X,Y, I〉 is
called a formal context . Now, for every A ⊆ X and B ⊆ Y denote by A↑I a
subset of Y and by B↓I a subset of X defined as

A↑I = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I}, (1.1)

B↓I = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}. (1.2)

That is, A↑I is the set of all attributes from Y shared by all objects from
A, and B↓I is the set of all objects from X sharing all attributes from B.
Operators ↑I : 2X → 2Y and ↓I : 2Y → 2X defined by (1.1) and (1.2) are
called concept-forming operators induced by formal context 〈X,Y, I〉. If
there is no danger of confusion, we usually omit I and write just ↑ and
↓ instead of ↑I and ↓I . Note that the operators form a so-called Galois
connection [55, 105, 136] induced by the binary relation I and the compound
operators ↑↓ and ↓↑ are induced closure operators in X and Y , respectivelly.
Any couple 〈A,B〉 ∈ 2X × 2Y such that A↑ = B and B↓ = A is then called
a formal concept in 〈X,Y, I〉. Thus, formal concepts are (so-called) fixed
points of the concept-forming operators induced by 〈X,Y, I〉.
Formal concepts represent basic structures (patterns) that can be found in
object-attribute data tables and have basically two interpretations: (i) a
conceptual one, discussed already in the introduction, where each formal
concept 〈A,B〉 represents a concept in data with an extent A, as objects
that fall under the concept, and an intent B, as attributes covered by the
concept, such that A is a set of all objects sharing all attributes from B
and B is the set of all attributes shared by all objects from A—the inter-
pretation inspired by a traditional understanding of concept going back to
traditional Port-Royal logic [38, 67, 68]; (ii) a geometric one, where, infor-
mally, formal concepts correspond to maximal rectangular areas in the data
table (maximal rectangles) full of ×s (or 1s). The geometric interpretation
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is important from the point of view of data mining, as mentioned in the
introduction. Note also that due to being fixed points of Galois connec-
tions (and closure operators), formal concepts are also important from the
mathematical point of view (the mathematics of formal concepts is indeed
essential for algorithms for generating the concepts).

Furthermore, according to Port Royal, one may consider the subconcept-
superconcept hierarchy on formal concepts. Formally, the set B (X,Y, I) =
{〈A,B〉 |A↑ = B,B↓ = A} of all formal concepts in 〈X,Y, I〉 can be equipped
with a partial order ≤ defined by

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1). (1.3)

The partial order models a subconcept-superconcept hierarchy. The set
B (X,Y, I) equipped with ≤, denoted 〈B (X,Y, I) ,≤〉, happens to be a com-
plete lattice, called the concept lattice of 〈X,Y, I〉. The basic structure of
concept lattices is described by the so-called Basic or Main theorem of con-
cept lattices [51]:

Theorem 1 (Main theorem of concept lattices [51])
(1) The set B (X,Y, I) equipped with ≤ forms a complete lattice in which
infima and suprema are given by

∧
j∈J〈Aj , Bj〉 = 〈⋂j∈J Aj , (

⋃
j∈J Bj)

↓↑〉,
∨

j∈J〈Aj , Bj〉 = 〈(⋃j∈J Aj)
↑↓,
⋂

j∈J Bj〉.

(2) Moreover, an arbitrary complete lattice V = 〈V,≤〉 is isomorphic to
〈B (X,Y, I) ,≤〉 iff there are mappings γ : X → V , µ : Y → V such that

(i) γ(X) is
∨

-dense in V, µ(Y ) is
∧

-dense in V, and

(ii) γ(x) ≤ µ(y) iff 〈x, y〉 ∈ I.

Recall that a subset K ⊆ V is
∨

-dense in V (
∧

-dense in V ) if for every
v ∈ V there is K ′ ⊆ K such that v =

∨
K ′ (v =

∧
K ′).

Note that, as a complete lattice, a concept lattice can be depicted by means
of a labelled Hasse diagram which represents the cover relation on B (X,Y, I)
(the cover relation on B (X,Y, I) is defined as follows: a formal concept
〈A1, B1〉 covers a formal concept 〈A2, B2〉 if 〈A2, B2〉 ≤ 〈A1, B1〉 and there
is no 〈A3, B3〉 distinct from both 〈A1, B1〉 and 〈A2, B2〉 such that 〈A2, B2〉 <
〈A3, B3〉 < 〈A1, B1〉).
For more information on theoretical foundations, methods and algorithms
of formal concept analysis and its applications in various areas we refer the
reader to [35, 50, 51] and conclude this section with a small illustrative
example.
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I 0 1 2 3 4 5 6 7

a × × × × ×
b × × × ×
c × × × × × ×
d × × ×
e × × × × × ×

I 0 1 2 3 4 5 6 7

a × × × × ×
b × × × ×
c × × × × × ×
d × × ×
e × × × × × ×

Figure 1.2: Formal context (left) and maximal rectangles (right) correspond-
ing to formal concepts C9 and C13.

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

Figure 1.3: Concept lattice of formal context from Figure 1.2.

Example 1 Consider the formal context 〈X,Y, I〉 corresponding to the object-
attribute data table depicted in Figure 1.2 (left). The concept-forming op-
erators induced by this formal context have exactly 15 fixed points (formal
concepts) C1, . . . , C15:

C1 = 〈X, ∅〉, C6 = 〈{e}, {0, 1, 4, 5, 6, 7}〉, C11 = 〈{a, c}, {1, 2, 5}〉,
C2 = 〈{b, c, e}, {0, 6}〉, C7 = 〈{b, c}, {0, 3, 6}〉, C12 = 〈{a}, {1, 2, 4, 5, 7}〉,
C3 = 〈{c, e}, {0, 1, 5, 6}〉, C8 = 〈{b}, {0, 3, 6, 7}〉, C13 = 〈{a, d, e}, {1, 4, 5}〉,
C4 = 〈{c}, {0, 1, 2, 3, 5, 6}〉, C9 = 〈{b, e}, {0, 6, 7}〉, C14 = 〈{a, e}, {1, 4, 5, 7}〉,
C5 = 〈∅, Y 〉, C10 = 〈{a, c, d, e}, {1, 5}〉, C15 = 〈{a, b, e}, {7}〉.

For illustration, the interpretation of formal concepts C9 and C13 as max-
imal rectangles is depicted in Figure 1.2 (right). If we equip B (X,Y, I) =
{C1, . . . , C15} with the partial order ≤ (1.3), the resulting structure is the
concept lattice 〈B (X,Y, I) ,≤〉 of 〈X,Y, I〉. Hasse diagram of the lattice is
depicted in Figure 1.3.





Chapter 2

Computing formal concepts

2.1 Introduction and state-of-the-art

The first main part of the thesis is devoted to the problem of computing all
formal concepts from a given object-attribute data table.

Quite many algorithms for computing formal concepts were developed in
the history of FCA, with quite varying, but polynomial time delay [63].
Practically, the time (and memory) efficiency of the algorithms is varying
even more, see [84] and [126] for overviews and comparisons. From the point
of view of maximal rectangles, all the algorithms search for formal concepts
as maximal rectangles in the space of all possible rectangles computing and
listing just the maximal ones. The main difference among the algorithms
is in particular ways in which they traverse through the search space. In a
broader sense, the algorithms for computing formal concepts belong to an
important family of algorithms for listing combinatorial structures [54] and
algorithms for biclustering [5, 96].
An important issue solved by all algorithms for computing formal concepts
is that in the search some formal concepts are computed multiple times
while each formal concept has to be processed (e.g. stored or listed) exactly
once. The issue can be solved by designing the algorithm in such a way
that either computing any formal concept more than once is disallowed, or
it is avoided to list the same formal concept more that once. The former
approach, although more appealing, is rather difficult to achieve with a rea-
sonable overhead because of maintaining complex data structures needed
for that. The approach is used for instance by Berry’s algorithm [31]. The
latter approach, more favorable and most often used in existing algorithms,
usually lies in a test ensuring that any formal concept, if computed multiple
times, is listed only once. The test can be realized in several different ways.
For instance, Lindig’s algorithm [87], also named as NextNeighbor or Up-
perNeighbor in the literature, stores and looks for the presence of computed
formal concepts in an additional data structure (typically a search tree or a
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hash table). However, as with the previous approach, maintaining and, more
importantly, searching the data structure renders the algorithm not very ef-
ficient, even for data with hundreds of objects and hundred of attributes.
The great advantage of the algorithm is computing also the concept hierar-
chy in addition to all formal concepts, hence the concept lattice of the data.
Here lies the primary usage of the algorithm, mainly in applications of FCA.
On the other hand, the algorithm proposed by Norris [103, 104], one of the
first proposed for the task, NextClosure algorithm [49, 51], also known as
Ganter’s, Kuznetsov’s Close-by-One algorithm [79, 80, 81], and many other
algorithms best known in the literature use a so-called canonicity test to
ensure that formal concepts are listed in a unique, predefined, order. If a
newly, possibly partly, computed formal concept does not pass the canonic-
ity test, because it was computed “out of the order”, it is not listed. Hence,
the canonicity test ensures that even if a formal concept is computed sev-
eral times, it is listed exactly once. Although conceptually similar, each
algorithm uses different particular form of the test which influences the real
efficiency of the algorithm. For instance, while NextClosure lists all formal
concepts in a lexical order, which is more expensive to enforce, Close-by-
One, although based on a very similar idea, uses more efficient order and
test and runs much faster. Recently, an increasing attention has been paid
to Close-by-One. One of the most recent and most efficient modifications
of it is the InClose algorithm [3] and its improved version [4] proposed by
Andrews.

The algorithms described in the following sections can also be conceptually
seen as variants of the Close-by-One (CbO) algorithm. Actually, they are
derivatives of a recursive version of Close-by-One, and since they use the
same (or improved) canonicity test for avoiding to list the same formal con-
cept multiple times, we call them CbO-family algorithms [72]. The recursive
base version of CbO , upon which all further described algorithms are based,
was first presented in [135] (which actually “rediscovered” the original Close-
by-One) and is briefly summarized in Section 2.2.1 and in details presented
also in [73, 74, 111].

Now, almost all algorithms proposed in the literature to date, are sequen-
tial or serial ones. However, with the recent increasing interest in paral-
lel computing and growing affordability of multicore processors and other
hardware allowing parallel computations these days, parallel algorithms are
preferred and, actually, required, to better utilize the hardware. Therefore,
in Section 2.2.2, we summarize a parallel version of (the recursive version of)
CbO, called Parallel CbO (PCbO), which can be run in multiple independent
processes on multiple processor cores or processors. We show a clear and
efficient way to parallelize the computation of formal concepts by splitting
the set of all formal concepts into disjoint subsets which can be computed
simultaneously with virtually no overhead. Indeed, the distinctive feature
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of the approach compared to other existing approaches to parallel version of
known algorithms, which has positive impacts on its performance and scal-
ability, is that it completely avoids any but output synchronization. A more
detailed description of the approach and the algorithm than in Section 2.2.2
can be found in [73, 74].
Next, having algorithms which compute the same formal concept more than
once, the common drawback of the algorithms is that the total number of
computed formal concepts is usually much (several times) bigger than the
number of listed formal concepts for both real and artificial data. That
is, there are several times more repeated computations of formal concepts
which are not listed because of the failed canonicity test than the number
of formal concepts which are listed. This indeed has a (negative) impact
on the performance of the algorithms because the computation of a single
formal concept is the most critical operation in any algorithm. So the aim
is to design an algorithm in such a way that the total number of computed
formal concepts, or the number of formal concepts computed multiple times,
is as low as possible. We modified, and actually improved in this respect,
Kuznetsov’s CbO algorithm, so that we introduced a more efficient canonic-
ity test which significantly reduces (though not completely eliminates) the
number of formal concepts which are computed multiple times. Due to
the performance improvement coming from the reduction we call the im-
proved algorithm Fast CbO (FCbO). A summarization of it is a subject of
Section 2.2.3, with a more detailed description in [71, 111].
Since the presented algorithms compute some formal concepts multiple times
and, as mentioned above, the computation of a single formal concept is cru-
cial for the algorithms, it is very important to have a computation of a single
formal concept as efficient as possible. Procedure presented in Section 2.2.4
has an advantage over conventional procedures (which directly implement
the concept-forming operators (1.1) and (1.2)) in that it goes over the input
data table only once instead of twice, taking advantage of the properties of
the concept-forming operators.
Furthermore, the number of formal concepts computed multiple times can
be made much smaller, and hence the performance of the algorithm signifi-
cantly higher, by preprocessing input data before the actual computation of
formal concepts. This issue is often underestimated in literature (not only
on FCA algorithms). In fact, most of the algorithms for FCA, including
the algorithms based on Close-by-One, when designed to search for formal
concepts by iterating over input data attributes, compute significantly less
formal concepts multiple times and achieve thus significantly better perfor-
mance if the attributes (columns of the input data table) are processed in a
particular order. This is related to the canonicity test and in Section 2.3.2
we show which order suits to algorithms from the CbO-family, with more
details to be found in [71].
Moreover, elaborating on the idea of the (proper) ordering of attributes a bit
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more, in essence extending it to a novel approach of ordering the (remaining)
attributes not present in the obtained formal concept after each concept list-
ing, one can come up with a bright new algorithm—an algorithm for which
the number of formal concepts computed multiple times reduces to a small
fraction of the total number of computed formal concepts. The algorithm
combines basic ideas of (the recursive version of) Close-by-One with the
(proper) ordering of attributes and successive formal context reduction. We
summarize this last, attribute sorting algorithm, w.r.t. the total number of
computed formal concepts the most evolved among our algorithms derived
from Close-by-One, in Section 2.4, with the description borrowed from [72].

The last but not least issue, which (really) considerably affects the real
performance of any algorithm and which is, unfortunately, very scarcely dis-
cussed in the literature, is implementation. Authors of existing algorithms
typically describe their algorithm and do basic comparison to referential al-
gorithms (Ganter’s NextClosure or Lindig’s NextNeighbor) and do not pay
any attention to implementation of the algorithm. We do. The cutting-
edge performance of the algorithms presented in this thesis can be ensured
by using proper data structures in their implementation. In all our imple-
mentations we use bitwise level data structures to represent both the input
data and computed formal concepts, see Section 2.3.1 for a clarification of
this choice and details. This representation allows to take advantage of low-
level operations present in contemporary microprocessors (and, these days,
also graphic processors, see [85, 123]) which really considerably, by order of
several magnitudes, improves the actual performance of the algorithms (in
particular, the procedure for computing a single formal concept, presented
in Section 2.2.4).

To show that, but also the performance of the algorithms themselves dis-
regarding a particular implementation, we include, in Section 2.5, some re-
sults from several performance evaluations we had performed on selected
real datasets and a basic comparison to Ganter’s NextClosure algorithm.
More experiments with more real and artificial data, including comparisons
to other algorithms for computing formal concepts known from the litera-
ture, can be found in the respective papers. In this context, let us (again)
state that very surprisingly, almost all algorithms developed by FCA com-
munity and proposed in the literature, to recent time, even if implemented
with efficiency in mind, are sufficient regarding performance for middle-size
data only, up to thousands to tens thousand of objects and a hundred of
attributes. With growing data size, the performance of the algorithms is not
satisfactory (though a well-suited implementation may help a bit). Our al-
gorithms and, in particular, the implementations of them, run in reasonable
time for data with size going up to tens to hundreds thousand of objects
and hundreds to thousands of attributes.
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2.2 New CbO-family algorithms

We are now ready to describe the algorithms. Due to computability reasons
we obviously restrict the sets of objects and attributes to be finite nonempty
sets. Let X = {0, 1, . . . ,m} be our set of objects and Y = {0, 1, . . . , n} be
our set of attributes.

Note that in order to compute all formal concepts it is sufficient to compute
all intents of the concepts because each formal concept is uniquely deter-
mined by its intent. Namely, if 〈A,B〉 is a formal concept in 〈X,Y, I〉 with
extent A ⊆ X and intent B ⊆ Y , then A = B↓. Analogously, each formal
concept is also uniquely determined by its extent because B = A↑. Sec-
ond, intents (and analogously extents) can be characterized by their closure
properties. Namely, 〈A,B〉 is a formal concept iff B = B↓↑ (A = A↑↓), i.e.
iff B (A) is a fixed point of the closure operator ↓↑ (↑↓).

2.2.1 Recursive CbO

We start by briefly describing a recursive version of the Kuznetsov’s Close-
by-One (CbO) algorithm, upon which we base the algorithms described in
the following sections. The detailed description can be found in [73, 74, 111,
135].

CbO has been introduced in [80] and [79] (a paper in Russian) and later used
and described in [81]. The algorithm lists all formal concepts of a formal
context by a systematic search in the space of all formal concepts, avoiding
to list the same concept multiple times by performing a canonicity test.
In [81], CbO is described in terms of backtracking with a construction of a
particular tree of computed formal concepts, called CbO-tree, which is then
used to induce the concept lattice hierarchy of computed formal concepts.
However, in our version of CbO [135] we are not interested in the hierarchy,
so we do not need and do not construct the CbO-tree. Also, we utilize a
procedure for computing a single formal concept which results to a much
better performance of the algorithm and for this the backtracking approach
is not suitable. Our version of the algorithm of CbO is formalized by a
recursive procedure performing a depth-first search in the space of all formal
concepts. Hence we call it “recursive CbO”. This type of description, in
addition to technical benefits which improve its performance, is much closer
to the actual implementation of the algorithm than the abstract description
from [81]. Thus, in our opinion, it sheds more light on the algorithm.

Briefly, the procedure starts with an initial formal concept 〈∅↓, ∅↓↑〉 and the
first attribute 0 and during the search, it, for all attributes of the input
formal context not already present in intent of the current formal concept,
first computes a new formal concept R by adding the attribute to intent
of the current formal concept and makes a closure of the union (of the
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intent and the attribute) by applying the closure procedure described in
Section 2.2.4. Then, it is checked whether R has already been found during
the search. If not, it processes R (e.g., prints it on the screen or stores
it), and proceeds with computing further formal concepts resulting from R
by adding further attributes to its intent. Here the procedure recursively
calls itself with R being the current formal concept and one of the further
attributes. If R has already been found, it is discarded. Hence the check
implements a canonicity test.

The key issue is to have the canonicity test quick, without searching some
data structure. To ensure this we compute the new formal concepts in a
unique order, by adding attributes to intent of the current formal concept
in a selected, but fixed, order. The order, together with the check, ensures
that each formal concept is processed exactly once. The principle is the
following. Let 〈A,B〉 be a formal concept, j ∈ Y such that j 6∈ B. Put
D = (B ∪ {j})↓↑, i.e. the new formal concept is 〈(B ∪ {j})↓, D〉. Once D is
computed, we check whether

B ∩ Yj = D ∩ Yj (2.1)

where Yj ⊆ Y is defined by

Yj = {y ∈ Y | y < j}. (2.2)

is true. The condition represents the canonicity test. It expresses the fact
that the closure D of B ∪ {j} does not contain any new attributes which
are “before j” w.r.t. the order in which we add attributes. Together with
adding attributes to B in this order condition (2.1) is used to check whether
we should process D. If (2.1) is false, we do not process D because due
to the depth-first search method, D has already been processed in some
other branch of computation. Hence, the canonicity test prevents a formal
concept from being listed multiple times. Then, after finitely many steps,
the algorithm lists all formal concepts of an input formal context, each of
them exactly once.

A pseudocode of the algorithm in the form of recursive procedure Gen-
erateFrom is depicted in Algorithm 1. The procedure uses procedure
ComputeClosure for computing a new formal concept the pseudocode
of which is depicted in Section 2.2.4. See [73, 135] for a step-by-step de-
scription of procedure GenerateFrom. In order to compute all formal
concepts of 〈X,Y, I〉, the procedure is to be invoked with 〈∅↓, ∅↓↑〉 and y = 0
as arguments.

A proof of correctness for the original CbO algorithm by Kuznetsov is elabo-
rated in [80] and [79]. Since we have the algorithm formulated as a recursive
procedure rather than using backtracking, an independent proofs of its cor-
rectness are provided first in [74] and then in [111].
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Algorithm 1: Procedure GenerateFrom(〈A,B〉, y)

Input: formal concept 〈A,B〉, number y ∈ Y ∪ {n+ 1} such that
y 6∈ B

Uses : set Y of attributes, number n of attributes, procedure
ComputeClosure

1 list 〈A,B〉 (e.g., print it on screen);
2 if B = Y or y > n then
3 return
4 end
5 for j from y upto n do
6 if j 6∈ B then
7 set 〈C,D〉 to ComputeClosure(B, j);
8 if B ∩ Yj = D ∩ Yj then
9 GenerateFrom(〈C,D〉, j + 1);

10 end

11 end

12 end
13 return

The computation of Algorithm 1 can be depicted by a tree as that in Fig-
ure 2.1. The tree contains two types of nodes: (i) nodes represented by
couples 〈Ci, yi〉 corresponding to invocations of GenerateFrom with the
arguments Ci (a formal concept) and yi (an attribute), and (ii) leaf nodes
denoted by black squares representing computed formal concepts for which
the canonicity test fails. Edges in the tree are labeled by the values of j
which are used to compute new formal concepts. Note that nodes (i) are
in a one-to-one correspondence with formal concepts of B (X,Y, I). We call
such a tree a call tree of GenerateFrom for given 〈X,Y, I〉 and we will
need it in Sections 2.2.2 and 2.2.3 devoted to parallel and improved version
of the algorithm.

From the point of view of the worst-case time complexity, the algorithm has
asymptotic polynomial time delay [63] O(|Y |3·|X|) and asymptotic overall
time complexity O(|B (X,Y, I) |·|Y |2·|X|) [80, 79, 83], which is common to
many other algorithms for computing formal concepts, see [84, 126].

Comparing to other algorithms for computing formal concepts, it is im-
portant to note that the algorithm, as well as the original CbO itself, is
conceptually equivalent to Ganter’s NextClosure algorithm [49, 51]. It uses
the same canonicity test to ensure that no formal concept is generated mul-
tiple times, only the concepts are listed in a different order. However, the
algorithm can be easily modified to produce formal concepts in the NextClo-
sure’s, lexical, order. See [111] for two possible modifications. Moreover, this
“CbO way” for obtaining concepts in the lexical order, by a recursive ap-
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Figure 2.1: Call tree of GenerateFrom(〈∅↓, ∅↓↑〉, 0) with input data from
Figure 1.2.

proach, is much faster than the iterative approach from [49, 51]. This is
also, but not only, due to the more efficient computation of a single formal
concept described in Section 2.2.4. The algorithm is also similar to Lindig’s
NextNeighbor algorithm [87], in that it performs a depth-first search through
the search space of all formal concepts, but the key difference, which has a
great impact on the performance, is the way how the algorithms test that
new formal concept has already been found (recall that NextNeighbor stores
previously computed formal concepts in an additional data structure and
looks up for the new concept there). Finally, the algorithm is also related
to the algorithm proposed by Norris [103, 104] which can be seen as an
incremental variant of CbO.

Selected results from a thorough performance evaluation and comparison
with some of the mentioned other algorithms are presented in Section 2.5.
For more results see [135], where also a detailed listing of computation of
the algorithm on example data can be found.

2.2.2 Parallel CbO

After we have described the base algorithm of our CbO variants we can
introduce a parallel version of the algorithm.

Assume we can execute instructions simultaneously in multiple indepen-
dent processes. These may be represented by operating system processes
or threads (light-weight processes) running in parallel on modern multicore
processors or multiple processors in a system with shared memory or on
separate computers in a distributed environment within a computer net-
work (see also the paragraph “Distributed algorithm” below on the latter).
We further assume that each process has access to the input data 〈X,Y, I〉.
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Since 〈X,Y, I〉 is not altered during the computation, each process can have
its own copy of 〈X,Y, I〉 or processes can share one copy (in environments
with shared memory).
In the following we briefly describe our approach to compute formal concepts
in a given fixed number P of separate processes running in parallel. The
sequential (or serial) version of the algorithm, described in the previous
section as recursive CbO, lists all formal concepts using a depth-first search
through the space of all formal concepts. The parallel algorithm can be
seen as several instances of the sequential version working simultaneously on
disjoint subsets of formal concepts. The parallelization consists in modifying
the procedure GenerateFrom from the previous section so that particular
subtrees of the call tree of the procedure are computed simultaneously in
the P processes. Looking at a call tree like that in Figure 2.1 on page 20,
at any level of the tree, we can see a set of nodes which are root nodes
of disjoint subtrees. These subtrees may be processed independently by
separate processes and that is the key idea of our approach. This suggests
to modify GenerateFrom so that is goes down through the call tree only
up to a certain predefined level L (counting from 1 in the root node level)
and at the level it starts the computation of the remaining formal concepts
descendant to those on the Lth level in parallel. The computation is done
by invoking original GenerateFrom in multiple separate processes with
a formal concept on the Lth level as the first argument. Therefore, the
parallel procedure for computing formal concepts can be summarized by the
following three consecutive stages:

Stage 1: Compute and list all formal concepts up to level L of the call tree.

Stage 2: Store the concepts in P independent queues.

Stage 3: Start P processes running in parallel: (i) let each of the processes
take exactly one of the queues; (ii) for each formal concept in its queue
let each process compute formal concepts using Algorithm 1 beginning
with the concept picked from the queue.

Note that the key issue with the procedure is how to distribute formal con-
cepts computed on the Lth level of the call tree into the P queues in Stage 2.
In fact, by selecting a queue in which we put a concept we select a process
by which all formal concepts descendant to the concept will be listed. The
strategy of the distribution may influence the practical efficiency of the al-
gorithm. Indeed, the optimal selection method should distribute all formal
concepts to processes uniformly. This is, however, very hard to achieve since
we do not know the distribution of formal concepts in the search space of all
formal concepts until we actually compute them all and reveal the structure
of the call tree. As a consequence, the distribution of workload may be in
some cases somewhat unbalanced. In the below presented version of the al-
gorithm, taken from [74], we use an ordinary round-robin scheme: the index
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r of a selected queue is computed as r = (N mod P ) + 1 where N denotes
the number of formal concepts stored in all queues so far. This scheme,
albeit simple, turned out to be reasonably efficient for both the real-world
datasets and randomly generated data. See the evaluation and comparison
of this and several other schemes of the workload distribution that can be
considered in [71]. Surprisingly, there are only small performance differences
among the considered schemes, i.e., the round-robin scheme used in [73, 74]
is adequate for the job.
Overall, the algorithm can be seen as having two parts: first, a part which
distributes formal concepts into queues and, second, a part which runs sev-
eral instances of the sequential (recursive) Close-by-One in parallel. Because
of this reliance on CbO, we call the algorithm Parallel Close-by-One (PCbO).
The algorithm is represented by procedure ParallelGenerateFrom, see
Algorithm 2, a modification of the procedure GenerateFrom of the recur-
sive CbO from Algorithm 1. See [73, 74] for a detailed description of the
procedure, in particular the meaning of the argument l. In order to compute
all formal concepts of 〈X,Y, I〉, the procedure is to be invoked with 〈∅↓, ∅↓↑〉,
y = 0 and l = 1 as its arguments.
Soundness of the algorithm follows directly from the soundness of the se-
quential version described in the previous section and the fact that processes
compute predefined disjoint subsets of all formal concepts. Nevertheless, the
complete proof of correctness of the algorithm can be found in [74].
The fact that the processes compute predefined disjoint subsets of all formal
concepts also means that the processes do not interfere with each other and
hence the algorithm needs no synchronization of the processes (but the syn-
chronization of output of concepts, if applicable). The parallelization also
does not increase the theoretical overall worst-case time complexity of the
algorithm. The complexity remains the same as for the sequential version,
(recursive) CbO, namely O(|B (X,Y, I) |·|Y |2·|X|) with polynomial time de-
lay O(|Y |3·|X|), because in the worst case, the algorithm can degenerate
into CbO (see [74]). The actual performance in practice compared to CbO
is indeed influenced by the number P of processes and the workload distri-
bution among the processes. In case of optimal workload, PCbO can run P
times faster than CbO, i.e. the reciprocal P−1 can be seen as multiplicative
constant of the running time of CbO. In practice, however, the multiplica-
tive constant is a bit greater than P−1 because (i) formal concepts are not
distributed to processes uniformly and (ii) the parallelization has certain
overhead, although subtle. A hint of how PCbO behaves for different values
of P can be seen in [73, 74] and also, very briefly, in Section 2.5.
Let us in this context also shortly comment on the role of the parameter L
in the Algorithm 2, since it has an impact on the distribution of computed
formal concepts to the processes and hence has an influence of the practical
performance of the algorithm. According to our observations, see [74] or
Section 2.5 for a brief preview, if L = 2, most of the formal concepts are
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Algorithm 2: Procedure ParallelGenerateFrom(〈A,B〉, y, l)

Input: formal concept 〈A,B〉, number y ∈ Y ∪ {n+ 1} such that
y 6∈ B, number l such that 1 ≤ l ≤ L

Uses : set Y of attributes, number n of attributes, procedure
ComputeClosure, level L ≥ 2 of recursion, number P ≥ 1 of
processes, queues queuer, 1 ≤ r ≤ P of formal concepts,
procedure GenerateFrom

1 if l = L then
2 select r ∈ {1, . . . , P};
3 store 〈〈A,B〉, y〉 to queuer;
4 return

5 end
6 list 〈A,B〉 (e.g., print it on screen);
7 if not (B = Y or y > n) then
8 for j from y upto n do
9 if j 6∈ B then

10 set 〈C,D〉 to ComputeClosure(B, j);
11 if B ∩ Yj = D ∩ Yj then
12 ParallelGenerateFrom(〈C,D〉, j + 1, l + 1)
13 end

14 end

15 end

16 end
17 if l = 1 then
18 for r from 1 upto P do
19 with process r
20 foreach 〈〈C,D〉, j〉 ∈ queuer do
21 GenerateFrom(〈C,D〉, j);
22 end

23 end

24 end
25 wait for all processes

26 end
27 return

computed in one or two processes. With increasing L, formal concepts are
distributed to processes more equally. On the other hand, large values of L
tend to degenerate the parallel computation. In extreme, if L ≥ |Y |+1 then
all formal concepts will be computed in the first, sequential, stage because
the depth of the call tree is at most |Y |+ 1. From our experiments it seems
that on average, a good trade-off value is already L = 3 provided that |Y |
is large. In such a case, almost all formal concepts are computed in parallel
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and are distributed to processes nearly optimally.

Distributed algorithm Before concluding this section, let us remark the
distributed variant of (the recursive) CbO and Parallel CbO. Contrary to
parallel computing utilizing multiple independent processor cores or pro-
cessors in a single computer system with shared memory, in distributed
computing multiple independent separate computer systems interconnected
within a computer network without a shared memory are utilized. In prac-
tice, distributed computing is used in situations where parallel computing
is not affordable (cost of hardware allowing large-scale parallel computa-
tions) or sufficient (unavailability of the hardware adequate to a large size
of input data). On the other hand, however, distributed computing has
larger overhead of the computation management compared to parallel com-
puting. The distributed variant of (the recursive) CbO (or PCbO) using the
Google’s map-reduce framework [40], and actually a proof-of-concept of how
the framework can be used for computing formal concepts, is introduced
in [77]. In essence, it is based on the same idea of splitting the set of all
formal concepts into disjoint subsets which can be computed simultaneously
implemented for PCbO above. Now, however, the disjoint subsets of formal
concepts are individual tree “layers” of the call tree of procedure Gener-
ateFrom rather than subtrees of the tree (recall Figure 2.1 on page 20).
Shortly and referring to the notation from Algorithm 2 of PCbO above,
the map operation computes (independently) formal concepts 〈C,D〉 on an
actual layer from (respective) concepts 〈A,B〉 on the upper neighbor layer
and the reduce operation filters the concepts 〈C,D〉 using the canonicity test.
The two operations are performed repeatedly layer by layer until no further
concepts are computed. Hence the strategy of generating formal concepts
changes from a depth-first search in the call tree, used in (the recursive)
CbO and PCbO, to a breadth-first search. See [77] for a more detailed de-
scription, including results from experiments showing the scalability of the
approach.

We conclude this section with some bibliographical remarks on other exist-
ing approaches to parallel and distributed algorithms for computing formal
concepts. Interestingly, we are aware of only several attempts to parallelize
Ganter’s NextClosure and one distributed version of the algorithm. Namely,
[48] proposes a parallelization of NextClosure by decomposing the set of
all formal concepts into non-overlapping subsets which are computed simul-
taneously. This sounds similar to our approach but for NextClosure the
decomposition and parallelization is more complex. Another, more simple
and taking advantage of the iterative way of computing formal concepts,
approach to parallelize the algorithm is presented in [7]. It is based on
splitting the lexicographically ordered power set 2Y into p intervals of the
same length (p indicates a number of processes) executed by independent
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processes using a sequential version of the algorithm. Yet a different ap-
proach is shown in [64] where the algorithm is based on dividing input data
into disjoint fragments which are then computed by independent processes.
This approach, however, requires a remarkable amount of synchronization
of the processes. A distributed variant of NextClosure is presented in [138].
Similarly to the approach of [77] presented above, it uses the map-reduce
framework but, alike the previous approach, input data are first divided into
disjoint fragments which are independently processed by the map operation
and then the partial formal concepts are merged by the reduce operation.
Also, a different implementation of the framework better supporting itera-
tive algorithms is used.

2.2.3 Fast CbO

Now we turn our attention to an improvement of the canonicity test used by
CbO that, as introduced in Section 2.1, reduces the number of formal con-
cepts computed multiple times and, in consequence, significantly improves
performance of the algorithm.

In a call tree like that in Figure 2.1 on page 20, formal concepts which
are computed multiple times are depicted by the black square nodes. Our
new test, and the improved algorithm with the test, reduces the number of
such nodes in the call tree without altering the rest of the tree. Namely,
the major “problem” with the original canonicity test used by CbO is that
it is always used after a new formal concept is computed, discarding the
computed concept had the canonicity test failed. As an improvement, we
do not modify the original canonicity test itself. We propose an extension
of the test by employing an additional test that is performed before a new
formal concept is computed, eliminating thus the (expensive) computation
of non-canonical concepts.
To explain the additional test, let us first inspect the original canonicity
test. In it, for B ⊆ Y and j 6∈ B, one checks whether

B ∩ Yj = D ∩ Yj , where D = (B ∪ {j})↓↑ (2.3)

and Yj = {y ∈ Y | y < j}, cf. 2.1 and Algorithm 1 (line 8). In words, one
checks whether B and D agree on all attributes which are smaller than j (in a
fixed order of attributes). Since ↓↑ is a closure operator and D = (B∪{j})↓↑,
the monotony property of ↓↑ yields B ⊆ D (thus, it is sufficient to check just
the inclusion B ∩ Yj ⊇ D ∩ Yj instead of the equality (2.3)). Hence, the
test (2.3) fails (i.e., the equality is not true) iff D = (B ∪ {j})↓↑ contains an
attribute which is “before j” and the attribute is not present in B. Let us
denote all such attributes by B � j, i.e.

B � j = (D \B) ∩ Yj =
(
(B ∪ {j})↓↑ \B

)
∩ Yj . (2.4)
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The following proposition shows that knowing that (2.3) fails for given B
and j 6∈ B, we can conclude that the test will also fail for each B′ ⊇ B
with j 6∈ B′ as long as B � j contains an attribute which is not in B′, i.e.
B � j * B′:

Proposition 2 (On Test Failure Propagation [111]) Let B ⊆ Y , j 6∈
B, and B� j 6= ∅. Then, for each B′ ⊇ B such that j 6∈ B′ and B� j * B′,
we have B′ � j 6= ∅.

Now, the proposition, proved in [111] as Lemma 2, allows us to extend the
canonicity test to a new, two-part, canonicity test : first, new, part which is
quick and does not require computing new formal concepts and second part,
consisting in the original canonicity test with the newly computed formal
concept but applied only if the first part succeeds. Indeed, according to the
Proposition 2 if we know that B � j 6= ∅ for some j 6∈ B for the formal
concept 〈A,B〉 then having a formal concept 〈A′, B′〉, where B′ ⊇ B, with
B � j * B′, we automatically know (without computing any other formal
concepts) that we must not add j to B′ because the subsequent original
canonicity test would fail. Hence, D′ = (B′ ∪ {j})↓↑ of the intended new
formal concept 〈(B′ ∪ {j})↓, D′〉 is not computed at all and the original
canonicity test is not performed. Thus, in the new canonicity test, the first
part of the test uses the observation of Proposition 2 while the second part
is the original canonicity test.

Note that the additional test based on Proposition 2 is not always applicable
and the original test is thus necessary. It is evident that we cannot apply
the test on the top level (below the root) of the call tree, because B� j = ∅.
There are, however, situations where it cannot be applied on deeper levels
as well. The situations are such that B� j ⊆ B′. See [111] for an illustrated
example of such a situation. In these cases we still have to perform the
original canonicity test which involves computing (B′∪{j})↓↑. Nevertheless,
the number of cases in which we actually perform the original canonicity test
is considerably low compared to the number of failed original canonicity tests
without the new test, as it can be seen from experiments in [71, 111].

For the sake of illustration of the resulting effect of the new canonicity test,
consider the call tree in Figure 2.1 on page 20. If we apply the additional
canonicity test based on Proposition 2, we in fact perform a particular tree
pruning in which we omit some of the black square leaf nodes of the tree.
The result is shown in Figure 2.2. The bold edges are those which remain
in the call tree. The leaf nodes that are pruned are denoted in gray and
the corresponding edges are dotted. Notice that not all back square leaf
nodes are pruned. Nodes C2, C4, C6, C7, C10, C11, C13 and C14 appear once
(more) as those leaf nodes, meaning that the corresponding formal concepts
are computed twice during the computation. The total number of formal
concepts computed during the computation (by Algorithm 3 below) is 23—a
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Figure 2.2: Call tree from Figure 2.1 pruned by the additional canonicity
test.

significant reduction compared to 36 nodes/formal concepts of the original
call tree in Figure 2.1 for the (recursive) CbO algorithm.

Before describing how the new canonicity test can be implemented, it is im-
portant to note that an analogous test to our additional test based on Propo-
sition 2 appeared in the AddIntent algorithm introduced in [93]. AddIntent
is, unlike Close-by-One, an incremental algorithm for computing all formal
concepts of input data together with the subconcept-superconcept hierar-
chy ≤ given by (2.8), i.e. the concept lattice of the data. The algorithm
incrementally computes the concept lattice of a given input data by adding
all attributes (or objects as in [93]) one by one. The key difference between
our additional test and the optimization test in AddIntent is that AddIn-
tent uses a slightly different canonicity test that is based on the ordering ≤
of formal concepts, whereas our algorithms based on (recursive) Close-by-
One use the order of processed attributes. See [111] for a description of the
analogy to our additional test in AddIntent, using the notion of a canonical
generator of a formal concept from the description of the algorithm in [93].
As a consequence, the approach of employing the test used by AddIntent is
more beneficial if one wants to compute the whole concept lattice instead of
computing just the formal concepts. On the other hand, our approach em-
ployed for Close-by-One and described below is simpler and is more efficient
if only the set of formal concepts is considered.

Now we are ready to describe how the new canonicity test can be imple-
mented into the algorithm of the (recursive) CbO presented in pseudocode
in Algorithm 1. As the above explanation and Proposition 2 show, during
the computation we have to propagate the information about sets B � j
which take part in the additional test down the call tree, from the root node
to the leaves. As a consequence, we have to change the search strategy of
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the algorithm since the depth-first search in the space of all formal concepts
as it is used in the recursive CbO is no longer possible. We modify the
procedure GenerateFrom from Algorithm 1 in the following way. We add
the additional test before the new formal concept computation (line 7) and
instead of the recursive calls after the computation (line 9), the algorithm
stores the information about computed formal concepts in a queue, in case
of successful pass of the original canonicity test (line 8). In case of the test
failure, the algorithm updates the required information about the set B � j
for propagation down the call tree in a “propagation” variable (for each at-
tribute j) passed along in the recursive calls. Then, after all attributes j
are processed, the algorithm performs a recursive invocation for each for-
mal concept in the queue with the propagation variable as an additional
argument. This effectively changes the order in which new formal concepts
are computed because we use here a combined depth-first and breadth-first
search in the call tree. But it does not change the order of listing of for-
mal concepts because the listing appears after each recursive call, as in the
recursive CbO. The need for this change is also further demonstrated in an
example in [111].
The above described modifications result in a new algorithm called FCbO
(“F” stands for “Fast”) which can be seen as an improved version of (the
recursive) CbO in that we introduced the new canonicity test which saves
redundant computations of formal concepts and thus speed-ups the whole
computation. FCbO is represented by a recursive procedure FastGener-
ateFrom, see Algorithm 3, another modification of the procedure Gener-
ateFrom of the recursive CbO. For a detailed description of the algorithm,
see [71, 111]. Particularly for the use of the “propagation” variable consist-
ing of sets Mj which are passed along in the recursive calls of the procedure
as sets Ny in the third argument. In order to compute all formal con-
cepts of 〈X,Y, I〉, the procedure is to be invoked with 〈∅↓, ∅↓↑〉, y = 0 and
{Ny = ∅ | y ∈ Y } as its arguments.
Algorithm 3 lists all formal concepts in 〈X,Y, I〉, in the same order as Al-
gorithm 1 of the recursive CbO, each of them exactly once. The proof of
its correctness is elaborated in [111], together with an extensive example
demonstrating how the algorithm works from the start to the end.
From the point of view of the worst-case time complexity, FCbO has the
same asymptotic time delay and overall time complexity as CbO (and PCbO),
i.e. O(|Y |3·|X|) and O(|B (X,Y, I) |·|Y |2·|X|), respectively. Namely, in the
worst case (in case of 〈X,Y, I〉 for I being the inequality relation on X = Y ),
FCbO can degenerate into (the recursive) CbO. But in general, it cannot do
worse. Moreover, there are strong indications that on average FCbO delivers
the results faster than CbO (average-case time complexity analysis of FCbO
and mitigation of the worst-case complexity remain to be challenging and
important open problems).
Let us note that FCbO can be turned into a “Fast NextClosure” algorithm,
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Algorithm 3: Procedure FastGenerateFrom(〈A, ,B〉, y, {Ny | y ∈
Y })

Input: formal concept 〈A,B〉, number y ∈ Y ∪ {n+ 1} such that
y 6∈ B, sets Ny ⊆ Y | y ∈ Y

Uses : set Y of attributes, number n of attributes, procedure
ComputeClosure

1 list 〈A,B〉 (e.g., print it on screen);
2 if B = Y or y > n then
3 return
4 end
5 for j from y upto n do
6 set Mj to Nj ;
7 if j 6∈ B and Nj ∩ Yj ⊆ B ∩ Yj then
8 set 〈C,D〉 to ComputeClosure(B, j);
9 if B ∩ Yj = D ∩ Yj then

10 put 〈〈C,D〉, j〉 to queue;
11 else
12 set Mj to D;
13 end

14 end

15 end
16 while get 〈〈C,D〉, j〉 from queue do
17 FastGenerateFrom(〈C,D〉, j + 1, {My | y ∈ Y });
18 end
19 return

in much the same way as the recursive CbO can be turned into NextClosure
described in Section 2.2.1. We refer to [111] for details. And recall also that
this way for obtaining formal concepts in the lexical order is yet more faster
than the iterative NextClosure way from [49, 51], due to the employment
of the new canonicity test. See performance comparisons in Section 2.5 for
illustration.

More (complete) information on FCbO can be found in [111]. Let us con-
clude this section by just a tiny note on parallelization of FCbO. In fact,
FCbO can be turned into a parallel (and distributed) algorithm in the very
same way as the recursive CbO was turned into Parallel CbO (PCbO), as de-
scribed in Section 2.2.2 and [73, 74]. The parallel version of FCbO obtained
this way shall be called Parallel Fast Close-by-One (PFCbO) [71].
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2.2.4 Computing a single formal concept

To complete the algorithms described in the previous sections we have to
add the procedure ComputeClosure common to all of the algorithms.
The procedure efficiently computes a new formal concept from an existing
one by enlarging its intent by adding an attribute to the intent and shrinking
the extent of the concept at the same time. We will now describe the idea
behind the algorithm of the procedure.

If 〈A,B〉 is a formal concept of 〈X,Y, I〉 then due to the monotony property
of ↓↑, all formal concepts whose intents are strictly greater than B can be
written as 〈(B∪C)↓, (B∪C)↓↑〉, where C ⊆ Y is a nonempty set of attributes
j ∈ Y such that there is at least one attribute j 6∈ B. In particular, if we
consider C = {j} ⊆ Y such that j 6∈ B, then

〈(B ∪ {j})↓, (B ∪ {j})↓↑〉 (2.5)

is a formal concept such that B ⊂ (B ∪ {j})↓↑ and (B ∪ {j})↓ ⊂ A (by
properties of ↑ and ↓). This is important from the computational point of
view because if we want to compute the extent (B ∪ {j})↓, it is sufficient to
go exactly through all objects in A which have in I also attribute j:

(B ∪ {j})↓ = {x ∈ A | 〈x, j〉 ∈ I} = A ∩ {j}↓. (2.6)

Similarly, and by the properties of ↑ and ↓, the intent (B ∪ {j})↓↑ is formed
by the common attributes of objects x from (2.6):

(B ∪ {j})↓↑ = (A ∩ {j}↓)↑ =
(⋃

x∈A∩{j}↓{x}
)↑

=
⋂

x∈A∩{j}↓{x}↑. (2.7)

We have just outlined the idea behind the algorithm which efficiently com-
putes formal concept (2.5) given formal concept 〈A,B〉 and attribute j ∈ Y
which does not belong to B. The corresponding procedure ComputeClo-
sure is depicted in Algorithm 4. The proof of correctness of the algorithm
is presented in [111].

We can plainly see that the worst-case asymptotic time complexity of Al-
gorithm 4 is O(|X| · |Y |). This is clear because we go through each table
entry of 〈X,Y, I〉 at most once. However, in practical situations, the number
of table entries we have to go through in order to compute the new formal
concept is much smaller than |X| × |Y |.
Note that, in comparison, the conventional, straightforward, methods for
computing formal concept (2.5) are based on definitions (1.1) and (1.2) of
the concept-forming operators. These methods are implemented by direct
two-way algorithm which first computes the extent (B ∪ {j})↓ which is fur-
ther used to compute the intent (B∪{j})↓↑. That means that the input data
table is scanned twice. Contrary to that, our procedure ComputeClosure
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Algorithm 4: Procedure ComputeClosure(〈A,B〉, j)
Input : formal concept 〈A,B〉, attribute j ∈ Y such that j 6∈ B
Output: formal concept 〈C,D〉
Uses : set Y of attributes, concept-forming operators ↑ and ↓

1 set C to ∅;
2 set D to Y ;

3 foreach x in A ∩ {j}↓ do
4 set C to C ∪ {x};
5 set D to D ∩ {x}↑;
6 end
7 return 〈C,D〉

goes through the table only once, relying on efficient implementation of sets
and a single operation on sets: intersection. Since computing set inter-
sections is generally more efficient than implementing the concept-forming
operators, Algorithm 4 significantly outperforms the direct two-way algo-
rithm. The efficient implementations of sets of objects and attributes and
the intersection operation on the sets are presented in Section 2.3.1.

Moreover, we can easily abort the computation of concept 〈C,D〉 from Al-
gorithm 4 if it turns out during the computation that the number of objects
remaining in A together with those satisfying 〈x, j〉 ∈ I is not sufficient
to form an extent of a given minimal size, in scenarios where a minimal
concept extent size is specified. This enables us, for instance, to compute
formal concepts whose intents are the so-called frequent closed itemsets used
in association rules mining (mentioned in the introduction Chapter 1). The
frequency constraint here means exactly the minimal number of objects in
the corresponding formal concept extent.

2.3 Efficiency issues

This section is devoted to issues which considerably affect the real perfor-
mance of the algorithms. First the implementation issues of the algorithms,
namely data representation and used data structures, and second the proper
preprocessing of input data before the computation of formal concepts. The
actual performance of the algorithms is evaluated in the next section.

2.3.1 Efficient data representation

As was already mentioned in the introduction Section 2.1 the actual per-
formance of any algorithm heavily depends on its implementation. The
implementation is then much determined by used data structures. In our
implementations of all algorithms presented in this thesis we use 0/1 arrays
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as basic data structures. Such data representation turned out to be very
efficient.

The input data table corresponding to 〈X,Y, I〉 is represented by a (linearly
ordered) set of table rows. The set in this context is represented by a linear
array of its elements. By a table row, corresponding to object x ∈ X, we
mean the set of attributes {x}↑ = {y ∈ Y | 〈x, y〉 ∈ I}. Each table row is rep-
resented by the characteristic vector of the corresponding set of attributes.
And the characteristic vector of a set in this context is represented by a 0/1
linear array, that is, a subset B ⊆ Y = {0, 1, . . . , n} is represented by an
(n+ 1)-element linear array b of 1s and 0s such that b[k] = 1 iff k ∈ B and
b[k] = 0 iff k 6∈ B. In fact, this representation of input data table, further
denoted by table, gives us a usual representation of a table in a computer
by a two-dimensional array which corresponds with the usual table repre-
sentation of a binary relation (I in our case) in the obvious way. That is,
the array table is filled with 1s and 0s so that table[i, j] = 1 iff 〈i, j〉 ∈ I and
table[i, j] = 0 iff 〈i, j〉 6∈ I.

Intents of computed formal concepts, as sets of attributes, are represented
just like the table rows, i.e. by characteristic vectors of the sets. Extents, as
sets of objects, however, are represented another way. Namely by (linearly)
ordered lists of objects in the set. Actually, the first element of the list is
the number of objects in the set (extent size) and the remaining elements
are the addresses (pointers in low-level programming languages) of where
input data table rows corresponding to the objects are stored in computer
memory, rather than the objects themselves. This representation of extents
turned out to be more beneficial and more efficient than the characteristic
vector representation, above all in the single formal concept computation
procedure ComputeClosure from Section 2.2.4, see below. Furthermore,
to further increase the performance, the addresses of objects are stored in the
list in the (ascending) order in which input data table rows corresponding
to the objects are ordered in the table representation. This enables us to
easily obtain the object index.

The data structures have been chosen with the aim to achieve the best pos-
sible performance of computing formal concepts by procedure Compute-
Closure, described in Section 2.2.4. In particular, the 0/1 arrays repre-
senting characteristic vectors of sets of attributes are stored in computer
memory as the so-called bitarrays which are linear arrays of 32-bit or 64-bit
integers (depending on the computer platform), where each bit represents
presence/absence of an attribute in a set. The bitarray storage of sets of
attributes (input data table rows and concept intents) allows us to quickly
compute intersections of the sets, in particular input data table rows {x}↑
processed in the procedure, by using the bitwise “AND” operation which is
commonly implemented as the low-level operation directly in microproces-
sors and other computing hardware. In addition to that, the used represen-
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tation of concept extents as lists of objects allows us to easily go through the
objects having instant access to the table row corresponding to an object by
its address in the computer memory. That is, for a concept 〈A,B〉 and an
attribute j 6∈ B, C = A∩{j}↓ is computed so that we go through all objects
x in the list of extent of A and test whether 〈x, y〉 ∈ I in table. At the same
time, we compute D by computing intersections of input data table rows
{x}↑ for all such x.

The above described data structures are in more details discussed in [111,
135] and a detailed comparison of various (other) data structures used for
computing formal concepts can be found in [76].

2.3.2 Input data preprocessing

The second efficiency issue that affects the real performance of the algo-
rithms and that we will examine below is the input data preprocessing prior
to the actual computation of formal concepts. Namely the ordering of ob-
jects and attributes of the input data.

First note that from the point of view of formal concepts and concept lat-
tices themselves, the order of objects and attributes in which they appear
in formal context is not essential [51]. Namely, one can reorder objects
and attributes in an arbitrary way and both the set of all formal concept
and the concept lattice remain the same. What only changes is the order
of objects/attributes in extent/intent of formal concepts. From the com-
putational point of view, however, it may happen that certain orderings
yield better results, in terms of performance, in conjunction with particu-
lar algorithms for FCA, most importantly algorithms for computing formal
concepts and concept lattice, than other orderings. From this point of view,
in general, it is an important feature of the algorithms of whether their per-
formance depends on the order of objects and attributes in the input formal
context. We shall call an algorithm (permutation) resistant whenever all
isomorphic copies (in the usual sense) of the input formal context require
the same number of elementary computation steps in order to compute all
formal concepts (or the concept lattice). I.e. put in other words, the number
of the elementary computation steps is the same no matter how we rearrange
rows and columns in the input data table. An elementary computation step
here is represented by computation of a single formal concept. One can
easily see that, e.g., Lindig’s UpperNeighbor algorithm [87] is resistant. On
the other hand, our algorithms, and algorithms from the CbO-family in
general, are not resistant (note that Ganter’s NextClosure is equivalent to
CbO in this respect, see also Section 2.2.1). The order of attributes in input
formal context has an impact on the performance of the algorithms since
the canonicity test is driven by the order of attributes. As a consequence,
a different order of attributes can yield different call trees (recall in Sec-
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tion 2.2.1) that may have different numbers of nodes. Therefore, it makes
sense to consider different orders of attributes because the proper order can
further reduce the number of formal concepts that are computed multiple
times, thus improving the performance of the algorithms.
Without any further talking, the proper order of attributes for the CbO-
family algorithms (including our algorithms) is such that the attributes in
input formal context (columns of the data table) are sorted in the ascending
order according to their support , that is the number of objects having a par-
ticular attribute. Formally, attributes y ∈ Y of a formal context 〈X,Y, I〉
are sorted in the ascending order according to |{y}↓|. We call a formal con-
text with attributes sorted in this way an ordered formal context [71]. The
assertions in [71] then show that for an ordered formal context the canon-
icity test of both CbO and FCbO always succeeds for all attribute concepts
(concepts generated by a single attribute, in the first level of recursion of
the algorithms) provided that all attributes are distinct (i.e., all columns of
the input data table are pairwise distinct). The expected impact on the call
trees of the algorithms, their numbers of nodes and the number of formal
concepts that are computed multiple times, is demonstrated in [71].
The obvious consequence is that in order to achieve better performance of
the algorithms, it is desirable prior the computation to reorder the attributes
in input data so that the data represent the ordered formal context. Indeed,
our empirical experiments presented in [71] have shown that while processing
ordered formal contexts, canonicity tests fail less frequently than in case of
formal contexts containing inversions (with respect to the order) and with
increasing number of inversions the average number of computed formal
concepts grows. At the same time, however, due to this one should take
into account whether an algorithm operates on the preprocessed data or
the original data when evaluating and comparing algorithms for computing
formal concepts, see the evaluations in Section 2.5.
Let us note that the above introduced ordering of attributes has already
been used in [48]. But the purpose of the ordering there is much different.
In [48], the authors need to use this particular ordering of attributes in their
parallel version of Ganter’s NextClosure algorithm to achieve soundness of
the algorithm (i.e. each formal concept is listed only once) and do not
consider it otherwise. In our case, the ordering is used and further studied
for the sake of increased efficiency and for this purpose our finding of the
ordering is thus new.
Also, in addition to ordering attributes, objects of input formal context
(rows of the data table) can also be ordered. Our experiments with the CbO-
family algorithms on contexts of several sizes, densities (percentage of ×s or
1s in the table) and origin (real and generated data) have indicated that the
performance of the algorithms increases if objects (table rows) are ordered
lexicographically according to the characteristic vector of the corresponding
set of attributes of the object. The increase is, however, much smaller,
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almost negligable, in comparison to the increase of performance in case of
the ordering of attributes.

2.4 Attribute sorting algorithm

Motivations by the results of attribute ordering presented in the previous
section and in [71], and elaborating on the idea, led us to a new algorithm for
computing formal concepts. The algorithm is based on attribute sorting and
formal context reduction performed after obtaining a new formal concept.
I.e., unlike in the previous section where ordering of attributes was just a
means of data preprocessing and was used for the input data exactly once
before the computation, we utilize the ordering during the computation
several times. This results in a conceptually new algorithm which, as we
shall see, in terms of the number of formal concepts computed multiple
times, outperforms CbO and also Fast CbO by an order of magnitude. The
algorithm will be briefly described in this section, the detailed description
can be found in [72].

First we need to introduce basic operations with formal contexts that are
used to describe the algorithm. One of the distinguishing features of the
algorithm is that during the computation, it transforms the initial formal
context into other formal contexts by taking subsets of objects (context re-
duction operation) and grouping attributes (context clarification operation).
In addition to that, the groups of attributes are sorted according to their
support and equipped with a Boolean flag indicating whether a group is
allowed to be present in intents of formal concepts computed in subsequent
stages (as we will see, the flag supports the canonicity test).
In order to keep information about groups of attributes, we use partic-
ular formal contexts, called R-contexts, to represent input data. An R-
context (derived from formal context 〈X,Y, I〉) is a triplet 〈X], Y ], I]〉 where
X] ⊆ X, Y ] ⊆ 2Y such that any B1, B2 ∈ Y ] are nonempty either equal or
pairwise disjoint (B1 ∩ B2 = ∅) subsets of attributes from Y where for
any x ∈ X] and B ∈ Y ] 〈x, y1〉 ∈ I iff 〈x, y2〉 ∈ I holds true for all
y1, y2 ∈ B, and I] = {〈x,B〉 ∈ X] × Y ] | 〈x, y〉 ∈ I for all y ∈ B}. If
X] = X, Y ] = {{y} | y ∈ Y }, and I] = {〈x, {y}〉 ∈ X] × Y ] | 〈x, y〉 ∈ I},
〈X], Y ], I]〉 is called an initial R-context (derived from 〈X,Y, I〉). Note
that each R-context 〈X], Y ], I]〉 is a well-defined formal context in which
attributes have natural interpretation as sets of attributes from the origi-
nal formal context 〈X,Y, I〉 which are indistinguishable in 〈X,Y, I〉 (equal
columns in the corresponding data table) provided we restrict ourselves only
to objects from X]. Note also that 〈X], Y ], I]〉 which results from 〈X,Y, I〉
is fully given by the sets X] and Y ] of objects and attributes, respectively.
The binary relation I] can be determined from the original binary relation
I, thus not needed to be represented in computer memory. See [72] for
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other basic properties of R-contexts. Finally, the concept-forming opera-
tors ↑I] and ↓I] induced by R-contexts are straightforward restrictions of
the concept-forming operators ↑ and ↓ of original formal contexts (to X]

and the union of sets Y ] of attributes). The close relationship among them
is presented in [72]. An example of R-context is presented in Example 2.
From now on we describe further operations with formal contexts in terms
of R-contexts instead of the original input formal contexts.

In general, R-context can contain two or more indistinguishable attributes.
The algorithm, however, relies on grouping indistinguishable attributes to-
gether so that all attributes are distinct (we will see below why). The
grouping is done by a process of clarification of R-context. Recall from [51]
that a formal context 〈X,Y, I〉 is called clarified if for any y1, y2 ∈ Y it
follows that {y1}↓ = {y2}↓ implies y1 = y2 and dually for objects. Put in
words, a clarified formal context in sense of [51] is a formal context where
all columns in the corresponding object-attribute data table are distinct and
dually for rows. The process of clarification then consists of removing du-
plicate columns and rows from the table. It is a well known fact that the
concept lattice of a clarified formal context is isomorphic to the concept
lattice of the original formal context.

Clarification of R-contexts performed by the algorithm applies to attributes
of R-contexts only. The basic idea is the same as in [51], we produce a new
R-context by putting together identical columns of the corresponding data
table. Thus, for any R-context 〈X], Y ], I]〉, a clarified R-context (which
results from 〈X], Y ], I]〉) has the same objects X] and attributes are unions
of attributes in Y ] (which are sets of original attributes from Y ) for which
columns of the data table corresponding to 〈X], Y ], I]〉 given by the at-
tributes are equal (i.e. {y1}↓I] = {y2}↓I] for all pairs of attributes y1, y2 in
the union). Hence such indistinguishable attributes are grouped together.
The relation between the objects and the new attributes is obvious. The
exact formal definition of clarified R-context can be found in [72], together
with two basic properties (namely that each clarified R-context is a well-
defined R-context and that the clarification of a clarified R-context does not
change the R-context). An example of clarified R-context is presented in
Example 2.

Remark 1 Notice that we do not consider clarification of objects (i.e., a
clarified R-context may contain several objects having the same attributes),
since it would not reduce the number of formal concepts computed multiple
times and is thus not used in the presented algorithm.

A crucial operation of the algorithm is attribute sorting . In particular, for
each R-context 〈X], Y ], I]〉, we consider a partial order ≤] on Y ] such that
for any y1, y2 ∈ Y ], y1 ≤] y2 implies |{y1}↓I] | ≤ |{y2}↓I] |. I.e., the same
ordering of attributes according to their support introduced in the previous
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section and further investigated in [71]. Note that, in general, ≤] is not
a linear order but it can be extended to a linear order by a well-known
procedure of topological sorting. For the purposes of the algorithm, we
identify some (but fixed) of the linear orders with a mapping which assigns
to each attribute from Y ] its numerical index which represents a position in
an ordered list of attributes which are sorted according to the linear order:
f : Y ] → {0, . . . , |Y ]| − 1} such that, for any y1, y2 ∈ Y ],

if f(y1) ≤ f(y2) then |{y1}↓I] | ≤ |{y2}↓I] |. (2.8)

The clarified R-context in Example 2 is presented with attributes sorted
according to such a mapping f , in a (usual) way that if f(y1) < f(y2) then
y1 is depicted before y2. (Note that in particular case of the example, there
are two ways to define f , since attributes {1, 4} and {3} have the same
support. In such situations, we always consider an arbitrary, but fixed, f
for the same R-context.)

Now, as already mentioned in the beginning of this section, an important
distinguishing feature of the algorithm is that, unlike in the data preprocess-
ing only approach from the previous section, we do not consider single ≤]

(i.e., a single f) during the computation. The algorithm uses a particular re-
duction operation on R-contexts to reduce the problem of computing formal
concepts of an R-context to the problem of computing formal concepts of
several smaller R-contexts (the usual divide et impera scheme). After each
reduction, we determine new f which applies to the reduced R-context. The
input for the reduction is an R-context 〈X], Y ], I]〉 and the sets C and D of
objects and attributes, respectively, of a formal concept 〈C,D〉 of 〈X], Y ], I]〉
whose intent is nonempty, i.e. D 6= ∅. The output is a sub-context of the
R-context with objects taken from C and attributes being attributes in Y ]

which are not present in D (cf. the definitions of XR, Y R, and IR in [72]).
One can easily see that this is a well-formed R-context and we denote the
clarification of it by Reduce(〈X], Y ], I]〉, C,D).

Furthermore, we assume that we are given a mapping f which determines
the order of attributes in 〈X], Y ], I]〉 (see above). Since D is nonempty, we
can denote by min(D) the least attribute from D with respect to the order
given by f , i.e., min(D) ∈ D such that f(min(D)) ≤ f(y) for all y ∈ D.
Each attribute B in the sub-context is then associated with a Boolean flag
the value of which is set to true if f(B) is less than f(min(D)). Put in
words, an attribute B ∈ Y ] will be given a true flag if it is not in D and
if it stands before min(D) in terms of the order of attributes. If B stands
behind min(D), the flag is not updated—attributes of the initial R-context
have the flag equal to false. The meaning of the flag is that “at least one of
the original attributes from B is not permitted to be used (at a certain level
of computation)”. Compare this with the (new) attributes in the closure D
of B ∪{j} which are not present in B and are “before j” w.r.t. the order in
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which attributes are added to computed formal concepts in the canonicity
tests of the recursive CbO described in Section 2.2.1 and Fast CbO described
in Section 2.2.3. Indeed, this is a canonicity test, see the pseudocode of the
algorithm below. In this respect it is also important to note that in the
clarification of the sub-context, the flag of a new (grouped) attribute, which
is a union of attributes in Y ], results by taking the logical “OR” of flags
of all attributes in the union. Since all the attributes in the union are
indistinguishable within the sub-context. That is why the clarification is
necessary and all attributes must be distinct (also cf. the assertions for
ordered formal context and canonicity tests of CbO and FCbO from [71]
mentioned in the previous section).

Remark 2 Note that in the original description of the algorithm in [72]
the (numerical) flag is set to the size of B with the meaning “exactly n
of the original attributes . . . ” and in the sub-context clarification sum of
flags is taken. This is, however, not necessary for the algorithm since for
the canonicity test the only important fact is whether at least one of the
attributes in intent D has its flag set.

The reduction (and clarification) of the R-context from Example 2 by formal
concept 〈C,D〉 = 〈{d, e}, {{1, 4}}〉 is presented in the same example below.

Example 2 As an example, consider an input formal context 〈X,Y, I〉 with
objects X = {a, . . . , f}, attributes Y = {0, . . . , 7}, and I given by the table
depicted in the top part of Figure 2.3. An R-context 〈X], Y ], I]〉 derived
from 〈X,Y, I〉 and the clarified R-context which results from 〈X], Y ], I]〉 are
depicted in the middle part of the figure. Notice that the original attributes
1 and 4 are distinguishable in 〈X,Y, I〉 by object c. On the other hand,
they are indistinguishable on objects {b, d, e, f}, hence the (group) attribute
{1, 4} in Y ]. During the clarification, only attributes {2} and {7} have been
put together. Note also that attributes in the clarified R-context are sorted
according to their support. Finally, a sub-context which can result from
reduction (and clarification) of the R-context is depicted in the bottom part
of Figure 2.3. Notice that during the reduction, attribute {6} was given a
true flag–depicted by the column corresponding to the (group) attribute with
gray background color–since its position was before that of attribute {1, 4}〉
in the R-context.

Finally, we can present the algorithm. The main part of it is a recursive
procedure Compute the pseudocode of which is depicted in Algorithm 5.
The procedure accepts as its argument a clarified R-context and during the
computation it calls an auxiliary procedure Closure whose pseudocode is
depicted in Algorithm 6.
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〈X,Y, I〉 0 1 2 3 4 5 6 7
a × × ×
b × × × × ×
c × × ×
d × × × × × × ×
e × × × ×
f × × × × ×

〈X], Y ], I]〉 {1, 4} {2} {3} {6} {7}
b × × ×
d × × × ×
e ×
f × × ×

clarified 〈X], Y ], I]〉 {6} {1, 4} {3} {2, 7}
b × ×
d × × ×
e ×
f × ×

reduction (and clarification) of 〈X], Y ], I]〉 {3} {2, 6, 7}
d ×
e

Figure 2.3: Formal context (top), derived R-context and its clarification
(two middle) and reduced (and clarified) R-context (bottom).

Remark 3 Note that in the description and the pseudocode of the algorithm
in [72], the flag of an attribute B of R-context is (formally) represented
by the first item, denoted by n, of a tuple 〈n,B〉 which actually represents
the attribute B. For the sake of reducing the complexity of notation, in
the pseudocode of procedure Compute below we represent the flag by the
notation B.flag.

Briefly, when invoked with (clarified)R-context 〈X], Y ], I]〉, procedure Com-
pute first processes the formal concept (e.g., prints it on the screen or
stores it) which consists of the set of objects X] and the set of attributes
Y \ ⋃{B ⊆ Y |B ∈ Y ]} (cf. the notation Int(K], Y ) from [72]). I.e. all
objects of the R-context and attributes which are not present in any (group)
attribute of the R-context (recall above how a sub-context of R-context is
created). Then, the procedure goes over all attributes in Y ] with false
flag and for each such attribute invokes procedure Closure. An easy in-
spection of the pseudocode in Algorithm 6 shows that the result of calling
Closure(〈X], Y ], I]〉, B) is the formal concept of R-context 〈X], Y ], I]〉
generated by attribute B, i.e., C = {B}↓I] and D = C↑I] . Notice that Al-
gorithm 6 utilizes attribute sorting together with the fact that 〈X], Y ], I]〉
is clarified. In that case, all attributes which belong to D must have their
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Algorithm 5: Procedure Compute(〈X], Y ], I]〉)
Input: R-context 〈X], Y ], I]〉
Uses : set Y of attributes, procedures Closure and Reduce

1 list 〈X], Y \⋃{B ⊆ Y |B ∈ Y ]}〉 (e.g., print it on screen);

2 for B ∈ Y ] do
3 if B.flag = false then
4 set 〈C,D〉 to Closure(〈X], Y ], I]〉, B);
5 if

∨{B.flag |B ∈ D} = false then
6 Compute(Reduce(〈X], Y ], I]〉, C,D));
7 end

8 end

9 end
10 return

indices strictly greater than or equal to f(B). This observation has already
been made in [71]. The formal concept 〈C,D〉 then undergoes the canonicity
test which succeeds iff the flags of all attributes in D are false (recall the
meaning of the flags above). In case of success, Compute just invokes itself
with reduced (and clarified) formal context which results from 〈X], Y ], I]〉
by C and D.

In order to compute all formal concepts of formal context 〈X,Y, I〉, proce-
dure Compute has to be invoked with Reduce(〈X], Y ], I]〉, X,X↑I] ) as the
argument, where 〈X], Y ], I]〉 is the initial R-context derived from 〈X,Y, I〉.
Put in words, Compute has to be invoked with the clarification of the ini-
tial R-context derived from 〈X,Y, I〉 without attributes shared by all objects
(X↑I] )—the procedure then stores (as the first step) the first formal concept
consisting of all objects and those attributes. The proof of soundness of the
algorithm, i.e. that with such input data it lists all formal concepts, each of
them exactly once, is provided in [72]. [72] also includes an illustrated full
running example demonstrating the behavior of procedure Compute.

The asymptotic worst-case time complexity of Algorithm 5 is the same
as in case of CbO and FCbO algorithms (Sections 2.2.1 and 2.2.3), i.e.,
O(|B(X,Y, I)|·|X|·|Y |2). See [72] for a brief analysis. In case of time de-
lay [63], the algorithm has the same polynomial time delay O(|Y |3·|X|) as
CbO, cf. [84]. The argument remains the same as in case of CbO.

More interesting is comparison of the algorithm with CbO and FCbO in
terms of formal concepts which are computed multiple times. Figure 2.4
shows a call tree for both CbO and FCbO (applied to input formal con-
text from the running example in [72]). Recall that a call tree depicts
computations of FCbO/CbO where black/gray square leaf nodes labeled by
formal concepts represent branches of computation where the concepts are
computed but fail the canonicity test. The black nodes and bold edges cor-
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Algorithm 6: Procedure Closure(〈X], Y ], I]〉,B)

Input : clarified R-context 〈X], Y ], I]〉, attribute B ∈ Y ]

Output: formal concept 〈C,D〉
Uses : mapping f determining the order of attributes in

〈X], Y ], I]〉
1 C = {x ∈ X] | 〈x,B〉 ∈ I]};
2 D = {y ∈ Y ] | f(B) ≤ f(y)};
3 for x ∈ C do
4 for y ∈ D do
5 if 〈x, y〉 6∈ I] then
6 remove y from D;
7 end

8 end

9 end
10 return 〈C,D〉

respond to both CbO and FCbO while the gray nodes and dotted edges
correspond only to CbO. We can see from the tree that FCbO computes
7 formal concepts which fail the (additional) canonicity test and are thus
computed multiple times and for CbO the number of computed concepts
which fail the canonicity test is even 19 (the number of formal concepts of
the corresponding formal context is 11). Algorithm 5 computes for the corre-
sponding input formal context just a single formal concept twice, namely R3

(its R-context pre-image, to be precise), i.e. commits just a single canonicity
test fail! This is a really significant improvement. Section 2.5 below then
shows a brief experimental evaluation of average behavior of Algorithm 5
compared to CbO and FCbO using various data sets which shows an in-
teresting tendency that the numbers of formal concepts computed multiple
times by the algorithm are much smaller.

2.5 Experimental evaluation

In this section we briefly illustrate the performance of the above described
algorithms and compare them with other algorithms for computing formal
concepts [84, 126]. More rigorous performance evaluations can be found in
the papers on the algorithms from which the following results are borrowed.

We show the results from three experiments. In the first two of them we
were interested in the performance of algorithms measured by running time
and compared the performance of the recursive CbO, PCbO and FCbO algo-
rithms with algorithms in literature commonly used as referential, Ganter’s
NextClosure [49, 51] and Lindig’s NextNeighbor [87], and also to Berry’s al-
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Figure 2.4: An example of call tree for CbO and FCbO.

gorithm [31]. In the third experiment we measured and compared the total
numbers of formal concepts computed by (recursive) CbO, FCbO and the at-
tribute sorting algorithm. The experiments were done on several public real-
world benchmark datasets from the UCI Machine Learning Repository [6],
the UCI Knowledge Discovery in Databases Archive [61] and also our own
dataset describing software packages in the Debian GNU/Linux operating
system distribution.

In the first experiment, borrowed from [111], we in addition compared FCbO
and (recursive) CbO also in terms of the total number of computed formal
concepts, in order to evaluate the influence of the new canonicity test intro-
duced in FCbO (see Section 2.2.3). The results are depicted in Table 2.1,
along with the information on size and density (percentage of ×s or 1s in
the dataset table) of used datasets and the number of formal concepts in the
datasets. Note that in this experiment we applied the preprocessing step of
ordering attributes of the dataset table according to their support prior to
computation, as described in Section 2.3.2, in order to further lower the total
number of computed formal concepts (#closures in Table 2.1). The numbers
for the case without the ordering of attributes are included in results of the
third experiment below.

First note that both (recursive) CbO and FCbO significantly outperform the
NextClosure algorithm. The huge performance gain is due to (1) the different
order of computed formal concepts and (2) more efficient computation of
formal concepts, described in Section 2.3.1. Next, we can see that FCbO
outperforms (recursive) CbO, both in terms of the number of computed
formal concepts and the running time. Here, the performance gain is due to
the new canonicity test which avoids a large number of formal concepts to be
computed multiple times, see the numbers of concepts computed by FCbO
and CbO in the table. FCbO is typically faster than CbO, since the total
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Table 2.1: Performance (in seconds) and total numbers of formal concepts
computed by CbO and FCbO for selected datasets.

dataset mushroom anonymous web adult internet ads
size 8124× 119 32710× 295 48842× 104 3279× 1557

density 19.33% 1.02% 8.65% 0.88%
#concepts 238710 129009 180115 9192

NextClosure time 53.891 243.325 134.954 114.493
CbO time 0.508 0.238 0.302 0.332

FCbO time 0.340 0.240 0.318 0.160

#closures computed by CbO 1321524 785394 585253 1783871
#closures computed by FCbO 299201 398147 305644 309357

Table 2.2: Performance of PCbO and other algorithms for selected datasets
(real running time, in seconds; time in parentheses represents total running
time used by all processes together).

dataset mushroom tic-tac-toe Debian tags anonymous web
size 8124× 119 958× 29 14315× 475 32710× 295

density 19% 34% < 1% 1%

PCbO (P = 1) 4.89 0.06 7.79 40.32
PCbO (P = 2) 2.78(5.16) 0.04(0.07) 5.52(9.34) 22.16(43.33)
PCbO (P = 4) 1.90(5.39) 0.03(0.07) 3.65(10.88) 13.38(47.81)
PCbO (P = 8) 1.18(5.58) 0.02(0.07) 2.51(11.08) 8.09(46.68)
NextClosure 834.40 2.15 1720.82 10039.73

NextNeighbor 5271.98 14.53 2639.67 13422.64
Berry’s 934.50 5.78 1531.94 3615.07

number of computed formal concepts directly influences the performance
of the algorithms. But notice that in the worst case FCbO collapses into
CbO (cf. Section 2.2.3). For further experiments on the impact of the new
canonicity test in FCbO (e.g. frequency/rate of successful tests) and its
performance comparison to CbO and other well-known algorithms on both
real and artificial (randomly generated) datasets, see [71, 111].

In the second experiment, borrowed from [74], we focused mainly on scala-
bility of the PCbO algorithm, i.e. the growth of the algorithm’s performance
(in terms of decrease of running time) with respect to the growing number
of processes used for computing formal concepts in parallel. The results are
depicted in Table 2.2 and Figure 2.5, again along with the information on
size and density of used datasets.

We can see that PCbO outperforms the other compared algorithms by sev-
eral magnitudes. This is not surprising. More interesting are the PCbO
alone times regarding the scalability. The first four rows in Table 2.2 contain
running times of PCbO that has been run in 1 (which equals the sequential
version, recursive CbO), 2, 4, and 8 processes. We can see the expected
speedup (decreasing running time) of the algorithm when increasing the
number P of processes. Furthermore, for P > 1, the rows contain also total
running time, written in parentheses, used by all processes together to com-
pute all formal concepts. This time allows us to make a rough estimate of
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Figure 2.5: Relative speedup of PCbO to the number of processes for
selected datasets (solid line—mushroom, dashed line—tic-tac-toe, dotted
line—Debian tags, dot-and-dashed line—anonymous web).

the overhead that is needed to manage the (multiple) processes: the over-
head can be computed as the real running time minus the total running time
divided by P . As expected, larger values of P lead to larger overhead.

For the sake of illustration, we include also a graphical depiction of the
speedup, in Figure 2.5 (also borrowed from [74]). By a relative speedup which
is shown on y-axis of the graph in the figure we mean the theoretical speedup
given by the number of processes (e.g., if we have 4 processes, the execution
can be 4 times faster). Therefore, the relative speedup is a ratio of running
time using a single process and running time using multiple processes. Note
that the theoretical maximum of speedup is equal to the number of used
processes but real speedup is always smaller due to the overhead needed to
manage the processes (cf. also Table 2.2). Nevertheless, from the point of
view of the speedup, we can see from the graph that the real speedup of
the PCbO algorithm is near its theoretical limits. See [73, 74] for further
experiments on the scalability, speedup and overhead of PCbO (and PFCbO,
in [71]), as well as the utilization of processes, i.e. the workload distribution
schemes and numbers of formal concepts computed by processes, on both
real and artificial (randomly generated) datasets.

The third experiment again focuses on the total number of computed formal
concepts since, as seen above in the first experiment, it is a feature signif-
icantly affecting performance of all algorithms in the CbO-family. In this
experiment, however, Table 2.3 shows the numbers, besides for the (recur-
sive) CbO and FCbO algorithms, also for the attribute sorting algorithm
(Algorithm 5 from Section 2.4). Note that for results of CbO and FCbO
the table contains two rows: the rows labeled “(ordered)”, as opposed to
the rows without this label, present the numbers for the case when the addi-
tional preprocessing step of ordering attributes of input data table according
to their support is applied prior to computation (cf. Section 2.3.2).

First of all, it follows from the table that the attribute sorting algorithm
needs to compute considerably less formal concepts than the other algo-
rithms, namely CbO and also FCbO. Apparently, the new method of com-
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Table 2.3: Total numbers of formal concepts computed by CbO, FCbO and
attribute sorting algorithm for selected datasets.

dataset Debian tags anonymous web mushroom tic-tac-toe
size 14315× 475 32710× 295 8124× 119 958× 29

density < 1% 1% 19% 34%
#concepts 38977 129009 238710 59505

attribute sorting 44221 135925 246181 65567
FCbO (ordered) 298641 398147 299201 89930

FCbO 679911 1475341 426563 128434
CbO (ordered) 960106 785394 1321524 185738

CbO 12045680 27949552 4006498 221608

puting formal concepts can reduce the total number of computed formal
concepts by several orders of magnitude. The factor of improvement de-
pends on many aspects, notably the size and density of input data. In case
of large and sparse datasets like anonymous web and Debian tags, the algo-
rithm needs to compute only a small fraction of concepts multiple times—in
a strong contrast to CbO, in particular. As for the preprocessing of input
data by ordering attributes according to their support, Table 2.3 confirms
(for CbO and FCbO) that this action alone also lowers the numbers of for-
mal concepts computed multiple times, as discussed in Section 2.3.2. The
differences in total numbers of computed formal concepts are apparent again
for large and sparse datasets and, obviously (due to the new canonicity test),
are much larger for CbO than for FCbO. Note that these tendencies, both for
the attribute sorting algorithm and the input data preprocessing step only,
are quite general. For the algorithm, they are further illustrated in [72] on
artificial (randomly generated) data of fixed size with various densities and
data with growing number of attributes (interestingly, the number of objects
has no noticeable impact).
Further experiments on various aspects of the particular algorithms based
on (the recursive) CbO can be found in [71].

2.6 Summary and topics for future research

We have summarized new algorithms for computing formal concepts from
object-attribute relational data. From the many algorithms developed in
the past and known from the literature our algorithms differ by their per-
formance efficiency. The algorithms, with the exception of the last one, are
based on a recursive version of Kuznetsov’s Close-by-One (CbO) [80, 79, 81]
algorithm and as such they use a so-called canonicity test to ensure that,
while computed multiple times, formal concepts are listed exactly once, in
a unique order. The order is more efficient than the lexical order used by
Ganter’s NextClosure algorithm [49, 51]. We call algorithms using the CbO ’s
canonicity test, including our new algorithms, the CbO-family algorithms.
The recursive version of CbO [135], upon which the algorithms summarized
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in the previous sections are based, has been presented in Section 2.2.1. CbO
(without the tree of computed formal concepts from the original description)
was formulated as a recursive procedure which is much closer to the actual
implementation than the original description of the algorithm in [81] using
backtracking.
Then, in Section 2.2.2 we have presented a parallel version of the recursive
CbO, Parallel CbO (PCbO), which can be run in multiple independent pro-
cesses on multiple processor cores or processors. The computation of formal
concepts is parallelized in such a way that disjoint sets of them can be com-
puted simultaneously (independently) with virtually no overhead (requiring
no synchronization) and without increasing the overall asymptotic time com-
plexity of the algorithm. This indeed has a positive impact on performance
and scalability of the algorithm. With growing number of processes, the
speedup of the computation is near its theoretical limit.
Finally, in Section 2.2.3 we have described an algorithm, called Fast CbO
(FCbO), which improves the recursive CbO by introducing a new canonicity
test. The first part of the test is performed before a new formal concept is
computed, eliminating thus the computation of formal concepts for which
the original canonicity test in CbO, the second part of the test, would fail.
The new test, while maintaining virtually neglecting overhead, again does
not increase the overall asymptotic time complexity of the algorithm. How-
ever, compared to CbO, FCbO significantly reduces the number of computed
formal concepts due to the new test and hence delivers results faster than
CbO. Furthermore, the same way the recursive CbO was turned into PCbO,
FCbO can be turned into a parallel algorithm, resulting in the PFCbO al-
gorithm.
To complete the descriptions of the previous algorithms, we added a fast pro-
cedure for computing a single (the new) formal concept from another one,
the critical procedure for the algorithms, in Section 2.2.4. We took advan-
tage of efficient bitwise level data representation of input data and intents
of formal concepts to have the procedure as efficient as possible. The im-
plementation issues, bringing a cutting-edge performance of the algorithms,
have been clarified and addressed in Section 2.3.1.
We have also seen, in Section 2.3.2, that the overall performance efficiency of
the algorithms can be further increased by preprocessing input data prior to
actual computation by sorting and processing attributes in a proper order.
Namely, if processing input data with attributes sorted in the ascending
order according to their supports, i.e., the number of objects having the
attribute, canonicity tests of the algorithms tend to fail less frequently than
in case of data containing violations to this order. This indeed results in
decreasing the number of formal concepts computed multiple times.
Motivated by this observation, extended to successive attribute ordering
(i.e., not just once before the computation) and reduction of the processed
part of input data after each formal concept computation and listing, and
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combined with basic ideas of (the recursive version of) the CbO algorithm,
we came up with a conceptually novel approach to computing formal con-
cepts. The algorithm exploiting it, attribute sorting algorithm, has been
presented in Section 2.4. In terms of the number of formal concepts com-
puted multiple times, the algorithm further significantly outperforms the
algorithms from the CbO family, including CbO and even Fast CbO. The
number reduces down to a small fraction of the total number of computed
formal concepts, keeping the overall theoretical time complexity of the al-
gorithm the same as of the other CbO-family algorithms.

Some results from experimental evaluations of the performance and other
aspects of the summarized algorithms have been presented in Section 2.5,
with references to papers for more evaluations. Results from the evaluations
(not only those included but all we performed) show that our algorithms out-
perform almost all other algorithms for computing formal concepts from the
literature, often by magnitudes, even if well implemented. While those al-
gorithms can process in reasonable time (up to an hour on contemporary
commodity computers) data of size up to thousands to tens thousand of
objects and a hundred of attributes, our algorithms, properly implemented,
allow to process in reasonable time data of size one factor larger, i.e. going
to tens to hundreds thousand of objects and hundreds to thousands of at-
tributes. In fact, a single performance competitor algorithm up to date, to
our knowledge, is the InClose2 algorithm [4] recently developed by Andrews.
Let us also note that the FCbO algorithm, described in Section 2.2.3, be-
came the winner in a formal concepts computing performance competition
held within the conference ICCS 2009, one of the main conferences devoted
to FCA, in Moscow in 2009.

Our performance tuned implementations of all the algorithms, recursive
CbO, PCbO, FCbO, PFCbO, and the attribute sorting algorithm, includ-
ing all above described efficiency-related improvements, can be downloaded
from

fcalgs.inf.upol.cz.

There are many topics for future research which are outlined in our papers.
Here we list only the most interesting:

– optimizations of the algorithms and, in particular, used data structures
for sparse input data (density less than 5 %), which are common for
real datasets,

– mitigation of the worst-case time complexity estimation and the average-
case time complexity analysis of the algorithms,

– incremental (update) variants of the algorithms, i.e. variants comput-
ing (updating) the set of formal concepts of input data that grows

http://fcalgs.inf.upol.cz
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(object by object); actually, we already have the most recent results
on this topic, see [106, 107],

– extending the algorithms to compute the cover relation on the set of
formal concepts, i.e. the concept lattice, of input data; also on this we
already have the most recent results in [106, 107],

– (more) performance comparisons with various recently developed algo-
rithms for computing formal concepts and concept lattice, in particular
InClose2 [4] and Addintent [93],

– special variants of the algorithms focused to solve particular problems
related to FCA, e.g. factorization of binary (Boolean) matrices in
Boolean matrix factorization (BMF) [27]; actually, BMF by means
of FCA is utilized in Section 3.2 in Chapter 3 and the algorithm for
computing factors used there is such a variant (uses the fast procedure
for computing a single formal concept and the implementation uses the
performance efficient data structures),

– generalizations of the algorithms for data with more general attributes
than binary, e.g. graded (fuzzy) attributes.

The algorithms for computing formal concepts described in this chapter
have been presented at the main conferences devoted to FCA: CLA 2008
(PCbO), ICCS 2009 (FCbO) and CLA 2010 (FCbO, PFCbO), with publi-
cations in the conference proceedings. Extended versions of the respective
papers have been published in the Annals of Mathematics and Artificial
Intelligence (PCbO, attribute sorting algorithm) and Information Sciences
(FCbO).



Chapter 3

Applying formal concepts

3.1 Inducing decision trees via formal concepts

3.1.1 Introduction

In the second main part of the thesis we present two applications of formal
concepts and FCA, the first one in the area of classification of data, in
particular decision tree induction.

Decision trees and their induction is one of the most important and thor-
oughly investigated methods of machine learning [43, 120, 130]. Machine
learning is one of the major fields in artificial intelligence which concerns
with the development of methods and techniques that allow machines to
“learn”. Decision trees, being an efficient and most often used classification
models of data (with any type attributes), support machine learning in the
problem of decision making. A decision tree is typically used for a classifica-
tion of objects of data into a given set of classes based on attributes of the
objects. Due to this task, decision trees have also more descriptive names
of classification trees or regression trees in the case of discrete or continu-
ous class labels, respectively. For decision tree induction, or construction,
many algorithms have been proposed in the literature, see e.g. [122, 130]
for an overview. The best-known and most applied algorithms, ID3 and
C4.5 [120, 121], use local information about objects and their given classes
to decide which objects will be covered by a tree node being created in each
step during the construction of the tree.

This section is devoted to a novel method of decision tree induction from
data with binary attributes (or any type after a transformation to binary,
see a note below) utilizing certain formal concepts of input data as nodes of
the decision tree constructed from the data. Using formal concepts as nodes
of a decision tree is a straightforward idea because both formal concepts
and decision tree nodes represent collections (clusters) of objects in input
data defined by having the same values for certain attributes. A challenge,
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however, consists in how to select the right formal concepts for decision tree
nodes. Namely, one cannot directly use all formal concepts in the input data
along with their hierarchy, i.e. the concept lattice of the data (obviously)
without the least formal concept, as a decision tree induced from the data,
just because the concept lattice (without the least element) is not a tree,
in general. Nevertheless, one can attempt to consider the concept lattice
(without the least formal concept) as a collection of overlapping trees (see
[15, 16] for results on input data properties for the concept lattice without
the least element to be a tree). The selection of the formal concepts, and
thus the problem of construction of a decision tree, then can be reduced to
the problem of selection of one of those trees. Our method is, conceptually,
based on this idea, but, contrary to the cover relation on formal concepts
which usually is the output of algorithms for computing concept lattice, we
use a (partial order) relation on the set of computed formal concepts which
is in general larger than the cover relation.
To compute the formal concepts and the partial order relation we can use
a modified CbO algorithm described in Section 2.2.1, 2.2.2 or 2.2.3 with all
its advantages described in other sections of Chapter 2 (though, in [14], on
which this section is based, we use a modified Lindig’s NextNeighbor algo-
rithm). Experimental evaluation of our method indicates good classification
performance of the method, in that it compares to standard decision tree
induction and machine learning methods, outperforming some of them. The
method is briefly described in Section 3.1.3. Selected results from the ex-
perimental evaluation and comparison with the decision tree induction and
machine learning methods like ID3 or C4.5 on public real-world benchmark
datasets is included in Section 3.1.4. For a more detailed description and
more experiments, see [13, 14, 109].
It is important to note that the whole approach of utilizing formal con-
cepts, concept lattices and other instruments of FCA in machine learning
and classification, in particular, is not new. Means of FCA have already
been in various ways proposed in several machine learning methods in the
literature. A well-known approach utilizing particular formal concepts of
input data is described in [82] which presents a model of learning from pos-
itive and negative examples. Another approach of selecting neighbor formal
concepts in concept lattice for classification of unknown objects is presented
in [62]. Other approaches are presented, for instance, in [34], describing
GALOIS, a clustering method based on concept lattices, or in [92], where
the authors use FCA in their IGLUE method for selection and transfor-
mation of attributes which are then used to solve a decision problem by k-
nearest neighbor clustering. See [47] for a survey and comparison (in theory
and experiments) of several FCA-based classification algorithms which are
commonly called lattice-based or concept-based learning techniques in data
mining [45, 113]. According to these attempts the approach of utilizing for-
mal concepts and concept lattices in classification and machine learning in
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general seems promising.

Compared to these approaches, the main novelty of our method is in the
utilization of the closure properties of formal concepts and the partial order
relation on the set of formal concepts directly in the process of construction
of the decision tree. Unlike as a preprocessing step (prior to decision tree
construction, for instance) or a basis for a new machine learning method.
As discussed above, formal concepts and their order have many in common
with decision tree nodes and edges.

3.1.2 Preliminaries in decision trees

Before going to the description of our decision tree induction method, let
us very briefly recall decision trees basics. More thorough introduction to
decision trees and their induction can be found in any literature cited in the
end of this section.

In theory, a decision tree can be considered as a tree representation of a
function over variables which takes a finite number of values. The function
is partially described by assignment of function values to vectors of values
of the variables. In decision trees, function values are called class labels,
variables are called attributes and the vectors of values of variables repre-
sent records which we identify with objects. Such an assignment is usually
represented by a (data) table with rows corresponding to objects (records),
columns corresponding to attributes (variables) and for each object contain-
ing values of attributes and the class label (function value) assigned to the
object (usually given in the last column). For example, the data table (table
rows) in Figure 3.1 (top) partially describes a function f : A×B × C → D
over three variables A, B and C which take values good and bad (A), yes
and no (B) and true and false (C), respectively. The set D of function val-
ues consists of values yes and no. The decision trees depicted in Figure 3.1
(bottom) represent two functions, both of which are extensions of f .

In common depictions of decision trees as in Figure 3.1, each non-leaf tree
node of a decision tree is labeled by a (circled) attribute, called splitting
attribute for this node. Such node represents a test, according to which
the collection of objects covered by the node (all objects of data for the
tree root node) is split into v sub-collections which correspond to v possible
outcomes of the test. In the basic setting, the outcomes are represented
by values of the splitting attribute, thus a sub-collection contains objects
having the particular splitting attribute value. Tree edges connecting the
node with nodes corresponding to the sub-collections are labeled by the
values. Finally, leaf nodes of the tree, labeled by a (rectangled) class label,
represent collections of objects all of which, or the predefined majority of
which, have the (same) class label (the latter is a common practice used to
avoid the problem of insufficient generalization and “overfitting” of the tree,



52 Chapter 3. Applying formal concepts

A B C f(A,B,C)

good yes false yes
good no false no
bad no false no
good no true yes
bad yes true yes

B

C yes

no yes

no yes

false true

A

B C

no yes B yes

no yes

bad good

no yes false true

no yes

Figure 3.1: Decision trees (bottom) representing functions which are exten-
sions of the function f (top).

see below).

Having a data table partially describing an unknown function, the goal is
to construct a decision tree that approximates the function with a desired
accuracy. This means that for an object described by its attribute values,
the class label assigned by the decision tree to the object is the class la-
bel assigned to the object by the function. This is called a decision tree
induction problem. In the example above, both decision trees assign right,
i.e. according to the function they approximate, class labels to all objects
in the table. Thus, in practice, decision trees are used to classify objects
into classes based on class labels of the objects. A good decision tree is,
however, supposed to classify correctly not only the objects described by
the input data table, but also previously, during the decision tree induction
phase, “unseen” objects—that means to provide a good generalization of
classification. Commonly, the input data table is called a training data set ,
and the data table containing the unseen objects a testing data set . The
training data set is used to induce a decision tree and the testing data set
is then used to evaluate the performance and further use of the induced
decision tree. To provide a good generalization and avoid the problem of
“overfitting” [98] (“overlearning”), where the induced decision tree classifies
well (perfectly) the training data set but poorly the testing data set, the aim
is to induce a minimal possible tree (in the number of tree nodes) among
those which correctly classify the training data set, leaving room for the
generalization. The preference of smaller trees also intuitively follows from
the so-called Occam’s Razor principle according to which the best solution
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from equally satisfactory ones is the simplest one.

Many algorithms for induction of decision trees were proposed in the liter-
ature, see e.g. [100, 121, 122, 130]. A strategy commonly used consists of
constructing a decision tree in a top-down fashion, from the root node to the
leaves, by successively splitting existing nodes and creating new ones. I.e.,
following the description of decision trees above, in basic setting, for every
node, a splitting attribute is chosen to split the collection of objects covered
by the node into the sub-collections which correspond to values of the split-
ting attribute. For every such value, a new node is then attached as a child
to the node for which the splitting attribute has been chosen. The process
continues recursively until all objects corresponding to any (leaf) node, or
a predefined majority of them, belong to the same class. A critical point in
this strategy is the selection of splitting attributes. There have been pro-
posed many approaches for the selection. These include the well-known and
most often implemented approaches based on entropy measures, Gini index
and (mis-)classification error, implemented in the best-known decision tree
induction algorithms ID3 and C4.5 [120, 121], or other measures defined
in terms of the class distribution of objects before and after splitting, see
[100, 121, 122, 130] for overviews.

3.1.3 Decision tree induction method

In this section we summarize our method of decision tree induction. For
details, in particular a full description of the algorithm of the method with
a pseudocode of the algorithm, we refer to [14].

But before delving into the own description of the method, let us make
a small note on input data (attributes) type and its transformation. In
machine learning and classification (and in decision trees at particular), the
input data attributes are of various types, very often categorical one. To
utilize Formal concept analysis (FCA) with the input data, we need first
to transform the (categorical) attributes to binary attributes because, in its
basic setting, FCA works with binary attributes. A transformation of input
data which consists in substituting non-binary attributes by binary ones
which we use is the conceptual scaling [51], mentioned in the introduction
to Chapter 1. Obviously we need not transform the class labels assigned to
objects in input data because we compute formal concepts over attributes
only.

To illustrate the decision tree induction method described below, we will
use the input data from Figure 3.2 (top), borrowed from [14]. The data ta-
ble contains sample animals described by attributes body temperature, gives
birth, fourlegged, hibernates, and mammal, with the last column containing
class labels assigned to the animals. After an obvious transformation (nom-
inal scaling) of the attributes, we obtain the data depicted in Figure 3.2
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animal body temp. gives birth fourlegged hibernates mammal

cat warm yes yes no yes
bat warm yes no yes yes

salamander cold no yes yes no
eagle warm no no no no
guppy cold yes no no no

animal bt cold bt warm gb no gb yes fl no fl yes hb no hb yes mammal

cat 0 1 0 1 0 1 1 0 yes
bat 0 1 0 1 1 0 0 1 yes

salamander 1 0 1 0 0 1 0 1 no
eagle 0 1 1 0 1 0 1 0 no
guppy 1 0 0 1 1 0 1 0 no

Figure 3.2: Input data table (top) and corresponding data table for FCA
(bottom).

(bottom). In the following, the data will be in an obvious way formally
represented by a formal context 〈X,Y, I〉 (see Section 1.1). Formal concepts
utilized in the method are computed from data which we obtain after such
transformation and discard the class labels.

Step 1 – computing a partially ordered set of formal concepts
We can now approach the first step of our method of decision tree induction—
computing (and storing) formal concepts from input data and determining
our partial order relation on the concepts which we will use for the con-
structed decision tree. Recall that in a decision tree nodes cover some col-
lection of objects which is split creating other nodes which cover smaller
collections of objects. Similarly, for formal concepts and the partial order
relation on them modeling the subconcept-superconcept hierarchy (i.e. in a
concept lattice, cf. (1.3) in Section 1.1), smaller concepts (subconcepts) re-
sult by adding attributes to (the intent of) larger concepts (superconcepts)
and, due to this refinement, smaller concepts cover smaller collection of ob-
jects than larger concepts. Thus, for constructing a decision tree from input
data in a common top-down fashion we need an algorithm which iteratively
computes smaller formal concepts from a larger formal concept, starting
with the largest one (which covers all objects). Moreover, in a decision tree
collections of objects covered by nodes are split until the covered objects, or
the predefined majority of the objects, have the same assigned class label.
Hence, when computing smaller formal concepts we also need not refine for-
mal concepts which cover those objects (or the predefined majority of them)
that have the same class label.

Such an algorithm, which we used in [13, 14], is for instance the well-known
Lindig’s NextNeighbor [87] algorithm for computing concept lattice. The al-
gorithm is used in [13, 14] with the following required modifications. First,
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as noted above, we do not compute smaller formal concepts from a formal
concept which covers (whose extent contains) objects, or the predefined ma-
jority of the objects, that have the same class label. Second, contrary to the
original NextNeighbor algorithm which in its top-down version computes,
besides formal concepts, the cover relation on formal concepts, in our mod-
ification we compute a partial order relation on the set of computed formal
concepts which is in general larger than the cover relation. In cover relation,
formal concepts 〈A,B〉 (a larger one) and 〈(B∪{y})↓, (B∪{y})↓↑〉, y ∈ Y (a
smaller one) of 〈X,Y, I〉 need not be related (this happens if there is a con-
cept “in between” covered by 〈A,B〉 and covering 〈(B∪{y})↓, (B∪{y})↓↑〉).
As mentioned above, formal concepts correspond to nodes of the constructed
decision tree in our approach. Let yv ∈ Y be a binary attribute corre-
sponding to value va of a (categorical) attribute a of the original input
data, cf. the transformation of input data above. In our modified rela-
tion we need to relate with formal concept 〈A,B〉 all the formal concepts
〈(B ∪ {yv})↓, (B ∪ {yv})↓↑〉, for all yv, in order to keep the possibility of
having nodes nyv corresponding to the concepts, respectively, in the result-
ing decision tree. If a is the splitting attribute for node n corresponding to
〈A,B〉 in the decision tree, then 〈(B ∪ {yv})↓, (B ∪ {yv})↓↑〉 is the formal
concept corresponding to node nyv which is connected to n in the tree via
an edge. The concept results as an outcome of the test “what is the value
of a?” (the outcome is represented by value va of the splitting attribute a).
Interestingly, with such modification the NextNeighbor algorithm becomes
the recursive CbO algorithm described in Section 2.2.1 in which we refrain
from adding attributes in a fixed order and use instead of the CbO canonicity
test (cf. (2.1) in the section) the NextNeighbor ’s canonicity test (i.e. looking
only for the presence of computed formal concepts in a data structure where
the concepts are stored). As a “bonus”, by using such a modified (recursive)
CbO we can afford some of the advantages of our CbO-family algorithms
described in Chapter 2. Namely the performance efficient computation of
formal concepts 〈(B ∪ {y})↓, (B ∪ {y})↓↑〉 with attribute y added to (the
intent of) formal concept 〈A,B〉, the bitwise level representation of input
data and intents of formal concepts and the (almost) overhead-free scalable
parallelization of the computation of formal concepts (Parallel CbO).
A pseudocode of the modified NextNeighbor algorithm, which in fact would
be the same as the pseudocode of the modified (recursive) CbO algorithm,
can be found together with a description in [14].
The required formal concepts and our partial order relation on the concepts
computed from the data table in Figure 3.2 (bottom) are depicted in Fig-
ure 3.3, by means of part of the concept lattice. Note that the cover relation
on the concepts, displayed by solid lines in the figure, is a subset of our mod-
ified relation and the difference is displayed by dashed lines. The boldface
solid lines indicate the tree to be selected from a collection of overlapping
trees the concept lattice is considered as in our idea of the method (recall
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Figure 3.3: Part of the concept lattice and a tree of concepts (boldface solid
lines) of data table in Figure 3.2.

the introduction Section 3.1.1). The tree is going to be selected using a
procedure described in the following Step 2 of our decision tree induction
method.

Step 2 – selecting a tree of formal concepts
In this step we select a tree from the partially ordered set of formal concepts
computed in Step 1.
First, we calculate for each formal concept 〈A,B〉 computed in Step 1 the
number L〈A,B〉 of all of its smaller related formal concepts 〈(B∪{yv})↓, (B∪
{yv})↓↑〉 in our partial order relation. Note that each such related concept is
counted for each different attribute yv ∈ Y added to 〈A,B〉, cf. the rationale
behind the relation above. The numbers L〈A,B〉 can be computed already
together with computing the formal concepts and the relation in Step 1 (see
the pseudocode in [14]).
Furthermore, for every formal concept 〈A,B〉 we define collections N a

〈A,B〉
of formal concepts that are candidates to become the children of 〈A,B〉
in the selected tree. N a

〈A,B〉 is the collection of smaller formal concepts

〈(B∪{yv})↓, (B∪{yv})↓↑〉 related to 〈A,B〉 which result by adding a (binary)
attribute yv for every value v of (original) attribute a if the smaller concept
was computed in Step 1; otherwise N a

〈A,B〉 contains the least formal concept

〈Y ↓, Y 〉 in place of the smaller concept, and we put L〈Y ↓,Y 〉 =∞.
Next, we select a tree from the partially ordered set of formal concepts
computed in Step 1 by iteratively going from the largest formal concept to
the minimal ones. The selection is based on the numbers L〈A,B〉 defined
above.

(1) The root node of the tree is the largest formal concept 〈X,X↑〉.

(2) This step corresponds to selection of the splitting attribute. For every



3.1. Inducing decision trees via formal concepts 57

formal concept 〈A,B〉 in the tree we construct we select from among
all attributes of original input data the attribute a for which N a

〈A,B〉
contains a formal concept 〈C,D〉 with the smallest number L〈C,D〉. The
idea behind this rule is that a small value of L〈C,D〉 (the number of
smaller formal concepts related to 〈C,D〉) indicates, in the optimistic
scenario, a small number of subsequent decision steps in the resulted
decision tree necessary to classify objects from A provided we start
with a decision based on a, thus leading to a small decision tree (in
order to provide a good generalization of the tree, cf. the decision
trees preliminaries in Section 3.1.2).

In case of a tie, i.e. if L〈C1,D1〉 = L〈C2,D2〉 for some a1 6= a2 with
〈C1, D1〉 ∈ N a1

〈A,B〉 and 〈C2, D2〉 ∈ N a2
〈A,B〉, we select ai for which the

extent Ci is the largest (contains the largest number of objects). If
there is still a tie, we break it arbitrarily. The selected attribute a is
later used as the splitting attribute for the node of the resulted decision
tree that corresponds to formal concept 〈A,B〉.

(3) Finally, for every formal concept 〈A,B〉 in the tree and the attribute
a selected for 〈A,B〉 in (2) we connect 〈A,B〉 to each formal concept
〈C,D〉 from N a

〈A,B〉 by an edge labeled by a binary attribute y for

which D = (B ∪ {y})↓↑.

Again, a pseudocode of the just described algorithm that selects a tree from
the partially ordered set of formal concepts can be found in [14]. One can
find there also a step-by-step illustration of the description of the algorithm
on the partially ordered set of formal concepts (a part of the concept lattice)
presented in Figure 3.3. As noted above, the resulting selected tree of formal
concepts is depicted in Figure 3.3 by the boldface solid lines.

Step 3 – converting the tree of formal concept into a decision tree
The last step of our decision tree induction method is the conversion of the
tree of formal concepts into a decision tree. This step is straightforward.
We take the tree obtained in Step 2 and re-label its nodes and edges. An
inner node is labeled by the attribute (of original input data) selected in (2)
of Step 2 for this node. For example, when constructing a decision tree from
the tree depicted in Figure 3.3, the node corresponding to formal concept
No. 3 is labeled by gives birth. An edge going from a node is labeled by the
value of the attribute (of original input data) corresponding to the binary
attribute used as a label of this edge in (3) of Step 2. For example, the edge
labeled by gb no in Figure 3.3 is labeled by no in the resulting decision tree.
The last problem is labeling of leaf nodes. For a leaf node corresponding
to formal concept 〈A,B〉, the node is labeled by the class label which is
the class label of all, or the predefined majority of, objects from A. If a
leaf node n corresponds to the least formal concept 〈Y ↓, Y 〉 (which usually
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body temp.

gives birth no

no yes

warm cold

no yes

Figure 3.4: The decision tree induced from input data in Figure 3.2.

covers no objects), the node is labeled by the class label which would have
been assigned to the parent node of n as if it was a leaf node.

The resulting decision tree induced from the input data in Figure 3.2 (top)
which results by the conversion of the tree of formal concepts depicted in
Figure 3.3 is depicted in Figure 3.4.

3.1.4 Experimental evaluation

To illustrate the classification performance of the presented decision tree
induction method we include selected results from the experimental evalua-
tion and comparison of the method to reference decision tree induction and
other machine learning algorithms. The results were borrowed from [14],
where one can find more.

Before going to the evaluation, let us first note in this context that the algo-
rithm of our method is computationally more demanding than algorithms of
other existing decision tree induction and machine learning methods (includ-
ing those compared)—due to computing a possibly large number of formal
concepts. The overall asymptotic worst-case time complexity of the method
is thus given by the (partial order of) formal concepts computing step (Step 1
in the description of the method in Section 3.1.3), i.e. O(|X||Y |2|L|), where
|X| is the number of input data objects, |Y | is the number of binary at-
tributes after transformation from original input data attributes and |L| is
the number of computed formal concepts. However, for decision tree in-
duction, and classification algorithms in general, classification performance,
most typically given in terms of classification accuracy , i.e. the percentage
of correctly classified objects from both training and testing data sets, is
more important than induction time performance.

So, in short, we evaluated and compared our algorithm with decision tree
induction algorithms ID3 and C4.5 [120] (entropy, or more precisely, infor-
mation gain based), an instance based learning method (k-nearest neighbor
clustering, for k = 1 further denoted IB1 ), and a multilayer perceptron neu-
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Table 3.1: Classification accuracy for selected datasets (best results are in
boldface).

training %

testing %
“FCA based” ID3 C4.5 IB1 MLP

breast-cancer
88.631

79.560

88.630

75.945

86.328

79.181

84.887

71.901

88.550

79.939

kr-vs-kp
84.395

74.656

84.674

74.503

82.124

72.780

79.132

68.886

84.426

74.880

mushroom
96.268

96.284

97.517

96.602

97.163

96.671

96.556

95.214

97.234

95.992

spect
92.250

55.187

92.250

54.866

89.250

59.679

88.250

59.251

91.500

60.481

tic-tac-toe
98.991

85.197

100.000

80.519

95.165

78.539

100.000

83.262

100.000

97.827

vote
97.528

90.507

97.528

89.280

94.883

86.500

97.020

91.303

95.545

88.106

zoo
98.019

96.036

98.019

95.036

96.039

92.690

97.799

94.463

97.678

95.536

average
93.726

82.490

94.088

80.964

91.565

80.863

91.949

80.611

93.562

84.680

ral network trained by back propagation [98] (MLP) 1 on selected public
real-world datasets from the UCI Machine Learning Repository [102]. The
datasets are from various areas like medicine, biology, games, politics or
astronomy, basic characteristics of the datasets (numbers of objects, origi-
nal and transformed binary attributes and class labels distribution) can be
found in [14]. The selected results from experiments done using the 10-fold
stratified cross-validation test [70] are depicted in Table 3.1. The table shows
average percentage rates of correct classifications for both training (upper
number in the table cell) and testing (lower number) data sets for each algo-
rithm and dataset being compared, plus the average over all datasets. Bold-
face numbers denote the best results. Our method is called “FCA based” in
the table.

We can see that our decision tree induction method outperformed C4.5 and

1 The algorithms were borrowed and run from Weka [137] (Waikato Environment for
Knowledge Analysis, http://www.cs.waikato.ac.nz/ml/weka/), a software package that
contains implementations of machine learning and data mining algorithms in Java. Default
Weka’s parameters were used for the algorithms.

http://www.cs.waikato.ac.nz/ml/weka/
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IB1 and gains almost identical results to ID3 and MLP on training data
sets of all datasets. On the testing data sets, which is more important from
the point of view of the evaluation, this is also the case with some exceptions
for which MLP outperformed all of the compared methods. We refer to [14]
for a more thorough discussion of the evaluation and comparison, also with
further datasets. Anyway, the obtained results are very promising, it seems
that our method outperforms instance based (k-nearest neighbor clustering)
learning methods (IB1 ) and that it is able to provide better results than
traditional decision tree induction, entropy based, methods (ID3, C4.5 ) and
even neural network methods (MLP) on clear dense data. However, we are
fully aware that more experiments on more datasets, with further decision
tree induction and machine learning algorithms and methods, and also using
more informative classification measures than accuracy taking into account
also incorrect classifications (like F-measure, for instance), are needed to
approve those conclusions.

3.1.5 Summary and topics for future research

We have presented a novel method of decision tree induction based on for-
mal concept analysis. The method implements a straightforward idea of
utilizing certain formal concepts of input data as nodes of the decision tree
constructed from the data. The problem of selection of the formal concepts,
which determines the selection of splitting attributes of the tree, is resolved
by a heuristic based on the numbers of smaller formal concepts in a particu-
larly defined partial order relation on all formal concepts of the input data.
The intuition behind the method is to look at a part of the concept lattice of
input data as a collection of overlapping trees and select one of those trees
as the decision tree. To compute formal concepts (and the partial order)
we can use some of the modified CbO algorithms described in Sections 2.2.1
to 2.2.3. The experimental evaluation and comparison to standard decision
tree induction and machine learning methods indicates good classification
performance. According to selected results in Section 3.1.4, our method out-
performs an instance based learning method (k-nearest neighbor clustering)
and is comparable to entropy-based decision tree induction algorithms ID3
and C4.5 .

The main novelty of our method, compared to existing approaches utilizing
FCA in classification and machine learning, is in the utilization of the closure
properties of formal concepts and the relationships between the concepts (in
terms of the partial order relation on the concepts) directly in the process
of construction of the decision tree.

At present state, the method requires, for the selection of splitting attributes
of the decision tree, to compute a possibly large number of formal concepts
and the partial order relation on the concepts while only a smaller number
of computed concepts is subsequently selected to form the induced decision
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tree. This can be seen as a bottleneck of the method (also from the point
of view of time performance). But, on the other hand, once one already
has the partial order set of the formal concepts computed (which is a part
of the concept lattice), the selection of those concepts forming the decision
tree is fast. This draws a possible perspective on using the method: decision
tree induction and classification from already available concept lattices. The
advantage over other methods would be the conceptual information hidden
in the tree nodes (which are in fact formal concepts). Such information is
not (directly) available by other methods.

There is obviously a lot of topics for future research, see [14] for more than
the following selected:

– theoretical research on the relationships between formal concepts and
decision tree nodes and a (partial order) relation on concepts and a
decision tree itself, with en emphasis to the problem of selection of
splitting attributes to explain the results of experiments and to further
interpret the decision tree regarding the conceptual information hidden
in its nodes,

– possibility to compute a smaller number of formal concepts from which
the concepts constituting nodes of the decision tree are selected, i.e.
to predict the number of smaller concepts to a given formal concept
used in the selection,

– incremental update of the induced decision tree via incremental update
algorithms of computing formal concepts or concept lattice of data
which grows (object by object),

– more experiments on more datasets, with further decision tree induc-
tion and machine learning algorithms and methods, to approve conclu-
sions from experimental evaluation and comparison in Section 3.1.4,

– dealing with incomplete and noisy data, i.e. data having missing or
wrong values of some attributes for some objects or having conflict-
ing class labels assigned to objects (sharing the same values of all
attributes),

– tackling the problem of overfitting of the induced decision tree to a
training data set—a common solution used is pruning the tree [120,
121, 122, 129], which means omitting some parts of the tree.

The decision tree induction method described in the above sections has been
presented at conferences devoted to FCA and machine learning, CLA 2007
and EMCSR 2008, with publications in the conference proceedings. The
extended version of the respective papers has been published in the Int.
Journal of General Systems.
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3.2 Feature extraction using Boolean matrix fac-
torization by means of FCA

3.2.1 Introduction

The second presented application of formal concepts and FCA concerns
feature extraction (construction) problem where the application is through
Boolean matrix factorization approached by means of FCA.

When applying a data mining or machine learning method, input data is
often subject to some sort of preprocessing before the data is processed by
the method. Usually to “help” the particular method to achieve better re-
sults [36, 43, 120, 130]. The quality of results provided by the methods
heavily depends on the quality of input data description. In case of object-
attribute relational data objects are described by attributes. Clearly, better
attributes describing the objects lead to better results from a data mining
and machine learning method. The general aim in input data preprocessing
is to create, or extract, from the data (more precisely from various rela-
tionships, dependencies or hidden patterns in the data) new attributes that
extend or even substitute the set of original attributes. The new attributes
should better describe the objects in data than the less descriptive original
attributes. Usually there is a less number of the new attributes than the
original ones, which means a reduction of dimensionality of data. Here, a
natural question arises, whether the reduced number of new attributes can
better describe the input data or not. The methods of extraction or con-
struction of the new attributes, called features in this area, are called feature
extraction, or feature construction, methods [89, 57, 90].

Formal concept analysis (FCA) has often been proposed to be used for input
data preprocessing [133, 97] but, interestingly, never as a feature extraction
method. In this application, FCA can be utilized in a way that certain formal
concepts are used to define new attributes which then describe objects in
place of the original attributes. A key point is (again, cf. the Section 3.1
on using formal concepts as decision tree nodes) in the selection of the
concepts. In the method which we are going to present below the selected
formal concepts are concepts that correspond to so-called (Boolean) factors
produced by a recently proposed method of Boolean matrix factorization
based on FCA [27, 28]. This is a novel approach in which the factors can
be considered as particular conjunctions of original attributes. The factors
themselves are used as new attributes to describe objects, either extending
the set of original attributes or substituting the original attributes. The
latter usually means the reduction of dimensionality of data since the number
of factors is usually smaller than the number of the original attributes [8].
Our method is briefly described in Section 3.2.3, the full description can be
found in [108, 110].
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A data mining or machine learning method which is very often used in the lit-
erature for existing feature extraction/construction methods to demonstrate
and evaluate the methods is decision tree induction. Hence we followed this
choice and, in fact, adapt the Boolean matrix factorization for the factors
to play the role of new attributes right in the decision tree induction. In an
experimental evaluation of our method, where we compared classification
performance of the reference decision tree induction methods ID3 and C4.5
on the original and preprocessed public real-world benchmark datasets, we
obtained good results of the method in that the performance was better for
the preprocessed data than for the original data. See Section 3.2.4 for a
selection of the results which are summarized in [108, 110].

In the literature, the most relevant to our method are methods known as
constructive induction [94, 128]. Here, new compound attributes are con-
structed from original attributes as logical conjunctions and/or disjunctions
of the attributes [112] or as combinations using arithmetic operations [114],
or the new attributes are expressed in the m-of-n form [99]. Consider-
ing decision trees as the target data mining or machine learning method
after preprocessing, oblique decision trees [60, 101] are also connected to
our approach—in a sense that multiple original attributes are used as a
compound splitting attribute (see Section 3.1.2 for the notion of splitting
attribute) instead of a single attribute at a time. Typically, linear combina-
tions of attributes are sought, see e.g. [32, 132]. However, in comparison to
evaluating a single attribute to be good splitting attribute, it is quite com-
putationally challenging to find and evaluate groups of original attributes
to form a good compound splitting attribute.

Regarding FCA and concept lattices, there have been several FCA-based
approaches on construction of a whole learning (most often classification)
model, e.g. [82] or [92], see [47] for a survey and comparison. They are com-
monly called lattice-based or concept-based machine learning approaches [45,
113] (cf. also Section 3.1.1). But, as mentioned above, the usage of FCA to
create or extract from input data some new (compound) attributes better
describing the objects is discussed very marginally or not at all in existing
papers.

3.2.2 Preliminaries in Boolean matrix factorization in terms
of FCA

In order to describe our method of feature extraction we first have to briefly
introduce basics of Boolean matrix factorization problem, on which the
method is based, and how it is solved by means of FCA. Necessary are
also transformations between (original) attribute and factor (new attribute)
spaces, described in Section 3.2.2, to be able to describe by factors objects
originally described by attributes and vice-versa.
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Boolean Matrix Factorization (BMF), also referred to as Boolean Factor
Analysis (BFA) or factor analysis of binary (Boolean) data, is a Boolean
(binary) matrix decomposition method which provides a representation of
an object-attribute binary data matrix (a matrix with entries 0 or 1) by a
Boolean product of two different binary matrices, one describing objects by
new attributes called factors, and the other describing factors by the original
attributes [59, 65].

Stated as a problem, the aim of BMF is to find a decomposition

I = A ◦B (3.1)

of a n×m binary matrix I into a Boolean product A ◦B of an n× k binary
matrix A and a k ×m binary matrix B with k as small as possible. Thus,
instead of m original attributes, one aims to find k new attributes, called
factors. A Boolean product A ◦B of binary matrices A and B is defined by

(A ◦B)ij =
k

max
l=1

min(Ail, Blj).

The inner dimension, k, in the product may be interpreted as the number
of factors that are used as new attributes to describe the original data.
Namely, Ail = 1 means that factor l applies to object i and Blj = 1 means
that attribute j is one of the manifestations of factor l. The factor model
behind ((3.1)) has therefore the following meaning: The object i has the
attribute j if and only if there exists a factor l that applies to i and j is one
of the manifestations of l. As an example,




1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1


 =




1 0 0 1
1 0 1 0
1 1 0 0
0 0 1 0


 ◦




1 1 0 0 0
0 0 1 1 0
1 0 0 0 1
0 1 0 0 0


.

We refer to [27] for further information and references to papers that deal
with the problem of factor analysis and decompositions of binary matrices.

Recently, a solution to the problem of finding the decomposition (3.1) with
the number k of factors as small as possible was described in [27, 28] by
means of formal concept analysis. The description lies in an observation
that matrices A and B can be constructed from a set F of formal concepts
of matrix I, considered as formal context 〈X,Y, I〉 (see Section 1.1), where
X = {1, . . . , n}, Y = {1, . . . ,m} (objects and attributes of the context
correspond to the rows and columns of I) and binary relation I of the context
corresponds to matrix I in an obvious way. In particular, let

F = {〈C1, D1〉, . . . , 〈Ck, Dk〉} (3.2)

be a set of formal concepts of 〈X,Y, I〉, a subset of the set B (X,Y, I) of all
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formal concepts of 〈X,Y, I〉. Consider the n × k binary matrix AF and a
k ×m binary matrix BF defined by

(AF )il = 1 iff i ∈ Cl and (BF )lj = 1 iff j ∈ Dl, (3.3)

i.e. the l-th column (AF ) l of AF consists of the characteristic vector of Al

and the l-th row (BF )l of BF consists of the characteristic vector of Bl.
Denote by ρ(I) the smallest number k, so-called Schein rank of I, such that
a decomposition of I exists with k factors. The following theorem shows
that using formal concepts as in ((3.3)) enables us to reach the Schein rank,
i.e. is in this sense optimal:

Theorem 3 ([27]) For every binary matrix I, there exists F ⊆ B (X,Y, I)
such that I = AF ◦BF and |F| = ρ(I).

Formal concepts F in the theorem are called factor concepts. Each factor
concept determines a factor. For a constructive proof of the theorem we refer
to [27]. As it has also been demonstrated in [27], a useful feature of using
formal concepts for determining factors is the fact that formal concepts
may be easily interpreted. Namely, every factor, by means of a formal
concept 〈Cl, Dl〉, consists of a set Cl of objects (formal concept extent) the
factor applies to, a set Dl of attributes (formal concept intent) which are
manifestations of the factor and Cl contains just the objects to which all the
attributes from Dl apply and Dl contains just all attributes shared by all
objects from Cl (cf. the closure property of formal concepts in Section 1.1).
The factors thus have a natural, easy to understand meaning.
Note that the problem of finding the set of factors (factor concepts of
〈X,Y, I〉) the size of which equals the Schein rank of I is NP-hard (which
can be shown e.g. by reduction to the set covering optimization problem).
Due to that a greedy approximation algorithm for finding the factors was
proposed in [27], denoted as Algorithm 2 there. This algorithm is used
for finding factors (factor concepts) in our method of feature extraction in-
troduced in [110] and summarized, after the following necessary note, in
Section 3.2.3.

Transformations between attribute and factor spaces

For an object we can consider its representations in the m-dimensional
Boolean space {0, 1}m of (original) attributes and in the k-dimensional
Boolean space {0, 1}k of factors. For an object-attribute matrix I and an
object-factor matrix A, in the space of attributes, the vector representing ob-
ject i is the i-th row of I, and in the space of factors, the vector representing
i is the i-th row of A.
Natural transformations between the space of attributes and the space of
factors is described by the mappings g : {0, 1}m → {0, 1}k and h : {0, 1}k →
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{0, 1}m defined for P ∈ {0, 1}m and Q ∈ {0, 1}k by

(g(P ))l =
m

min
j=1

(Blj → Pj), (3.4)

(h(Q))j =
k

max
l=1

min(Ql, Blj), (3.5)

for 1 ≤ l ≤ k and 1 ≤ j ≤ m. Here,→ denotes the truth function of classical
implication logical operation (1 → 0 = 0, otherwise 1). (3.4) says that the
l-th component of g(P ) ∈ {0, 1}k is 1 if and only if for every attribute j,
Pj = 1 for all positions j for which Blj = 1, i.e. the l-th row of B is included
in P . (3.5) says that the j-th component of h(Q) ∈ {0, 1}m is 1 if and
only if there is factor l such that Ql = 1 and Blj = 1, i.e. attribute j is a
manifestation of at least one factor from Q.
And, if the decomposition I = A ◦ B uses formal concepts for determining
factors, we have:

Theorem 4 ([27]) For i ∈ {1, . . . , n},

g(Ii ) = Ai and h(Ai ) = Ii .

That is, g maps the rows of I to the rows of A and vice versa, h maps the
rows of A to the rows of I.

For other results showing properties and describing the geometry behind the
mappings g and h, see [27].

3.2.3 Boolean factors as new attributes

We can now summarize our feature extraction method which utilizes Boolean
matrix factorization based on FCA.

Note first that, as indicated in the introduction section 3.2.1, the machine
learning method which we will use to demonstrate and evaluate the method
is decision tree induction and in classification, input data attributes of var-
ious types are used (often categorical, as previously noted in Section 3.1.3).
So, in order to utilize Boolean matrix factorization (BMF, and FCA as a
matter), we again need to apply a transformation of such attributes to binary
attributes. The transformation applied is again the conceptual scaling [51]
and as well we need not transform the class labels assigned to objects be-
cause we deal with attributes (only) in the feature extraction preprocessing
of data. BMF, by means of FCA, which we use in our method is applied on
data which we obtain after such transformation.
The approach utilized in our feature extraction method consists in using
as new (additional or substituting) attributes Boolean factors obtained by
Boolean matrix factorization based on FCA. Hence the Boolean (binary)
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matrix decomposition of input data table is performed as a key part of the
method. As noted in Section 3.2.2, the algorithm which we use (in [108, 110])
for the decomposition is the greedy approximation algorithm from [27], de-
noted as Algorithm 2 there, which computes factors as formal concepts
(factor concepts). However, the criterion of optimality of computed fac-
tors (factor concepts) utilized in the greedy heuristic search for factors in
the algorithm is modified in our application. In short, the algorithm (and
other binary matrix decomposition algorithms often too) applies a greedy
heuristic approach to search in the space of all formal concepts for concepts
which cover the largest area of still uncovered 1s in the input data table. The
criterion function of optimality of a factor is thus the “cover ability” of the
factor concept determining the factor, in particular the number of uncovered
1s in the input data table which are covered by the concept, see [27]. For
further use, we translate the function value to interval [0, 1] (with the value
of 1 meaning the most optimal) by dividing the value by the total number of
still uncovered 1s in the input data table. However, since we use the factors,
as new attributes, to aid a machine learning method, the decision tree in-
duction in particular, we additionally attempt to look for factors which also
have good “decision ability”, i.e. that the factors are good candidates to be
splitting attributes in a decision tree. Thus, in the modified decomposition
algorithm, we use a combination of the two criteria into a combined criterion
function of optimality of factors (factor concepts).

Let I ⊆ X × Y be our input data table describing objects X = {1, . . . , n}
by binary attributes Y = {1, . . . ,m}. The combined criterion function c :
2X×Y → [0, 1] of optimality of factor concept 〈A,B〉 (of 〈X,Y, I〉) is defined
as:

c(〈A,B〉) = w · cA(〈A,B〉) + (1− w) · cB(〈A,B〉), (3.6)

where cA(〈A,B〉) ∈ [0, 1] is the (original) criterion function of “cover abil-
ity” of factor concept 〈A,B〉, cB(〈A,B〉) ∈ [0, 1] is a new criterion func-
tion of “decision ability” of factor concept 〈A,B〉 and w is the weight of
preference (given by user) among the functions cA and cB. Now, we have
introduced above the function cB as to be a measure of merit of a factor,
determined by a factor concept, as a splitting attribute. In decision trees,
common approaches to the selection of splitting attribute are based on en-
tropy measures, as mentioned in Section 3.1.2 on decision tree preliminaries.
Basically, in those approaches, an attribute is the better splitting attribute
for a current collection of objects the lower is the weighted sum of entropies
of sub-collections of objects obtained after splitting the current collection of
objects based on the attribute. We thus design the function cB to resemble
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


0 1 0 1 0 1 1 0
0 1 0 1 1 0 0 1
1 0 1 0 0 1 0 1
0 1 1 0 1 0 1 0
1 0 0 1 1 0 1 0




=




0 0 1 0 0 1
0 0 1 0 1 0
0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0



◦




0 1 1 0 1 0 1 0
1 0 0 1 1 0 1 0
0 1 0 1 0 0 0 0
1 0 1 0 0 1 0 1
0 1 0 1 1 0 0 1
0 1 0 1 0 1 1 0




Figure 3.5: Boolean matrix decomposition of example input data from Fig-
ure 3.2.

this:

cB(〈A,B〉) = 1−
(
|A|
|X| ·

E(class|A)

− log2
1

|V (class|A)|
+
|X \A|
|X| ·

E(class|X \A)

− log2
1

|V (class|X\A)|

)
,

(3.7)

where V (class|A) is the set of class labels assigned to objectsA and E(class|A)
is an entropy measure of objects A over the class labels. As an entropy mea-
sure, we use the classical Shannon’s entropy:

E(class|A) = −
∑

l∈V (class|A)

p(l|A) · log2 p(l|A), (3.8)

where p(l|A) is the fraction of objects A which are assigned with class label
l. Note that the formula − log2

1
|V (class|A)| in (3.7) represents the maximal

possible value of (Shannon’s) entropy of objects A in the case the class
labels V (class|A) are assigned to the objects evenly and the purpose of it
is to normalize the value of cB to interval [0, 1]. Note also that we consider
0
0 = 0 in calculations in 3.7.

To illustrate our BMF-based feature extraction method, let us consider I as
a n×m binary matrix and find a decomposition I = A◦B of I into the n×k
matrix A describing objects by factors F = {f1, . . . , fk} and k ×m matrix
B explaining factors F by attributes. The decomposition of the example
data in Figure 3.2 (top, page 54, introduced in Section 3.1.3 on the decision
tree induction method via formal concepts), for the new criterion function
of optimality of factors (factor concepts) and any value of the weight w
discussed above, is depicted in Figure 3.5.

When extending the set Y of original attributes with factors F as new
attributes, the set Y ′ of attributes of the extended data is Y ∪ F and the
extended data table I ′ ⊆ X × Y ′ is the apposition of the original data table
and the table representing the matrix A describing objects by factors, i.e.
I ′ ∩ (X × Y ) = I and I ′ ∩ (X × F ) = A. The extended data table for our
example data is illustrated in Figure 3.6.

When substituting the set Y of original attributes by factors F as new
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animal bc bw gn gy fn fy hn hy f1 f2 f3 f4 f5 f6 mammal
cat 0 1 0 1 0 1 1 0 0 0 1 0 0 1 yes
bat 0 1 0 1 1 0 0 1 0 0 1 0 1 0 yes

salamander 1 0 1 0 0 1 0 1 0 0 0 1 0 0 no
eagle 0 1 1 0 1 0 1 0 1 0 0 0 0 0 no
guppy 1 0 0 1 1 0 1 0 0 1 0 0 0 0 no

Figure 3.6: Extended data table for example input data from Figure 3.2.

body temp.

gives birth no

no yes

warm cold

no yes

f3

yes no

1 0

Figure 3.7: Decision trees induced from original data table in Figure 3.2
(left) and from the data table in Table 3.6 (right), either full or restricted
to factors only.

attributes, the set Y ′ of attributes of the substituted data is the set F of
factors and the substituted data table I ′ ⊆ X × Y ′ is the table representing
the matrix A describing objects by factors. Obviously, this data table for
our example data in Figure 3.2 is the table illustrated in Figure 3.6 restricted
to the factors f1, . . . , f6.

Now, to evaluate the factors as new attributes, a decision tree is induced
from the new (extended or substituted) data table I ′ ⊆ X×Y ′ instead of the
original data table I. The class labels assigned to objects in the new data
table remain unchanged in the case of the extended data table, in the case
of the substituted data table see a note below. In our example, a decision
tree induced from the data table in Figure 3.6 (either full or restricted to the
factors f1, . . . , f6, the induced trees are the same) is depicted in Figure 3.7
(right). For the purpose of comparison, a decision tree induced from the
original data table from Figure 3.2 is depicted in Figure 3.7 (left). We can
see that objects from the new data table containing (also) factors as new
attributes can be classified by a single attribute, namely, the factor f3. The
manifestations of the factor are the original attributes bt warm and gb yes,
hence, the factor f3, as a particular conjunction of the two attributes, is
better splitting attribute in decision tree induction from the data than the
two original attributes alone.

When classifying an object x described by (original) attributes Y as a vector
Px ∈ {0, 1}m in the space of attributes, we need first to transform the
description of x to the space of factors F as a vector g(Px) ∈ {0, 1}k by
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mapping (3.4). In the mapping, matrix B explaining factors by original
attributes is used. Then the object described by concatenation of Px and
g(Px) (in the case of extending the set of attributes by factors) or by g(Px)
alone (in the case of substituting attributes by factors) is classified by the
decision tree in a usual way.

Note that in the case of substituting the original attributes by factors we
need to resolve the following important issue. Since the number of factors is
usually smaller than the number of original attributes (and the substitution
then leads to the reduction of dimensionality of data as mentioned in the
introduction section 3.2.1), the transformation of input data objects from
the attribute space to the factor space described in Section 3.2.2 is not an
injective mapping. Namely, for two distinct objects x1, x2 ∈ X with different
attribute values, i.e. described by different vectors in the space of attributes,
Px1 6= Px2 , which have different class labels assigned, class(x1) 6= class(x2),
the representation of both x1, x2 by vectors in the factor space might be the
same, g(Px1) = g(Px2).

To cope with this situation, at present [108, 110] we adopt a common ap-
proach used in decision tree induction to avoid overfitting of data or to
cope with noise and/or discrepancies in data—namely, a class label which
we assign to each object x ∈ X in the new data table I ′ (where objects
are represented in factor space) is the majority class label of objects in the
original data table I (represented in attribute space) which are mapped (by
mapping (3.4)) to the (same) object x. I.e. we assign the class label which
is assigned to the most of the objects.

3.2.4 Experimental evaluation

Here we briefly illustrate the impact of preprocessing the input data by our
feature extraction method, by presenting selected results obtained from an
experimental evaluation of the method borrowed from [110].

In the evaluation we compared classification performance of the reference
decision tree induction methods ID3 and C4.5 [120] on original input data
and on the same, preprocessed, data after substituting original attributes
by factors computed using Boolean matrix factorization based on FCA as
described in the previous Section 3.2.3. 2 The data we used are the selected
public real-world datasets from the UCI Machine Learning Repository [102],
from various areas like medicine, biology, games or politics; the basic char-
acteristics of the datasets (numbers of objects, original and transformed
binary attributes and class labels distribution) can be found in [110]. An
illustrative sample of results from experiments done using the 10-fold strat-
ified cross-validation test [70] are depicted in the tables in Table 3.2. The

2 The algorithms were again borrowed and run from Weka [137], see the footnote at
page 59.
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Table 3.2: Classification accuracy increase for selected datasets, for factor
selection set to “cover ability” (top table) and to “decision ability” (bottom
table) of a factor concept.

breast-cancer kr-vs-kp mushroom tic-tac-toe vote average

ID3
+2.0 %
+15.9 %

0 %
−0.7 %

0 %
0 %

0 %
+12.3 %

0 %
−0.7 %

+0.4 %
+5.36 %

C4.5
+3.1 %
−1.1 %

−0.2 %
−0.6 %

0 %
0 %

+2.8 %
+9.2 %

−0.2 %
−0.6 %

+1.1 %
+1.38 %

breast-cancer kr-vs-kp mushroom tic-tac-toe vote average

ID3
+2 %

+15.3 %
0 %
0 %

0 %
0 %

0 %
+15.7 %

0 %
+1.7 %

+0.4 %
+6.54 %

C4.5
+4.7 %
+3.5 %

0 %
−0.2 %

0 %
0 %

+3.3 %
+13.8 %

0 %
+0.7 %

+1.6 %
+3.56 %

tables show average increase in classification accuracy of decision trees in-
duced from the preprocessed data (with original attributes substituted by
factors) compared to decision trees induced from the original data, for both
training (upper number in table cells) and testing (lower number) data sets
for each algorithm and dataset being used, plus the average over all datasets.
The top table shows the numbers for the case the criterion function of op-
timality of factors (see the description of the factor concept selection in
Section 3.2.3) was set entirely to the criterion function of “cover ability” of
a factor concept (cA in the description), i.e. the original criterion of the used
algorithm [27] for computing factors. This corresponds to setting w = 1 in
the formula (3.6) of the combined criterion function. For the bottom table,
we set w = 0 in (3.6), i.e. the criterion function of optimality was set en-
tirely to our new criterion function of “decision ability” described (as cB) in
Section 3.2.3. This means that factors were selected just to be good splitting
attributes in a decision tree based on an entropy measure.

We can clearly see that, while inducing at average slightly better (almost
never worse) decision trees on training data sets, the decision tree induction
methods induce at average significantly better decision trees, i.e. achieve
higher classification accuracy, on testing data sets for datasets preprocessed
by our feature extraction method where original attributes of a dataset were
substituted by factors. For instance, ID3 has better classification perfor-
mance by 5.36 % for the criterion function of optimality of factors set to
“cover ability” of the determining factor concepts, while for the criterion
function of optimality set to our new criterion function of “decision abil-
ity” the performance is better by 6.54 %. More results from the evaluation
with more datasets and machine learning methods other than decision trees
can be found in [108, 110]. Let us only note that, according to our exper-
iments, the results for extending the set of original attributes with factors
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instead of substituting them are very similar, with ±1 % difference at aver-
age. This suggests that the decision tree induction from data with factors
added as new additional attributes to the original attributes uses merely the
factors as splitting attributes rather that the original attributes during the
construction of a decision tree.

3.2.5 Summary and topics for future research

We have presented a novel feature extraction (construction) method apply-
ing Boolean matrix factorization (BMF) based on formal concept analy-
sis [27]. In the method, new input data attributes (features) are extracted
(constructed) as factors represented by selected formal concepts, which is
the main novelty of the method. In the input data preprocessing usage,
i.e. before the data are processed by some data mining or machine learning
method, the factors, as new attributes, are used either to extend or sub-
stitute the set of original attributes. In the latter case it usually means
reduction of dimensionality of the input data since the number of factors
is usually smaller than the number of original attributes. For computing
the formal concepts representing factors we use the algorithm from [27] in
which the criterion of optimality of factors was additionally modified for
the factors being used as new attributes for classification. The algorithm
is also implemented using the single formal concept computation and data
representation advantages described in Chapter 2.

As a data preprocessing step, the method was demonstrated on a classifica-
tion problem represented by decision tree induction and experimental eval-
uation indicated usefulness of such preprocessing of data. Namely, decision
trees induced from preprocessed data (with original attributes either ex-
tended or substituted by factors) outperformed decision trees induced from
the original data, for two standard (entropy-based) decision tree induction
methods ID3 and C4.5 . This is true especially when factors were selected
in the BMF algorithm based on a particular entropy measure. Using the
factors instead of, or in addition to, the original attributes thus leads to
improving the classification performance.

Topics for future research include:

– better solving the issue of mapping distinct objects in original input
data to the same object in preprocessed data created by substituting
the original attributes by a smaller number of factors, as described
in Section 3.2.3—the idea is to further modify the criterion function
of optimality of factors in such a way that the resulting collection of
factors is good if the number of such mapping cases is low,

– theoretical research on the role of factors as new attributes in the ma-
chine learning methods, particularly decision tree induction, to explain
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the results of experiments, with a focus to design better criterion func-
tion of optimality of factors for the methods to improve their results;
e.g. inspect and use more advanced (entropy-based) measures utilized
in decision tree induction,

– evaluation of the usage of approximate matrix decomposition in BMF
instead of exact; actually, the topic of utilizing approximate BMF
(described in terms of FCA) for data dimensionality reduction from a
data mining point of view is studied in [75],

– dynamic adjustment of the weight among the several criterion func-
tions of optimality of factors combined to create the final function
during factor computation (see Section 3.2.3) based on measuring and
evaluating the factor optimality indicators (“cover ability”, “decision
ability”, number of the mappings of distinct objects to the same object
and other) – the idea is to suppress the negative indicators first and
then boost the positive ones,

– evaluation of impact on the quality of classification of the various BMF
methods from the literature, other than the used one from [27]; actu-
ally, some advancements in this topic may be found in our recent
papers [19, 20],

– more experiments on more datasets, with further machine learning
algorithms and methods, to justify the results of present experiments;
there are more datasets and machine learning methods in experiments
in [20].

The feature extraction method described in the above sections has been
presented at conferences devoted to FCA and machine learning, CLA 2010,
ICMLA 2010 and CLA 2012, with publications in the conference proceed-
ings. The extended version of the last of the respective papers has been
published in the Annals of Mathematics and Artificial Intelligence.





Conclusion

This thesis presents selected results obtained by the author at the Depart-
ment of Computer Science, Palacký University Olomouc, during years 2007–
2012 (with remarks to further results from years 2013–2014), on the algo-
rithms and applications of formal concept analysis (FCA)—a modern and
intensively studied method for mining and analysis of object-attribute rela-
tional data, which enjoys an increasing interest and popularity in a growing
number of communities.

Although FCA is nowadays a well-established and elaborated method with
strong mathematical foundations, the current algorithms for computing for-
mal concepts, the basic units of mined and analyzed data in the method,
developed within FCA community are sufficient for middle-size data and
their performance for large-scale data is not satisfactory. Therefore, in
Chapter 2, we presented new performance efficient algorithms for computing
formal concepts, which outperform almost all other known algorithms for
computing formal concepts from the FCA literature, often by magnitudes,
and allow to process large-scale data in a reasonable time. The algorithms
are fully comparable, regarding the performance, with existing data mining
algorithms.

During its development, FCA has also been applied in many fields. Among
others, the usefulness of application of FCA has been demonstrated in the
literature in classification and it is also very often used in data mining as a
preprocessing method. In Chapter 3 we presented our contributions to appli-
cations of FCA in those two fields. First, by development of a novel decision
tree induction method which utilizes formal concepts in the construction of
decision tree and indicates good classification performance. Second, by uti-
lizing formal concepts through Boolean matrix factorization based on FCA,
in a novel feature extraction method capable of reducing the dimensionality
of data and, evaluated on classification, improving classification results for
preprocessed data over for the original data.

The presented research on the algorithms and applications of FCA is by no
means finished. We have many topics for further development in both direc-
tions. Some were listed in the summaries of the corresponding chapters and
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sections. Moreover, there are other directions of development and usage of
FCA and related methods studied at the Department of Computer Science,
Palacký University Olomouc, in which the author has also contributed in
the past and which are being further developed.
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Abstract. This paper presents a parallel algorithm for computing for-
mal concepts. Presented is a sequential version upon which we build the
parallel one. We describe the algorithm, its implementation, scalability,
and provide an initial experimental evaluation of its efficiency. The algo-
rithm is fast, memory efficient, and can be optimized so that all critical
operations are reduced to low-level bit-array operations. One of the key
features of the algorithm is that it avoids synchronization which has
positive impacts on its speed and implementation.

1 Introduction

In this paper, we focus on extracting formal concepts, i.e. particular rectangular
patterns, in binary object-attribute relational data. The input data, we are inter-
ested in, takes form of a two-dimensional data table with rows corresponding to
objects, columns corresponding to attributes (features), and table entries being
1’s and 0’s indicating presence/absence of attributes. Tables like these represent
a fundamental form of incidence data. Given a data table, we wish to find all
formal concepts [9, 18] present in the table.

There are several algorithms for computing formal concepts, see [13] for an
overview and comparison. Among the best known algorithms are Ganter’s algo-
rithm [8] and Lindig’s algorithm [14] and their variants. Almost all algorithms
proposed to date are sequential ones. Since parallel computing is recently gain-
ing interests as hardware manufactures are shifting their focus from improving
computing power by increasing clock frequencies to developing processors with
multiple cores, there is a need to have scalable parallel algorithms for formal con-
cept analysis (FCA) which can fully utilize the power of such milticore systems
and deliver results faster than sequential algorithms. In this paper, we propose a
parallel version of an algorithm presented in [16, 17] which is closely related to al-
gorithm Close-by-One [12]. Our algorithm is light weight, fast, memory efficient,
and can be implemented so that it uses just static linear data structures utiliz-
ing only low-level operations present in arithmetic logic units of contemporary
? Supported by grant No. 1ET101370417 of GA AV ČR and by institutional support,

research plan MSM 6198959214.
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microchips which significantly improves the performance of its implementations.
We describe the algorithm and compare its performance with the other algo-
rithms. We also focus on scalability, i.e. the growth of algorithm’s performance
with respect to the growing number of processors.

Let us note that computing all formal concepts is interesting not only for
FCA itself but has a wide range of applications. For instance, it has been shown
in [3] that formal concepts can be used to find optimal factorization of Boolean
matrices. In fact, formal concepts correspond with optimal solutions to the dis-
crete basis problem discussed by Miettinen et al. [15]. Finding formal concepts
in data tables is therefore an important task.

2 Preliminaries from FCA

In this section we recall basic notions of the formal concept analysis. More details
can be found in monographs [9] and [5].

Let X = {0, 1, . . . ,m} and Y = {0, 1, . . . , n} be our sets of objects and
attributes, respectively. A formal context is a triplet 〈X, Y, I〉 where I ⊆ X ×Y ,
i.e. I is a binary relation between X and Y , 〈x, y〉 ∈ I meaning that object x
has attribute y. As usual, we consider a couple of concept-forming operators [9]
↑ : 2X → 2Y and ↓ : 2Y → 2X defined, for each A ⊆ X and B ⊆ Y , by

A↑ = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I}, (1)

B↓ = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}. (2)

By definition (1), A↑ is the set of all attributes shared by all objects from A
and, by (2), B↓ is the set of all objects sharing all attributes from B. Operators
↑ : 2X → 2Y and ↓ : 2Y → 2X defined by (1) and (2) form the so-called Galois
connection [9]. A formal concept (in 〈X, Y, I〉) is any couple 〈A, B〉 ∈ 2X × 2Y

such that A↑ = B and B↓ = A. If 〈A, B〉 is a formal concept then A and B will
be called the extent and intent of that concept, respectively. The subconcept-
superconcept hierarchy ≤ is defined as 〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (or, iff
B2 ⊆ B1, both the ways are equivalent), see [5, 9] for details.

Remark 1. There is a useful view of formal concepts which is often neglected in
literature. Namely, formal concepts in 〈X, Y, I〉 correspond to maximal rectangles
in 〈X,Y, I〉. In a more detail, any 〈A, B〉 ∈ 2X × 2Y such that A× B ⊆ I shall
be called a rectangle in I. Rectangle 〈A, B〉 in I is a maximal one if, for each
rectangle 〈A′, B′〉 in I such that A×B ⊆ A′×B′, we have A = A′ and B = B′.
Now, it is easily seen that 〈A, B〉 ∈ 2X × 2Y is a maximal rectangle in I iff
A↑ = B and B↓ = A, i.e. maximal rectangles = formal concepts.

3 Computing Closures

Here we describe a procedure common to both the sequential and parallel ver-
sions of our algorithm. It generates a new concept from an existing one by
enlarging its intent and shrinking its extent (at the same time).
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Procedure ComputeClosure(〈A, B〉, y)
for i from 0 upto m do1

set C[i] to 0;2

end3

for j from 0 upto n do4

set D[j] to 1;5

end6

foreach i in A ∩ rows[y] do7

set C[i] to 1;8

for j from 0 upto n do9

if table[i, j] = 0 then10

set D[j] to 0;11

end12

end13

end14

return 〈C, D〉15

Representation of the Input Data For the sake of efficiency, we represent each
〈X, Y, I〉 two ways. First, by a two-dimensional array, denoted table, which cor-
responds with I in the usual sense. That is, the array table is filled with 1s and
0s so that table[i, j] = 1 iff 〈i, j〉 ∈ I and table[i, j] = 0 iff 〈i, j〉 6∈ I.

The second representation of the data is an array of ordered lists of objects.
For each attribute y ∈ Y , we let rows[y] be a list of all objects having the
attribute y. Thus, rows[y] contains x ∈ X iff 〈x, y〉 ∈ I. In addition to that, the
numbers of rows contained in rows[y] will be ordered in the ascending order (this
is for the sake of efficiency). For instance, rows[y] = (2, 4, 7) means that the only
objects from X having y in I are the objects 2, 4, and 7. The two-dimensional
array table and the array of lists rows will be used by the subsequent algorithms.

All the algorithms we are going to describe will use sets of objects and at-
tributes represented by their characteristic arrays. That is, in case of attributes,
a subset B ⊆ Y = {0, 1, . . . , n} will be represented by an (n + 1)-element linear
array b of 1s and 0s such b[k] = 1 iff k ∈ B (and b[k] = 0 iff k 6∈ B). By a slight
abuse of notation, we will identify B with b and write B[k] = 1 to denote k ∈ B.

Description of the Algorithm If 〈A, B〉 is a formal concept then due to the
monotony of ↓↑, all the formal concepts whose intents are strictly greater than
B can be written as

〈
(B ∪ C)↓, (B ∪ C)↓↑

〉
, where C ⊆ Y is a set of attributes

such that there is at least one attribute y ∈ Y such that y ∈ C and y 6∈ B. In
particular, if we consider C = {y} ⊆ Y such that y 6∈ B, then〈

(B ∪ {y})↓, (B ∪ {y})↓↑
〉

(3)

is a formal concept such that (B ∪ {y})↓ ⊂ A and B ⊂ (B ∪ {y})↓↑. This is
important from the computational point of view because if we want to compute
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(B ∪ {y})↓, it suffices to go exactly through all objects in A having attribute y:

(B ∪ {y})↓ = {x ∈ A | 〈x, y〉 ∈ I} = A ∩ {y}↓. (4)

The common attributes of objects from (4) form the intent of (3). We have just
outlined the idea behind our algorithm which generates formal concept (3) given
formal concept 〈A, B〉 and attribute y ∈ Y which does not belong to B. The
corresponding procedure will be called ComputeClosure. It accepts a formal
concept 〈A, B〉 and an attribute y 6∈ B and produces a new formal concept
〈C, D〉 which equals to (3). We can show that the algorithm is sound, see [16].

Remark 2. We have used two representations of the input data to establish de-
sired efficiency of computing new formal concepts, i.e. the redundancy in repre-
sentation is a trade-off for efficiency. The two-dimensional array representation
is used to determine which attributes are not present in the intent of the newly
computed formal concept (see lines 7–14 of ComputeClosure). The second
representation is used to skip rows in which y does not appear. Such rows do
not contribute to the closure (B ∪ {y})↓↑, i.e. they can be disregarded. Our
representation is most efficient for mid-size data sets (hundreds of attributes +
thousands of objects) stored in RAM.

4 Sequential Algorithm

The previous section described how we can efficiently compute a new formal
concept (3) given an initial formal concept 〈A, B〉. In this section we present a
simplified version of our sequential algorithm for computing formal concepts [16,
17] which is suitable for parallelization. The main idea behind this algorithm is
the same as in case of the algorithm Close-by-One proposed by Kuznetsov in [12].

Listing Formal Concepts in a Unique Order The core of our algorithm is a recur-
sive procedure GenerateFrom which lists all formal concepts using a depth-
first search through the space of all formal concepts. The procedure starts with an
initial formal concept 〈∅↓, ∅↓↑〉. During the search, the procedure first generates
a new formal concept R by adding attributes to the intent of the current formal
concept, i.e. it applies the procedure described in ComputeClosure. Then, it
is checked whether R has already been found. If not, it processes R (e.g., prints
it on the screen), and proceeds with generating further formal concepts resulting
from R by adding attributes to its intent, i.e. here GenerateFrom recursively
calls itself with R being the current formal concept.

The key issue here is to have a quick procedure testing whether a newly
generated formal concept has been generated before. We generate the formal
concepts in a unique order which ensures that each formal concept is processed
exactly once. The principle is the following. Let 〈A, B〉 be a formal concept,
y ∈ Y such that y 6∈ B. Put D = (B ∪ {y})↓↑, i.e. the new formal concept
is 〈(B ∪ {y})↓, D〉, see (3). Once D is computed using ComputeClosure, we
check whether

D ∩ {0, 1, . . . , y − 1} = B ∩ {0, 1, . . . , y − 1} (5)
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Procedure GenerateFrom(〈A, B〉, y)
process B (e.g., print B on screen);1

if B = Y or y > n then2

return3

end4

for j from y upto n do5

if B[j] = 0 then6

set 〈C, D〉 to ComputeClosure(〈A, B〉, j);7

set skip to false;8

for k from 0 upto j − 1 do9

if D[k] 6= B[k] then10

set skip to true;11

break for loop;12

end13

end14

if skip = false then15

GenerateFrom(〈C, D〉, j + 1);16

end17

end18

end19

return20

is true. Note that the “⊇”-part of (5) is trivial. Moreover, (5) is true iff D agrees
with B on the attributes 0, 1, . . . , y − 1. In other words, (5) is true iff, for each
i ∈ {0, 1, . . . , y − 1}: i ∈ D iff i ∈ B. Thus, condition (5) expresses the fact that
the closure D of B ∪ {y} does not contain any new attributes which are “before
y”. Condition (5) will be used to check whether we should process D. If (5) will
be false, we will not process D because due to the depth-first search method, D
has already been processed.

Description of the Algorithm The algorithm is represented by a procedure Gen-
erateFrom that accepts two arguments. First, a formal concept 〈A, B〉 repre-
sented by characteristic vectors of objects A and attributes B covered by the
concept. Second, an attribute y which is the first attribute to be added to B.
〈A, B〉 serves as an initial concept from which we start generating other formal
concepts. After its invocation, GenerateFrom proceeds as follows:

– It processes the formal concept 〈A, B〉 (e.g., it prints A and B on screen).
– Then, the procedure checks whether B contains all the attributes from Y , i.e.

whether B represents the greatest intent, in which case we exit current branch
of recursion (lines 2–4).

– The main loop (lines 5–20) iterates over all remaining attributes, starting with
the attribute y. In the body of the main loop (lines 6–18), j denotes the current
attribute which we are about to add to B. The if-condition at line 6 checks
whether j is already present in B. If so, we proceed with another attribute. If
j is not present in B, we try to generate new intent from B ∪{j} (lines 7–17).
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– At line 7, we compute a new formal concept denoted 〈C, D〉. The loop between
lines 9–14 checks whether B and D satisfy condition (5) for y being j. A flag
skip is initially set to false (line 8). The flag is reset to true iff there is k < j
such that B and D disagree on k.

– If skip is false, i.e. if D and B agree on all attributes up to j − 1, we make
a recursive call of the procedure GenerateFrom to compute descendant
intents of D, starting with the next attribute j + 1 (line 16).

In order to compute all the formal concepts, we invoke GenerateFrom
with 〈∅↓, ∅↓↑〉 and y = 0 as its arguments. Then, after finitely many steps,
the algorithm produces all formal concepts, each of them exactly once. The
soundness of the algorithm is proved in [16], cf. also [12].

Relationship to Other Sequential Algorithms Conceptually, GenerateFrom is
the same algorithm as Close-by-One proposed by Kuznetsov [12] although there
are some technical differences. GenerateFrom can be seen as simpler version
of Close-by-One since we are not interested in the order of generated concepts.
On the other hand, we utilize ComputeClosure which results to a much better
performance. The algorithm is similar to Lindig’s algorithm [13, 14] in that it
performs a depth-first search through the search space of all formal concepts. The
key difference between our algorithm and that proposed by Lindig [14] and its
variants is the way how we test that new formal concept has already been found.
Lindig’s algorithm and its variants use additional data structures to store intents
of found formal concepts. Thus, after a new formal concept is computed, Lindig’s
algorithm looks up for the concept in a data structure, typically a search tree
or a hashing table. Our algorithm uses similar idea as Ganter’s algorithm [8]
to ensure that no concept is generated multiple times, see (5). Compared to
Ganter’s algorithm, the number of concepts which are computed multiple times
and “dropped” is much lower, see [16].

5 Parallel Algorithm

The sequential version of our algorithm, described in previous section, lists all
formal concepts using a depth-first search through the space of all formal con-
cepts. Consider a calling tree of the recursive procedure GenerateFrom. The
parallel version consists in modification of GenerateFrom so that subtrees of
the calling tree are executed simultaneously by independent processes. The prob-
lem to solve is, given a process, which subtree(s) will be executed in the process,
or, put in other words, how to distribute computed formal concepts among the
processes.

Computing Formal Concepts in More Processes In the following we describe our
approach for computing formal concepts in a given fixed number P of separate
processes running in parallel. In the approach, processes are executing subtrees
(of the calling tree of GenerateFrom) containing, in the root node, a call
of GenerateFrom for a formal concept generated by a predefined number of
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attributes. The number of attributes, denoted by L, is a second parameter of the
parallel algorithm. The parameter has an impact on the distribution of computed
formal concepts among the processes, see Remark 3 on page 9.

The algorithm, consisting in modification of GenerateFrom, first simulates
original sequential GenerateFrom until it reaches the recursion level at which
formal concepts generated by 0 < L ≤ n attributes are to be processed. The
initial recursion halts at level which equals L, counting recursion levels from 0
upwards. The formal concepts generated by L attributes, i.e. formal concepts
〈C, D〉 = 〈{y0, . . . , yL−1}↓, {y0, . . . , yL−1}↓↑〉 such that yi ∈ Y , are stored in a
queue instead of being processed. For each of the P processes there is exactly
one queue and the selection of the queue to which we store 〈C, D〉 is the key
point of the algorithm. In fact, by selecting a queue we select a process which
will list all formal concepts descendant to 〈C, D〉. The optimal selection method
should distribute all formal concepts to processes equally. This is, however, very
hard to achieve since we do not know the distribution of formal concepts in the
search space of all formal concepts until we actually compute them all. In the
present version of the algorithm we select process r, where r is the total number
of stored formal concepts so far modulo the number P of processes.

After filling up the queues, the modified procedure then forks itself into P
processes (or, alternatively, runs the following in P − 1 new processes too), and
in each process the original sequential GenerateFrom is called for each formal
concept in the queue of the respective process. This will list all the remaining
descendant formal concepts, in parallel.

Description of the Algorithm The algorithm is represented by a procedure Par-
allelGenerateFrom, the modification of GenerateFrom which accepts one
additional argument: the recursion level counter l, which is used to recognize the
recursion level L at which formal concepts generated by L attributes are to be
stored in a queue rather than processed. After its invocation, ParallelGen-
erateFrom proceeds as follows:

– Until it reaches the recursion level L > 0, the procedure simulates original
GenerateFrom (lines 6–24). The code is identical, with two exceptions: first,
instead of exiting at line 8 it skips to the point where original GenerateFrom
ends and, second, upon each recursive call of itself it increases the recursion
level counter l (line 21). In this step it (sequentially) processes all formal
concepts generated by up to L− 1 attributes.

– When recursion level counter l is equal to L, i.e. the procedure is about to
process formal concept 〈A, B〉 generated by L attributes, it (instead of pro-
cessing 〈A, B〉) stores 〈A, B〉 and y (the attribute to be added to B) to queue
queue[r] of selected process r and exits current branch of recursion (lines 2–4).
In this step, all formal concepts generated by L attributes are stored in the
queues.

– Notice that when ParallelGenerateFrom exits a branch of recursion at
line 4, the execution continues at line 22 because line 21 is the only place where
ParallelGenerateFrom is recursively called. Therefore, it continues at line
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Procedure ParallelGenerateFrom(〈A, B〉, y, l)
if l = L then1

select r from 0 to P − 1 (e.g. r = (
PP−1

s=0 queue[s]) mod P );2

store (〈A, B〉, y) to queue[r];3

return4

end5

process B (e.g., print B on screen);6

if B = Y or y > n then7

goto line 25;8

end9

for j from y upto n do10

if B[j] = 0 then11

set 〈C, D〉 to ComputeClosure(〈A, B〉, j);12

set skip to false;13

for k from 0 upto j − 1 do14

if D[k] 6= B[k] then15

set skip to true;16

break for loop;17

end18

end19

if skip = false then20

ParallelGenerateFrom(〈C, D〉, j + 1, l + 1);21

end22

end23

end24

if l = 0 then25

for r from 1 upto P − 1 do26

new process27

while set (〈C, D〉, j) to load from queue[r] do28

GenerateFrom(〈C, D〉, j);29

end30

end31

end32

while set (〈C, D〉, j) to load from queue[0] do33

GenerateFrom(〈C, D〉, j);34

end35

end36

return37

25 after exiting the loop between line 10–24. Here, it either exits the current
branch of recursion (if l 6= 0) or continues if the top recursion level (l = 0) has
been reached (i.e., no more branches of recursion are on the call stack).

– On the top recursion level (l = 0), it runs new P − 1 processes running in
parallel (lines 26, 27) and the last step is performed by the new processes too.

– Finally, still on the top recursion level only, in each process, it calls original
GenerateFrom for each formal concept 〈C, D〉 and attribute j in the queue
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of the respective process (lines 28–30 and 33–35). That means, all formal
concepts generated by L or more attributes are processed in separate processes
running in parallel.

In order to compute all the formal concepts, we invoke ParallelGener-
ateFrom with 〈∅↓, ∅↓↑〉, y = 0 and l = 0 as its arguments. Then, after finitely
many steps, the algorithm produces all formal concepts, each of them exactly
once. The soundness of the algorithm follows directly from the soundness of the
sequential version [12, 16] and the fact that processes compute predefined dis-
joint sub-collections of all formal concepts. This also means that the processes do
not interfere with each other and hence the algorithm needs no synchronization.
We postpone the proof to the full version of the paper. The parallelization also
does not increase the overall theoretical complexity of the algorithm which is
the same as for the sequential version.

Remark 3. Note that the parameter L, in addition to the process selection
method, also determines the number of formal concepts computed by each pro-
cess. If L = 1, most of the formal concepts (formal concepts descendant to a
formal concept generated by a single attribute) are computed by one or two
processes. With increasing L, formal concepts are distributed to processes more
equally. On the other hand, however, with increasing L more formal concepts are
computed sequentially and less in parallel. From our experimentation it seems
a good trade-off value is already L = 2, where almost all formal concepts (for
n � L) are computed in parallel and are distributed to processes nearly opti-
mally. This will be further discussed in Section 6.

Remark 4. There have been several approaches to parallel algorithms in FCA.
For instance, [7] proposes a parallelization of Ganter’s algorithm by decomposing
the set of all concepts into non-overlapping subsets which are computed simul-
taneously. Another parallelization of Ganter’s algorithm is presented in [2]. The
basic idea in [2] is that the lexicographically ordered power set 2Y is split into
p intervals of the same length (p indicates a number of processes). Then, each
of the p intervals is executed by an independent process using a serial version of
Ganter’s algorithm. A different approach is shown, e.g., in [11] where the algo-
rithm is based on dividing the input data into disjoin fragments which are then
computed by independent processes. A detailed comparison of the algorithms in
terms of their efficiency and scalability is beyond the scope of this paper and
will be a subject of future investigation.

6 Experimental Evaluation

We have run several experiments to compare the algorithm with other algorithms
for computing formal concepts. In the experiments, we have used Ganter’s [8],
Lindig’s [14] and Berry’s [4] algorithms and were interested in the performance of
the algorithms measured by the running time. Furthermore, we have run several
experiments to compare algorithm performances in dependence on number of
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dataset mushroom tic-tac-toe Debian tags anonymous web
size 8124× 119 958× 29 14315× 475 32710× 295

density 19 % 34 % < 1 % 1 %

our (1 CPU) 6.543 0.092 12.746 65.221
our (2 CPUs) 3.541 0.047 7.710 33.364
our (4 CPUs) 2.343 0.035 4.545 18.520
our (8 CPUs) 1.393 0.029 3.043 11.466

Ganter’s 834.409 2.158 1720.827 10039.733
Lindig’s 5271.988 14.530 2639.670 13422.643
Berry’s 934.507 5.783 1531.944 3615.078

Fig. 1. Performance for selected datasets (seconds)

used CPUs. For the sake of comparison, we have implemented all the algorithms
in ANSI C. The experiments were done on otherwise idle 64-bit x86 64 hardware
with 8 independent processors (dual processor workstation with Quad-core Intel
Xeon Processor E5345, 2.33 GHz, 12 GB RAM).

Note that even the serial version of our algorithm significantly outperforms
the most commonly used algorithms for FCA. A detailed comparison can be
found in [16]. In this section, we focus primarily on the scalability of our algo-
rithm, i.e., we focus on the speed improvement with growing number of hardware
processors.

Our first experiment compares our algorithm with various FCA algorithms
using several data tables from the UCI Machine Learning Repository [1], UCI
Knowledge Discovery in Databases Archive [10], and our dataset describing pack-
ages in the Debian GNU/Linux [6]. The results, along with the information on
size and density (percentage of 1s) of used data sets, are depicted in Figure 1.
First four rows contain computation times measured in seconds in case of our
algorithm which has been run on 1 (sequential version), 2, 4, and 8 hardware
processors. From all the graphs and tables we can see that our algorithm (sig-
nificantly) outperforms all the other algorithms.

We now focus on the scalability of the algorithm, i.e., ability to decrease
running time using multiple CPUs (or more precisely CPU cores). We have
used selected data sets and various randomly generated data tables. Fig. 2 (left)
contains results for selected datasets while Fig. 2 (right) contains results for ran-
domly generated tables with 10000 objects and 5 % density of 1’s. By a relative
speedup which is shown on y-axes in the graphs, we mean the theoretical speedup
given by number of hardware processors (e.g., if we have 4 processors, the execu-
tion can be 4 times faster). Therefore, the relative speedup is a ratio of running
time using a single CPU (the sequential version of the algorithm) and running
time using multiple CPU cores. Note that the theoretical maximum of speedup
is equal to the number of used CPUs but real speedup is always smaller due to
certain overhead caused by managing of multiple threads of computation. Never-
theless, from the point of view of the speedup, we can see from the experiments
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Fig. 2. Relative speedup dependent on various data tables (solid line—mushrooms,
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web) and used CPU cores (on the left); relative speedup dependent on number of
attributes (solid line—50 attributes, dashed line—100 attributes, dotted line—150 at-
tributes, dot-and-dashed line—200 attributes) and used CPU cores measured using
randomly generated contexts with 10000 objects and 5 % density (on the right).
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Fig. 3. Relative speedup dependent on density of 1’s (solid line—5 %, dashed line—
10 %, dotted line—20 %) and used CPU cores (on the left); running time dependent
on the argument L (the solid line is for the Debian tags data table and 4 CPUs used,
the dashed line is for the Debian tags data table and 8 CPUs used, the dotted lines
is for the mushrooms data table and 4 CPUs used and dot-and-dashed lines is for the
mushrooms data table and 8 CPUs used) (on the right).

that with growing number of attributes, the real speedup of the algorithm is
near its theoretical limits.

In next experiment, that is depicted in Fig. 3 (left), we were focusing on the
impact of density of 1’s. That is, we have generated data tables with various
densities and observed the impact on the scalability. We have used data tables
of size 100 × 10000. Finally, Fig. 3 (right) illustrates the influence of parameter
L on various data tables and amounts of CPU cores. The experiments indicate
that good choice is L ∈ {2, 3}, see Remark 3.

7 Conclusions

We have introduced a parallel algorithm for computing formal concepts in object-
attribute data tables. The parallel algorithm is an extension of the serial algo-
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rithm we have proposed in [16]. The algorithm consists of a procedure for com-
puting closures and a recursive procedure for computing formal concepts. The
main feature of the recursive procedure is that it simulates the sequential one up
to a point where the procedure forks into multiple processes and each process
computes a disjoint set of formal concepts. Due to our design of the algorithm,
there is no need for synchronization which significantly improves efficiency of the
algorithm. We have shown that the algorithm is scalable. With growing numbers
of CPUs, the speedup of the computation given by increasing number of CPUs
is near its theoretical limit. The future research will focus on further refinements
of the algorithm and comparison with other approaches.
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1 Introduction

We propose a parallel algorithm for computing all fixpoints of Galois connections in-
duced by object-attribute incidence data. The fixpoints, called formal concepts [8, 19],
represent fundamental rectangular patterns that can be found in the data. Besides
their geometrical meaning, the fixpoints can be interpreted as formalizations of
natural concepts found in the input incidence data: each formal concept is given by
its extent, i.e. a set of all objects that fall under the concept, and intent, i.e. a set of all
attributes (features) that are covered by the concept. The set of all formal concepts
equipped with a subconcept–superconcept ordering forms a complete lattice which is
commonly called a concept lattice. Concept lattices and related incidence structures
are thoroughly studied by formal concept analysis—a discipline founded by Rudolf
Wille in the early 1980s. Since then, many theoretical results and applications of
formal concept analysis (FCA) appeared, see monograph [8] and a recent book [5]
for an overview.

The basic task which appears in virtually any application of FCA is to take the
input incidence data and compute the set of all formal concepts. The incidence data
is represented by a binary relation I ⊆ X × Y between a set X of objects and a set
Y of attributes (features). The data can be depicted by a two-dimensional table with
rows corresponding to objects, columns corresponding to attributes, and table entries
being ones and zeros indicating presence/absence of attributes. The limiting factor of
listing all formal concepts is that the problem is apparently hard as the associated
counting problem is #P-complete [13]. Fortunately, if |I| is considerably small, one
can get sets of all formal concepts in reasonable time even if X and Y are large. The
latter observation resulted in efforts of developing algorithms for FCA specialized
on sparse incidence data.

This paper contributes to the family of algorithms for FCA by showing a clear
and efficient way to parallelize the computation of concepts by splitting the set
of all formal concepts into disjoint subsets which can be computed simultaneously
with a minimal overhead. Our motivation for focusing on a parallel algorithm is
twofold. First, one of the main problems of FCA is how to deal with large-scale data.
The problem has become important recently as FCA is increasingly popular in the
data-mining community as a preprocessing technique. Efficient parallelization and
distribution over network may help overcome problems with delivering results in a
reasonable time (for input data of reasonable size). Second, parallel computing is
recently gaining interest as hardware manufactures are shifting their focus from im-
proving computing power by increasing clock frequencies to developing processors
with multiple cores. As the multiprocessor systems are becoming more affordable,
there will be an increasing pressure to deliver parallel algorithms to better utilize the
hardware. From these two points of view, research on parallel algorithms for FCA
seems to be promising.

There are several algorithms for computing formal concepts which are closely
related to our algorithm. Our algorithm can be seen as a parallelization of a simplified
version of CbO [14, 15] and the algorithm proposed by Norris [18]. Our algorithm
uses the same canonicity test for avoiding to process the same concept multiple
times. This idea also appears in Ganter’s algorithm [7] but our algorithm produces
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formal concepts in a different order. A detailed comparison will be presented in
Section 3.

The paper is organized as follows. In Section 2 we recall notions from formal
concept analysis. Section 3 describes the algorithm, shows its correctness, and
presents comments on the relationship to other algorithms. Furthermore, in Section 4
we discuss complexity and efficiency issues of the algorithm both theoretically and
experimentally. We focus on the scalability of the algorithm, i.e. the growth of its
performance with respect to the growing number of processors.

2 Preliminaries and notation

In this section we recall basic notions of the formal concept analysis. More details can
be found in monographs [8, 9] and [5]. Let X = {0, 1, . . . , m} and Y = {0, 1, . . . , n}
denote finite nonempty sets of objects and attributes, respectively. A formal context
is a triplet 〈X, Y, I〉 where I ⊆ X × Y, i.e. I is a binary relation between X and
Y. As usual, given 〈X, Y, I〉, we consider a pair of concept-forming operators [8]
↑I : 2X → 2Y and ↓I : 2Y → 2X defined, for each A ⊆ X and B ⊆ Y, by A↑I = {y ∈
Y | for each x ∈ A : 〈x, y〉 ∈ I} and B↓I = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}, respec-
tively. If there is no danger of confusion, we omit I and write just ↑ and ↓ instead of
↑I and ↓I , respectively. By a formal concept (in 〈X, Y, I〉) with extent A and intent B
we mean any pair 〈A, B〉 ∈ 2X × 2Y such that A↑I = B and B↓I = A. Thus, formal
concepts are fixpoints of the concept-forming operators. The set of all fixpoints
of 〈↑I , ↓I 〉 will be denoted by B(X, Y, I). The set B(X, Y, I) of all formal concepts
in 〈X, Y, I〉 can be equipped with a partial order ≤ modeling the subconcept–
superconcept hierarchy:

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (or, equivalently, iff B2 ⊆ B1). (1)

If 〈A1, B1〉 ≤ 〈A2, B2〉 then 〈A1, B1〉 is called a subconcept of 〈A2, B2〉. The set
B(X, Y, I) together with ≤ defined by (1) form a complete lattice whose structure is
described by the Basic Theorem of FCA [8]. For the purpose of illustration, we are
going to use the following

Example 1 Consider a formal context 〈X, Y, I〉 corresponding to the incidence data
table from Fig. 1 (left). The concept-forming operators induced by this context have
exactly 15 fixpoints (formal concepts) C1, . . . , C15:

C1 = 〈X, ∅〉, C6 = 〈{4}, {0, 1, 4, 5, 6, 7}〉, C11 = 〈{0, 2}, {1, 2, 5}〉,
C2 = 〈{1, 2, 4}, {0, 6}〉, C7 = 〈{1, 2}, {0, 3, 6}〉, C12 = 〈{0}, {1, 2, 4, 5, 7}〉,
C3 = 〈{2, 4}, {0, 1, 5, 6}〉, C8 = 〈{1}, {0, 3, 6, 7}〉, C13 = 〈{0, 3, 4}, {1, 4, 5}〉,
C4 = 〈{2}, {0, 1, 2, 3, 5, 6}〉, C9 = 〈{1, 4}, {0, 6, 7}〉, C14 = 〈{0, 4}, {1, 4, 5, 7}〉,
C5 = 〈∅, Y〉, C10 = 〈{0, 2, 3, 4}, {1, 5}〉, C15 = 〈{0, 1, 4}, {7}〉.
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Fig. 1 Formal context (left) and maximal rectangles (right) corresponding to C9 and C13

Hence, B(X, Y, I) = {C1, . . . , C15}. If we equip B(X, Y, I) with the partial order (1),
the resulting structure is the concept lattice of 〈X, Y, I〉.

Note that formal concepts in 〈X, Y, I〉 correspond to so-called maximal rectan-
gles [8] in 〈X, Y, I〉, cf. Fig. 1 (right).

3 Algorithm for computing all fixpoints

In this section we describe the algorithm for computing all fixpoints of a Galois
connection. We start by describing a subroutine which can be seen as a serial version
of the algorithm. The main idea behind the serial subroutine of our algorithm is the
same as in case of the algorithm Close-by-One (CbO) proposed by Kuznetsov in [15].
The parallel algorithm can be seen as several instances of the serial version working
simultaneously on disjoint subsets of concepts. Since Galois connections induced by
formal contexts are in fact the most general ones, we focus on fixpoints of 〈↑I , ↓I 〉 for
a given formal context 〈X, Y, I〉 such that X = {0, 1, . . . , m} and Y = {0, 1, . . . , n}.
Algorithm 1 Procedure GenerateFrom (〈A, B〉, y)

The core of the serial algorithm is a recursive procedure GenerateFrom, see
Algorithm 1, which lists all formal concepts using a depth-first search through the
space of all formal concepts. The procedure accepts a formal concept 〈A, B〉 (an
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initial formal concept) and an attribute y ∈ Y (first attribute to be processed) as
its arguments. The procedure recursively descends through the space of formal
concepts, beginning with the formal concept 〈A, B〉.

When invoked with 〈A, B〉 and y ∈ Y, GenerateFrom first processes 〈A, B〉 (e.g.,
prints it on the screen or stores it in a data structure, see line 1 of Algorithm 1) and
then it checks its halting condition, see lines 2–4. According to the halting condition,
the computation stops either when 〈A, B〉 equals 〈Y↓, Y〉 (the least formal concept
has been reached) or y > n (there are no more remaining attributes to be processed).
Otherwise, the procedure goes through all attributes j ∈ Y such that j ≥ y which
are not contained in the intent B (see lines 5 and 6). For each j ∈ Y having these
properties, a new pair 〈C, D〉 ∈ 2X × 2Y such that

〈C, D〉 = 〈A ∩ { j}↓, (A ∩ { j}↓)↑〉 (2)

is computed (lines 7 and 8). One can show that 〈C, D〉 is always a formal concept
such that B ⊂ D (see Remark 1 below). After obtaining 〈C, D〉, the algorithm
checks whether it should continue with 〈C, D〉 by recursively calling GenerateFrom
or whether 〈C, D〉 should be “skipped”. The test is based on comparing B ∩ Y j =
D ∩ Y j where Y j ⊆ Y is defined as follows:

Y j = {y ∈ Y | y < j}. (3)

The role of the test (see lines 9–11) is to prevent processing the same formal
concept multiple times. In the sequel we prove that GenerateFrom computes formal
concepts in a unique order which ensures that each formal concept is processed
exactly once.

Remark 1 If 〈A, B〉 is a formal concept then 〈C, D〉 computed in lines 7 and 8 of
Algorithm 1 is also a formal concept such that B ⊂ D and C ⊂ A provided that j �∈
B. Indeed, D = C↑ by definition. Moreover, C = A ∩ { j}↓ = B↓ ∩ { j}↓ = (B ∪ { j})↓.
Since ↓↑↓ equals ↓, we get D↓ = C↑↓ = (B ∪ { j})↓↑↓ = (B ∪ { j})↓ = C, i.e. 〈C, D〉 is a
formal concept. The facts B ⊂ D and C ⊂ A follow from properties of the concept-
forming operators ↓ and ↑ using j �∈ B.

In order to prove the correctness of Algorithm 1, we introduce so-called deriva-
tions which will correspond to recursive invocations of the procedure Generate-
From. Later, the derivations will be used to describe the parallel algorithm.

Definition 1 (Derivations of Formal Concepts) Let 〈X, Y, I〉 be a formal context
with Y = {0, . . . , n}. For formal concepts 〈A1, B1〉, 〈A2, B2〉 ∈ B(X, Y, I) and in-
tegers y1, y2 ∈ Y ∪ {n + 1} let 〈〈A1, B1〉, y1〉 � 〈〈A2, B2〉, y2〉 denote that for m =
y2 − 1 the following conditions

(i) m �∈ B1,
(ii) y1 < y2,
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(iii) B2 = (B1 ∪ {m})↓↑, and
(iv) B1 ∩ Ym = B2 ∩ Ym, where Ym is defined by (3)

are all satisfied. A derivation of 〈A, B〉∈ B(X, Y, I) of length k + 1 is any sequence

〈〈∅↓,∅↓↑〉, 0〉 = 〈〈A0, B0〉, y0〉, 〈〈A1, B1〉, y1〉, . . . , 〈〈Ak, Bk〉, yk〉 = 〈〈A, B〉, yk〉 (4)

such that 〈〈Ai, Bi〉, yi〉 � 〈〈Ai+1, Bi+1〉, yi+1〉 for each i = 0, . . . , k − 1. If 〈A, B〉 has a
derivation of length k we say that 〈A, B〉 is derivable in k steps.

It is easily seen that 〈〈A, B〉, y〉 � 〈〈C, D〉, k〉 iff the invocation of Generate-
From(〈A, B〉, y) causes GenerateFrom(〈C, D〉, k) to be called in line 10. Indeed (i)
ensures that the condition in line 6 of Algorithm 1 is satisfied, (ii) corresponds to the
fact that the loop between lines 5–13 goes from y upwards, (iii) is the intent computed
in line 8, and (iv) is true iff the condition in line 9 is true. Algorithm 1 and derivations
are further demonstrated by the following example.

Example 2 Consider the formal context 〈X, Y, I〉 from Fig. 1 (left). According to
Example 1, denote 〈∅↓, ∅↓↑〉 = 〈X, ∅〉 by C1. If GenerateFrom(C1, 0) is called, j goes
over all attributes from Y, starting with y = 0, see line 5. For j = 0, new formal
concept 〈C, D〉 with C = {1, 2, 4} and D = {0, 6} is computed (lines 7 and 8). Denote
the concept by C2. Since D ∩ Y0 = ∅ = B ∩ Y0, i.e. the test in line 9 is successful,
GenerateFrom(C2, 1) is invoked. In terms of derivations, we have 〈C1, 0〉 � 〈C2, 1〉.
During the invocation of GenerateFrom(C2, 1), j goes over all attributes starting
with 1. For j = 1, we get C = {2, 4}, D = {0, 1, 5, 6}. Since {0, 6} ∩ {0} = {0, 1, 5, 6} ∩
{0}, the test is successful and GenerateFrom(C3, 2) is invoked where C3 denotes
〈{2, 4}, {0, 1, 5, 6}〉. Thus, 〈C2, 1〉 � 〈C3, 2〉. In a similar way we get 〈C3, 2〉 � 〈C4, 3〉
and 〈C4, 3〉 � 〈C5, 5〉. When GenerateFrom(C5, 5) is invoked, all attributes are al-
ready present in the intent, i.e., the invocation of GenerateFrom(C5, 5) is terminated
and the computation goes back to GenerateFrom(C4, 3) with j ≥ 5. Since the
intent of C4 contains both 5 and 6, we continue with j = 7, for which we obtain
a formal concept 〈C, D〉 = 〈∅, Y〉 = C5 which has already been found. In this case,
the test in line 9 fails because B ∩ Y7 = {0, 1, 2, 3, 5, 6} �= {0, 1, 2, 3, 4, 5, 6} = D ∩ Y7.
Therefore, the invocation of GenerateFrom(C4, 3) is terminated because j = n = 7
is the last attribute and the computation proceeds with GenerateFrom(C3, 2) with
j ≥ 3. For j = 3, we obtain a concept 〈C, D〉 = C4 which has also been found and the
test fails because B ∩ Y3 = {0, 1} �= {0, 1, 2} = D ∩ Y3. For j = 4, we obtain a new
concept 〈C, D〉 = 〈{4}, {0, 1, 4, 5, 6, 7}〉 = C6 which has not been considered so far.
The test succeeds, GenerateFrom(C6, 5) is invoked, meaning 〈C3, 2〉 � 〈C6, 5〉, and
the computation continues in a similar way as before.

Remark 2 The computation of Algorithm 1 and the corresponding derivations can
be depicted by a tree as in Fig. 2. The tree contains two types of nodes. Nodes
represented by pairs 〈Ci, yi〉 represent arguments of GenerateFrom, i.e. each node
of this type represents an invocation of GenerateFrom. Leaf nodes denoted by black
squares represent computed concepts for which the test in line 9 fails. Each edge in
the tree is labeled by the current value of j which is used to compute a (new) formal
concept, see lines 7 and 8. We call such a tree a call tree of GenerateFrom for given
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Fig. 2 Example of a call tree for GenerateFrom(〈∅↓,∅↓↑〉, 0) with input data from Fig. 1

〈X, Y, I〉. A path from the root of the tree to any node labeled by 〈Ci, yi〉 corresponds
to a derivation of 〈Ci, yi〉. Later, we prove that the nodes labeled by 〈Ci, yi〉 are always
in a one-to-one correspondence with formal concepts in B(X, Y, I), showing that the
algorithm is correct.

The following assertions show the existence and uniqueness of derivations.

Lemma 1 (Existence of Derivations) For each formal concept 〈A, B〉∈ B(X, Y, I)
there is a derivation (4) such that yi = mi + 1 where

mi = min{y ∈ B | y �∈ Bi−1} (5)

for each 0 < i ≤ k.

Proof We prove by induction over i that 〈〈A0, B0〉, y0〉, . . . , 〈〈Ai, Bi〉, yi〉 is a deriva-
tion. Assume that the claim holds for 0, . . . , i − 1 < k. We prove that it holds for i.
Since i − 1 < k, B\Bi−1 �= ∅. Therefore, mi given by (5) and consequently yi = mi +
1 are well defined. Put Bi = (Bi−1 ∪ {mi})↓↑ and Ai = Ai−1 ∩ {mi}↓. We now prove
that 〈〈Ai−1, Bi−1〉, yi−1〉 � 〈〈Ai, Bi〉, yi〉 by checking Definition 1 (i)–(iv). Using (5),
yi − 1 = mi �∈ Bi−1, i.e. (i) is true. In order to prove (ii), we check that mi−1 < mi.
By contradiction, assume that mi ≤ mi−1. Obviously, mi−1 �= mi because mi �∈ Bi−1

and mi−1 ∈ Bi−1. Thus, assume mi < mi−1 �= 0. Since mi �∈ Bi−1 and Bi−2 ⊂ Bi−1, we
get mi �∈ Bi−2. Using the induction hypothesis, mi−1 = min{y ∈ B | y �∈ Bi−2} which
contradicts the facts that mi < mi−1 and mi �∈ Bi−2, proving (ii). Condition (iii) agrees
with the definition of Bi. It remains to check that Bi−1 ∩ Ymi = Bi ∩ Ymi . Since
Bi−1 ⊂ Bi = (Bi−1 ∪ {mi})↓↑ ⊆ B, mi is a minimum attribute such that mi ∈ Bi and
mi �∈ Bi−1. That is, for each y < mi, y ∈ Bi−1 iff y ∈ Bi. The latter is equivalent to
Bi−1 ∩ Ymi = Bi ∩ Ymi , showing (iv). ��
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Lemma 2 (Uniqueness of Derivations) Each formal concept 〈A, B〉∈ B(X, Y, I) has
at most one derivation.

Proof According to Lemma 1, we prove that each derivation of 〈A, B〉 equals to (4)
where yi = mi + 1 and mi are given by (5). By contradiction, let

〈〈A′
0, B′

0〉, y′
0〉, 〈〈A′

1, B′
1〉, y′

1〉, . . . , 〈〈A′
l, B′

l〉, y′
l〉

be another derivation of 〈A, B〉. Let i by the index such that y j = y′
j for all j < i and

yi �= y′
i. It is easily seen that A j = A′

j and B j = B′
j for all j < i. Furthermore, for mi

given by (5), we get mi ∈ Bi. The observations that mi �∈ B j = B′
j for all j < i and that

mi is the minimum attribute in B\Bi−1 = B\B′
i−1 yield mi �∈ B′

i because otherwise
B′

i−1 ∩ Yy′
i−1 = B′

i ∩ Yy′
i−1 would be violated. On the other hand, mi ∈ B = B′

l , i.e.
there must be an index j > i such that mi ∈ B′

j and mi �∈ B′
h for all h < j. In addition

to that, we have mi < y′
i − 1 < y′

j − 1. Therefore, mi ∈ B′
j ∩ Yy′

j−1 and mi �∈ B′
j−1 ∩

Yy′
j−1, contradicting the fact that B′

j−1 ∩ Yy′
j−1 = B′

j ∩ Yy′
j−1. ��

We now get the following consequence of Lemmas 1 and 2:

Theorem 1 (Correctness of Algorithm 1) When invoked with 〈∅↓,∅↓↑〉 and y = 0,
Algorithm 1 derives all formal concepts in 〈X, Y, I〉, each of them exactly once. ��

Remark 3 Algorithm 1 can be seen as a simplified version of CbO [14, 15]. We
formulate the algorithm by a recursive procedure GenerateFrom rather than by
backtracking as it is used in [15]. This has several benefits. First, GenerateFrom
is much closer to the actual implementation than the abstract description from [15].
Second, there is no need for explicit labeling of attributes which have been processed,
see [15], because each invocation of GenerateFrom has all the necessary information
in a local variable j. When computing new closures, we improve the efficiency of
the algorithm by going through only a subset of all attributes from Y, see line 5
of Algorithm 1. Finally, there is no need to build the CbO-tree [15] as a data
structure. The CbO-tree corresponds to the recursive invocations of GenerateFrom:
derivations from Definition 1 correspond to canonical paths in the CbO-tree, see [15].
Paths which are not canonical according to [15] can be seen as paths from the root
node of the call tree of GenerateFrom to nodes labeled by black squares, see Fig. 2.

Ganter’s algorithm [7] is also closely related to our algorithm but it lists formal
concepts in a different order. On the other hand, our algorithm can be easily
modified to produce formal concepts in the same order with a slight loss of the
performance. Indeed, during each invocation of GenerateFrom(〈A, B〉, y) it suffices
to (i) build a list L of all concepts 〈Ai, Bi〉 such that 〈〈A, B〉, y〉 � 〈〈Ai, Bi〉, ji〉 ( ji >

y) without invoking GenerateFrom(〈Ai, Bi〉, ji), then (ii) sort the list L according to
the lexicographic order [7] on the intents Bi, and (iii) recursively invoke Generate-
From(〈Ai, Bi〉, ji) for all 〈Ai, Bi〉 in the sorted list L according to the lexicographic
order.

We now turn our attention to the parallel algorithm. Assume that we have P
independent processors which can execute instructions simultaneously. These may
represent separate computers in a network or multiple processors in a system with
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shared memory. We assume that each processor has access to the context 〈X, Y, I〉.
Since 〈X, Y, I〉 is not altered during the computation, each processor can have its
own copy of 〈X, Y, I〉 or share one copy among multiple processors (in systems with
shared memory).

Algorithm 2 Procedur ParallelGenerateFrom (〈A, B〉, y, l)

The parallelization we propose consists in modification of GenerateFrom so that
particular subtrees of the call tree are computed simultaneously by P processors. The
idea is best explained when we consider a call tree like the one in Fig. 2. Recall that
GenerateFrom is a recursive procedure and its invocations during the computation
agree with the nodes labeled 〈Ci, yi〉 in the tree. Moreover, the order in which the
concepts are processed can be read directly from the call tree. It suffices to go through
the 〈Ci, yi〉 nodes in the depth-first order following the labels of edges from smallest
to biggest numbers. At any level of the call tree, we obtain a set of nodes which are
root nodes of disjoint subtrees. For instance, in Fig. 2, the second level of the call
tree contains nodes 〈C10, 2〉, 〈C15, 8〉, and 〈C2, 1〉. Two of the nodes are root nodes of
nontrivial subtrees which may be processed independently by two processors. This
suggests to modify GenerateFrom so that is goes through the call tree only up to
a certain predefined level L and then it lets P independent processors compute the
remaining concepts descendant to those on the Lth level. In terms of derivations,
see Definition 1, the algorithm first processes all concepts which are derivable in less
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than L steps. The remaining concepts are computed in parallel. Therefore, a parallel
procedure for computing concepts can be summarized by three consecutive stages:

Stage 1: Compute and process all concepts that are derivable in less than L steps.

Stage 2: Store all concepts derivable in L steps in P independent queues.

Stage 3: Initiate P processors and run the parallel computation: (i) let each of the
processors take exactly one of the queues; (ii) let each processor compute
all concepts (using Algorithm 1) beginning with those in its queue.

A parallel algorithm following this idea is represented by procedure Parallel-
GenerateFrom, see Algorithm 2. It is important to note that Algorithm 2 has
two parameters which are constant during the computation: P ≥ 1 (number of
processors) and L ≥ 2 (level of recursion, i.e. the maximum length of derivations
which are computed sequentially in Stage 1). The choice of values of P and L has an
influence of the practical performance of the algorithm. This issue will be addressed
later. Procedure ParallelGenerateFrom is a modification of GenerateFrom and
accepts one additional argument: a counter l which goes from 1 up to L and is used
to indicate lengths of derivations that are processed in Stage 1.

After its invocation, ParallelGenerateFrom proceeds as follows: The procedure
simulates the original GenerateFrom until is reaches the recursion level L, see the
code between lines 1–17. This agrees with Stage 1 as outlined above. There are two
technical differences between GenerateFrom and ParallelGenerateFrom:

– ParallelGenerateFrom increases the counter l upon each invocation, see
line 13. Obviously, if the procedure is initially called with l = 1 then during the
computation l is always equal to the current recursion level (call tree level). In
addition to that, formal concepts that are processed in line 6 are exactly the
concepts derivable in less than L steps.

– Instead of returning from the recursion, see the condition in line 7, the procedure
continues to the point where the original GenerateFrom ends. This step is taken
because ParallelGenerateFrom has to initiate the parallel computation after
the first two stages are finished, see lines 18–27.

When l equals L, ParallelGenerateFrom has reached the level of recursion at
which the serial algorithm stops, entering the Stage 2. In other words, l = L means
that the current formal concept 〈A, B〉 is derivable in L steps. Instead of processing
〈A, B〉 in line 6, the procedure performs the code between lines 2–4, i.e., it selects
one of the queues numbered 1, . . . , P, stores 〈〈A, B〉, y〉 in the queue, and exits this
branch of recursion. During this stage of computation, all formal concepts derivable
in L steps are stored in the queues.

Notice that the limit condition in line 1 also ensures that there are only finitely
many recursive invocations of ParallelGenerateFrom. Since L ≥ 2 and the initial
value of the counter l equals 1, the initial invocation of ParallelGenerateFrom is
never terminated in line 4. As a consequence, after finitely many steps, the initial
invocation of ParallelGenerateFrom gets to the line 18. Here, the condition suc-
ceeds because l = 1. Thus, the initial invocation proceeds with lines 19–26 which take
care of initiating the parallel computation: each processor goes over all 〈〈A, B〉, y〉 in
its queue and invokes the serial procedure GenerateFrom with 〈A, B〉 and y as its
arguments. The only synchronization that is used in the algorithm is that the initial
invocation waits until all processors finish the computation, see line 26. Also note that
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the condition in line 1 ensures that the parallel computation will be initiated exactly
once because there is only one invocation of ParallelGenerateFrom with l = 1.

Remark 4 The key issue with Algorithm 2 is how to distribute formal concepts
derivable in L steps into P queues. In fact, by selecting a queue in which we
put 〈〈C, D〉, y〉 we select a processor which will list all formal concepts descendant
to 〈C, D〉. The optimal selection method should distribute all formal concepts to
processors uniformly. This is, however, very hard to achieve since we do not know
the distribution of formal concepts in the search space of all formal concepts until
we actually compute them all and reveal the structure of the call tree. In the present
version of the algorithm we select queuer based on a simple round-robin principle:
the index r is computed as r = (N mod P) + 1 where N denotes the number of formal
concepts stored so far. This principle, albeit simple, turned out to be efficient for both
the real-world datasets and randomly generated data, see Section 4.

Our algorithm can be seen as having two parts: first, a part which distributes
concepts into queues and, second, a part which runs several instances of the ordinary
Close-by-One in parallel. Because of this reliance on CbO, we call our algorithm
Parallel Close-by-One (PCbO). The following assertion shows correctness of PCbO:

Theorem 2 (Correctness of PCbO) When invoked with 〈∅↓, ∅↓↑〉, y = 0, and l = 1,
Algorithm 2 derives all formal concepts in 〈X, Y, I〉, each of them exactly once.

Proof The correctness is a consequence of properties of derivations, see Lemmas
1 and 2. First, it is easy to observe that Algorithm 2 finishes after finitely many
steps. Moreover, each concept that is derivable in less than L steps is processed in
the first stage, each of them is processed exactly once. This follows from the fact
that ParallelGenerateFrom simulates GenerateFrom. If a concept is derivable
in > L steps, it will be computed by one of the independent processors. Indeed,
let (4) be the derivation of 〈A, B〉 where k + 1 > L. Then the (L − 1)th element
〈〈AL−1, BL−1〉, yL−1〉 of the derivation (4) will be put in one of the queues, say
queuer, in the second stage of the algorithm because 〈AL−1, BL−1〉 is derivable in
L steps. Therefore, 〈A, B〉 will be computed by the processor r. In addition to that,
〈A, B〉 will be computed exactly once on the account of Lemma 2. ��

Remark 5 Let us comment on the role of P and L which influence Algorithm 2.
Both the parameters have an impact on the distribution of computed formal concepts
among the processors. Note that the practical range of the parameter P is somewhat
limited by the hardware on which we run the algorithm (e.g., we are limited by
hardware processors or network nodes). On the other hand, L can be set to any
value ≥ 2. The performance of the algorithm in dependence of the value of L is
experimentally evaluated in Section 4. According to our observations, if L = 2, most
of the formal concepts are computed by one or two processors. With increasing L,
formal concepts are distributed to processors more equally. On the other hand, large
values of L tend to degenerate the parallel computation. For instance, if L ≥ |Y| + 1
then all concepts will be computed in the first (sequential) stage because the depth of
the call tree is at most |Y| + 1. From our experiments it seems that on average, a good
trade-off value is already L = 3 provided that |Y| is large. In such a case, almost all



268 P. Krajca et al.

formal concepts are computed in parallel and are distributed among the processors
nearly optimally.

Example 3 We illustrate the influence of P and L on how Algorithm 2 computes the
concepts. Consider a formal context 〈X, X, �=〉 where |X| = 5. The corresponding
B(X, X, �=) is isomorphic to the Boolean algebra 25. Figure 3 contains results for four
combinations of values of P and L. Each of the diagrams in Fig. 3 depicts the Hasse
diagram of the concept lattice where nodes denoted by black circles correspond to
concepts processed during the initial sequential stage. Nodes denoted by numbers are
processed by independent processors of the corresponding numbers. In case of P = 2
and L = 2, only the topmost concept is processed in the first stage. During the second
stage, three concepts are put in the queue of the first processor, the remaining two
concepts are put in the queue of the second processor. The total number of concepts
that are processed by the two processors are 21 and 10, respectively. If P = 2 and
L = 3 (second diagram), the concepts are distributed among the processors more
equally: 16 and 10. A similar situation applies for P = 3 where we have 18, 9, and 4
concepts processed by three processors in case of L = 2 and 11, 10, and 5 in case of
L = 3, see last two diagrams.

Remark 6 The parallel computation of Algorithm 2 can be degenerate, meaning that
in certain situations, only one of the P processors is computing all the remaining
concepts while other processors are idle. Such a situation occurs iff the Lth level
of the call tree contains at most one node 〈Ci, yi〉. In particular, the situation
occurs when B(X, Y, I) is isomorphic to an ordinal sum L1⊕ L2 of a lattice L1

and an n-element chain L2 where n equals L (the recursion level), see Fig. 4. Such
pathologic situations can be (partially) avoided by modifying the condition in line 1
of Algorithm 2 so that is checks whether at least a given number of queues are
nonempty. More details on the utilization of processors can be found in Section 4.

Let us conclude this section with bibliographical remarks on existing approaches
to parallel algorithms in FCA. For instance, [6] proposes a parallelization of Ganter’s
algorithm by decomposing the set of all concepts into non-overlapping subsets
which are computed simultaneously. Another parallelization of Ganter’s algorithm
is presented in [2]. The basic idea in [2] is that the lexicographically ordered power

Fig. 3 Examples of parallelization for various values of P and L
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Fig. 4 Ordinal sum L1⊕ L2 of
a lattice L1 and an n-element
chain L2

set 2Y is split into p intervals of the same length (p indicates a number of processes).
Then, each of the p intervals is executed by an independent process using a serial
version of Ganter’s algorithm. A different approach is shown, e.g., in [12] where
the algorithm is based on dividing the input data into disjoint fragments which are
then computed by independent processes. A detailed comparison of the algorithms
in terms of their efficiency and scalability is beyond the scope of this paper and will
be a subject of future investigation.

4 Efficiency and implementation issues

From the point of view of the worst-case complexity, PCbO is a polynomial time
delay [11] algorithm with asymptotic complexity O(|B|·|Y|2·|X|) because in the worst
case, PCbO can degenerate into the sequential CbO [14, 15]. The actual performance
compared to CbO is influenced by the number of processors P and their utilization.
In case of optimal utilization of processors, PCbO can run P times faster than CbO,
i.e. the reciprocal P−1 can be seen as a multiplicative constant of the running time
of CbO. In practice, the multiplicative constant is greater than P−1 because (i)
concepts are not distributed over the processors uniformly and (ii) the parallelization
has certain overhead. In order to show how PCbO behaves on average data, we
should provide theoretical and experimental average-case complexity analysis. The
theoretical analysis seems to be an interesting and challenging problem which is

Table 1 Performance for selected datasets (real time, in seconds; time in parentheses represents
total processor time used by all the processors together)

Dataset Mushroom Tic-tac-toe Debian tags Anon. web
Size 8,124 × 119 958 × 29 14,315 × 475 32,710 × 295
Density 19 % 34 % < 1 % 1 %

PCbO (P = 1) 4.89 0.06 7.79 40.32
PCbO (P = 2) 2.78 (5.16) 0.04 (0.07) 5.52 (9.34) 22.16 (43.33)
PCbO (P = 4) 1.90 (5.39) 0.03 (0.07) 3.65 (10.88) 13.38 (47.81)
PCbO (P = 8) 1.18 (5.58) 0.02 (0.07) 2.51 (11.08) 8.09 (46.68)
Ganter’s 834.40 2.15 1,720.82 10,039.73
Lindig’s 5,271.98 14.53 2,639.67 13,422.64
Berry’s 934.50 5.78 1,531.94 3,615.07
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Table 2 Utilization of processors (number of concepts processed by particular processors)

CPU #0 #1 #2 #3 #4 #5 #6

Mushroom (P = 2) 440 103,005 135,265
Mushroom (P = 4) 440 78,825 89,174 24,180 46,091
Mushroom (P = 6) 440 35,486 78,348 23,040 33,398 44,479 23,519
Tic-tac-toe (P = 2) 409 31,986 27,110
Tic-tac-toe (P = 4) 409 16,518 13,832 15,468 13,278
Tic-tac-toe (P = 6) 409 11,407 9,962 10,635 7,759 9,944 9,389

yet to be explored. In the sequel we present results of experiments with randomly
generated and real data sets which may give hint how PCbO behaves for different
values of P and L.

We first compare PCbO with other algorithms [16] for computing formal concepts.
Namely, we compare it with Ganter’s [7], Lindig’s [17] and Berry’s [4] algorithms (all
implemented in ANSI C). The comparison is made using datasets from [1, 10] and
a dataset generated from package descriptions in Debian GNU/Linux. The results,
along with the information on sizes and densities (percentage of 1s) of used data
sets, are depicted in Table 1. The first four rows contain running times of PCbO
that has been run on 1 (sequential version), 2, 4, and 8 hardware processors. The
measurements have been done on an otherwise idle 64-bit x86_64 hardware with 8
independent processors (2× Quad-Core Intel Xeon E5345, 2.33 GHz, 12 GB RAM).
For P > 1, the table in Table 1 contains total processor time used to compute all
formal concepts (the time written in parentheses). This time allows us to make
a rough estimate of the overhead that is needed to manage multiple threads of
computation: the overhead can be computed as the real processor time minus the
total processor time divided by P. As it is expected, larger values of P lead to a larger
overhead. The utilization of processors can be observed from the number of concepts
that are processed by each processor. For instance, Table 2 shows the distribution of
computed concepts among particular processors. The processor marked #0, is the
initial sequential stage of the algorithm. It should be mentioned that the number of
computed concepts by each processor is entirely given by parameters P, L, and by
the context. This means, if one processor completes its computation, it cannot “help”
other processors to process their load.

The next experiment focuses on the scalability of PCbO, i.e., the ability to decrease
the running time using multiple processors. For this set of experiments we have used

Fig. 5 Relative speedup in various data tables (on the left); relative speedup in contexts with various
counts of attributes (on the right)
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Fig. 6 Relative speedup dependent on density of 1’s (on the left); running time dependent on the
argument L (on the right)

computer equipped with eight core UltraSPARC T1 processor that is able to process
up to 32 simultaneously running threads. Fig. 5 (left) contains results for selected
datasets while Fig. 5 (right) contains results for randomly generated tables with
10,000 objects and 5 % density [16] of 1’s. By a relative speedup which is shown on the
y-axes in the graphs, we mean the theoretical speedup given by the number of hard-
ware processors (e.g., if we have 4 processors, the execution can be 4 times faster).
Therefore, the relative speedup is a ratio of running time using a single processor (the
sequential algorithm) and running time using multiple processors. Note that the the-
oretical maximum of the speedup is equal to P but the real speedup is always smaller
due to the overhead caused by managing of multiple threads (cf. also Table 1). The
experiment in Fig. 6 (left) shows results of the impact of the data density. That is, we
have generated data tables with various densities of 1’s and observed the impact on
the scalability. We have used data tables of size 5,000 × 100. Finally, Fig. 6 (right)
illustrates the influence of parameter L on various data tables and amounts of
processors. The experiments indicate that good choice is L ∈ {3, 4}, see Remark 5.

Let us note that the actual performance of an implementation of the algorithm
depends on used data structures. We have used boolean vectors as basic data
structures which turned out to be very efficient. The data structures and optimized
algorithms for computing closures are further discussed in Outrata and Vychodil
(submitted for publication).

5 Conclusions

We have introduced a parallel algorithm called PCbO for computing formal concepts
in object-attribute data tables. The parallel algorithm results as a parallelization of
CbO [14, 15] and is formalized by a recursive procedure which simulates the ordinary
CbO up to a point where it forks into multiple processes and each process computes
a disjoint set of formal concepts. The algorithm has minimal overhead because the
concurrent processes computing disjoint sets of concepts are fully independent. This
significantly improves efficiency of the algorithm. We have shown that the algorithm
is scalable. With growing numbers of CPUs, the speedup of the computation given
by increasing number of CPUs is near its theoretical limit. The implementation of
the algorithm can be downloaded from

http://fcalgs.sourceforge.net/pcbo-amai.html.
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The future research will focus on

– refinements of the algorithm including new approaches to reducing the number
of concepts which are computed multiple times, some advances towards this
direction can be found in Outrata and Vychodil (submitted for publication);

– comparison of various strategies for selecting queues and advanced conditions
preventing degenerate computation, see Remark 6;

– performance comparison with other parallel algorithms, performance and scal-
ability tests of various data structures for representing contexts, extents, and
intents;

– specialized variants of the algorithm focused to solve particular problems related
to FCA, e.g., factorization of binary matrices [3].
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Abstract. The paper presents a survey of recent advances in algorithms
for computing all formal concepts in a given formal context which result
as modifications or extensions of CbO. First, we present an extension of
CbO, so called FCbO, and an improved canonicity test that significantly
reduces the number of formal concepts which are computed multiple
times. Second, we outline a parallel version of the proposed algorithm
and discuss various scheduling strategies and their impact on the overall
performance and scalability of the algorithm. Third, we discuss impor-
tant data preprocessing issues and their influence on the algorithms.
Namely, we focus on the role of attribute permutations and present ex-
perimental observations about the efficiency of the proposed algorithms
with respect to the number of inversions in such permutations.

1 Introduction

The major issue of widely-used algorithms for computing formal concepts, in-
cluding CbO [12–14], NextClosure [5, 6], or UpperNeighbor [16], is that some
concepts are computed multiple times which brings significant overhead. This
paper deals with various ways to reduce the overhead. Notice that recently an
increasing attention has been paid to various modifications of CbO, see [1, 10,
17].

This paper presents a survey of recent advances in three interconnected areas.
First, we present an algorithm called FCbO which achieves better performance
than CbO by reducing the total number of formal concepts that are computed
multiple times. The reduction is achieved by introducing an additional canonic-
ity test which effectively prunes the CbO tree during the computation. Second,
we elaborate on issues related to parallel execution of FCbO. We have already
proposed a parallel variant of CbO, so-called PCbO [10]. In this paper, we pro-
pose an analogous parallelization of FCbO and we discuss various workload
distribution strategies that may have impact on the overall performance of such
parallelization. Third, we focus on data preprocessing—an important issue that
is often underestimated. Namely, some algorithms for FCA (including those from
the CbO family) achieve better performance if attributes are processed in partic-
ular order. In this paper, we present a preliminary study of the role of attribute
permutations on the performance of CbO and the derived algorithms.

? Supported by grant no. P103/10/1056 of the Czech Science Foundation and by grant
no. MSM 6198959214.



326 Petr Krajca, Jan Outrata, Vilem Vychodil

Notation Throughout the paper, X = {0, 1, . . . ,m} and Y = {0, 1, . . . , n} are
finite nonempty sets of objects and attributes, respectively, and I ⊆ X×Y is an
incidence relation. The triplet 〈X,Y, I〉 is a formal context. The concept-forming
operators induced by I will be denoted by ↑I : 2X → 2Y and ↓I : 2Y → 2X ,
respectively, see [6] for details. We assume that reader has knowledge of basic
algorithms for FCA.

2 FCbO: Fast Close-by-One with New Canonicity Test

In this section we briefly describe the new canonicity test and a new algorithm
derived from CbO which uses this test. Recall that the original canonicity test
used by CbO (and NextClosure) is always used after a new formal concept is
computed. For B ⊆ Y and j 6∈ B, one checks whether

B ∩ Yj = D ∩ Yj , where D = (B ∪ {j})↓I↑I (1)

and Yj = {y ∈ Y | y < j}. FCbO employs an additional test that is performed
before D is computed, eliminating thus the computation of ↓I↑I . Notice that (1)
fails iff B � j 6= ∅, where

B � j = (D \B) ∩ Yj =
(
(B ∪ {j})↓I↑I \B

)
∩ Yj . (2)

The new canonicity test exploits the fact that if (1) fails for given B and j 6∈ B,
the monotony of ↓I↑I yields that the test will also fail for each B′ ⊇ B such that
j 6∈ B′ and B � j * B′. The conclusion can be done without computing D. If
B� j ⊆ B′, we are still compelled to perform the original canonicity test. Thus,
the new (additional) canonicity test is based on the following assertion:

Lemma 1 (See [17]). Let B ⊆ Y , j 6∈ B, and B ; j 6= ∅. Then, for each
B′ ⊇ B such that j 6∈ B′ and B ; j 6⊆ B′, we have B′ ; j 6= ∅. ut

FCbO can be seen as an extended version of CbO in that we propagate the
information about sets (2) which take part in the new test. The information is
propagated in the top-down direction. In order to apply the new test, we have
to change the search strategy of the algorithm from the depth-first search (as it
is in CbO) to a combined depth-first and breadth-first search. FCbO is repre-
sented by a recursive procedure FastGenerateFrom, see Algorithm 1, which
accepts three arguments: a formal concept 〈A,B〉 (an initial formal concept), an
attribute y ∈ Y (first attribute to be processed), and a set {Ny ⊆ Y | y ∈ Y }
of subsets of attributes Y the purpose of which is to carry information about
sets (2). Each invocation of FastGenerateFrom has its own local queue used
to store information about computed concepts. Unlike CbO, if the canonicity
tests succeed (line 7 and line 10), we do not call FastGenerateFrom recur-
sively but we store information about the concept in the queue (line 11). After
each attribute is processed, we perform the recursive calls, see lines 17–19. The
new canonicity test is performed in line 7 based on information stored in Nj ’s.
The original canonicity test is performed in line 10. If the test in line 10 fails, we
update the contents of Mj , see line 13. Note that Mj ’s can be seen as local copies
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Algorithm 1: Procedure FastGenerateFrom(〈A,B〉, y, {Ny | y ∈ Y })
list 〈A,B〉 // concept 〈A,B〉 is processed, e.g., listed or stored1

// check halting condition of the current call

if B = Y or y > n then2

return3

end4

// process all attributes beginning with y
for j from y upto n do5

set Mj to Nj // Mj is a pointer to Nj6

// perform new canonicity test

if j 6∈ B and Nj ∩ Yj ⊆ B ∩ Yj then7

// compute new concept 〈C,D〉 = 〈A ∩ {j}↓I , (B ∪ {j})↓I↑I 〉
set C to A ∩ {j}↓I8

set D to C↑I9

// perform original canonicity test

if B ∩ Yj = D ∩ Yj then10

// store new concept for further processing

put 〈〈C,D〉, j〉 to queue11

else12

// update information about implied attributes

set Mj to D // Mj becomes a pointer to D13

end14

end15

end16

// perform recursive calls of FastGenerateFrom
while get 〈〈C,D〉, j〉 from queue do17

FastGenerateFrom(〈C,D〉, j + 1, {My | y ∈ Y })18

end19

// terminate current call

return20

of Nj ’s which are used as the third argument for consecutive calls of FastGen-
erateFrom. Sets Nj are used instead of (2) because it is actually easier (and
more efficient) to maintain a set of pointers to intents than to compute (and
allocate memory for) sets (2) during the computation.

FCbO is correct: when invoked with 〈∅↓I , ∅↓I↑I 〉, y = 0, and {Ny = ∅ | y ∈ Y },
Algorithm 1 lists all formal concepts in 〈X,Y, I〉 in the same order as CbO, each
of them exactly once. Let us note that FCbO can be turned into a “Fast NextClo-
sure” (i.e., an algorithm that lists concepts in the lexicographical order [5]) by
either (i) using a stack instead of a queue or by (ii) modifying the loop in line 5
so that it goes “from n downto y”. See [17] for further details on FCbO.

Example 1. Consider a context with X = {0, . . . , 3}, Y = {0, . . . , 5}, and I =
{〈0, 0〉, 〈0, 1〉, 〈0, 2〉, 〈1, 0〉, 〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈1, 5〉, 〈2, 0〉, 〈2, 1〉, 〈2, 4〉, 〈3, 1〉, 〈3, 2〉}.
This formal context induces 12 formal concepts denoted C1, . . . , C12. In case of
both CbO and FCbO, the computation can be depicted by a tree. Moreover, a
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Fig. 1. Example of an FCbO tree—a pruned CbO tree.

concepts closures closures ratio ratio
(CbO) (FCbO) (CbO) (FCbO)

mushroom 238,710 4,006,498 426,563 5.9 % 55.9 %
anon. web 129,009 27,949,552 1,475,341 0.4 % 8.7 %

debian tags 38,977 12,045,680 679,911 0.3 % 5.7 %
tit-tac-toe 59,505 221,608 128,434 26.8 % 46.3 %

Table 1. Total numbers of closures computed by CbO and FCbO.

FCbO tree is a pruned version of the CbO tree, see Fig. 1. The black-square
nodes represent concepts computed multiple times by FCbO and CbO whereas
the grey-square nodes represent concepts computed multiple times by CbO and
not computed by FCbO. Therefore, grey nodes and edges in Fig. 1 denote sub-
trees pruned using the new canonicity test. In this case, the number of concept
computed multiple times is significantly reduced.

Experimental Evaluation We have evaluated FCbO and compared CbO and
FCbO using various real data sets and artificial data sets. The impact of the new
canonicity test is presented in Table 1 comparing the total numbers of closures
computed by CbO and FCbO in selected benchmark data sets [2, 8]. The table
includes numbers of concepts and ratios of the number of computed closures
to the number of (distinct) formal concepts in the data, i.e., the frequency of
successful canonicity tests. Apparently, FCbO has a higher rate of successful
canonicity tests than CbO. Thus, in terms of the number of computed closures,
FCbO is more efficient than CbO. Since the total number of computed closures
directly influences the speed of the algorithm, FCbO is (usually) faster than
CbO [17]. The reduction of total time needed for computing all formal concepts
is apparent from Table 2. The table shows total time (in seconds) needed to
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mushroom tic-tac-toe debian tags anon. web
size 8, 124× 119 958× 29 14, 315× 475 32, 710× 295

density 19 % 34 % < 1 % 1 %

FCbO 0.23 0.02 0.10 0.15
CbO 4.34 0.06 5.31 27.14

NextClosure 685.00 1.86 1,432.25 8,236.85
UpperNeighbor 4,368.19 12.54 2,159.80 11,068.52

Berry’s [3] 950.73 6.93 1,512.73 4,421.51

Table 2. Performace of algorithms (speed in seconds).

analyze the data sets. For the purpose of comparison the table contains also other
well-known algorithms. The experiments were performed on an Apple MacPro
computer equipped with two quad-core processors (Intel Xeon, 2.8 GHz) and
16 GB of RAM and all algorithms were implemented in ANSI C using bitarray
representation [11]. Notice that in the worst case, FCbO collapses into CbO (e.g.,
in case of I being the inequality relation on X = Y ). FCbO is a polynomial
time-delay algorithm [7, 9] because the additional canonicity test has a linear
time-delay overhead compared to CbO, see [17] for further details on FCbO and
its performance.

3 PFCbO: Parallel FCbO and Workload Distribution

This section is devoted to parallelization issues of FCbO. Recall that in [10],
we have described PCbO which results by a parallelization of CbO. FCbO can
be turned into a parallel algorithm in much the same way as the original CbO
can be turned into PCbO. Since the procedure of parallelization is fairly simi-
lar to that presented in [10], we focus mainly on issues that are not discussed
in [10]. Namely, we compare several strategies to balance the workload distribu-
tion among independent processors and compare their efficiency.

Following the ideas from [10], a parallel variant of FCbO consists of three
stages: First, we compute and process all concepts that are derivable in less than
L steps. Second, we store all concepts derivable in exactly L steps in a new queue.
Third, we distribute concepts from the queue among P independent processors
and we let each of the processors compute the remaining concepts using FCbO.
Typically, each processor r has its own queue denoted queuer containing concepts
assigned to this processor. A parallel algorithm based on these ideas shall be
called Parallel Fast Close-byOne (PFCbO).

Clearly, the practical efficiency of both PCbO and PFCbO depends on the
choice of the strategy that distributes concepts among processors during the
third step of the computation. The decision how to assign concepts to particular
queue is generally difficult since we do not know the distribution of formal con-
cepts in the search space of all formal concepts until we actually compute them
all and reveal the structure of the call tree. As a consequence, the distribution
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of workload may be in some cases unbalanced. In [10], we have used a simple
round-robin principle which turned out to be reasonably efficient. Nevertheless,
there are other schemes of the workload distribution that can be considered:

(i) round-robin—concepts are distributed to queues attached to each processor,
in the way that n-th concept is placed into a queuer where r = (n mod P )+1
and P is the number of processors. For instance, if we consider P = 4 and
concepts C1, . . . , C10, they are assigned to queues as follows:

queue1 = {C1, C5, C9}, queue2 = {C2, C6, C10},
queue3 = {C3, C7}, queue4 = {C4, C8}.

(ii) zig-zag—this strategy is similar to the previous strategy but it uses a different
formula to determine the queuer. The queuer is given by

r = min
(
n mod z, z − (n mod z)

)
+ 1 (3)

where z = 2 × P + 1 assuming that P is number of processors. For P = 4
and concepts C1, . . . , C10 the distribution of concepts is

queue1 = {C1, C8, C9}, queue2 = {C2, C7, C10},
queue3 = {C3, C6}, queue4 = {C4, C5}.

(iii) blocks—this workload distribution scheme divides the queue of all concepts
into chunks of approximately equal size and these “blocks of concepts” are
redistributed into the queues of independent processors. In this case, the
n-th concept is placed into queuer, where

r =

⌈
(n× P )

Q

⌉
(4)

with P being the number of processors, Q being the number of all concepts,
and dxe being the usual ceiling function. For instance, in case of C1, . . . , C10

(i.e., Q = 10) and four queues (i.e., P = 4), we get:

queue1 = {C1, C2}, queue2 = {C3, C4, C5},
queue3 = {C6, C7}, queue4 = {C8, C9, C10}.

(iv) fair—all concepts remain stored in one shared queue and each processor
gets concepts from the queue one by one. The benefit of this scheme is that
it allows to react on the revealing structure of the call tree. On the other
hand, this method of distributing concepts requires synchronization among
processors while accessing this queue. Note that in contrast to the above-
described schemes, this scheme has no fixed structure and the workload is
distributed non-deterministically.

(v) random—the workload is spread among processors randomly. We are con-
sidering this strategy to be referential and it is included for the purpose of
comparison.

Experimental Evaluation In order to evaluate the strategies of workload distri-
bution, we have tested our algorithm for each strategy using various data sets
and various number of processors. Table 3 depicts the time needed to compute
all formal concepts using particular strategy. Surprisingly, there are only small
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round-r. blocks fair zig-zag random

debian tags 0.0974 0.0988 0.0938 0.0984 0.0986
anon. web 0.1518 0.1590 0.1500 0.1528 0.1522
mushroom 0.1772 0.2158 0.1550 0.1788 0.1820
tic-tac-toe 0.0172 0.0198 0.0168 0.0174 0.0180

random (5000× 100× 10) 0.0806 0.1194 0.0796 0.0820 0.0876
random (10000× 100× 15) 1.1380 2.1326 0.8698 1.0974 1.1670

Table 3. Performace under various workload distributions (speed in seconds).

differences among the considered schemes of the workload distribution, i.e., the
ordinary round-robin used in [10] is indeed adequate for the job. Nevertheless,
the fair strategy seems to be the most efficient. One can see that the round-robin
and zig-zag strategies provide performance slightly better than the random work-
load distribution. On the other hand, the blocks scheme of distribution provides
performance even worse than the random distribution and seems to be inappro-
priate for PFCbO.

4 Data Preprocessing Issues

Algorithms for computing concepts can be classified in many ways, see, e.g. [15].
An important attribute of algorithms for FCA is whether their performance de-
pends on the order of objects and attributes in the input data table. There-
fore, an algorithm for computing formal concepts shall be called (permuta-
tion) resistant whenever all isomorphic copies of a formal context 〈X,Y, I〉 with
Y = {0, 1, . . . , n} require the same number of elementary computation steps in
order to compute all concepts. For our purposes, an elementary computation step
will be represented by computation of a single fixpoint of the concept-forming
operators ↑I and ↓I .

One can easily see that, e.g., Lindig’s UpperNeighbor algorithm [16] is resis-
tant. On the other hand, CbO and FCbO are not resistant. Indeed, a different
order of attributes in a data table can yield different CbO and FCbO trees that
may have different numbers of nodes (notice that the loop in line 5 of Algo-
rithm 1 processes attributes from left to right). Since CbO and FCbO are not
resistant, a proper ordering of attributes before computation can further reduce
the number of concepts that are computed multiple times, thus improving the
efficiency. In this section, we investigate particular permutations of attributes
and explore the impact of inversions on the number of computed closures.

In order to describe various formal contexts with respect to the structure of
the data table, we introduce a notion of an ordered formal context and inversion:

Definition 1. An ordered formal context is a formal context 〈X,Y, I〉 where
Y = {0, . . . , n} and for all attributes

|{0}↓I | ≤ |{1}↓I | ≤ · · · ≤ |{n}↓I |. (5)
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A pair of attributes 〈y1, y2〉 ∈ Y × Y such that |{y1}↓I | 6≤ |{y2}↓I | shall be called
an inversion.

Verbally, the attributes in an ordered formal context are sorted in the as-
cending order according to their support, i.e., the number of objects having
these attributes. As a consequence of the previous definition, an ordered formal
context contains no inversions.

From the point of view of formal concepts and concept lattices, the order of
objects and attributes in which they appear in the data table is not essential.
Therefore, one can reorder attributes in an arbitrary way. From the computa-
tional point of view, however, it may happen that certain orderings of attributes
yield better results in conjunction with particular argorithms than other order-
ings. In case of our algorithms, the order has an important impact on the process
of the execution of both CbO and FCbO since the canonicity test is driven by
the order of attributes. The following assertions show that for an ordered for-
mal context with pairwise distinct columns, the canonicity tests succeed for all
attribute concepts. We first prove a technical claim:

Lemma 2. Let 〈X,Y, I〉 be an ordered formal context with Y = {0, . . . , n}.
Then, for each k, j ∈ Y such that k < j, we have k ∈ {j}↓I↑I iff {k}↓I = {j}↓I .

Proof. Note that attributes from Y are integers and “<” denotes the usual
strict linear order on the set of all integers. Suppose that k ∈ {j}↓I↑I , i.e.,
{k} ⊆ {j}↓I↑I . By the antitony of ↓I , we get {k}↓I ⊇ {j}↓I↑I↓I = {j}↓I . Thus, it
remains to show the converse inclusion. Since 〈X,Y, I〉 is ordered and k < j, we
get |{k}↓I | ≤ |{j}↓I |, see (5). Hence, |{k}↓I | ≤ |{j}↓I | and {k}↓I ⊇ {j}↓I yield
{k}↓I = {j}↓I . Conversely, if {k}↓I = {j}↓I then obviously k ∈ {j}↓I↑I , proving
the claim. ut

Applying Lemma 2, we get:

Theorem 1. Let 〈X,Y, I〉 be an ordered formal context where Y = {0, . . . , n}
and {a}↓I 6= {b}↓I for any a, b ∈ Y . Then for each j ∈ Y such that j 6∈ ∅↓I↑I ,

∅↓I↑I ∩ Yj = {j}↓I↑I ∩ Yj , (6)

where Yj = {y ∈ Y | y < j}.

Proof. Take j ∈ Y such that j 6∈ ∅↓I↑I . Observe that condition (6) holds true iff
there is no attribute k ∈ Y such that k 6∈ ∅↓I↑I , k < j, and k ∈ {j}↓I↑I . Thus,
consider any k ∈ Y such that k < j. Since 〈X,Y, I〉 is ordered, our assumption
j 6∈ ∅↓I↑I yields k 6∈ ∅↓I↑I . By the assumption, {k}↓I 6= {j}↓I , i.e., Lemma 2
yields k 6∈ {j}↓I↑I , finishing the proof. ut

Theorem 1 shows that for an ordered formal context with pairwise distinct
columns, invocations of FastGenerateFrom in the first level of recursion al-
ways succeeds and generates concepts. Moreover, from the proof of Theorem 1
it follows that in any ordered formal context, the first derivation [10] does not
exists for attribute j if there is an attribute k such that k < j and {k}↓I = {j}↓I .
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Fig. 2. Impact of inversion in the mushrooms data set

This has a practical consequence for the parallel variants of CbO and FCbO
in case of ordered contexts, because it allows us to determine the number of
concepts generated during the first stages of the algorithms. If the number of
attributes is significantly larger than the number of processors, and this condition
is usually fulfilled, it is sufficient to compute only the first derivations and then
distribute the workload among all processors.

Furthermore, our empirical experiments have shown an interesting tendency
that while processing ordered formal contexts, canonicity tests fail less frequently
than in case of contexts containing inversions. In addition, the experiments have
shown that with the increasing number of inversions in a data table, the average
number of computed closures grows. For instance, Fig. 2 shows how the number
of inversions in the mushroom data set affects the total number of computed
closures. The first graph (at the top) depicts this dependency for CbO and
FCbO. The second graph (at the bottom) provides a more detailed view for
FCbO. Similar tendency can be observed for other benchmark data sets.

Remark 1. Let us note that the ordering of attributes introduced by (5) has
already been used in [4] but the purpose of the ordering in [4] is different. In [4],
the authors use this particular ordering of attributes in a parallel version of
Ganter’s NextClosure algorithm to achieve soundness of the algorithm (each
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Fig. 3. Impact of inversions in two artificial data sets

concepts closures closures ratio ratio
(unordered) (ordered) (unordered) (ordered)

mushroom 238,710 426,563 299,201 55.9 % 79.7 %
anon. web 129,009 1,475,341 398,147 8.7 % 32.4 %
debian tags 38,977 679,911 298,641 5.7 % 13.0 %
tit-tac-toe 59,505 128,434 89,930 46.3 % 66.1 %

Table 4. Numbers of computed closures in case of (un)ordered attributes.

concept is then listed only once) while in our case, [4] is used for the sake of
increased efficiency.

Remark 2. We have observed a general tendency that certain data sets are more
affected by the above-discussed phenomenon than others. For instance, if 1’s in
a data table are approximately uniformly spread among attributes (i.e., each at-
tribute has approximately the same support), the ordering of attributes (usually)
does not have a considerable effect on decreasing the number of closures. Fig. 3
depicts how the increasing number of inversions affects the number of computed
closures in two artificial data sets where 1’s are distributed (i) approximately
uniformly among the attributes and (ii) approximately normally among the at-
tributes. Both data sets have the same parameters in that they consist of 1000
objects, 100 attributes, and contain 15 % of 1’s, however, the distributions of
1’s among the attributes are quite different. As one can see from Fig. 3, the im-
pact of the number of inversions on the number of computed closures is more
significant in case of normally distributed 1’s among the attributes.

Experimental Evaluation From our observations it follows that it is desirable
to incorporate a preprocessing step which transforms a formal context into a
corresponding ordered formal context. In order to evaluate the benefits of this
preprocessing step, we have used similar approach as in case of evaluation of
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mushroom tic-tac-toe debian tags anon. web

PFCbO (P = 1) 0.23 0.02 0.10 0.15
PFCbO (P = 2) 0.14 0.01 0.07 0.11
PFCbO (P = 4) 0.09 0.01 0.06 0.09
PFCbO (P = 8) 0.06 0.01 0.06 0.08

PCbO (P = 1) 4.34 0.06 5.31 27.14
PCbO (P = 2) 2.39 0.03 3.59 14.77
PCbO (P = 4) 1.65 0.02 2.59 9.22
PCbO (P = 8) 0.99 0.01 1.85 5.60

Table 5. Performace with multiple processors (speed in seconds).

the new canonicity test. We have focused on the total numbers of closures and
concepts computed by FCbO while processing various ordered and unordered
data sets. The results are presented in Table 4 which also includes corresponding
ratios.

Apparently, reordering of attributes reduces the number of computed clo-
sures, and thus, can reduce time of computation. Note that the Ganter’s algo-
rithm [5, 6] is in principle equivalent to CbO. As such, it is also not permutation
resistant. Thus, the preprocessing step which reorders attributes can also in-
crease its performance.

5 Overall Evaluation

So far, we have proposed and evaluated several improvements and refinements of
the original CbO and PCbO algorithms, namely, new canonicity test, workload
distribution schemes, and reordering attributes. However, we have evaluated the
impact of each improvement separately. Therefore, we conclude this paper with
the evaluation of PFCbO which includes all these improvements.

Table 5 table shows the total time (in seconds) needed to compute all for-
mal concepts in the benchmark data sets using PCbO and PFCbO run on the
Apple MacPro computer, equipped with eight processor cores. The parameter
P indicates the number of used processors for particular experiment.

Fig. 4 demonstrates the scalability of PFCbO, i.e., the ability to decrease the
time of computation by using more processors. In the depicted two experiments,
we have used computer equipped with Sun UltraSPARC T1 processor having
eight cores (each capable to process up to 4 threads simultaneously) and 8 GB
of RAM. Fig. 4 (at the top) shows relative speed up for data sets having 10000
objects, 10 % density of 1’s in the data table and various counts of attributes.
Fig. 4 (at the bottom) shows relative speed up for data sets having 1000 objects,
100 attributes, and various densities of 1’s in the data tables. The 1’s in both
data sets spread approximately normally among the attributes. Note that each
graph contains a certain point from which the increasing number of processors
does not allow to take advantage of more processors and performance of the



336 Petr Krajca, Jan Outrata, Vilem Vychodil

algorithm may even decline due to the overhead related to the management
of multiple threads of execution. However, this is a quite common behavior of
parallel algorithms.
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a b s t r a c t

Fixpoints of Galois connections induced by object-attribute data tables represent impor-
tant patterns that can be found in relational data. Such patterns are used in several data
mining disciplines including formal concept analysis, frequent itemset and association rule
mining, and Boolean factor analysis. In this paper we propose efficient algorithm for listing
all fixpoints of Galois connections induced by object-attribute data. The algorithm, called
FCbO, results as a modification of Kuznetsov’s CbO in which we use more efficient canon-
icity test. We describe the algorithm, prove its correctness, discuss efficiency issues, and
present an experimental evaluation of its performance and comparison with other
algorithms.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction and Preliminaries

This paper describes a new algorithm for computing fixpoints of Galois connections. In particular, we focus on Galois con-
nections [5,12,26,33] that appear in formal concept analysis (FCA) – a method of qualitative analysis of object-attribute rela-
tional data [10,33]. In a broader sense, the algorithm belongs to an important family of algorithms for listing combinatorial
structures [11] and algorithms for biclustering [3,29]. The algorithm we propose is a refinement of Kuznetsov’s [19,21] Close-
by-One algorithm (CbO) in which we improve the canonicity test. The improvement significantly reduces the number of fix-
points which are computed multiple times, resulting in an algorithm that is considerably faster than the original CbO.

Recall that an antitone Galois connection between nonempty sets X and Y is a pair hf,gi of maps f : 2X ? 2Y and g : 2Y ? 2X

satisfying, for any A, A1, A2 # X and B, B1, B2 # Y,

A # gðf ðAÞÞ; ð1Þ
B # f ðgðBÞÞ; ð2Þ
if A1 # A2 then f ðA2Þ# f ðA1Þ; ð3Þ
if B1 # B2 then gðB2Þ# gðB1Þ: ð4Þ

The composed maps f � g : 2X ! 2X and g � f : 2Y ? 2Y are closure operators in 2X and 2Y, respectively [10,12]. A pair
hA,Bi 2 2X � 2Y is called a fixpoint of hf,gi if f(A) = B and g(B) = A. Since we are interested in listing all fixed points of hf,gi,
we restrict ourselves to finite X and Y.

Galois connections appear as induced structures in data analysis. Namely, suppose that X and Y are sets of objects and
attributes/features, respectively, and let I # X � Y be an incidence relation, hx,yi 2 I saying that object x 2 X has attribute
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y 2 Y. In FCA, the triplet hX,Y, Ii is called a formal context and represents the input object-attribute data. Given I # X � Y, we
introduce two concept-forming operators [10] "I : 2X ! 2Y and #I : 2Y ! 2X defined, for each A # X and B # Y, by

A"I ¼ y 2 Yj for each x 2 A : hx; yi 2 If g; ð5Þ
B#I ¼ x 2 Xj for each y 2 B : hx; yi 2 If g: ð6Þ

By definition (5), A"I is the set of all attributes shared by all objects from A and, by (6), B#I is the set of all objects sharing all
attributes from B. It is easily seen that h"I ; #I i is a Galois connection between X and Y and it shall be called a Galois connection
induced by I. The fixpoints of h"I ; #I i are called formal concepts in I [10,12]. Formal concepts represent basic patterns that can
be found in I and that have two common interpretations: (i) a geometric one: formal concepts are maximal rectangular sub-
sets of I; (ii) a conceptual one: each formal concept hA,Bi represents a concept in data with an extent A (objects that fall under
the concept) and an intent B (attributes covered by the concept) such that A is a set of objects sharing all attributes from B
and B is the set of all attributes shared by all objects from A. The latter interpretation of concepts is inspired by a traditional
understanding of concepts as notions having their extent and intent which goes back to traditional Port-Royal logic [8,23].

In this paper, we propose an algorithm that lists all formal concepts in I, each of them exactly once. In the past, there have
been proposed various algorithms for solving this task, see [22] for a survey and comparison. One of the main issues solved
by all the algorithms is how to prevent listing the same formal concept multiple times. There are several approaches to cope
with the problem. For instance, Lindig’s algorithm [24] stores found concepts in a data structure (a particular search tree) and
uses the data structure to check whether a formal concept has already been found. On the other hand, Ganter’s NextClosure
[9], CbO [19,21], and the algorithm proposed by Norris [30] use canonicity tests: formal concepts are supposed to be listed in
certain order. The fact whether two consecutive concepts are listed in the order is ensured by a canonicity test. If a newly
computed formal concept does not pass the canonicity test, it is not further considered. Hence, the canonicity test ensures
that even if a formal concept is computed several times, it is listed exactly once. Conceptually, our algorithm can be seen as
an improved version of CbO [19,21] in which we modify the canonicity test. The improvement significantly reduces the num-
ber of formal concepts which are computed multiple times. The reduction has a great impact on the performance of the algo-
rithm because computing formal concepts using the closures A"I#I or B#I"I of a set of objects A or a set of attributes B,
respectively, is the most critical operation. Note that other promising approaches related to CbO have been introduced in
[27] and recently in [2].

Let us stress the importance of listing formal concepts. First, formal concepts are the basic output of formal concept anal-
ysis. If we denote by BðX;Y ; IÞ the set of all formal concepts in I # X � Y, we can define a partial order 6 on BðX;Y ; IÞ as
follows:

hA1;B1i 6 hA2;B2i iff A1 # A2 ðor; equivalently; iff B2 # B1Þ: ð7Þ

If hA1,B1i 6 hA2,B2i then hA1,B1i is called a subconcept of hA2,B2i. The set BðX;Y ; IÞ together with 6is called a concept lattice
[33]. A concept lattice is a complete lattice whose structure is described by the Basic Theorem of Concept Lattices [10]. The
concept lattice is a formalization of a hierarchy of concepts that are found in the input data represented by I. FCA has been
applied in many disciplines to analyze object-attribute data including program analysis and software engineering [31,32]
and evaluation of questionnaires [6]. Another source of applications of formal concepts comes from data mining. The task
of listing all formal concepts is closely related to mining of association rules [1]. Namely, the frequent closed itemsets which
appear in mining nonredundant association rules [1,25,34] can be identified with intents of formal concepts whose extents
are sufficiently large. Recently, it has been shown in [7] that formal concepts can be used to find optimal factorization of
Boolean matrices. In fact, formal concepts correspond with optimal solutions to the discrete basis problem discussed by
Miettinen et al. [28]. Finding formal concepts is therefore an important task. The algorithm we propose in this paper behaves
well on both sparse and dense incidence data (of reasonable size).

This paper is organized as follows. In Section 2 we recall CbO and introduce the canonicity test. Section 3 describes the
new algorithm, shows its correctness, and comments on the relationship to other algorithms. In Section 4 we discuss com-
plexity and efficiency issues, and present an experimental evaluation of the performance of the algorithm.

2. Canonicity test and CbO

In this section we recall CbO [19,21] and the canonicity test. The next section will describe the new algorithm. In the se-
quel, we assume that X = {0,1, . . . ,m} and Y = {0,1, . . . ,n} are finite nonempty sets of objects and attributes, respectively, and
I # X � Y. Since I is fixed, the concept-forming operators "I and #I defined by (5) and (6) will be denoted just by " and ;,
respectively. The set of all formal concept in I will be denoted by BðX;Y ; IÞ.

CbO has been introduced in [19] (a paper in Russian) and later used and described in [21]. The algorithm is also related to
the algorithm proposed by Norris [30] which can be seen as an incremental variant of CbO. CbO lists all formal concepts by a
systematic search in the space of all formal concepts, avoiding to list the same concept multiple times by performing a can-
onicity test. Conceptually, CbO is similar to NextClosure [9] because it uses the same canonicity test but NextClosure lists
concepts in a different order. In [21], CbO is described in terms of backtracking. In this section we are going to use a simpli-
fied version of CbO introduced in [15] which is formalized by a recursive procedure performing a depth-first search in the
space of all formal concepts. This type of description will shed more light on the new algorithm.
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The core of CbO is a recursive procedure GENERATEFROM, see Algorithm 1. The procedure accepts a formal concept hA,Bi (an
initial formal concept) and an attribute y 2 Y (first attribute to be processed) as its arguments. The procedure recursively des-
cends through the space of formal concepts, beginning with hA,Bi.

Algorithm 1: Procedure GENERATEFROM(hA,Bi,y)

1 list hA,Bi (e.g., print hA,Bi on the screen);
2 if B = Y or y > n then
3 return
4 end
5 for j from y upto n do
6 if j R B then
7 set C to A \ {j};;
8 set D to C";
9 if B \ Yj = D \ Yj then

10 GENERATEFROM hC;Di; jþ 1ð Þ;
11 end
12 end
13 end
14 return

When invoked with hA,Bi and y 2 Y, GENERATEFROM first lists hA,Bi (line 1) and then it checks its halting condition (lines 2–
4). The computation stops either when hA,Bi equals hY;,Yi (the least formal concept has been reached) or y > n (there are no
more remaining attributes to be processed). Otherwise, the procedure goes through all attributes j 2 Y such that j P y which
are not present in the intent B (lines 5 and 6). For each such j 2 Y, a new formal concept hC,Di = hA \ {j};, (A \ {j};)"i is com-
puted (lines 7 and 8). After obtaining hC,Di, the algorithm uses the canonicity test to check whether it should continue with
hC,Di by recursively calling GENERATEFROM or whether hC,Di should be ‘‘skipped’’. The canonicity test (line 9) is based on com-
paring B \ Yj = D \ Yj where Yj # Y is defined by

Yj ¼ fy 2 Yjy < jg: ð8Þ

If the test passes, GENERATEFROM is called with hC,Di and j + 1, otherwise, the loop between lines 5–13 continues with the next
value of j. The algorithm is correct: if GENERATEFROM is invoked with h;;,;#"i and 0, it lists each formal concept exactly once, i.e.,
the canonicity test prevents a concept from being listed multiple times. The proof for the original CbO is elaborated in [18].

Since we have formulated the algorithm as a recursive procedure rather than using backtracking, we provided an inde-
pendent proof of its correctness using so-called derivations which we introduced in [15] for the purpose of analysis of par-
allel implementations of CbO. Recall from [15] that derivations correspond to recursive invocations of GENERATEFROM. In a
more detail, for hA1;B1i; hA2;B2i 2 BðX;Y ; IÞ and integers y1,y2 2 Y [ {n + 1} let hhA1,B1i,y1i ‘ hhA2,B2i,y2i denote that for
m = y2 � 1 the following conditions

(i) m R B1,
(ii) y1 < y2,

(iii) B2 = (B1 [ {m})#", and
(iv) B1 \ Ym = B2 \ Ym where Ym is defined by (8)

are all satisfied. A derivation of hA;Bi 2 BðX;Y ; IÞ of length k + 1 is any sequence

hh;#; ;#"i;0i ¼ hA0;B0i; y0h i; hA1;B1i; y1h i; . . . ; hAk;Bki; ykh i ¼ hA;Bi; ykh i ð9Þ

such that hhAi,Bii,yii ‘ hhAi+1,Bi+1i,yi+1i for each i = 0, . . . ,k � 1. If hA,Bi has a derivation of length k we say that hA,Bi is deriv-
able in k steps.

We can prove the following

Theorem 1 (Existence and Uniqueness of Derivations [15]). Each hA;Bi 2 BðX;Y ; IÞ has exactly one derivation. Namely, the
derivation of the form (9) in which yi = mi + 1 and mi = min{y 2 Bjy R Bi�1} hold for all 0 < i 6 k. h

There is a correspondence between derivations and consecutive invocations of the procedure GENERATEFROM. Namely,
hhA,Bi,yi ‘ hhC,Di,ki iff the invocation of GENERATEFROMðhA;Bi; yÞ causes GENERATEFROMðhC;Di; kÞ to be called in line 10 of Algo-
rithm 1. Indeed, (i) ensures that the condition in line 6 of Algorithm 1 is satisfied, (ii) corresponds to the fact that the loop
between lines 5–13 goes from y upwards, (iii) says that D is the intent computed in line 8 because

D ¼ ðB [ fmgÞ#" ¼ ðB [ fk� 1gÞ#" ¼ ðA \ fk� 1g#Þ" ¼ C"

and (iv) is true iff the condition in line 9 is true.
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The computation of Algorithm 1 and the corresponding derivations can be depicted by a tree as that in Fig. 1. The tree
contains two types of nodes: (i) nodes represented by couples hCi,yii corresponding to invocations of GENERATEFROM with
the arguments Ci (a formal concept) and yi (an attribute), and (ii) leaf nodes denoted by black squares representing computed
concepts for which the canonicity test fails. Edges in the tree are labeled by the values of j which are used to compute (new)
formal concepts, see lines 7 and 8 of Algorithm 1. That is, nodes hCi,yii and hCj,yji are connected by an edge with label k iff
hCi,yii ‘ hCj,yji and yj = k + 1. We call such a tree a call tree of GENERATEFROM for a given I # X � Y. It is easily seen that each path
from the root of the tree to any node labeled by hCi,yii corresponds to a derivation of hCi,yii. Due to Theorem 1, the nodes
labeled by hCi,yii are always in a one-to-one correspondence with formal concepts in BðX;Y; IÞ, showing that the Algorithm
1 is correct. Let us note that there is a correspondence between a call tree like that in Fig. 1 and a CbO-tree described in [21]:
our derivations correspond to canonical paths in the CbO-tree. Moreover, paths which are not canonical according to [21] can
be seen as paths from the root node of the call tree of GENERATEFROM to nodes labeled by black squares.

Example 1. Algorithm 1 and derivations are further demonstrated by the following example. Consider a set X = {0, . . . ,3} of
objects and a set Y = {0, . . . ,5} of attributes. An incidence relation I # X � Y is given by the following table:

I 0 1 2 3 4 5

0 � � �
1 � � � � �
2 � � �
3 � �

where rows correspond to objects from X, columns correspond to attributes from Y, and table entries ‘‘�’’ or ‘‘blank’’ indicate
whether for an object x and an attribute y we have hx,yi 2 I or hx,yi R I, respectively. The concept-forming operators
" : 2X ? 2Y and ; : 2Y ? 2X induced by such I have 12 fixpoints:

C1 ¼ hf0;1;2;3g; ;i; C5 ¼ h;; f0;1;2;3;4;5gi; C9 ¼ hf1;2g; f0;4gi;
C2 ¼ hf0;1;2g; f0gi; C6 ¼ hf2g; f0;1;4gi; C10 ¼ hf0;2;3g; f1gi;
C3 ¼ hf0;2g; f0;1gi; C7 ¼ hf0;1g; f0;2gi; C11 ¼ hf0;3g; f1;2gi;
C4 ¼ hf0g; f0;1;2gi; C8 ¼ hf1g; f0;2;3;4;5gi; C12 ¼ hf0;1;3g; f2gi:

The concepts are numbered as they are listed by procedure GENERATEFROM. Notice that C1 = h;;,;#"i represents the initial formal
concept which is processed by GENERATEFROM. The corresponding call tree can be found in Fig. 1. One can read from the tree
that, for example, hC1,0i ‘ hC2,1i, hC2,1i ‘ hC3,2i, and hC3,2i ‘ hC6,5i. Therefore, hC1,0i, hC2,1i, hC3,2i, hC6,5i is a derivation and
C6 is derivable in 4 steps. The dataset used in this example will be used to illustrate our improvement of the canonicity
test. j

3. Improved canonicity test and FCbO

In this section, we propose an improvement of the canonicity test used by CbO that reduces the number of formal con-
cepts computed multiple times. In a call tree like that in Fig. 1, such formal concepts are depicted by the black-square nodes.

Fig. 1. Call tree of GENERATEFROM for I # X � Y from Example 1.
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Our new test and the improved algorithm will reduce the number of such nodes in the call tree without altering the rest of
the tree. The major problem with the original canonicity test used by CbO is that it is always used after a new formal concept
is computed, i.e., after performing the operation of computing a new fixpoint of #". We propose to employ an additional test
that can be performed before a new formal concept is computed, eliminating thus the expensive computation of fixpoints.

3.1. Fast canonicity test

Let us first inspect the canonicity test

B \ Yj ¼ D \ Yj ð10Þ

that appears in line 9 of Algorithm 1. Since #" is a closure operator and D = (B [ {j})#", the monotony of #" yields B # D. Thus, it
is sufficient to check just the inclusion B \ Yj � D \ Yj instead of (10). In other words, the test succeeds iff D and B agree on all
attributes which are smaller than j. Hence, the test (10) fails (i.e., the equality is not true) iff the fixpoint D = (B [ {j})#" con-
tains an attribute which is ‘‘before j’’ and the attribute is not present in B. Let us denote all such attributes by B j, i.e.

B j ¼ ðD n BÞ \ Yj ¼ ðB [ fjgÞ#" n B
� �

\ Yj: ð11Þ

The following lemma shows that knowing that (10) fails for given B and j R B, we can conclude that the test will also fail for
each B0 � B with j R B0 as long as B j contains an attribute which is not in B0:

Lemma 2 (On Test Failure Propagation). Let B # Y, j R B, and B j – ;. Then, for each B0 � B such that j R B0 and B j 6# B0, we
have B0 j – ;.

Proof. Notice that B j = (DnB) \ Yj – ; for D = (B [ {j})#" means that (10) fails for such B, D and j R B. Take any B0 � B such
that j R B0 and B j 6# B0. Let D0 = (B0 [ {j})#". Since j R B0, we get B0 � D0. In order to show that B0 j – ;, we prove that
B0 \ Yj � D0 \ Yj. Since B j 6# B0, there is an attribute y 2 B j such that y R B0. Thus, it suffices to prove that y 2 D0 \ Yj. The
fact that y 2 Yj follows directly from y 2 B j = (DnB) \ Yj. Moreover, y 2 B j yields y 2 D. Using monotony of the closure
operator #", we get y 2 D = (B [ {j})#" # (B0 [ {j})#" = D0, proving the claim. Altogether, B0 \ Yj � D0 \ Yj, i.e. B0 j – ;. h

Based on Lemma 2, we get the following characterization of derivations:

Theorem 3 (On Nonexistence of Derivations). Let hh;;,;#"i, 0i, . . . , hhA,Bi, yi be a derivation and let j P y be such that j R B and
B j – ;. Then there is no derivation

hh;#; ;#"i;0i; . . . ; hA;Bi; yh i; . . . ; hA0;B0i; y0
� �

; hC 0;D0i; jþ 1
� �

;

where B j 6# B0.

Proof. The claim is a consequence of Lemma 2. Indeed, take arbitrary B0 � B such that B j 6# B0. Assume there is a sequence

hh;#; ;#"i;0i; . . . ; hhA;Bi; yi; . . . ; hhA0;B0i; y0i

which is a derivation of hA0,B0i. We can prove that the derivation cannot be extended by hhC0,D0i, j + 1i. By contradiction, as-
sume that hhA0,B0i,y0i ‘ hhC0,D0i, j + 1i. By definition of ‘‘‘’’, we get D0 = (B0 [ {j})#" and B0 \ Yj = D0 \ Yj, i.e., B0 j = (D0nB0) \ Yj = ;.
On the other hand, we have assumed B j 6# B0, i.e. Lemma 2 yields B0 j – ;, a contradiction to B0 j = ;. h

The result shown in Theorem 3 allows us to split the canonicity test into two parts: First part which is quick and does not
require computing closures and a second part which is basically the original canonicity test. Indeed, according to Theorem 3,
if we know that B j – ; for some j R B then having a derivation

hh;#; ;#"i;0i; . . . ; hA;Bi; yh i; . . . ; hA0;B0i; y0
� �

with B j 6# B0, we automatically know (without computing any closures) that it cannot be further extended by hhC0,D0i, j + 1i.
In other words, D0 = (B0 [ {j})#" is not computed at all. Therefore, the first part of the new test uses the observation of Theo-
rem 3. If the first part of the test cannot be applied because B j = ;, we still have to perform the second part of the test, i.e.,
the original canonicity test which involves computing the closure (B0 [ {j})#". Nevertheless, we will see in Section 4 that the
number of cases in which we actually perform the original canonicity test is surprisingly low compared to the number of
quick tests based on Theorem 3. The idea of the new combined canonicity test is further illustrated by the following example.

Example 2. Consider the input data from Example 1 and the corresponding call tree in Fig. 1. If we apply the new canonicity
test based on Theorem 3, we in fact perform a particular tree pruning in which we omit some of the black-square leaf nodes
of the tree. The result is shown in Fig. 2. The bold edges are those which remain in the call tree. The leaf nodes that are
omitted are denoted in gray and the corresponding edges are dotted. Notice that not all black-square leaf nodes are omitted.
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C8 appears three times as a leaf node, C9 and C5 appear once, meaning that the formal concept C8 is computed four times
during the computation and both C9 and C5 are computed twice. The total number of closures computed during the
computation is 17 which is a significant reduction compared to the 34 nodes of the original call tree in Fig. 1.

Let us outline how the new test is used to prune the tree. Consider the first formal concept C1 = hA1,B1i = h{0,1,2,3},;i, see
Example 1 for the list of all concepts. At this point, we perform the usual canonicity test because we have no information from
previous levels of the tree (we are on the top of the tree). For j 2 {0,1,2}, the test succeeds. For instance, in case of j = 2, we get
C12 = hA12,B12i = h{0,1,3}, {2}i, i.e. B1 \ Y2 = ; = B12 \ Y2. On the other hand, the test fails for j 2 {3,4,5}. For instance, in case of
j = 3, we get C8 = hA8,B8i = h{1}, {0,2,3,4,5}i and hence B1 \ Y3 = ;– {0,2} = B8 \ Y3. Therefore, B1 3 = {0,2}. Analogously, we
get B1 4 = {0} and B1 5 = {0,2,3,4}. The sets B1 3, B1 4 = {0}, and B1 5 can be further used to prune the tree according to
Theorem 3. Indeed, consider the tree node hC10,2i. Since C10 = hA10,B10i = h{0,2,3}, {1}i, we get B1 3 6# B10, B1 4 6# B10, and
B1 5 6# B10, i.e. neither j 2 {3,4,5} can be used to extend the derivation. In case of j = 2, we perform the usual canonicity test
which is successful. In a similar way, the tree can be pruned beginning with the other nodes hCi,yii.

The fast test based on Theorem 3 is not always applicable. It is evident that we cannot apply the test on the top-most level
of the call tree. There are, however, situations where it cannot be applied on deeper levels as well. Consider, e.g., the tree
node hC7,3iwhere C7 = hA7,B7i = h{0,1}, {0,2}i. Since B1 4 = {0} # B7, Theorem 3 cannot be applied. On the other hand, if we
perform the original canonicity test with B7 and (B7 [ {4})#" = {0,2,3,4,5} = B8, we get B7 \ Y4 = {0,2} – {0,2,3} = B8 \ Y4, i.e.,
the derivation cannot be extended by hC8,5i but in order to see this we had to compute the closure (B7 [ {4})#" = B8 which
should be considered an expensive operation (especially in case of large data sets). A similar situation appears in case of the
node hC4,3i and j = 4, cf. Fig. 2. j

3.2. Modified algorithm

In this section, we describe how the new canonicity test based on Theorem 3 can be implemented in an extended version
of CbO. As Example 2 shows, during the computation we have to propagate the information about sets Bi yi which take part
in the new test. In particular, the information must be propagated in the top-down direction, from the root node of the call
tree to the leaves. As a consequence, we have to change the search strategy of the algorithm (the depth-first search in the
space of concepts as it is used in CbO is no longer useful), resulting in a new algorithm called FCbO (‘‘F’’ stands for ‘‘Fast’’).

Remark 1. A call tree is a diagram depicting recursive calls of GENERATEFROM. Consecutive invocations of GENERATEFROM

correspond to the depth-first search in the call tree. For instance, in case of node hC1,0i in Fig. 1, GENERATEFROM continues with
the subtree with root node hC2,1i. After the whole subtree is processed, it continues with the subtree with root node hC10,2i,
etc. The problem with this behavior is that in order to apply the new canonicity test in the subtree with root hC2,1i, we shall
already have the information about B1 3 = {0,2}. Analogously, we get B1 4 = {0} and B1 5 = {0,2,3,4}, see Example 2,
which is available only after we process all attributes in the invocation of hC1,0i. Therefore, we are going to modify
GENERATEFROM so that instead of the recursive calls, it stores information about computed concepts in a queue. Then, after all
attributes are processed, it performs a recursive invocation for each concept in the queue. This effectively changes the order
in which we compute new concepts because we use a combined depth-first and breadth-first search in the call tree but it
does not change the order of listing of formal concepts because the listing appears after each recursive call, as in CbO. j

Fig. 2. Example of a call tree with a reduced number of leaf nodes.
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Algorithm 2: Procedure FASTGENERATEFROMðhA;Bi; y; fNyjy 2 YgÞ

1 list hA,Bi (e.g., print A and B on screen);
2 if B = Y or y > n then
3 return
4 end
5 for j from y upto n do
6 set Mj to Nj;
7 if j R B and Nj \ Yj # B \ Yj then
8 set C to A \ {j};;
9 set D to C";

10 if B \ Yj = D \ Yj then
11 put hhC,Di, j + 1i to queue;
12 else
13 set Mj to D;
14 end
15 end
16 end
17 while get hhC,Di, ji from queue do
18 FASTGENERATEFROMðhC;Di; j; fMyjy 2 YgÞ;
19 end
20 return

We are going to represent FCbO by a recursive procedure FASTGENERATEFROM, see Algorithm 2. The procedure accepts three
arguments: a formal concept hA,Bi (an initial formal concept), an attribute y 2 Y (first attribute to be processed), and a set
{Ny # Yjy 2 Y} of subsets of attributes Y. The intended meaning of the first two arguments is the same as in case of GENER-

ATEFROM, see Algorithm 1. The purpose of the third argument is to carry information about attributes in sets Bi yi. The precise
meaning of Ny will be specified later. Each invocation of FASTGENERATEFROM uses the following local variables: a queue as a tem-
porary storage for computed concepts and sets of attributes My (y 2 Y) which are used in place of the third argument for fur-
ther invocations of FASTGENERATEFROM.

When invoked with hA,Bi, y 2 Y, and {Nyjy 2 Y}, FASTGENERATEFROM first processes hA,Bi and then it checks the same halting
condition as GENERATEFROM, see lines 1–4. If the computation does not halt, the procedure goes through all attributes j 2 Y such
that j P y, see lines 5–16. For each such j, the procedure creates a local copy Mj of the set Nj (line 6). If j R B, a test based on
Theorem 3 is performed by checking Nj \ Yj # B \ Yj. If the test succeeds, the procedure goes on with computing a new for-
mal concept hC,Di, see lines 8 and 9. Then it performs the original canonicity test (line 10). If the test is positive, the formal
concept hC,Di together with the attribute j + 1 are stored in a queue (line 11). Otherwise, Mj is set to D (line 13). Notice that
the loop between lines 5–15 does not perform any recursive calls of FASTGENERATEFROM. Instead, the information about com-
puted concepts and attributes used to generate the concepts is stored in the queue. The recursive invocations of FASTGENER-

ATEFROM are performed after all the attributes are processed. Indeed, the loop between lines 17–19 goes over all records in
the queue and recursively calls FASTGENERATEFROM with arguments being the new concept, new starting attribute, and new
set of subsets {Myjy 2 Y} of attributes.

In order to list all formal concepts, we invoke Algorithm 2 with h;;,;#"i, y = 0 and {Ny = ;jy 2 Y} as its initial arguments. The
following assertion says that the algorithm is correct:

Theorem 4 (Correctness of FCbO). When invoked with h;;,;#"i, y = 0, and {Ny = ;jy 2 Y}, Algorithm 2 lists all formal concepts in
hX,Y, Ii, each of them exactly once.

Proof. Since Algorithm 1 (CbO) is correct, is it sufficient to show that Algorithm 2 (FCbO) does not omit any formal concept
during the computation. Thus, we have to check that the new canonicity test is applied correctly. The rest follows from the cor-
rectness of Algorithm 1, in particular the existence and uniqueness of derivations, see Theorem 1. Let us inspect the values of
Nj’s and Mj’s during each invocation of FASTGENERATEFROM. During the first invocation, {Ny = ;jy 2 Y}, i.e. Nj \ Yj = ; # B \ Yj is triv-
ially true, i.e. each attribute j R B is processed between lines 8–14. As one can see, during each invocation of FASTGENERATEFROM,
the value of Mj is either equal to Nj (we say that the value of Mj is inherited from previous invocation) or Mj equals D = (B [ {j})#"

(we say that the value of Mj is updated in the current invocation). If Mj is updated then Mj is the intent of a formal concept hC,Di
which fails the canonicity test in line 10. Therefore, it is easy to see that during an invocation of FASTGENER-

ATEFROMðhA;Bi; y; fNyjy 2 YgÞ, for each j P y, either Nj = ; or there is a formal concept hA⁄,B⁄i such that the following hold

(i) B⁄ # B,
(ii) B⁄ j – ;, and

(iii) Nj = (B⁄ [ {j})#".
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Notice that from (iii) it follows that B⁄ j = ((B⁄ [ {j})#"nB⁄) \ Yj = (NjnB⁄) \ Yj. Hence, in order to prove correctness, it
suffices to show that the condition Nj \ Yj # B \ Yj present in line 7 of Algorithm 2 fails iff B⁄ j 6# B which appears in
Theorem 3 as a necessary condition for pruning. Therefore, we prove the following

Claim 1.
B⁄ j # B iff Nj \ Yj # B \ Yj:

‘‘)’’: Let B⁄ j # B. Using (iii), we get (NjnB⁄) \ Yj # B. Furthermore, (i) yields NjnB # NjnB⁄, i.e. we obtain (NjnB) \ Yj # B.
The last inclusion implies that Nj \ Yj # B \ Yj. Indeed, by contradiction, from y 2 Nj \ Yj and y R B it follows that y 2 Nj,
i.e., y 2 NjnB and thus y 2 (NjnB) \ Yj # B because y 2 Yj, contradicting the fact that y R B. Therefore, we have
Nj \ Yj # B \ Yj. ‘‘�’’: Suppose that B⁄ j 6# B. Then, there is y 2 B⁄ j such that y R B. From y 2 B⁄ j and (iii), we get y 2 Nj

and y 2 Yj. Therefore, y 2 Nj \ Yj and y R B \ Nj because y R B, showing Nj \ Yj 6# B \ Yj.
Therefore, as a consequence of Theorem 3, if Nj \ Yj # B \ Yj fails then we can skip the attribute j because B and

D = (B [ {j})#" would fail the canonicity test in line 10. Altogether, FCbO lists all formal concepts, each of them exactly
once. h

Remark 2. In Algorithm 2, the additional information about attributes that is needed to perform the test is stored in proce-
dure arguments Ny which are, in fact, particular intents. On the other hand, the test formulated in Theorem 3 is based on sets
of the form B⁄ j. We use Ny’s instead of sets B⁄ j because of efficiency reasons: Since Ny represents an intent of a concept
that has already been computed, the third argument {Ny = ;jy 2 Y} for FASTGENERATEFROM can be organized as a list (or an array)
of references (pointers) to such intents. Storing referenced objects in a linear data structure is much cheaper an operation
than computing B⁄ j and storing the resulting value. More efficiency issues will be discussed in Section 4. j

The following example illustrates recursive invocations of FASTGENERATEFROM during the computation.

Example 3. We demonstrate the computation of Algorithm 2 for the input data from Example 1 by listing important steps of
the algorithm. We focus on steps performed in lines 1 (listing of found formal concepts), 7 (quick canonicity test), 11 (putting
a new concept to a queue), 13 (updating information about attributes in sets Bi yi), and 18 (recursive invocations of
FASTGENERATEFROM). In addition to that, if an invocation of FASTGENERATEFROM terminates either in line 3 or 20, we denote this fact
by ‘‘\’’ in a separate line. Nested invocations are separated by horizontal indent. In the example, each formal concept is
denoted by Ci = hAi,Bii, i.e., each Bi is the intent of the corresponding Ci. The rest of the notation is the same as in Algorithm 2.
When FASTGENERATEFROM is invoked with C1, 0, and {Ny = ;jy 2 Y}, the computation proceeds as follows:

line 1: list C1 = h{0,1,2,3},;i
line 7: trivial success for j = 0 because N0 = ;
line 11: put hC2,1i = hh{0,1,2}, {0}i,1i to queue
line 7: trivial success for j = 1 because N1 = ;
line 11: put hC10,2i = hh{0,2,3}, {1}i,2i to queue
line 7: trivial success for j = 2 because N2 = ;
line 11: put hC12,3i = hh{0,1,3}, {2}i,3i to queue
line 7: trivial success for j = 3 because N3 = ;
line 13: set M3 to D = (; [ {3})#" = {0,2,3,4,5} = B8

line 7: trivial success for j = 4 because N4 = ;
line 13: set M4 to D = (; [ {4})#" = {0,4} = B9

line 7: trivial success for j = 5 because N5 = ;
line 13: set M5 to D = (; [ {5})#" = {0,2,3,4,5} = B8

line 18: get hC2,1i from queue and call FASTGENERATEFROM(C2, 1, {Myjy 2 Y})
line 1: list C2 = h{0,1,2}, {0}i
line 7: trivial success for j = 1 because N1 = ;
line 11: put hC3,2i = hh{0,2}, {0,1}i,2i to queue
line 7: trivial success for j = 2 because N2 = ;
line 11: put hC7,3i = hh{0,1}, {0,2}i,3i to queue
line 7: failure for j = 3, B = {0}, and N3 = {0,2,3,4,5} = B8 because {2} 6# B
line 7: success for j = 4, B = {0}, and N4 = {0,4} = B9

line 11: put hC9,5i = hh{1,2}, {0,4}i,5i to queue
line 7: failure for j = 5, B = {0}, and N5 = {0,2,3,4,5} = B8 because {2,3,4} 6# B
line 18: get hC3,2i from queue and call FASTGENERATEFROM(C3,2, {Myjy 2 Y})

line 1: list C3 = h{0,2}, {0,1}i
line 7: trivial success for j = 2 because N2 = ;
line 11: put hC4,3i = hh{0}, {0,1,2}i,3i to queue

(continued on next page)
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line 7: failure for j = 3, B = {0,1}, and N3 = {0,2,3,4,5} = B8 because {2} 6# B
line 7: success for j = 4, B = {0,1}, and N4 = {0,4} = B9

line 11: put hC6,5i = hh{2}, {0,1,4}i,5i to queue
line 7: failure for j = 5, B = {0,1}, and N5 = {0,2,3,4,5} = B8 because {2,3,4} 6# B
line 18: get hC4,3i from queue and call FASTGENERATEFROMðC4;3; fMyjy 2 YgÞ

line 1: list C4 = h{0},{0,1,2}i
line 7: success for j = 3, B = {0,1,2}, and N3 = {0,2,3,4,5} = B8

line 11: put hC5,4i = h h;,{0,1,2,3,4,5}i,4i to queue
line 7: success for j = 4, B = {0,1,2}, and N4 = {0,4} = B9

line 13: set M4 to D = ({0,1,2} [ {4})#" = {0,1,2,3,4,5} = B5

line 7: failure for j = 5, B = {0,1,2}, and N5 = {0,2,3,4,5} = B8 because {3,4} 6# B
line 18: get hC5,4i from queue and call FASTGENERATEFROM(C5,4, {Myjy 2 Y})

line 1: list C5 = h;,{0,1,2,3,4,5}i
\ return from invocation for C5

\ return from invocation for C4

line 18: get hC6,5i from queue and call FASTGENERATEFROM(C6,5, {Myjy 2 Y})
line 1: list C6 = h{2}, {0,1,4}i
line 7: failure for j = 5, B = {0,1,4}, and N5 = {0,2,3,4,5} = B8 because {2,3} 6# B
\ return from invocation for C6

\ return from invocation for C3

line 18: get hC7,3i from queue and call FASTGENERATEFROMðC7;3; fMyjy 2 YgÞ
line 1: list C7 = h{0,1}, {0,2}i
line 7: success for j = 3, B = {0,2}, and N3 = {0,2,3,4,5} = B8

line 11: put hC8,4i = hh{1}, {0,2,3,4,5}i,4i to queue
line 7: success for j = 4, B = {0,2}, and N4 = {0,4} = B9

line 13: set M4 to D = ({0,2} [ {4})#" = {0,2,3,4,5} = B8

line 7: failure for j = 5, B = {0,2}, and N5 = {0,2,3,4,5} = B8 because {3,4} 6# B
line 18: get hC8,4i from queue and call FASTGENERATEFROMðC8;4; fMyjy 2 YgÞ

line 1: list C8 = h{1}, {0,2, 3,4,5}i
\ return from invocation for C8

\ return from invocation for C7

line 18: get hC9,5i from queue and call FASTGENERATEFROMðC9;5; fMyjy 2 YgÞ
line 1: list C9 = h{1,2}, {0,4}i
line 7: failure for j = 5, B = {0,4}, and N5 = {0,2,3,4,5} = B8 because {2,3} 6# B
\ return from invocation for C9

\ return from invocation for C2

line 18: get hC10,2i from queue and call FASTGENERATEFROMðC10;2; fMyjy 2 YgÞ
line 1: list C10 = h{0,2,3}, {1}i
line 7: trivial success for j = 2 because N2 = ;
line 11: put hC11,3i = hh{0,3}, {1,2}i,3i to queue
line 7: failure for j = 3, B = {1}, and N3 = {0,2,3,4,5} = B8 because {0,2} 6# B
line 7: failure for j = 4, B = {1}, and N4 = {0,4} = B9 because {0} 6# B
line 7: failure for j = 5, B = {1}, and N5 = {0,2,3,4,5} = B8 because {0,2,3,4} 6# B
line 18: get hC11,3i from queue and call FASTGENERATEFROMðC11;3; fMyjy 2 YgÞ

line 1: list C11 = h{0,3}, {1,2}i
line 7: failure for j = 3, B = {1,2}, and N3 = {0,2,3,4,5} = B8 because {0} 6# B
line 7: failure for j = 4, B = {1,2}, and N4 = {0,4} = B9 because {0} 6# B
line 7: failure for j = 5, B = {1,2}, and N5 = {0,2,3,4,5} = B8 because {0,3,4} 6# B
\ return from invocation for C11

\ return from invocation for C10

line 18: get hC12,3i from queue and call FASTGENERATEFROMðC12;3; fMyjy 2 YgÞ
line 1: list C12 = h{0,1,3}, {2}i
line 7: failure for j = 3, B = {2}, and N3 = {0,2,3,4,5} = B8 because {0} 6# B
line 7: failure for j = 4, B = {2}, and N4 = {0,4} = B9 because {0} 6# B
line 7: failure for j = 5, B = {2}, and N5 = {0,2,3,4,5} = B8 because {0,3,4} 6# B
\ return from invocation for C12

\ return from invocation for C1
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Notice that line 7 is either success or failure depending on the outcome of the new canonicity test. Each occurrence of line
7 is followed either by line 11 or line 13 depending on the outcome of the original canonicity test in line 10 (for brevity, line
10 is not displayed). j

3.3. On the relationship to NextClosure

Notice that FCbO lists all formal concepts in the same order as CbO. Although FCbO first computes closures which are put
in a queue and then makes the appropriate recursive calls, it lists the concepts in the same order as CbO because the listing is
performed as a first action after the invocation of FASTGENERATEFROM. Hence, the listing does not necessarily follow the com-
putation of a closure as it can be seen from Example 3.

The order in which concepts are listed by FCbO can be changed in various ways. For instance, if we move line 1 of Algo-
rithm 2 between lines 11 and 12, the concept will be listed in an order which agrees with the combined breadth-first and
depth-first search order of the call tree, see Remark 1.

More importantly, the algorithm can be easily modified to produce formal concepts in the same order as Ganter’s Next-
Closure algorithm [9]. Recall that NextClosure lists all concepts in a lectic order: B1 # Y is lecticly smaller [10] than B2 # Y,
denoted B1 <‘ B2, if the smallest element that distinguishes B1 and B2 belongs to B2. That is,

B1 <‘ B2 iff there is j 2 B2 n B1 such that B1 \ Yj ¼ B2 \ Yj; ð12Þ

where Yj is defined as in (8). It can be shown that <‘ is a total strict order on 2Y. NextClosure lists the formal concepts in the
(unique) order <‘ by an iterative computation of lectic successors, starting with the lecticly smallest concept h;;,;#"i. The fol-
lowing claim characterizes nodes of a call tree in terms of their lectic relationship.

Theorem 5. Let {hh;;,;#"i, 0i, . . . , hC,yi, hCi,yi + 1iji 2 J} be a J-indexed set of derivations of formal concepts Ci with intents Bi. Let B
be the intent of C. Then the following are true:

(i) for each i 2 J:B <‘ Bi,
(ii) for each j,k 2 J with yj < yk and each hC⁄, y⁄ + 1i such that hCk,yk + 1i ‘ ⁄hC⁄, y⁄ + 1i : B⁄ <‘ Bj where B⁄ is intent of C⁄ and ‘⁄ is

the reflexive and transitive closure of ‘.

Proof. See Fig. 3 for a symbolic schema for the proof.

(i) is easy to see: Since hC,yi ‘ hCi,yi + 1i, we have B \ Yyi
¼ Bi \ Yyi

. In addition to that, yi 2 Bi and yi R B, i.e. (12) is satisfied
for j being yi, showing B <‘ Bi.

(ii) We check that for yj we have B� \ Yyj
¼ Bj \ Yyj

; yj R B�, and yj 2 Bj. From this, we get B⁄ <‘ Bj directly from (12). Notice
that yj < yk implies Yyj

� Yyk
. Thus, from B \ Yyk

¼ Bk \ Yyk
it follows that B \ Yyj

¼ Bk \ Yyj
. Using B \ Yyj

¼ Bj \ Yyj
and

the latter equality, we get Bk \ Yyj
¼ Bj \ Yyj

. Moreover, from hCk,yk + 1i ‘⁄ hC⁄,y⁄ + 1i it follows that Bk \ Yyk
¼ B� \ Yyk

,
i.e., Bk \ Yyj

¼ B� \ Yyj
because yj < yk. Putting Bk \ Yyj

¼ B� \ Yyj
and Bk \ Yyj

¼ Bj \ Yyj
together, we get

B� \ Yyj
¼ Bj \ Yyj

. Thus, it remains to show that yj 2 Bj and yj R B⁄. The first claim is evident. In order to prove yj R B⁄,
observe that yj R B and consequently yj R B \ Yyk

¼ Bk \ Yyk
¼ B� \ Yyk

, meaning that yj R B⁄ because yj < yk. h

Theorem 5 shows how the call tree should be traversed if anyone wants to list all concepts according to <‘. If we take the
concepts C and {Ciji 2 J} as in Theorem 5, we can see that C should be listed before all Ci’s due to (i). Furthermore, if we take
two different concepts Cj and Ck (j,k 2 J), Ck should be listed before Cj iff yj < yk because of (ii). Therefore, (i) and (ii) mean that
given a subtree of a call tree, the root node must be listed first and the descending nodes Ci should be listed in a descending
order according to yi. Furthermore, (ii) says that each node C⁄ derivable from Ck should also be listed before Cj and, at the
same time, after Ck because of (i). This means that in order to list all formal concepts in a lectic order, we have to perform
a depth-first search through the call tree, assuming that we process all attributes in the descending order. Since Algorithm 2
already performs the depth-first search, it suffices to ensure the descending order of processed attributes. We can do that by
modifying Algorithm 2 in one of the following ways:

(i) we can use a stack instead of a queue to store computed formal concepts, or
(ii) we can modify the loop in line 5 so that it goes ‘‘from n downto y’’.

This way for obtaining concepts in a lectic order is much faster than the iterative algorithm from [10] because we can
compute fixpoints of #" more efficiently, see Section 4, and we employ the fast canonicity test. Performance comparisons
can be found in Section 4.2.
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3.4. On the relationship to AddIntent

In [27], the authors have introduced an incremental algorithm AddIntent for computing formal concepts together with
the subconcept–superconcept hierarchy 6 given by (7). Unlike FCbO, the algorithm proposed in [27] is incremental, i.e., it
incrementally computes the concept lattice of given context by adding all attributes (or objects as in [27]) one by one. Inter-
estingly, AddIntent includes a particular optimization that is analogous to the fast canonicity test of FCbO introduced in this
paper. The key difference is that AddIntent uses a slightly different canonicity test that is based on the ordering 6 of formal
concepts (7), whereas FCbO uses the order of processed attributes. The approach used by AddIntent is more beneficial if one
wants to compute the whole concept lattice instead of just computing the formal concepts. On the other hand, the approach
taken by FCbO is simpler and is more efficient if only the set of formal concepts is considered.

Using the notation from our paper, [27] defines a notion of a canonical generator of a formal concept hC,Di which can be
described as follows. First, denote by BiðX;Yi; IiÞ the set of all formal concepts of a formal context hX,Yi, Iii where
Ii = I \ (X � Yi) with Yi defined as in (8) (i.e., hX,Yi, Iii represents the original context restricted to attributes 0, . . . , i � 1). Then,
hC;Di 2 Biþ1ðX;Yiþ1; Iiþ1Þ is called new in Biþ1ðX;Yiþ1; Iiþ1Þ if C is distinct from all concept extents from BiðX;Yi; IiÞ. Further-
more, if hC,Di is new in Biþ1ðX;Yiþ1; Iiþ1Þ, then hA;Bi 2 BiðX;Yi; IiÞ is called a generator of hC,Di if D ¼ ðB [ figÞ#Iiþ1

"Iiþ1 and thus
C ¼ A \ fig#Iiþ1 . A canonical generator hA,Bi of hC,Di is then the infimum

hA;Bi ¼
\
j2J

Aj;
[
j2J

Bj

 !#Ii
"Ii

* +

of all generators hAj;Bji 2 BiðX;Yi; IiÞ ðj 2 JÞ of hC,Di. Then, the authors of [27] utilize the fact that if hA,Bi is a canonical gen-
erator of a new concept hE,Fi and hC,Di is a non-canonical generator of hE,Fi then any concept hG,Hi such that D � H and
B 6# H is not a canonical generator of any new concept, cf. [27, Proposition 1]. As a consequence, AddIntent does not have
to process concepts like hG,Hi during the search for canonical generators. On one hand, this is an analogous improvement
like that proposed in this paper, see Lemma 2. On the other hand, improvements in both AddIntent and FCbO are based
on different notions of canonicity (we do not use the lattice order 6) and different approaches (incremental and non-incre-
mental) of computing formal concepts.

4. Complexity and efficiency issues

It is a well-known fact that the limiting factor of computing all formal concepts is that the corresponding counting prob-
lem is #P-complete [18,20]. Fortunately, if jIj is considerably small, one can get the set of all formal concepts in reasonable
time even if X and Y are large. Therefore, there have been proposed various algorithms for FCA specialized on sparse inci-
dence data. FCbO performs well in case of both sparse and dense data of reasonable size. From the point of view of the
asymptotic worst-case complexity, FCbO has time delay O(jYj3 � jXj), see [14], and asymptotic time complexity
OðjBðX; Y; IÞj � jY j2 � jXjÞ because in the worst case, FCbO can degenerate into the original CbO [19,21] but in general, it cannot
do worse than CbO. In addition, there are strong indications that on average FCbO delivers the results faster than CbO. There-
fore, the average-case complexity analysis of FCbO and ramifications of the worst-case complexity of FCbO seem to be chal-
lenging and important open problems.

In this section we focus on two aspects of FCbO. First, we discuss suitable data representation for efficient computation of
closures of #" which can be used by both CbO and FCbO including their derivatives like PCbO [15]. The second subsection
presents an experimental evaluation of FCbO performance on real and synthesized data sets. The observations made therein
illustrate the average-case behavior of the algorithm.

Fig. 3. Schema for the proof of Theorem 5.
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4.1. Improving efficiency of computing closures

The input formal context I # X � Y is usually represented in a computer by a two-dimensional array which corresponds
with I in the obvious way. We suggest to represent I by a collection of sets representing all rows of such two-dimensional
array. By a row (corresponding to x 2 X) we mean a set of attributes {x}" = {y 2 Ijhx,yi 2 I}. Clearly, if we take set
O ¼ ffxg"jx 2 Xg, we have hx,yi 2 I iff y 2 {x}" iff x 2 {y};.

Representing I by O, we can significantly improve the computation of a new formal concept which is done in lines 8 and 9
of Algorithm 2. Given formal concept hA,Bi and j R B, we can compute

hC;Di ¼ A \ fjg#; ðA \ fjg#Þ"
D E

¼ A \ fjg#; ðB [ fjgÞ#"
D E

as it is shown in Algorithm 3. Thus, lines 8 and 9 of Algorithm 2 can be replaced by a single call of COMPUTECLOSUREðhA;Bi; jÞ. The
algorithm is correct. Indeed, it is evident that C = A \ {j}; and D ¼

T
x2A\fjg#fxg

" ¼
S

x2A\fjg# fxg
� �"

¼ ðA \ fjg#Þ" ¼ ðB [ fjgÞ#".

Algorithm 3: Procedure COMPUTECLOSUREðhA; Bi; jÞ

1 set C to ;;
2 set D to Y;
3 foreach x in A do
4 if j 2 {x}" then
5 set C to C [ {x};
6 set D to D \ {x}";
7 end
8 end
9 return hC,Di

Remark 3. A straightforward method for computing new formal concepts is based on definitions (5) and (6) of the concept-
forming operators. The method can be implemented by a direct two-way algorithm which first computes the extent (B [ {j});

which is further used to compute the intent (B [ {j})#". Contrary to that, the procedure COMPUTECLOSURE computes the extent by
filtering out the objects x from A for which it does not hold j 2 {x}". In addition to that, during the computation of an extent,
we also compute the corresponding intent by computing intersections of D and rows {x}". This can be done more efficiently
especially if {x}" are organized as bit arrays. Thus, the algorithm relies on efficient implementation of sets and a single
operation on sets: the intersection. Since computing intersections is generally more efficient than implementing the
concept-forming operators, Algorithm 3 significantly outperforms the naive two-way algorithm. A detailed comparison of
various data structures used for computing formal concepts can be found in [17]. j

4.2. Experimental evaluation

We have run several experiments to compare the algorithm with CbO [19,21], Andrews’s In-Close [2] and Ganter’s Next-
Closure [9]. For the sake of comparison, we have implemented our algorithm, CbO and NextClosure in ANSI C while the
implementation of In-Close was borrowed from the author. As suggested in the previous section, we represented input data
tables by set O of table rows. Sets of attributes were represented by bit-arrays, where each bit represented the presence/ab-
sence of an attribute in a set. When storing a bit-array as an array of 32-bit or 64-bit integers, depending on the hardware
architecture, all of the set operations with attributes, especially the set intersection, can be implemented by bitwise opera-
tions ‘‘and’’, ‘‘not’’, and ‘‘xor’’ on integers. These operations are implemented in arithmetic logic units (ALUs) of all computer
processors. This representation is beneficial, e.g., in Algorithm 3 in line 6, where we can process up to 32 or 64 attributes at a
time.

The experiments were run on otherwise idle 32-bit i386 hardware (Intel Core 2 Duo T9600, 2.8 GHz, 4 GB RAM). We per-
formed two types of experiments. First, we were interested in the performance of all four algorithms measured by running
time. Second, and more importantly, in order to evaluate the influence of the new canonicity test, we compared FCbO and
CbO in terms of the total number of computed closures.

In the first set of experiments, we have run the algorithms on randomly generated data tables with various percentages of
1’s in the table. We have used tables with 10,000 objects and the number of attributes ranging from 50 to 200 attributes. To
illustrate the performance of algorithms, Fig. 4(left) shows a graph of dependency of time required to compute all formal
concepts on the number of attributes in data tables with 10% of nonzero entries. We have not depicted the graph of average
running time of NextClosure since there is a huge performance gap between the algorithm and the other algorithms (for in-
stance FCbO is approximately 100 times faster than NextClosure on the evaluated data); the solid line is for FCbO, the dashed
line is for CbO and the dotted line is for In-Close. In the FCbO/CbO comparison, the graph illustrating the average numbers of
computed closures is depicted in Fig. 5(left); again, the solid line is for FCbO and the dashed line for CbO. Note that the graph
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actually depicts the numbers divided by average concept lattice size (i.e., the number of closures which pass both the new, in
case of FCbO, and the original canonicity test). Furthermore, to illustrate the influence of the fill ratio (density of 1’s) of a data
table on the speed of the algorithms and on the number of computed closures, we have included Figs. 4 and 5(right) which
show graphs of dependencies on the fill ratios.

The second set of experiments were done with several data sets from the UCI Machine Learning Repository [4,13]. The
results for performance times and numbers of computed closures are depicted in Fig. 6, along with the information on size
and fill ratio of used data sets and concept lattice size.

From all the time and closure number dependency graphs and the table we can see that the FCbO algorithm significantly
outperforms NextClosure and also considerably outperforms both the CbO and In-Close algorithms. In both cases, the per-
formance gain is due to the new canonicity test which avoids a large number of concepts to be computed multiple times (cf.
the numbers of closures computed by FCbO and CbO in case of the MUSHROOM data set, for instance, in Fig. 6). In case of
NextClosure [9], the performance gain is then further multiplied by a more efficient computation of closures described in
Section 4.1. The efficiency of the new ‘‘fast’’ test is illustrated by the graphs and the table depicting the numbers of closures
computed by CbO (and NextClosure) and by FCbO.

5. Conclusions

We have introduced an algorithm called FCbO for computing formal concepts in object-attribute data tables. The algo-
rithm results from CbO [19,21] by introducing a new canonicity test. We have proved correctness of the algorithm and pre-

Fig. 4. Average running time dependent on number of attributes (on the left) and on fill ratio (density of 1’s, on the right), solid line – FCbO, dashed line –
CbO, dotted line – In-Close.

Fig. 5. Ratio of average number of closures computed by FCbO (solid line) and by CbO (dashed line) to average concept lattice size dependent on number of
attributes (on the left) and on fill ratio (density of 1’s, on the right).

Fig. 6. Performance (in seconds) and numbers of closures computed by CbO and FCbO for selected datasets.
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sented an experimental evaluation of its performance compared to the original CbO, Ganter’s NextClosure and also to An-
drews’s In-Close, another contemporary derivative of CbO. The experiments have shown that FCbO significantly reduces
the number of computed closures while maintaining a resonable overhead and hence delivers results faster than the other
algorithms. The implementation of the algorithm can be downloaded from

http://fcalgs.sourceforge.net/fcbo-ins.html.

The future research will focus on further refinements and extensions of the algorithm and will focus in a more detail on
the relationship between various recently-developed algorithms [2,27].
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Abstract. We present a novel approach to compute formal concepts of formal context. In terms
of operations with Boolean matrices, the presented algorithm computes all maximal rectangles of
the input Boolean matrix which are full of1s. The algorithm combines basic ideas of previous
approaches with our recent observations on the influence of attribute permutations and attribute
sorting on the number of formal concepts which are computed multiple times. As a result, we
present algorithm which computes formal concepts by successive context reduction and attribute
sorting. We prove its soundness, discuss its complexity andefficiency, and show that it outperforms
other algorithms from the CbO family in terms of substantially lower numbers of formal concepts
which are computed multiple times.

1. Introduction and Problem Setting

Formal concept analysis (FCA) is a method of relational dataanalysis proposed by R. Wille [27] in early
80’s. Since its inception, there has been an extensive theoretical research which has lead to many order-
theoretical results, see [7] for a survey. Another, maybe equally important fact is that the results have
been directly applied to various fields of data analysis including analysis in software engineering [25, 26],
web information retrieval [11], and market-basket analysis [29]. Examples of FCA applications can be
found in [4, 7].
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In its basic setting, FCA deals with object-attribute relational data which can be seen as a data table
with rows corresponding to objects, columns correspondingto attributes (features), and table entries
being1 or 0, indicating whether objects have or do not have corresponding attributes. Formally, such
data tables can be seen as binary relations between a set of objects and a set of attributes. The aim of
FCA is to extract from such input data useful information about interesting object-attribute biclusters
and attribute dependencies which are present in data. The outputs of FCA are used either directly or for
preprocessing purposes. In the first case, extracted object-attribute clusters (so-called formal concepts)
are ordered by a subconcept-superconcept hierarchy and canbe presented to users by a line diagram
of clusters (diagram of so-called concept lattice). The users can then navigate though the hierarchy to
find clusters, identified by sets of objects and attributes that are covered by the clusters, which represent
interesting and/or useful information for them. For instance, in an object-attribute database of cars and
their features, users can find clusters like “affordable andsafe cars”, “four-wheel drive SUVs”, etc.,
which they may find interesting. Note that the interpretation of a cluster as a concept having its extent
(objects that fall under the concept) and its intent (attributes that fall under the concept) which is used in
FCA is inspired by a traditional understanding of concept which goes back to Port-Royal logic [5, 18].

If FCA is used for preprocessing, the extracted clusters (formal concepts) are not used by users di-
rectly. Instead, they are used as input for other data miningmethods. For instance, the seminal paper [24]
showed that the formal concepts can be used to find non-redundant association rules, cf. also [29]. Re-
cently, it has been shown in [3] that formal concepts can be used to find optimal factorization of Boolean
matrices. In fact, it can be shown that they correspond to optimal solutions of the discrete basis problem
discussed by Miettinen et al. [21].

In either case, the basic computational problem of FCA is to compute, given an input formal context
(an object-attribute data table), the set of all formal concepts (the object-attribute clusters present in the
input data). In the past, there have been proposed various algorithms for solving this task, see [17] for a
survey and comparison. Among the best-known algorithms areCbO [14, 15, 16] proposed by Kuznetsov,
Ganter’s NextClosure [6, 7], and Lindig’s UpperNeighbor [19] algorithms. There is an important family
of algorithms which includes CbO, NextClosure, the algorithm proposed by Norris [22], and other algo-
rithms such as PCbO [12], FCbO [13, 23], and InClose [2]. We call this family aCbO familybecause all
algorithms in the family can be seen as modifications or refinements of CbO. For instance, NextClosure
can be seen an iterative version of CbO, PCbO is a parallel variant of CbO, FCbO is a refinement of CbO
which uses a new canonicity test, etc. In a broader sense, theCbO family of algorithms can be seen as
an example of a family of algorithms for listing combinatorial structures [8].

A common issue that all algorithms for FCA have to care about is to prevent processing (e.g., storing
or listing) the same formal concept multiple times. There are several approaches to cope with the prob-
lem. The CbO family algorithms use canonicity tests which are generally very cheap to perform. The
basic idea is the following. Formal concepts are supposed tobe computed in a predefined order. If the
order is not preserved in a certain branch of computation (i.e., a newly computed formal concept does not
pass the canonicity test during the computation), the branch is no longer considered. As a consequence,
the canonicity test ensures that even if a formal concept is computed several times, it is processed (e.g.,
stored or listed) exactly once.

Although conceptually similar, algorithms from the CbO family differ in their efficiency. One of
the most important factors is just the efficiency of the underlying canonicity tests. For instance, FCbO
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uses a canonicity test which is more efficient than that of theoriginal CbO. In practice, the numbers of
formal concepts which are computed multiple times by FCbO isconsiderably smaller than the numbers
corresponding to CbO [13, 23]. Another efficiency issue which is related to canonicity tests is the order
in which attributes are processed by algorithms of the CbO family. In general, an important feature
of algorithms for FCA is whether their performance depends on the order of objects and attributes in
the input formal context. From this point of view, we shall call an algorithm (permutation) resistant
whenever all isomorphic copies (in the usual sense) of the input formal context require the same number
of elementary computation steps in order to compute all concepts. For our purposes, an elementary
computation step shall be represented by computation of a single formal concept. One can easily see
that, e.g., Lindig’s UpperNeighbor algorithm [19] is resistant. In other words, if we rearrange rows and
columns in the input data table, the algorithm uses the exactsame number of steps to compute all formal
concepts. On the other hand, algorithms from the CbO family are not resistant [13] and thus considering
different orders of attributes can reduce the number of concepts that are computed multiple times, thus
improving the efficiency.

The present paper is partly motivated by our observations from [13] where we have investigated the
impact of using different orders of attributes for algorithms from the CbO family. One of the results
presented in [13] says that if attributes of formal context are sorted in the ascending order according to
their supports, i.e., the numbers of objects having the attributes, then the canonicity test of both CbO and
FCbO always succeeds for all attribute concepts (concepts generated by a single attribute) provided that
all attributes are distinct (i.e., all columns of the input data table are pairwise distinct). Furthermore, our
empirical experiments have shown an interesting tendency that while processing formal contexts with
attributes sorted in the aforementioned order, canonicitytests tend to fail less frequently than in the case
of contexts containing inversions (with respect to the aforementioned order). In addition, with increasing
number of inversions in a data table, the average number of computed closures grows. This seems to be
a general tendency which has been experimentally observed in [13].

In the present paper, we elaborate on the ideas of attribute sorting. Motivated by the results of at-
tribute sorting presented in [13], we introduce a method forattribute sorting and context reduction which
is performed after obtaining a new formal concept. Unlike the approach in [13], where attribute sort-
ing was just a means of data preprocessing and was used for each input data exactly once (before the
computation which is then done by standard CbO or FCbO), we utilize attribute sorting during the com-
putation several times which results in a conceptually new algorithm. The idea of dynamic reordering of
attributes appeared in algorithm CHARM [28] for computing closed itemsets. In the paper, we describe
the algorithm, prove its soundness, and investigate its complexity and further efficiency issues related
to efficiency of its canonicity test. As we shall see in further sections, in terms of the numbers of con-
cepts computed multiple times, the proposed algorithm outperforms CbO by an order of magnitude. The
improvement is apparent especially in the case of large realdata sets [9].

The paper is organized as follows. Section 2 contains brief preliminaries from FCA. Section 3
introduces operations with formal contexts which are used to describe the algorithm. Section 4 introduces
the algorithm. Section 5 contains a detailed running example of the algorithm. Section 6 contains proof
of soundness of the algorithm. Finally, Section 7 is devotedto complexity and efficiency issues of the
algorithm and contains performance comparison with other algorithm from the CbO family.
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2. Preliminaries from FCA

In this section we recall basic notions of FCA. More details can be found in monographs [7] and [4].
Let X andY denote finite sets of objects and attributes, respectively.A formal context is a tripleK =
〈X,Y, I〉 whereI ⊆ X × Y , i.e. I is a binary relation betweenX andY . The fact〈x, y〉 ∈ I is
interpreted so that “objectx has attributey”. Note thatK obviously corresponds to a two-dimensional
data table with rows corresponding to objects fromX, columns corresponding to attributes fromY , and
table entries being1 and0 indicating whether〈x, y〉 ∈ I or 〈x, y〉 6∈ I. Thus, formal contexts can be
seen as Boolean matrices.

Given K = 〈X,Y, I〉, we introduce a pair of concept-forming operators [7]↑K : 2X → 2Y and
↓K : 2Y → 2X defined, for eachA ⊆ X andB ⊆ Y , byA↑K = {y ∈ Y | for eachx ∈ A : 〈x, y〉 ∈ I} and
B↓K = {x ∈ X | for eachy ∈ B : 〈x, y〉 ∈ I}, respectively. If there is no danger of confusion, we omit
K and write just↑ and↓ instead of↑K and↓K , respectively. The cardinality of{y}↓K is called the support
of y ∈ Y . By a formal concept inK with extentA and intentB we mean any pair〈A,B〉 ∈ 2X ×2Y such
thatA↑K = B andB↓K = A. Thus, formal concepts are fixed points of the concept-forming operators.
Intuitively, each formal concept〈A,B〉 represents a bicluster inK which consists of objectsA that fall
under the concept and attributesB that fall under the concept. SinceA↑K = B andB↓K = A, A is a
set of objects having all attributes fromB andB is a set of attributes shared by all objects fromA. Let
us stress that formal concepts can be seen as maximal Booleansubmatrices in the following sense: any
〈A,B〉 ∈ 2X × 2Y such thatA × B ⊆ I can be called a Boolean submatrix ofK (which is full of 1s).
Moreover, a Boolean submatrix〈A,B〉 of K is a maximal one if, for each Boolean submatrix〈A′, B′〉
of K such thatA × B ⊆ A′ × B′, we haveA = A′ andB = B′. We have that〈A,B〉 ∈ 2X × 2Y is
a maximal Boolean submatrix ofK (which is full of 1s) iff A↑K = B andB↓K = A. Hence, maximal
Boolean submatrices full of1s are exactly the formal concepts.

The set of all formal concepts inK = 〈X,Y, I〉 will be denoted byB(X,Y, I). Recall thatB(X,Y, I)
endowed by a concept ordering≤ forms a complete lattice, called a concept lattice, whose structure is
described by the Basic Theorem of FCA [7, 27].

3. Clarification and Attribute Sorting

In this section, we introduce basic operations with contexts that are used to describe the proposed algo-
rithm for computing formal concepts. One of the distinguishing features of the algorithm is that during
the computation, it transforms an initial formal context into other contexts by taking subsets of objects
and by grouping several attributes together. In addition tothat, groups of attributes are sorted according
to their support and equipped with an additional numerical flag indicating whether a group of attributes
is allowed to be present in intents of formal concepts computed in next stages (a precise meaning of the
flag will be described later). These operations on contexts play a crucial role and will be described in
this section. We begin with particular representation of formal contexts.

3.1. Input Formal Contexts andR-contexts

Here we describe the basic form of formal concepts which are used during the computation. As in
case of any algorithm for computing formal concepts, the input for our algorithm is a formal context
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K = 〈X,Y, I〉. In order to keep information about groups of attributes, weuse particular contexts, called
R-contexts, to represent input data. A formal definition follows.

Definition 3.1. Given a formal contextK = 〈X,Y, I〉, a tripleK♯ = 〈X♯, Y ♯, I♯〉 is called anR-context
(derived fromK) if the following conditions are satisfied:

(i) X♯ ⊆ X;

(ii) Y ♯ ⊆ N0×2Y such that for any〈n1, B1〉 ∈ Y ♯ and〈n2, B2〉 ∈ Y ♯ we have either that (a)n1 = n2

andB1 = B2 6= ∅ or (b)B1 6= ∅, B2 6= ∅, andB1 ∩ B2 = ∅;

(iii) for any x ∈ X♯ and〈n,B〉 ∈ Y ♯: 〈x, y1〉 ∈ I iff 〈x, y2〉 ∈ I holds true for ally1, y2 ∈ B;

(iv) I♯ = {〈x, 〈n,B〉〉 ∈ X♯ × Y ♯ | 〈x, y〉 ∈ I for all y ∈ B}.

In addition, K♯ = 〈X♯, Y ♯, I♯〉 is called aninitial R-context (derived fromK) if X♯ = X, Y ♯ =
{〈0, {y}〉 | y ∈ Y }, andI♯ = {〈x, 〈0, {y}〉〉 ∈ X♯ × Y ♯ | 〈x, y〉 ∈ I}. �

We can immediately observe basic properties ofR-contexts:

Remark 3.2. (a) EachR-context is a formal context. Notice that due to (iv),〈x, 〈n,B〉〉 ∈ I♯ iff x ∈
B↓K for x ∈ X♯ and〈n,B〉 ∈ Y ♯. Moreover, taking into account (iii) and (iv), it follows that for any
〈x, 〈n,B〉〉 ∈ X♯ × Y ♯, 〈x, 〈n,B〉〉 ∈ I♯ iff there isy ∈ B such that〈x, y〉 ∈ I in which case〈x, y〉 ∈ I
is true for ally ∈ B because of (iii). Note that each attribute〈n,B〉 ∈ Y ♯ has two parts: a numerical flag
n (explained later) and a subsetB ⊆ Y of original attributes. Using (ii), we get thatB 6= ∅. In addition to
that, distinct attributes fromY ♯ have associated pairwise disjoint nonempty subsets of original attributes.

(b) Note that attributes inR-contextK♯ = 〈X♯, Y ♯, I♯〉 have natural interpretation as sets of attributes
from the original context which are indistinguishable inK provided we restrict ourselves only to objects
from X♯. Indeed, this is a basic consequence of Definition 3.1 (iii).

(c) An initial R-context derived fromK is anR-context. Indeed, (i) and (ii) are obvious since
attributes of an initialR-context are all of the form〈0, {y}〉. It is immediate that (iii) and (iv) of Defini-
tion 3.1 are satisfied as well. Obviously, an initialR-contextK♯ derived fromK is isomorphic toK in
the usual sense. In other words,K♯ is exactly the same asK up to the names of attributes.

From now on, we describe further operations with contexts interms ofR-contexts instead of the
original input contexts. By this we do not impose any restriction since an initialR-context derived from
K has the same concepts up to different names of attributes, see Remark 3.2 (c).

Example 3.3. As an example, we consider a formal contextK with objectsX = {a, . . . , f} and at-
tributesY = {0, . . . , 7}. The context (left) and anR-context derived fromK (right) are depicted in
Table 1. Notice that the original attributes1 and4 are distinguishable inK by objectc. On the other
hand, they are indistinguisbahle on{b, d, e, f}, hence the attribute〈0, {1, 4}〉 in Y ♯ is correct and satis-
fies the requirement given by Definition 3.1 (iii). Also, notethat all attributes inK♯ except for〈1, {2}〉
are given zero flags.

Remark 3.4. Note thatK♯ which results fromK is fully given by the setsX♯ andY ♯ of objects and
attributes, respectively. The binary relationI♯ can be determined from the originalI, see Remark 3.2 (a).
Thus, a concise computer representation ofK♯ can consist of a list of objects and attributes, respectively,



400 P. Krajca et al. / Computing Formal Concepts by Attribute Sorting

Table 1. Formal contextK (left) and anR-context derived fromK (right)

K 0 1 2 3 4 5 6 7

a × × ×
b × × × × ×
c × × ×
d × × × × × × ×
e × × × ×
f × × × × ×

K♯ 〈0, {1, 4}〉 〈1, {2}〉 〈0, {3}〉 〈0, {6}〉 〈0, {7}〉
b × × ×
d × × × ×
e ×
f × × ×

omitting the expensive operation of copying a part of the data representation ofI which can be kept in
computer memory only once.

We conclude this subsection by showing that the concept-forming operators induced byR-contexts
have a close relationship to concept-forming operators of original contexts. In order to keep concise
notation, we first introduce the following abbreviation. For anyD ⊆ Y ♯, we define

⌊D⌋ =
⋃{B ⊆ Y | 〈n,B〉 ∈ D}. (1)

Using this notation, we have:

Lemma 3.5. Let K♯ = 〈X♯, Y ♯, I♯〉 be anR-context derived fromK. Then, for anyC ⊆ X♯ and
D ⊆ Y ♯,

⌊C↑K♯ ⌋ = C↑K ∩ ⌊Y ♯⌋, (2)

X♯ ∩ ⌊D⌋↓K = D↓K♯ . (3)

Proof:
Both equalities can be proved using basic properties ofR-contexts.

“(2)”: Let y ∈ ⌊C↑K♯ ⌋. Therefore, there is〈n,B〉 ∈ C↑K♯ ⊆ Y ♯ such thaty ∈ B. Hence,y ∈ ⌊Y ♯⌋.
Moreover,〈n,B〉 ∈ C↑K♯ yields that for eachx ∈ C, 〈x, 〈n,B〉〉 ∈ I♯. Due to Definition 3.1 (iv), the
latter means that for eachy ∈ B andx ∈ C, we have〈x, y〉 ∈ I. Therefore,B ⊆ C↑K , i.e.,y ∈ C↑K ,
showing⌊C↑K♯⌋ ⊆ C↑K ∩ ⌊Y ♯⌋. Conversely, takey ∈ C↑K ∩ ⌊Y ♯⌋. Then, for eachx ∈ C, we have
that 〈x, y〉 ∈ I. Sincey ∈ ⌊Y ♯⌋, there is〈n,B〉 ∈ Y ♯ such thaty ∈ B. SinceC ⊆ X♯, using
Definition 3.1 (iii) and the previous fact, we get that for each y ∈ B andx ∈ C, 〈x, y〉 ∈ I. Thus, for
eachx ∈ C, 〈x, 〈n,B〉〉 ∈ I♯, meaning〈n,B〉 ∈ C↑K♯ and thusy ∈ B ⊆ ⌊C↑K♯ ⌋.

“(3)”: Considerx ∈ X♯ ∩ ⌊D⌋↓K . Therefore, for eachy ∈ ⌊D⌋, 〈x, y〉 ∈ I. In particular, for any
B ⊆ ⌊D⌋ such that〈n,B〉 ∈ D, we have〈x, y〉 ∈ I for all y ∈ B, i.e.,〈x, 〈n,B〉〉 ∈ I♯ sincex ∈ X♯.
Moreover,〈n,B〉 ∈ D has been taken arbitrarily, which means thatx ∈ D↓K♯ . Conversely, letx ∈ D↓K♯ .
By definition, we have〈x, 〈n,B〉〉 ∈ I♯ for all 〈n,B〉 ∈ D. Therefore,〈x, y〉 ∈ I for all y ∈ B such
that 〈n,B〉 ∈ D, meaning that〈x, y〉 ∈ I is true for ally ∈ ⌊D⌋. Therefore,x ∈ ⌊D⌋↓K . The fact that
x ∈ X♯ is trivial. ⊓⊔
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3.2. Clarification

EachR-context can be transformed into a newR-context with possibly smaller sets of attributes by a
process of clarification. Recall from [7] that a formal context K = 〈X,Y, I〉 is called clarified if for
anyy1, y2 ∈ Y it follows that{y1}↓ = {y2}↓ impliesy1 = y2 and dually for any couple of objects. In
other words, a clarified context in sense of [7] is a formal context where all columns in the corresponding
object-attribute data table are distinct and dually for rows. It is a well known fact that taking a clarified
formal context (with duplicate rows and columns removed) instead of the original one we get a possibly
smaller context whose concept lattice is isomorphic to the concept lattice of the original context.

In this section, we focus on a particular clarification ofR-contexts which applies only to attributes
of R-contexts. In addition, the procedure of clarification we introduce here produces anR-context as a
result, i.e., we cope with particular form of attributes which consist of a flag and a set of attributes of the
original context, see Definition 3.1. The basic idea is the same as in [7], we produce a newR-context by
putting together identical columns of the corresponding data table.

For anyR-contextK♯ = 〈X♯, Y ♯, I♯〉 which is derived fromK, we can consider a binary relation
≡K♯ on Y ♯ such thaty1 ≡K♯ y2 iff {y1}↓K♯ = {y2}↓K♯ . Hence,y1 ≡K♯ y2 if columns of the data table
corresponding toK♯ given by attributesy1 andy2 are the same. Obviously,≡K♯ is an equivalence relation
and thus we may consider the corresponding quotient setY ♯/≡K♯ , denoting the equivalence class of≡K♯

containingy ∈ Y ♯ by [y]≡K♯
. Under this notation, we introduce the following notion:

Definition 3.6. For anyR-contextK♯ = 〈X♯, Y ♯, I♯〉, we defineX∁, Y ∁, I∁ as follows:

(i) X∁ = X♯;

(ii) Y ∁ =
{〈∑{n ∈ N0 | 〈n,B〉 ∈ [y]≡K♯

},
⌊
[y]≡K♯

⌋〉
| y ∈ Y ♯

}
,

(iii) I∁ =
{
〈x, 〈n,B〉〉 ∈ X∁ × Y ∁ | there isn′ ≤ n andB′ ⊆ B such that〈x, 〈n′, B′〉〉 ∈ I♯

}
.

Moreover,K∁ = 〈X∁, Y ∁, I∁〉 is called aclarifiedR-context(which results fromK♯). �

Remark 3.7. Examining (ii) of Definition 3.6, the setY ∁ of attributes contains pairs〈n,B〉, wheren is
a numerical flag which results by taking a sum of flags of all attributes in a single equivalence class of
≡K♯ . Analogously,B is a union of sets of original attributes which can be found inattributes from the
same equivalence class. While the idea behind taking unionsof sets of attributes is clear since attributes
indistinguishable under≡K♯ are grouped together, the intuitive meaning of taking a sum of flags may
not be clear at this point. The informal explanation is the following: in 〈n,B〉 ∈ Y ♯, the numbern
says that “exactlyn of the original attributes fromB are not permitted to be used (at certain level of
computation)”. Thus, if we group attributes together, the numbers of attributes which are not permitted
are added since the sets of attributes are disjoint. A formaljustification will follow in Section 4.

The following assertion shows basic properties of clarifiedR-contexts.

Lemma 3.8. Each clarifiedR-contextK∁ is a well-definedR-context. Moreover, forK∁ we have that
≡K∁ is identity. As a consequence,(K∁)∁ = K∁.
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Proof:
It suffices to check requirements (ii)–(iv) of Definition 3.1. It is immediate that (ii) is satisfied since
Y ♯/≡K♯ consists of pairwise disjoint and nonempty classes which define attributes inK∁. Furthermore,
(iii) is satisfied because for anyx ∈ X∁ = X♯, 〈n,B〉 ∈ Y ∁, andy1, y2 ∈ B, there are〈n1, B1〉 ∈ Y ♯

and〈n2, B2〉 ∈ Y ♯ such thaty1 ∈ B1, y2 ∈ B2, and〈n1, B1〉 ≡K♯ 〈n2, B2〉. Therefore,〈x, y1〉 ∈ I iff
〈x, 〈n1, B1〉〉 ∈ I♯ iff 〈x, 〈n2, B2〉〉 ∈ I♯ iff 〈x, y2〉 ∈ I, i.e. (iii) is satisfied byK∁. In order to show (iv),
observe that by Definition 3.6,〈x, 〈n,B〉〉 ∈ I∁ iff there isn′ ≤ n andB′ ⊆ B such that〈n′, B′〉 ∈ Y ♯

and〈x, 〈n′, B′〉〉 ∈ I♯. Taking into account≡K♯ , 〈x, 〈n,B〉〉 ∈ I∁ iff for any 〈n′, B′〉 ∈ Y ♯ such that
n′ ≤ n andB′ ⊆ B, we have〈x, 〈n′, B′〉〉 ∈ I♯. Using Definition 3.1 (iv) which holds forK♯, the latter
is true iff for any〈n′, B′〉 ∈ Y ♯ such thatn′ ≤ n andB′ ⊆ B, we have〈x, y〉 ∈ I for all y ∈ B′, i.e.,
〈x, y〉 ∈ I for all y ∈ B becauseB is a union of all suchB′s, proving (iv) of Definition 3.1 forK∁. The
remaining claims follow easily. ⊓⊔

Table 2. ClarifiedR-contextK∁ (left) andK∁ with sorted attributes (right).

K∁ 〈0, {1, 4}〉 〈1, {2, 7}〉 〈0, {3}〉 〈0, {6}〉
b × ×
d × × ×
e ×
f × ×

K∁ 〈0, {6}〉 〈0, {1, 4}〉 〈0, {3}〉 〈1, {2, 7}〉
b × ×
d × × ×
e ×
f × ×

Example 3.9. ConsiderK andK♯ from Table 1. Then, the clarifiedR-context which results fromK♯

is depicted in Table 2. Notice that only original attributesthat have been put together are〈1, {2}〉 and
〈0, {7}〉. Since the flags are added, the flag of the resulting attribute〈1, {2, 7}〉 is equal to1. Flags of the
other attributes remain zero.

Remark 3.10. Notice that in our approach, we do not consider clarificationof objects, i.e.,K∁ may
contain several objects having the same attributes. Clarification of objects is not used in the subsequent
algorithm because in our approach it would not reduce the number of concepts computed multiple times
and is therefore omitted.

3.3. Attribute Sorting

The algorithm described in Section 4 relies on attribute sorting. In particular, for eachR-contextK♯ =
〈X♯, Y ♯, I♯〉, we consider a partial order≤♯ on Y ♯ such that for anyy1, y2 ∈ Y ♯, y1 ≤♯ y2 implies
|{y1}↓K♯ | ≤ |{y2}↓K♯ |. In general,≤♯ is not a linear order (not even in the case of clarifiedR-contexts)
but it can be extended to a linear order by a well-known procedure of topological sorting.

In next sections, we do not use≤♯ directly. Instead, we assume that we have a bijective map which
assigns to each attribute fromY ♯ its numerical index which represents a position in an ordered list of
attributes which are sorted according to (a linear extension of) ≤♯. In a more detail, for anyR-context
K♯ = 〈X♯, Y ♯, I♯〉 we consider a bijective mapf : Y ♯ → {0, . . . , |Y ♯|−1} such that, for anyy1, y2 ∈ Y ♯,

if f(y1) ≤ f(y2), then|{y1}↓K♯ | ≤ |{y2}↓K♯ |. (4)
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The inversef−1 of f is a map which assigns to each indexj ∈ {0, . . . , |Y ♯| − 1} the corresponding
attributef−1(j) ∈ Y ♯.

Example 3.11. Any R-context can be depicted with attributes sorted according to f . That is, iff(y1) <
f(y2), theny1 is depicted beforey2. Table 2 (right) shows the results if we apply this idea to theR-
contextK∁ from Table 2 (left). Note that in this particular case, thereare two ways to definef since
attributes〈0, {1, 4}〉 and 〈0, {3}〉 have the same support. In such situations, we always consider an
arbitrary (but fixed)f for the sameR-context.

Remark 3.12. In [13], we have investigated the influence of attribute sorting for the CbO family of
algorithms. From this point of view, we have considered the same ordering of attributes according to
their support. An important distinguishing feature of the present approach is that we do not consider
single≤♯ (i.e., a singlef ) during the computation. Instead, during the computation,we successively
reduce the initialR-context and after each reduction, we determine newf which applies to the reduced
R-context.

3.4. Context Reduction

We now describe a particular reduction operation onR-contexts which utilizes operations onR-contexts
defined in previous sections. The algorithm described in Section 4 uses this operation directly to reduce
the problem of computing formal concepts of anR-context to the problem of computing formal concepts
of several smallerR-contexts. From this point of view, the proposed algorithm follows the usualdivide
et imperascheme of decomposing an instance of a problem into several instances of the same problem of
smaller sizes which in turn leads to a concise implementation of the algorithm by a recursive procedure.

The input for reduction is a clarifiedR-contextK♯ = 〈X♯, Y ♯, I♯〉 and a formal concept〈C,D〉 in K♯

whose intent is nonempty, i.e.D 6= ∅. ForK♯, we assume that we are given a bijective map satisfying (4)
which determines the order of attributes inK♯. SinceD is nonempty, we can denote bymin(D) the least
attribute fromD with respect to the order given byf , i.e.,min(D) ∈ D such thatf(min(D)) ≤ f(y)
for all y ∈ D. Using this notation, we define the following notion:

Definition 3.13. For anyR-contextK♯ = 〈X♯, Y ♯, I♯〉, C ⊆ X♯, ∅ 6= D ⊆ Y ♯ such thatC↑K♯ = D and
D↓K♯ = C, we defineXR, Y R, andIR as follows:

(i) XR = C;

(ii) Y R = {Attr(y) | y ∈ Y ♯ andy 6∈ D}, whereAttr(y) ∈ N0 × 2Y is defined by

Attr(〈n,B〉) =





〈|B|, B〉, if n = 0 andf(〈n,B〉) < f(min(D)),

〈n,B〉, otherwise,
(5)

for any〈n,B〉 ∈ Y ♯;

(iii) IR =
{
〈x, 〈n,B〉〉 ∈ XR × Y R | there isn′ ≤ n such that〈x, 〈n′, B〉〉 ∈ I♯

}
. �

Remark 3.14. One can easily see thatKR = 〈XR, Y R, IR〉 as defined in Definition 3.13 is anR-context
with objects taken fromC, attributes being derived from attributes inY ♯ which are not present inD. Note
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that for each〈n,B〉 ∈ Y ♯ which is not inD, Y R contains an attribute〈n′, B〉 ∈ Y R, wheren′ is a new
flag. The value of the flag is either the same iff(〈n,B〉) is greater or equal tof(min(D)) or the flag
is equal to the size ofB. In other words, if〈n,B〉 is behindmin(D) in terms of the order of attributes,
the flag is not updated. The most important part of the flag update is that an attribute〈0, B〉 ∈ Y ♯ will
be given a nonzero flag inY R if it is not in D and if it stays beforemin(D) in terms of the order of
attributes.

In general,KR = 〈XR, Y R, IR〉 can contain two or more indistinguishable attributes (equal columns
in the corresponding data table), i.e.,KR may not be clarified in sense of Definition 3.6. The algorithm
described in the next section relies on reduction and clarification ofR-contexts, we therefore introduce
the following notation:

Definition 3.15. If KR results fromK♯ usingC andD in sense of Definition 3.13 and ifK∁ is a clarifi-
cation ofKR in sense of Definition 3.6, thenK∁ will be denoted by REDUCE(K♯, C,D). �

Table 3. Context from Definition 3.13 (left), result of REDUCE (middle), and its concise representation (right).

KR 〈1, {6}〉 〈0, {3}〉 〈1, {2, 7}〉
d × ×
e

KR 〈0, {3}〉 〈2, {2, 6, 7}〉
d ×
e

KR {3} {2, 6, 7}
d ×
e

Example 3.16. ConsiderR-context from Table 2 (right). ForC = {d, e}, andD = {〈0, {1, 4}〉}, the
R-contextKR specified in Definition 3.13 is depicted in Table 3 (left). Notice that during the reduc-
tion, attribute〈1, {6}〉 was given a nonzero flag since its position according tof was before that of
attribute〈0, {1, 4}〉 in the originalR-context. Table 3 (middle) represents a clarified version ofKR with
attributes sorted according to their supports. Hence, the middle table represents the result of REDUCE.
Table 3 (right) is a concise representation of the sameR-context in which columns corresponding to at-
tributes with nonzero flags are highlighted as gray (the descriptions of attributes then contain just sets of
original attributes, the numerical flags are omitted).

4. Algorithm

In this section, we describe the proposed algorithm for computing formal concepts. The main part
of the algorithm is a recursive procedure COMPUTE from Algorithm 1. The procedure accepts as its
argument a clarifiedR-context and during the computation it calls an auxiliary procedure CLOSURE

from Algorithm 2.
When invoked withK♯, procedure COMPUTE proceeds as follows. First, it stores a tuple which

consists of the set of objectsX♯ and INT(K♯, Y ), where

INT(K♯, Y ) = Y \ ⌊Y ♯⌋. (6)

Recall that⌊· · ·⌋ is defined by (1). Thus, INT(K♯, Y ) = Y \ ⋃{B ⊆ Y | 〈n,B〉 ∈ Y ♯}. Then, the
procedure goes over all attributes inY ♯ with zero flags (see lines 2 and 3 of Algorithm 1). For each such
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Algorithm 1: Procedure COMPUTE(K♯)

1 store 〈X♯, INT(K♯, Y )〉;
2 for 〈n,B〉 ∈ Y ♯ do
3 if n = 0 then
4 set〈C,D〉 to CLOSURE(K♯, 〈n,B〉);
5 if

∑{n ∈ N0 | 〈n,B〉 ∈ D} = 0 then
6 COMPUTE(REDUCE(K♯ , C, D));
7 end
8 end
9 end

10 return

Algorithm 2: Procedure CLOSURE(K♯, 〈n,B〉)
1 C = {x ∈ X♯ | 〈x, 〈n,B〉〉 ∈ I♯};
2 D = {y ∈ Y ♯ | f(〈n,B〉) ≤ f(y)};
3 for x ∈ C do
4 for y ∈ D do
5 if 〈x, y〉 6∈ I♯ then
6 removey from D;
7 end
8 end
9 end

10 return 〈C,D〉

attribute〈n,B〉, the procedure invokes CLOSURE and the result of invocation is stored in〈C,D〉. An
easy inspection of the pseudocode in Algorithm 2 shows that the result of calling CLOSURE(K♯, 〈n,B〉)
is a formal concept inK♯ generated by attribute〈n,B〉, i.e.,C = {〈n,B〉}↓K♯ andD = C↑K♯ . Notice that
Algorithm 2 utilizes attribute sorting together with the fact thatK♯ is clarified. In that case, all attributes
which belong toD must have their indices strictly greater than or equal tof(〈n,B〉). This observation
has already been made in [13].

Next step of Algorithm 1 is a canonicity test which succeeds iff all flags in D (computed in the
previous step) are zero, see line 5. In the case of success, COMPUTE invokes itself with reduced (and
clarified) formal context which results fromK♯, see line 6. Otherwise, the algorithm continues with
another attribute. When all attributes are processed, the invocation of COMPUTE for K♯ is left.

For input formal contextK = 〈X,Y, I〉, the first invocation of COMPUTE can be described by the
following consecutive steps:

1. take an initialR-contextK♯ = 〈X♯, Y ♯, I♯〉 derived fromK;

2. determine a clarifiedR-contextK∁ = 〈X∁, Y ∁, I∁〉 which results fromK♯;

3. if |{〈n,B〉}↓K∁ | < |X∁| for all 〈n,B〉 ∈ Y ∁ then call COMPUTE(K∁).
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4. if there is〈n,B〉 ∈ Y ∁ such that|{〈n,B〉}↓K∁ | = |X∁|, then call COMPUTE(K∗), where

K∗ = 〈X∗, Y ∗, I∗〉 with X∗ = X∁, Y ∗ = Y ∁ \ {〈n,B〉}, andI∗ = I∁ ∩ (X∗ × Y ∗).

In other words,K is transformed into anR-context and clarified. If the resultingR-context contains
an attribute shared by all objects (notice that since it is clarified, such an attribute is at most one), it is
removed from theR-context. Then, COMPUTE is invoked with suchR-context as an input. In Section 6,
we shall prove that the algorithm is sound, i.e., with input data of this form, it stores all formal concepts,
each of them exactly once.

Remark 4.1. Notice that the canonicity test is expressed using a sum, seeline 5 of Algorithm 1. One
can easily see that we might as well use “logical or” providedthat all flags are assigned values0 and1,
only. This can be achieved by slight modifications ofAttr(〈n,B〉) which appears in Definition 3.13 and
Y ∁ defined in Definition 3.6. Indeed, the numerical value of the flag is not as important for the algorithm.
The important fact is whether at least one of the attributes in intentD has nonzero flag, see Algorithm 1.

Table 4. Illustrative formal context

K 0 1 2 3 4 5

a × × ×
b × × ×
c × × ×
d × × ×

5. Illustrative Example

Before we investigate properties of Algorithm 1, we show here an illustrative running example in which
we demonstrate how COMPUTE behaves for particular input data. This illustration is useful for getting
first (informal) insight into the algorithm. Consider an input formal contextK = 〈X,Y, I〉 with objects
X = {a, b, c, d}, attributesY = {0, 1, 2, 3, 4, 5}, andI ⊆ X × Y as in Table 4. One can check thatK
has11 formal concepts, namely:

R1 = 〈{a, b, c, d}, ∅〉, R5 = 〈{d}, {0, 2, 4}〉, R9 = 〈{c}, {1, 3, 4}〉,
R2 = 〈{b}, {0, 1, 5}〉, R6 = 〈{a, d}, {2}〉, R10 = 〈{c, d}, {4}〉,
R3 = 〈∅, {0, 1, 2, 3, 4, 5}〉, R7 = 〈{a}, {1, 2, 3}〉, R11 = 〈{a, b, c}, {1}〉.
R4 = 〈{b, d}, {0}〉, R8 = 〈{a, c}, {1, 3}〉,

Algorithm 1 proceeds forK as follows. First, an initial and clarifiedR-context is created, denote it by
K♯

1. Since inK all attributes are distinct and there is no attibute which isshared by all objects,K♯
1 is

directly passed to COMPUTE as the initial argument. The initialR-context is depicted in Figure 1 (top).
The execution of COMPUTE proceeds with selecting an attribute fromY ♯

1 , computing the closure and
reductionK♯

2, and recursive invocation of COMPUTE:
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{4}{1, 3}{2, 4}{3}{2, 3, 4}

{1}{4}

{5} {3}{2}{0}

K♯
11 {0, 5} {2} {4} {3}
a × ×
b ×
c × ×

K♯
10 {5} {0, 2} {1, 3}
c ×
d ×

K♯
9 {0, 2, 5}
c

K♯
8 {0, 5} {2} {4}
a ×
c ×

K♯
7 {0, 4, 5}
a

K♯
6 {5} {0, 4} {1, 3}
a ×
d ×

K♯
5 {1, 3, 5}
d

�

K♯
4 {3} {1, 5} {2, 4}
b ×
d ×

K♯
3

K♯
2 {2, 3, 4}
b

K♯
1 {5} {0} {2} {3} {4} {1}
a × × ×
b × × ×
c × × ×
d × × ×

Figure 1. R-contexts produced by Algorithm 1 during computation.

line 1: store 〈X♯
1, INT(K♯

1, Y )〉 = 〈{a, b, c, d}, ∅〉 = R1

line 4: set〈C2,D2〉 to CLOSURE(K♯
1, 〈0, {5}〉) = 〈{b}, {〈0, {5}〉, 〈0, {0}〉, 〈0, {1}〉}〉

line 5: success for〈C2,D2〉 = 〈{b}, {〈0, {5}〉, 〈0, {0}〉, 〈0, {1}〉}〉 because all flags are0
line 6: call COMPUTE(K♯

2) for K♯
2 = REDUCE(K♯

1,C2,D2)

Notice that in Figure 1, the recursive invocation is depicted by anR-contextK♯
2 connected withK♯

1 with
an edge labeled by{5} which is the original set of attributes present in attribute〈0, {5}〉 ∈ Y ♯

1 . Moreover,
the computation continues as follows:

line 1: store 〈X♯
2, INT(K♯

2, Y )〉 = 〈{b}, {0, 1, 5}〉 = R2

line 4: set〈C3,D3〉 to CLOSURE(K♯
2, 〈0, {2, 3, 4}〉) = 〈∅, {〈0, {2, 3, 4}〉}〉

line 5: success for〈C3,D3〉 = 〈∅, {〈0, {2, 3, 4}〉}〉 because all flags are0
line 6: call COMPUTE(K♯

3) for K♯
3 = REDUCE(K♯

2,C3,D3)
line 1: store 〈X♯

3, INT(K♯
3, Y )〉 = 〈∅, {0, 1, 2, 3, 4, 5}〉 = R3

⊥ return from invocation of COMPUTE for K♯
3

⊥ return from invocation of COMPUTE for K♯
2

Notice that sinceK♯
3 is a trivial context with empty sets of objects and attributes, the invocation of

COMPUTE has immediatelly returned after storingR3 because the iteration of the for-loop is trivially
done for emptyY ♯

3 . Next, the computation resumes in the first invocation of COMPUTE considering next
attribute:
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line 4: set〈C4,D4〉 to CLOSURE(K♯
1, 〈0, {0}〉) = 〈{b, d}, {〈0, {0}〉}〉

line 5: success for〈C4,D4〉 = 〈{b, d}, {〈0, {0}〉}〉 because all flags are0
line 6: call COMPUTE(K♯

4) for K♯
4 = REDUCE(K♯

1,C4,D4)
line 1: store 〈X♯

4, INT(K♯
4, Y )〉 = 〈{b, d}, {0}〉 = R4

line 4: set〈C5,D5〉 to CLOSURE(K♯
4, 〈0, {3}〉) = 〈∅, {〈0, {3}〉, 〈1, {1, 5}〉, 〈0, {2, 4}〉}〉

line 5: failure for〈C5,D5〉 = 〈∅, {〈0, {3}〉, 〈1, {1, 5}〉, 〈0, {2, 4}〉}〉 because〈1, {1, 5}〉 ∈ D5

At this point, the canonicity test has failed. Therefore, the algorithm does not continue with〈C5,D5〉
which in fact determines formal conceptR3 that has been computed and processed before. This is the
only point where the canonicity test fails in this example and where a concept is computed more than
once. Notice that it is not the case thatR3 is computed as such, the algorithm has computed〈C5,D5〉
but anyhow,〈C5,D5〉 would normally be used to determineR3, i.e. we can considerR3 to be computed
twice. In Figure 1 the situation is depicted by a black squarenode labeled byR3. After this point, the
computation continues as follows (without further comments):

line 4: set〈C5,D5〉 to CLOSURE(K♯
4, 〈0, {2, 4}〉) = 〈{d}, {〈0, {2, 4}〉}〉

line 5: success for〈C5,D5〉 = 〈{d}, {〈0, {2, 4}〉}〉 because all flags are0
line 6: call COMPUTE(K♯

5) for K♯
5 = REDUCE(K♯

4,C5,D5)
line 1: store 〈X♯

5, INT(K♯
5, Y )〉 = 〈{d}, {0, 2, 4}〉 = R5

⊥ return from invocation of COMPUTE for K♯
5

⊥ return from invocation of COMPUTE for K♯
4

line 4: set〈C6,D6〉 to CLOSURE(K♯
1, 〈0, {2}〉) = 〈{a, d}, {〈0, {2}〉}〉

line 5: success for〈C6,D6〉 = 〈{a, d}, {〈0, {2}〉}〉 because all flags are0
line 6: call COMPUTE(K♯

6) for K♯
6 = REDUCE(K♯

1,C6,D6)
line 1: store 〈X♯

6, INT(K♯
6, Y )〉 = 〈{a, d}, {2}〉 = R6

line 4: set〈C7,D7〉 to CLOSURE(K♯
6, 〈0, {1, 3}〉) = 〈{a}, {〈0, {1, 3}〉}〉

line 5: success for〈C7,D7〉 = 〈{a}, {〈0, {1, 3}〉}〉 because all flags are0
line 6: call COMPUTE(K♯

7) for K♯
7 = REDUCE(K♯

6,C7,D7)
line 1: store 〈X♯

7, INT(K♯
7, Y )〉 = 〈{a}, {1, 2, 3}〉 = R7

⊥ return from invocation of COMPUTE for K♯
7

⊥ return from invocation of COMPUTE for K♯
6

line 4: set〈C8,D8〉 to CLOSURE(K♯
1, 〈0, {3}〉) = 〈{a, c}, {〈0, {3}〉, 〈0, {1}〉}〉

line 5: success for〈C8,D8〉 = 〈{a, c}, {〈0, {3}〉, 〈0, {1}〉}〉 because all flags are0
line 6: call COMPUTE(K♯

8) for K♯
8 = REDUCE(K♯

1,C8,D8)
line 1: store 〈X♯

8, INT(K♯
8, Y )〉 = 〈{a, c}, {1, 3}〉 = R8

line 4: set〈C9,D9〉 to CLOSURE(K♯
8, 〈0, {4}〉) = 〈{c}, {〈0, {4}〉}〉

line 5: success for〈C9,D9〉 = 〈{c}, {〈0, {4}〉}〉 because all flags are0
line 6: call COMPUTE(K♯

9) for K♯
9 = REDUCE(K♯

8,C9,D9)
line 1: store 〈X♯

9, INT(K♯
9, Y )〉 = 〈{c}, {1, 3, 4}〉 = R9

⊥ return from invocation of COMPUTE for K♯
9

⊥ return from invocation of COMPUTE for K♯
8

line 4: set〈C10,D10〉 to CLOSURE(K♯
1, 〈0, {4}〉) = 〈{c, d}, {〈0, {4}〉}〉
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line 5: success for〈C10,D10〉 = 〈{c, d}, {〈0, {4}〉}〉 because all flags are0
line 6: call COMPUTE(K♯

10) for K♯
10 = REDUCE(K♯

1,C10,D10)
line 1: store 〈X♯

10, INT(K♯
10, Y )〉 = 〈{c, d}, {4}〉 = R10

⊥ return from invocation of COMPUTE for K♯
10

line 4: set〈C11,D11〉 to CLOSURE(K♯
1 , 〈0, {1}〉) = 〈{a, b, c}, {〈0, {1}〉}〉

line 5: success for〈C11,D11〉 = 〈{a, b, c}, {〈0, {1}〉}〉 because all flags are0
line 6: call COMPUTE(K♯

11) for K♯
11 = REDUCE(K♯

1,C11,D11)
line 1: store 〈X♯

11, INT(K♯
11, Y )〉 = 〈{a, b, c}, {1}〉 = R11

⊥ return from invocation of COMPUTE for K♯
11

⊥ return from invocation of COMPUTE for K♯
1

Remark 5.1. It is interesting to compare the presented algorithm with CbO [14, 15, 16] and FCbO [13,
23] in terms of formal concepts which are computed multiple times. In a similar way as in the case of our
algorithm, CbO an FCbO are recursively invoked and the computation can therefore be expressed by a
corresponding call tree. Figure 2 shows a call tree for both CbO and FCbO applied to input formal context
from the example. The bold lines correspond to both CbO and FCbO, the dotted lines correspond only to
CbO. The black square nodes labeled by formal concepts represent branches of computation where the
concepts are computed but fail the canonicity test. We can see that FCbO computes7 formal concepts
which fail the canonicity test. Thus, several concepts are computed multiple times. Namely,R2 is
computed twice,R3 is computed three times, so isR5, andR8 andR9 and both computed twice. Recall
that our algorithm computes just a single formal concept twice, so this is an interesting improvement.
In the case of CbO, the improvement is even more visible sincehere the number of computed concepts
which fail the canonicity test is19. Section 7 shows experimental evaluation of average behavior of our
algorithm compared to CbO and FCbO using various data sets which shows an interesting tendency that
the numbers of formal concepts computed multiple times by the presented algorithm are much smaller.

6. Algorithm Properties and Soundness

In this section, we pay attention to properties of the algorithm and prove its soundness which means that
for an input formal context, the algorithm stores each formal concept exactly once. In other words, if
a formal concept is calculated several times, the algorithmensures that it is stored (e.g., printed as an
output or stored in an output data structure) at most once; moreover, the algorithm ensures that each
formal concept is stored at least once. The two conditions together yield that each formal concept is
stored exactly once.

We take the same assumptions as in Section 4. Hence, we assumethatK = 〈X,Y, I〉 is the input
formal context and that COMPUTE is invoked according to the steps described in Section 4.

In order to prove soundness of the algorithm, we first show that eachR-context which is passed to
COMPUTE as an argument during the computation represents a formal context. That is, if one considers
line 1 of Algorithm 1, for such anR-context, the algorithm stores a couple which is a formal concept
in K. Notice that one can easily find anR-context for which this is not so. Therefore, we introduce the
following notion.
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Figure 2. Example of a call tree of FCbO with reduced number ofleaf nodes.

Definition 6.1. Let K♯ be anR-context derived fromK. We shall say thatK♯ is K-representative if
〈X♯, INT(K♯, Y )〉 is a formal concept inK. �

The definition captures exactly the property that is needed to store (only) formal concepts. The next
assertion shows that the property is preserved during consecutive invocations of COMPUTE.

Lemma 6.2. LetK♯ be aK-representativeR-context derived fromK and let〈C,D〉 be a formal concept
in K♯ with D 6= ∅. Then, REDUCE(K♯, C,D) is K-representative.

Proof:
Denote REDUCE(K♯, C,D) by KR. SinceK♯ is K-representative, we have that(X♯)↑K = INT(K♯, Y )
and INT(K♯, Y )↓K = X♯. Moreover, since〈C,D〉 is assumed to be a formal concept inK♯, we have
C↑K♯ = D andD↓K♯ = C. We now show that〈C, INT(K♯, Y ) ∪ ⌊D⌋〉 is a formal concept inK.
Notice that according to Definition 3.13, this would prove thatKR is K-representative because by Defi-
nition 3.13, we have INT(KR, Y ) = INT(K♯, Y ) ∪ ⌊D⌋.

Using (2), we get⌊D⌋ = ⌊C↑K♯⌋ ⊆ C↑K . SinceC ⊆ X♯, we get INT(K♯, Y ) = (X♯)↑K ⊆
C↑K . Putting the inclusions together, we get INT(K♯, Y ) ∪ ⌊D⌋ ⊆ C↑K . In order to prove the converse
inclusion, it suffices to check that ify ∈ C↑K andy 6∈ INT(K♯, Y ), theny ∈ ⌊D⌋. If y 6∈ INT(K♯, Y ),
there is〈n,B〉 ∈ Y ♯ such thaty ∈ B. If in addition y ∈ C↑K , then〈x, y〉 ∈ I for all x ∈ C. Using
Definition 3.1 (iii), 〈x, y〉 ∈ I for all x ∈ C and ally ∈ B, meaning that〈x, 〈n,B〉〉 ∈ I♯ for all x ∈ C.
Hence,〈n,B〉 ∈ C↑K♯ = D which yieldsy ∈ B ⊆ ⌊D⌋. Altogether,C↑K = INT(K♯, Y ) ∪ ⌊D⌋. Now,
using (3), we get(INT(K♯, Y ) ∪ ⌊D⌋)↓K = INT(K♯, Y )↓K ∩ ⌊D⌋↓K = X♯ ∩ ⌊D⌋↓K = D↓K♯ = C. ⊓⊔

Corollary 6.3. All tuples stored during invocations of COMPUTE are formal concepts inK.
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Proof:
The proof is obvious. Indeed, by induction and using Lemma 6.2, one can check that eachR-context
that is passed to COMPUTE is K-representative. ⊓⊔

Notice that now it becomes apparent why we have removed an attribute shared by all objects from
the clarified initialR-context (see step 4 described in Section 4). Otherwise, theargument for the first
invocation of COMPUTE would not beK-representative, meaning that COMPUTE would store a pair
which is not a formal concept (the attribute shared by all objects would not be present in intent of the
first stored pair).

The following assertion shows that Algorithm 1 provides a complete search for formal concepts, i.e.,
each formal concept is stored at least once.

Lemma 6.4. During the invocations of COMPUTE, each formal concept inK is stored at least once.

Proof:
For brevity, we denote byK♯

i ≺ K♯
j the fact that if COMPUTE is invoked withK♯

i, then during its

invocation, it invokes itself withK♯
j. Therefore,K♯

j is equal to REDUCE(K♯
i , C,D) for someC andD.

Take formal concept〈E,F 〉 in K. We prove that there is a sequenceK♯
1 ≺ · · · ≺ K♯

n of K-
representativeR-contexts derived fromK such thatX♯

n = E andK♯
1 is the argument of the first invoca-

tion of COMPUTE. This would prove that formal concept〈E,F 〉 will be stored by COMPUTE invoked
with K♯

n.
We construct the sequence as follows. The first elementK♯

1 is determined uniquely. Assume that we
have constructed firsti elements of the sequence and forK♯

i we have that if〈n,B〉 ∈ Y ♯
i andB ⊆ F ,

thenn = 0. Observe that this property holds forK♯
1 trivially since the flags of all attributes inY ♯

1 are all
zero. IfX♯

i = E, we are done. Otherwise, we show that we can choose aK-representativeR-context
K♯

i+1 derived fromK such thatK♯
i ≺ K♯

i+1 for which we have that if〈n,B〉 ∈ Y ♯
i+1 andB ⊆ F , then

n = 0. Thus, ifX♯
i ⊃ E, then⌊Y ♯

i ⌋ ∩ F 6= ∅ becauseK♯
i is K-representative. Thus, we can take

〈n,B〉 ∈ Y ♯
i such thatB ∩ F 6= ∅ andf(〈n,B〉) ≤ f(〈n′, B′〉) is true for all〈n′, B′〉 ∈ Y ♯

i satisfying
B′ ∩ F 6= ∅. Recall thatf is the bijective map which determines the order (i.e., the indices) of attributes
in K♯

i.

Moreover,B ∩ F 6= ∅ yields there isy ∈ B such thaty ∈ E↑K . Hence,y ∈ ⌊E
↑
K♯
i ⌋ which in turn

means thatB ⊆ ⌊E
↑
K♯
i ⌋ because all attributes fromB are indistinguishable on objects fromE ⊆ X♯

i .

Therefore,B ⊆ ⌊E
↑
K♯
i ⌋ ⊆ F . SinceB ⊆ F and〈n,B〉 ∈ Y ♯

i , we have by assumptionn = 0. Hence,

for attribute 〈n,B〉, Algoritm 1 can proceed to line 4. Let〈C,D〉 be defined byC = {〈n,B〉}
↓
K♯
i

andD = C
↑
K♯
i which corresponds to calling CLOSURE with K♯

i and〈n,B〉 as its arguments. We now
check that the canonicity test succeeds. If〈n′, B′〉 ∈ D, then clearlyB′ ⊆ F becauseB ⊆ F and
〈x, 〈n′, B′〉〉 ∈ I♯i holds for anyx ∈ X♯

i such that〈x, 〈n,B〉〉 ∈ I♯i . Hence, using the assumption, it
follows thatn′ = 0. Thus, all flags of attributes fromD are zero, i.e. the canonicity test succeeds. As a
consequence, we can putK♯

i+1 = REDUCE(K♯
i, C,D) and we haveK♯

i ≺ K♯
i+1. Moreover, Lemma 6.2

yields thatK♯
i+1 is K-representative.
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It remains to show thatK♯
i+1 satisfies the property that if〈n,B〉 ∈ Y ♯

i+1 andB ⊆ F , thenn = 0.

Take any〈n,B〉 ∈ Y ♯
i+1 such thatB ⊆ F . SinceK♯

i+1 results by reduction and clarification, there are

〈nj, Bj〉 ∈ Y ♯
i (j ∈ J) such thatB =

⋃
j∈J Bj. We haveBj ⊆ F (j ∈ J), i.e., nj = 0. Since

K♯
i+1 = REDUCE(K♯

i , C,D) for C = {〈n,B〉}
↓
K♯
i where〈n,B〉 was chosen with the least possible

index according tof , during the reduction, no attribute〈nj, Bj〉 was given a nonzero flag. During the
subsequent clarification, some of the attributes〈nj, Bj〉 can be merged together with other attributes with
zero flags but they cannot be merged with attributes with nonzero flags (otherwise, it would contradict
the fact that〈E,F 〉 is a formal concept). Therefore,n =

∑
j∈J nj = 0, proving the property forK♯

i+1.
In order to finish the proof, observe that the sequence can be extended only finitely may times and

for K♯
i ≺ K♯

i+1, we haveX♯
i ⊃ X♯

i+1 ⊇ E. Hence, after finitely many steps, we obtainK♯
n with E = X♯

n

and thusF = INT(K♯
n, Y ) sinceK♯

n if K-representative. ⊓⊔

Theorem 6.5. (soundness of Algorithm 1)
During the invocations of COMPUTE, each formal concept inK is stored exactly once.

Proof:
Using Lemma 6.4, each formal concept inK is stored at least once. Thus, it suffices to prove that each
of them is stored at most once. We prove this by showing uniqueness of sequences constructed in the
proof of Lemma 6.4. Inspecting the proof of Lemma 6.4, one cansee thatK♯

i+1 is determined fromK♯
i

by reduction which uses a formal concept inK♯
i generated by the least possible attribute〈n,B〉 ∈ Y ♯

i

such thatB ⊆ F . If we would have chosen other attribute〈n′, B′〉 ∈ Y ♯
i such thatB′ ⊆ F instead

of 〈n,B〉, thenK♯
i+1 = REDUCE(K♯

i , C,D) for C = {〈n′, B′〉}
↓
K♯
i andD = C

↑
K♯
i would contain an

attribute〈n′′, B′′〉 such thatB′′ ∩ F 6= ∅, B ⊆ B′′, andn′′ > 0. The attribute〈n′′, B′′〉 would remain
in anyR-context (either directly or being merged with other attributes) that would further extend the
sequence. This follows from the fact that once an attribute has a nonzero flag, it is not removed by
any reduction from anR-context (it can be merged together with other attributes during clarification
but the nonzero flag remains). Thus, the selection of〈n′, B′〉 ∈ Y ♯

i would cause that the sequence
K♯

1 ≺ · · · ≺ K♯
i ≺ K♯

i+1 cannot be extended to a sequence where the last element is anR-contextK♯
n

with X♯
n = E, meaning that〈E,F 〉 would not be stored. Altogether, we have shown that for any formal

concept the sequence constructed in the proof of Lemma 6.4 isuniquely given. ⊓⊔

7. Complexity and Efficiency Issues

In this section, we inspect worst-case complexity of Algorithm 1 and the underlying operations and
present experimental evaluation of its performance compared to other algorithms from the CbO family.

The asymptotic worst-case time complexity of Algorithm 1 isthe same as in the case of CbO and
FCbO, i.e.,O(|B(X,Y, I)|·|X|·|Y |2). Indeed, for each formal concept, i.e., for each invocationof COM-
PUTE, one has to determine the reduced and clarified context whichis the argument passed to COMPUTE.
This can be done as follows: first, one sorts all attributes inanR-context according to their support. If the
support of two different attributes is the same, the attributes can be additionally sorted lexicographically
according to sets of objects having those attributes. This can be done inO(|X|·|Y |· log |Y |) time. Then,
attributes that need to be grouped together during clarification can be identified in a single pass through
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the set of attributes and the sets of objects having the attributes, i.e. inO(|X|·|Y |) time. Altogether, the
R-context is determined inO(|X|·|Y |· log |Y |) time. Then, Algorithm 1 proceeds as in CbO, i.e., for
each attribute, it computes a new closure inO(|X|·|Y |) time and performs the canonicity test inO(|Y |)
time. Thus, a single invocation of COMPUTE is done inO(|X|·|Y |2) time, showing that the asymptotic
worst-case time complexity of the algorithm isO(|B(X,Y, I)|·|X|·|Y |2). In the case of time delay [10],
Algorithm 1 has the same polynomial time delayO(|Y |3·|X|) as CbO, cf. [17]. The argument remains
the same as in the case of CbO.

In order to show the performance of the algorithm compared toother algorithms from the CbO
family, we present a set of experiments involving both real-world and artificial datasets and comparison
with similar algorithms. All the experiments focus on the total number of computed closures since it is a
feature significantly affecting performance of all the algorithms in the CbO family. Table 5 shows counts
of closures computed while processing real-world datasetsusing the CbO, FCbO, and Algorithm 1. Note
that the table contains two rows for results of both FCbO and CbO. The rows labeled “ordered” present
efficiency of the algorithms if the additional preprocessing step of ordering attributes of input data table
according to their support is applied, cf. [13].

From Table 5 it follows that the new algorithm needs to compute considerably less closures than the
other algorithms. It seems that this is a general tendency. The tendency is further illustrated by Table 6
and Table 7 containing average counts of computed closures while processing a set of 1,000 artificial
data tables. For this experiment we have considered tables of size50 × 50, where density of 1s is 10 %
and 33 %, respectively, and 1s are distributed approximately normally among attributes.

Table 5. Number of closures computed by selected algorithmsfrom CbO family

debian tags anon. web. mushroom tic-tac-toe
size 14, 315 × 475 32, 710 × 295 8, 124 × 119 958 × 29
density < 1% 1% 19% 34%

# concepts 38, 977 129, 009 238, 710 59, 505
Algorithm 1 44, 221 135, 925 246, 181 65, 567

FCbO (ordered) 298, 641 398, 147 299, 201 89, 930
FCbO 679, 911 1, 475, 341 426, 563 128, 434
CbO (ordered) 960, 106 785, 394 1, 321, 524 185, 738
CbO 12, 045, 680 27, 949, 552 4, 006, 498 221, 608

Table 6. Computed closures in datasets of size50 × 50 with 10 % density of 1s

mean value standard deviation median value
CbO 3, 359.88 505.51 3294
CbO (ordered) 1, 394.08 78.19 1, 395
FCbO 860.41 49.17 860
FCbO (ordered) 853.87 47.80 852
Algorithm 1 240.83 8.34 241
# concepts 227.58 6.79 228
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Table 7. Computed closures in datasets of size50 × 50 with 33 % density of 1s

mean value standard deviation median value
CbO 332, 253.55 65, 135.75 326, 097
CbO (ordered) 44, 074.43 6, 345.95 43, 975
FCbO 43, 787.87 6, 175.53 43, 778
FCbO (ordered) 32, 059.09 4, 350.26 32, 057
Algorithm 1 25, 754.40 3, 565.85 25, 776
# concepts 24, 945.64 3, 401.93 24, 958

Table 8. Ratios of concepts computed multiple times

debian tags anon. web. mushroom tic-tac-toe
size 14, 315 × 475 32, 710 × 295 8, 124 × 119 958 × 29
density < 1% 1% 19% 34%

Algorithm 1 0.13 0.05 0.03 0.10
FCbO (ordered) 6.66 2.08 0.25 0.51
FCbO 16.44 10.43 0.78 1.15
CbO (ordered) 23.63 5.08 4.53 2.12
CbO 308.04 215.64 15.78 2.72

Apparently, the new method of computing formal concepts canreduce the total number of computed
closures by several orders of magnitude. The factor of improvement depends on many aspects, especially
the size of input data. To reduce the influence of this aspect while evaluating algorithms, we use the ratio
of concepts computed multiple times (i.e., redundant concepts) to the total number of concepts present
in the dataset. Table 8 depicts such ratios for previously discussed real-world datasets. As one can see,
the new algorithm while processingmushroomdataset computes only 3 % of concepts multiple times.
This strongly contrasts with CbO which computes more than fifteen times more concepts than necessary.
Furthermore, in case of large and sparse datasets likeanonymous webanddebian tagsthe new algorithm
needs to compute only a small fraction of concepts multiple times. This is also a remarkable contrast
with the other algorithms since, for instance, CbO computeseven hundreds of times more concepts than
Algorithm 1.

These tendencies are quite general. For instance, Figure 3 depicts ratios of concepts computed mul-
tiple times and their relationship to the number of attributes in the formal context. In this experiment,
we have used multiple randomly generated formal contexts having 1,000 objects and various counts of
attributes. We have considered data tables with density 5 % and approximately normal distribution of
1s among attributes. Interestingly, it seems that the number of objects has no noticeable impact on the
efficiency in terms of concepts computed multiple times as itis shown, e.g., in Figure 4. This figure
presents efficiency of algorithms in relationship to the number of objects. In this experiment we have
also used artificial datasets and each data table had 100 attributes, various counts of objects, and 1s were
distributed approximately normally among attributes with5 % density. Note that, since CbO (without
the preprocessing step) shows a very poor performance, it has been omitted from the chart for the sake
of readability.
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Abstract. The paper presents a new method of decision tree induction
based on formal concept analysis (FCA). The decision tree is derived
using a concept lattice, i.e. a hierarchy of clusters provided by FCA. The
idea behind is to look at a concept lattice as a collection of overlapping
trees. The main purpose of the paper is to explore the possibility of
using FCA in the problem of decision tree induction. We present our
method and provide comparisons with selected methods of decision tree
induction on testing datasets.

1 Introduction

Decision trees and their induction is one of the most important and thoroughly
investigated methods of machine learning [4, 13, 15]. There are many existing
algorithms proposed for induction of a decision tree from a collection of records
described by attribute vectors. A decision tree forms a model which is then used
to classify new records. In general, a decision tree is constructed in a top-down
fashion, from the root node to leaves. In each node an attribute is chosen under
certain criteria and this attribute is used to split the collection of records covered
by the node. The nodes are split until the records have the same value of the
decision attribute. The critical point of this general approach is thus the selection
of the attribute upon which the records are split. The selection of the splitting
attribute is the major concern of the research in the area of decision trees.

The classical methods of attribute selection, implemented in well-known algo-
rithms ID3 and C4.5 [13, 14], are based on minimizing the entropy or information
gain, i.e. the amount of information represented by the clusters of records cov-
ered by nodes created upon the selection of the attribute. In addition to that,
instead of just minimizing the number of misclassified records one can minimize
! Supported by Kontakt 1–2006–33 (Bilateral Scientific Cooperation, project “Alge-
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by grant No. 1ET101370417 of GA AV ČR, by grant No. 201/05/0079 of the Czech
Science Foundation, and by institutional support, research plan MSM 6198959214.
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the misclassification and test costs [9]. Completely different solutions are based
on involving other methods of machine learning and data mining to the problem
of selection of “splitting” attribute. For instance, in [12] the authors use adaptive
techniques and computation models to aid a decision tree construction, namely
adaptive finite state automata constructing a so-called adaptive decision tree. In
our paper, we are going to propose an approach to decision tree induction based
on formal concept analysis (FCA), which has been recently utilized in various
data mining problems including machine learning via the so-called lattice-based
learning techniques. For instance, in [6] authors use FCA in their IGLUE method
to select only relevant symbolic (categorical) attributes and transform them to
continuous numerical attributes which are better for solving a decision problem
by clustering methods (k-nearest neighbor).

FCA produces two kinds of outputs from object-attribute data tables. The
first one is called a concept lattice and can be seen as a hierarchically ordered
collection of clusters called formal concepts. The second one consists of a non-
redundant basis of particular attribute dependencies called attribute implica-
tions. A formal concept is a pair of two collections—a collection of objects, called
an extent, and a collection of attributes, called an intent. This corresponds to
the traditional approach to concepts provided by Port-Royal logic approach.

Formal concepts are denoted by nodes in line diagrams of concept lattices.
These nodes represent objects which have common attributes. Nodes in decision
trees, too, represent objects which have common attributes. However, one cannot
use directly a concept lattice (without the least element) as a decision tree, just
because the concept lattice is not a tree in general. See [2] and [1] for results
on containment of trees in concept lattices. Moreover, FCA does not distinguish
between input and decision attributes. Nevertheless, a concept lattice (without
the least element) can be seen as a collection of overlapping trees. Then, a
construction of a decision tree can be viewed as a selection of one of these trees.
This is the approach we will be interested in in the present paper.

The reminder of the paper is organized as follows. The next section contains
preliminaries from decision trees and formal concept analysis. In Section 3 we
present our approach of decision tree induction based on FCA. The description
of the algorithm is accompanied with an illustrative example. The results of some
basic comparative experiments are summarized in Section 4. Finally, Section 5
concludes and outlines several topics of future research.

2 Preliminaries

2.1 Decision trees

A decision tree can be seen as a tree representation of a finitely-valued function
over finitely-valued attributes. The function is partially described by assignment
of class labels to input vectors of values of input attributes. Such an assignment
is usually represented by a table with rows (records) containing values of input
attributes and the corresponding class labels. The main goal is to construct a
decision tree which represents a function described partially by such a table and,
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at the same time, provides the best classification for unseen data (i.e. generalises
sufficiently).

Each inner node of a corresponding decision tree is labeled by an attribute,
called a decision attribute for this node, and represents a test regarding the
values of the attribute. According to the result of the test, records are split into
n classes which correspond to n possible outcomes of the test. In the basic setting,
the outcomes are represented by the values of the splitting attribute. Leaves of
the tree cover the collection of records which all have the same function value
(class label). For example, the decision trees in Fig. 1 (right) both represent the
function f : A× B × C → D depicted in Fig. 1 (left). This way, a decision tree
serves as a model approximating the function partially described by the input
data.

A B C f(A, B, C)
good yes false yes
good no false no
bad no false no
good no true yes
bad yes true yes

B

C Y

N Y

N Y

F T

A

B C

N Y B Y

N Y

B G

N Y F T

N Y

Fig. 1. Two decision trees representing example function f

A decision tree induction problem is the problem of devising a decision tree
which approximates well an unknown function described partially by a relatively
few records in the table. These records are usually split to two subsets called a
training and testing dataset. The training dataset serves as a basis of data from
which the decision tree is being induced. The testing dataset is used to evaluate
the performance of the decision tree induced by the training dataset.

A vast majority of decision tree induction algorithms uses a strategy of re-
cursive splitting of the collection of records based on selection of decision at-
tributes. This means that the algorithms build the tree from the root to leaves,
i.e. in top-down manner. The problem of local optimization is solved in every
inner node. Particular algorithms differ by the method solving the optimization
problem, i.e. the method of selection of the best attribute to split the records.
Traditional criteria of selection of decision attributes are based on entropy, in-
formation gain [13] or statistical methods such as χ-square test [10]. The aim
is to induce the smallest possible tree (in the number of nodes) which correctly
decides training records. The preference of smaller trees follows directly from
the Occam’s Razor principle according to which the best solution from equally
satisfactory ones is the simplest one.

The second problem, which is common to all machine learning methods with
a teacher (methods of supervised learning), is the overfitting problem. Overfitting
occurs when a model induced from training data behaves well on training data
but does not behave well on testing data. A common solution to the overfitting
problem used in decision trees is pruning. With pruning, some parts of the
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decision tree are omitted. This can either be done during the tree induction
process and stop or prevent splitting nodes in some branches before reaching
leaves, or after the induction of the complete tree by “post-pruning” some leaves
or whole branches. The first way is accomplished by some online heuristics of
classification “sufficiency” of the node. For the second way, evaluation of the
ability of the tree to classify testing data is used. The simplest criterion for
pruning is based on the majority of presence of one function value of records
covered by the node.

2.2 Formal concept analysis

In what follows, we summarize basic notions of FCA. An object-attribute data ta-
ble describing which objects have which attributes can be identified with a triplet
〈X, Y, I〉 where X is a non-empty set (of objects), Y is a non-empty set (of at-
tributes), and I ⊆ X×Y is an (object-attribute) relation. Objects and attributes
correspond to table rows and columns, respectively, and 〈x, y〉 ∈ I indicates that
object x has attribute y (table entry corresponding to row x and column y con-
tains ×; if 〈x, y〉 '∈ I the table entry contains blank symbol). In the terminology
of FCA, a triplet 〈X, Y, I〉 is called a formal context. For each A ⊆ X and B ⊆ Y
denote by A↑ a subset of Y and by B↓ a subset of X defined by

A↑ = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I},
B↓ = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}.

That is, A↑ is the set of all attributes from Y shared by all objects from A (and
similarly for B↓). A formal concept in 〈X, Y, I〉 is a pair 〈A,B〉 of A ⊆ X and
B ⊆ Y satisfying A↑ = B and B↓ = A. That is, a formal concept consists of a
set A (so-called extent) of objects which fall under the concept and a set B (so-
called intent) of attributes which fall under the concept such that A is the set of
all objects sharing all attributes from B and, conversely, B is the collection of all
attributes from Y shared by all objects from A. Alternatively, formal concepts
can be defined as maximal rectangles of 〈X, Y, I〉 which are full of ×’s: For A ⊆ X
and B ⊆ Y , 〈A,B〉 is a formal concept in 〈X, Y, I〉 iff A×B ⊆ I and there is no
A′ ⊃ A or B′ ⊃ B such that A′ ×B ⊆ I or A×B′ ⊆ I.

A set B(X, Y, I) = {〈A,B〉 |A↑ = B,B↓ = A} of all formal concepts in data
〈X, Y, I〉 can be equipped with a partial order ≤ (modeling the subconcept-
superconcept hierarchy, e.g. dog ≤ mammal) defined by

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1). (1)

Note that ↑ and ↓ form a so-called Galois connection [5] and that B(X, Y, I) is
in fact a set of all fixed points of ↑ and ↓. Under ≤, B(X, Y, I) happens to be
a complete lattice, called a concept lattice of 〈X, Y, I〉, the basic structure of
which is described by the so-called main theorem of concept lattices [5].

For a detailed information on formal concept analysis we refer to [3, 5] where
a reader can find theoretical foundations, methods and algorithms, and applica-
tions in various areas.
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3 Decision tree induction based on FCA

As mentioned above, a concept lattice without the least element can be seen as
a collection of overlapping trees. The induction of a decision tree can be viewed
as a selection of one of the overlapping trees. The question is: which tree do we
select?

Transformation of input data Before coming to this question in detail, we need
to address a particular problem concerning input data. Input data to deci-
sion tree induction contains various type of attributes, including yes/no (log-
ical) attributes, categorical (nominal) attributes, ordinal attributes, numerical
attributes, etc. On the other hand, Input data to FCA consists of yes/no at-
tributes. Transformation of general attributes to logical attributes is known as
conceptual scaling, see [5]. For the sake of simplicity, we consider input data
with categorical attributes in our paper and their transformation (scaling) to
logical attributes. Decision attributes (class labels) are usually categorical. Note
that we need not transform the decision attributes since we do not use them for
the concept lattice building step.

Name body temp. gives birth fourlegged hibernates mammal
cat warm yes yes no yes
bat warm yes no yes yes

salamander cold no yes yes no
eagle warm no no no no
guppy cold yes no no no

Name bt cold bt warm gb no gb yes fl no fl yes hb no hb yes mammal
cat 0 1 0 1 0 1 1 0 yes
bat 0 1 0 1 1 0 0 1 yes

salamander 1 0 1 0 0 1 0 1 no
eagle 0 1 1 0 1 0 1 0 no
guppy 1 0 0 1 1 0 1 0 no

Fig. 2. Input data table (top) and corresponding data table for FCA (bottom)

Let us present an example used throughout the presentation of our method.
Consider the data table with categorical attributes depicted in Fig. 2 (top). The
data table contains sample animals described by attributes body temperature,
gives birth, fourlegged, hibernates and mammal, with the last attribute being
the decision attribute (class label). The corresponding data table for FCA with
logical attributes obtained from the original ones in an obvious way is depicted
in Fig. 2 (bottom).

Step 1 We can now approach the first step of our method of decision tree
induction—building the concept lattice. In fact, we do not build the whole lat-
tice. Recall that smaller (lower) concepts result by adding attributes to greater
(higher) concepts and, dually, greater concepts result by adding objects to lower
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concepts. We can thus imagine the lower neighbor concepts as refining their par-
ent concept. In a decision tree the nodes cover some collection of records and
are split until the covered records have the same value of class label. The same
applies to concepts in our approach: we need not split concepts which cover ob-
jects having the same value of class label. Thus, we need an algorithm which
generates a concept lattice from the greatest concept (which covers all objects)
and iteratively generates lower neighbor concepts.

For this purpose, we can conveniently use the essential ideas of Lindig’s
NextNeighbor algorithm [8]. NextNeighbor efficiently generates formal concepts
together with their subconcept-superconcept hierarchy. Our method, which is
a modification of NextNeighbor, differs from the ordinary NextNeighbor in two
aspects. First, as mentioned above, we do not compute lower neighbor concepts
of a concept which covers objects with the same class label. Second, unlike
NextNeighbor, we do not build the ordinary concept hierarchy by means of a
covering relation. Instead, we are skipping some concepts in the hierarchy. That
is, a lower neighbor concept c of a given concept d generated by our method, can
in fact be a concept for which there exists an intermediate concept between c and
d. This is accomplished by a simple modification of NextNeighbor algorithm.

NextNeighbor The NextNeighbor algorithm builds the concept lattice by
iteratively generating the neighbor concepts of a concept 〈A,B〉, either top-down
the lattice by adding new attributes to concept intents or bottom-up by adding
new objects to concept extents. We follow the top-down approach. The algorithm
is based on the fact that a concept 〈C,D〉 is a neighbor of a given concept 〈A,B〉
if D is generated by B∪{y}, i.e. D = (B∪{y})↓↑, where y ∈ Y −B is an attribute
such that for all attributes z ∈ D −B it holds that B ∪ {z} generates the same
concept 〈C,D〉 [8], i.e.

(Next)Neighbors of 〈A,B〉 =
{〈C,D〉 | D = (B ∪ {y})↓↑, y ∈ Y −B such that

(B ∪ {z})↓↑ = D for all z ∈ D −B}.

Our modification From the monotony of the (closure) operator forming a
formal concept it follows that a concept 〈C,D〉 is not a neighbor of the concept
〈A,B〉 if there exists an attribute z ∈ D − B such that B ∪ {z} generates a
concept between 〈A,B〉 and 〈C,D〉. This is what our modification consists in.
Namely, we mark as (different) neighbors all concepts generated by B ∪ {y} for
y ∈ Y −B, even those for which there exists a concept in between, i.e.

(Our)Neighbors of 〈A,B〉 =
{〈C,D〉 | D = (B ∪ {y})↓↑, y ∈ Y −B}.

It is easy to see that our modification does not alter the concept lattice and the
overall hierarchy of concepts, cf. NextNeighbor [8].

The reason for this modification is that we have to record as neighbors of a
concept 〈A,B〉 all the concepts which are generated by the collection of attributes
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B with one additional attribute. In the resulting decision tree the addition of a
(logical) attribute to a concept means making a decision on the corresponding
categorical attribute in the tree node corresponding to the concept. Due to lack
of space we postpone a pseudocode of the algorithm of Step 1 to the full version
of the paper. Part of the concept lattice built from data table in Fig. 2 (bottom),
with our new neighbor relationships drawn by dashed lines, is depicted in Fig. 3.

1 52

2 03 10 4 0 5 106 10 7 2 8 109 2

10 011 0 12 0

13 2

14 2

15 0

16 0

17 2

18 2

19 0

20 0

gb yes

bt warm

bt cold

gb no

Fig. 3. Part of the concept lattice and tree of concepts (solid) of data table in Fig. 2

Step 2 The second step of our method is the selection of a tree of concepts
from the part of the concept lattice built in the first step. First, we calculate for
each concept c = 〈A,B〉 the number Lc of all of its lower concepts. Note that
each lower concept is counted for each different attribute added to the concept
c, cf. our modification of concept neighbor relation. For instance, if a concept
d = 〈C,D〉 is generated from concept c by adding either attribute x or attribute
y (i.e. D = (B ∪ {x})↓↑ or D = (B ∪ {y})↓↑, respectively), the concept d is
counted twice and Lc is increased by two.

Next, we select a tree of concepts from the part of the concept lattice by it-
eratively going from the greatest concept (generated by no attributes or, equiva-
lently, by all objects) to minimal concepts. The selection is based on the number
Lc of lower concepts of the currently considered concept c (recall that Lc is not
the number of lower concepts of c in common sense, cf. the computation of Lc

above which is due to our modification of concept neighbor relation).
The root node of the tree is always the greatest concept. Then, for each tree

node/concept c we define collections N a
c of concepts, which will be candidate

collections of children nodes/concepts of c in the resulting selected tree. N a
c

is a collection of lower neighbor concepts of c such that (a) each concept d
in N a

c is generated from concept c by adding a (logical) attribute transformed
from the categorical attribute a (recall that logical attributes stand for values
of categorical attributes) and (b) N a

c contains the concept d for every logical
attribute transformed from categorical attribute a. There (1) may exist, and
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usually exists, more than one such collection N a
c of neighbor concepts of concept

c, for more that one categorical attribute a, but, on the other side (2) there may
exist no such collection.

(1) In this case we choose from the several collections N a
c of neighbor concepts

of concept c the collection containing a concept d with the minimal number Ld

of its lower concepts. Furthermore, if there is more than one such neighbor
concept, in different collections, we choose the collection containing the concept
which covers the maximal number of objects/records. It is important to note
that this point is the only non-deterministic point in our method since there still
can be more than one neighbor concepts having equal minimal number of lower
concepts and covering equal maximal number of objects. In that case we choose
one of the collections N a

c of neighbor concepts arbitrarily.
(2) This case means that in every potential collection N a

c there is missing at
least one neighbor concept generated by some added (logical) attribute trans-
formed from categorical attribute a, i.e. N a

c does not satisfy the condition (b).
We solve this situation by substituting the missing concepts by (a copy of) the
least concept 〈Y ↓, Y 〉 generated by all attributes (or, equivalently, no objects).
The least concept is a common and always existing subconcept of all concepts
in a concept lattice and usually covers no objects/records (but need not!).

Finally, an edge between concept c and each neighbor concept from the chosen
collection N a

c is created in the resulting selected tree. The edge is labeled by the
added logical attribute. Again, we postpone a pseudocode of the algorithm of
Step 2 to the full version of the paper.

To illustrate the previuos description, let us consider the example of a part of
the concept lattice in Fig. 3. The concepts are denoted by a circled number and
the number of lower concepts is written to the right of every concept. We select
the tree of concepts as follows. The root node of the tree is the greatest concept
1. As children nodes of the root node are selected concepts 2 and 3 since they
form a collection N body temp.

1 of all lower neighbor concepts generated by both
added (logical) attributes bt cold and bt warm, respectively, transformed from
the categorical attribute body temp.. Note that we could have chosen the collec-
tion N gives birth

1 instead of collection N body temp.
1 , but since both concepts 2 from

N body temp.
1 and 4 from N gives birth

1 have the equal minimal number L2 and L4

of lower concepts and both cover the equal maximal number of objects/records,
we have chosen the collection N body temp.

1 arbitrarily, according to case (1) from
the description. The edges of the selected tree are labeled by the corresponding
logical attributes. Similarly, the children nodes of concept 3 will be concepts 11
and 19, and this is the end of the tree selection step since concepts 4, 11 and
19 have no lower neighbors. The resulting tree of concepts is depicted in Fig. 3
with solid lines.

Step 3 The last step (third one) of our method is the transformation of the tree
of concepts into a decision tree. A decision tree has in its every node the chosen
categorical attribute on which the decision is made and the edges from the node
are labeled by the possible values of the attribute. The leaves are labeled by
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class label(s) of covered records. In the tree of concepts the logical attributes
transformed from (and standing for the values of) the categorical attribute are
in the labels of edges connecting concepts. Hence the transformation of the tree
of concepts into a decision tree is simple: edges are relabeled to the values of the
categorical attribute, inner concepts are labeled by the corresponding categorical
attributes, and leaves are labelled by class label(s) of covered objects/records.

The last problem to solve is multiple different class label(s) of covered records
in tree leaves. This can happen for several reasons, for example the presence of
conflicting records in input data differing in class label(s) only (which can result
for instance from class labelling mistakes or from selecting a subcollection of
attributes from original larger data) or pruning the complete decision tree as a
strategy to the overfitting problem. Common practice for dealing with multiple
different target class label(s) is as simple as picking the major class label value(s)
as the target classification of records covered by leave node and we adopt this
solution. A special case are leave nodes represented by (a copy of) the least
concept (which comes from the possibility (2) in Step 2), since the least concept
usually covers no objects/records. These nodes are labelled by the class label(s)
of their parent nodes.

body temp.

gives birth no

no yes

warm cold

no yes

Fig. 4. The decision tree of input data in Fig. 2

The resulting decision tree of input data in Fig. 2 (top) transformed from
the tree of concepts in Fig. 3 is depicted in Fig. 4.

Let us now briefly discuss the problem of overfitting. A traditional solution
to overfitting problem, i.e. pruning, suggests not to include all nodes down to
leaves as a part of the decision tree. One of the simplest criteria for this is picking
a threshold percentage ratio of major class label value(s) in records covered by
a node. Alternatively, one can use the entropy measure to decide whether the
node is sufficient and need not be split. Note that several other possibilities exist.
In all cases, the constraint can be applied as early as selecting the concepts to
the tree, i.e. pruning can be done during decision tree induction process in our
method. No pruning method is considered in this paper.
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4 Comparison with other algorithms

The asymptotic time complexity of the presented algorithm is given by the (part
of the) concept lattice building step since this step is the most time demanding.
The concepts are computed by a modified Lindig’s NextNeighbor algorithm.
Since the modification does not alter the asymptotic time complexity, the overall
asymptotic complexity of our method is equal to that of Lindig’s NextNeighbor
algorithm, namely O(|X||Y |2|L|). Here, |X| is the number of input records, |Y |
is the number of (logical) attributes and |L| is the size of the concept lattice, i.e.
the number of all formal concepts.

However, for the decision tree induction problem, accuracy, i.e. the percent-
age of correctly and incorrectly decided records from both training and testing
dataset, is more important than time complexity. We performed preliminary ex-
periments and compared our method to reference algorithms ID3 and C4.5. We
implemented our method in C language. ID3 and C4.5 were borrowed and run
from the Weka4 (Waikato Environment for Knowledge Analysis [16]), a soft-
ware package which aids the development of and contains implementations of
several machine learning and data mining algorithms in Java. Default Weka’s
parameters were used for the two algorithms and pruning was turned off where
available.

Table 1. Characteristics of datasets used in experiments

Dataset No. of attributes No. of records Class distribution
breast-cancer 6 138 100/38
kr-vs-kp 14 319 168/151
mushroom 10 282 187/95
vote 8 116 54/62
zoo 9 101 41/20/5/13/4/8/10

The experiments were done on selected public real-world datasets from UCI
machine learning repository [7]. The selected datasets are from different areas
(medicine, biology, zoology, politics and games) and all contain only categorical
attributes with one class label. The datasets were cleared of records containing
missing values and actually, we selected subcollections of less-valued attributes of
each dataset and subcollections of records of some datasets, due to computational
time of repeated executions on the same dataset. The basic characteristics of
the datasets are depicted in Tab. 1. The results of averaging 10 executions of
the 10-Fold Stratified Cross-validation test (which gives total of 100 executions
for each algorithm over each dataset) are depicted in Tab. 2. The table shows
average percentage rates of correct decisions for both training (upper item in the
table cell) and testing (lower item) dataset part, for each compared algorithm
and dataset. We can see that our FCA based decision tree induction method
outperforms C4.5 on all datasets, with the exception of mushroom, by 2 – 4 %,

4 Weka is a free software available at http://www.cs.waikato.ac.nz/ml/weka/
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on both training and testing data, and gains almost identical results as ID3, again
on all datasets except mushroom, on training data, but slightly outperforming
ID3 on testing data by about 1 %. On mushroom dataset, which is quite sparse
comparing to the other datasets, our method is little behind ID3 and C4.5 on
training data, but, however, almost equal on testing data. The datasets vote
and zoo are more dense than the other datasets and also contain almost no
conflicting records, so it seems that the FCA based method could give better
results that traditional, entropy based, methods on clear dense data. However,
more experiments on additional datasets are needed to approve this conclusion.

Table 2. Percentage correct rates for datasets in Tab. 1

training %
testing % breast-cancer kr-vs-kp mushroom vote zoo

FCA based
88.631
79.560

84.395
74.656

96.268
96.284

97.528
90.507

98.019
96.036

ID3
88.630
75.945

84.674
74.503

97.517
96.602

97.528
89.280

98.019
95.036

C4.5
86.328
79.181

82.124
72.780

97.163
96.671

94.883
86.500

96.039
92.690

Due to lack of space only the basic experiments are presented. More com-
parative tests on additional datasets with additional various machine learning
algorithms like Naive Bayes classification or Artificial Neural Networks trained
by back propagation [11], including training and testing time measuring, are
postponed to the full version of the paper. However, the first preliminary exper-
iments show that our simple FCA based method is promising in using FCA in
the decision tree induction problem.

The bottleneck of the method could be performance, the total time of tree
induction, but once one already has the (whole) concept lattice of input data,
then the tree selection is very fast. This draws a possible usage and perspective
of the method: decision making from already available concept lattices. The ad-
vantage of our method over other methods is the conceptual information hidden
in tree nodes (note that they are in fact formal concepts). The attributes in
concept intents are the attributes common to all objects/records covered by the
concept/tree node, which might be usefull information for furher exploration,
application and interpretation of the decision tree. This type of information is
not (directly) available by other methods, for instance classical entropy based.

5 Conclusion and topics of future research

We have presented a simple novel method of decision tree induction by selection
of the tree of concepts from a concept lattice. The criterion of choosing an
attribute based on which the node of the tree is split is determined by the number
of all lower concepts of the concept corresponding to the node. The approach
interconnects areas of decision trees and formal concept analysis. We have also
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presented some comparison to classical decision tree algorithms, namely ID3 and
C4.5, and have seen that our method compares quite well and surely deserves
more attention. Topics for future research include:

– Explore the possibility to compute a smaller number of formal concepts
from which the nodes of a decision tree is constructed. Or, the possibility to
compute right the selected concepts only.

– The problems of overfitting in data and uncomplete data, i.e. data having
missing values for some attributes in some records.

– Incremental updating of induced decision trees via incremental methods of
building concept lattices.
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Abstract

The paper presents a new machine learn-
ing method of decision tree induction based
on formal concept analysis (FCA). FCA is a
data mining technique the output of which is
a hierarchical structure of clusters extracted
from data describing objects by attributes.
The decision tree is derived using the struc-
ture of clusters (called concept lattice). The
idea behind is to look at a concept lattice as
a collection of overlapping trees. The main
purpose of the paper is to explore the possi-
bility of using FCA in the problem of decision
tree induction. We present our method and
provide comparisons with selected methods
of decision tree induction and machine learn-
ing on testing datasets.

1 Introduction
Decision trees and their induction is one of the
most important and thoroughly investigated methods
of machine learning [Dunham, 2003; Quinlan, 1993;
Tan, Steinbach and Kumar, 2006]. Machine learn-
ing is one of the major fields in artificial intelligence
which concerns with the development of methods and
techniques that allow machines to “learn”. Allowing
machines to perform difficult taks of human reason-
ing, the methods of machine learning can be applied
in several areas of system sciences including intelligent
control systems, adaptive systems, robotics and even
cybernetics. Decision trees, being an efficient classi-
fication models of data, support machine learning in
the problem of decision making.

A decision tree forms a model which is then used
to classify new records. There are many existing algo-
rithms proposed for induction of a decision tree from
a collection of records described by attribute vectors.
In general, a decision tree is constructed in a top-down
fashion, from the root node to leaves. In each node

∗Supported by Kontakt 1–2006–33 (Bilateral Scientific
Cooperation, project “Algebraic, logical and computa-
tional aspects of fuzzy relational modelling paradigms”),
by grant No. 1ET101370417 of GA AV ČR, by grant
No. 201/05/0079 of the Czech Science Foundation, and
by institutional support, research plan MSM 6198959214.

an attribute is chosen under certain criteria and this
attribute is used to split the collection of records cov-
ered by the node. The nodes are split until the records
have the same value of the decision attributes (often
called class labels). The critical point of this general
approach is thus the selection of the attribute upon
which the records are split. The selection of the split-
ting attribute is the major concern of the research in
the area of decision trees. Decision trees have also
more descriptive names of classification trees or re-
gression trees in the case of discrete or continuous class
labels, respectively.

The classical methods of attribute selection, imple-
mented in well-known algorithms ID3 and C4.5 [Quin-
lan, 1993; 1996], are based on minimizing the entropy
or information gain, i.e. the amount of information
represented by the clusters of records covered by nodes
created upon the selection of the attribute. However,
these methods use statistics only, without any partic-
ular view on data, and thus are limited in efficiency of
the created model. Completely different solutions are
based on involving other methods of machine learning
and data mining. For instance, in [Pistori and Neto,
2003] the authors use adaptive techniques and com-
putation models to aid a decision tree construction,
namely adaptive finite state automata constructing a
so-called adaptive decision tree.

In our paper, we are going to propose an ap-
proach to decision tree induction based on formal
concept analysis (FCA), which has been recently uti-
lized in various data mining problems including ma-
chine learning, via so-called lattice-based learning
techniques [Fu, Fu, Njiwoua and Mephu Nguifo, 2004;
Kuznetsov, 2004]. For instance, in [Mephu Nguifo
and Njiwoua, 2001] authors use FCA in their IGLUE
method to select only relevant symbolic (categorical)
attributes and transform them to continuous numer-
ical attributes which are better for solving a decision
problem by clustering methods (k-nearest neighbor).
However, we are going to use FCA more directly, em-
ploying a conceptual view on data which FCA offers,
since we believe that this can help to create a more
fitted model of data.

FCA produces two kinds of outputs from data ta-
bles consisting of records (objects in terminology of
FCA) described by attributes. The first one is called



a concept lattice and can be seen as a hierarchically
ordered collection of clusters called formal concepts.
The second one consists of a non-redundant basis of
particular attribute dependencies called attribute im-
plications. A formal concept is a formalization of a
notion of concept in human reasoning, defined as a
pair of two collections—a collection of objects, called
an extent, and a collection of attributes, called an in-
tent. This corresponds to the traditional approach to
concepts provided by Port-Royal logic approach.

Formal concepts represent objects/records which
have common attributes. Nodes in decision trees,
too, represent records which have common attributes.
However, one cannot use directly a concept lattice
(without the least element) as a decision tree, just
because the concept lattice is not a tree in general.
See [Belohlavek and Sklenar, 2005] and [Belohlavek,
De Baets, Outrata and Vychodil, 2007] for results on
containment of trees in concept lattices. Moreover,
FCA does not distinguish between input and decision
attributes. Nevertheless, a concept lattice (without
the least element) can be seen as a collection of over-
lapping trees. Then, a construction of a decision tree
can be viewed as a selection of one of these trees. This
is the approach we will be interested in in the present
paper.

The reminder of the paper is organized as follows.
The next section contains preliminaries from decision
trees and formal concept analysis. In Section 3 we
present our approach of decision tree induction based
on FCA. The description of the algorithm is accom-
panied with an illustrative example. The results of
some basic comparative experiments are summarized
in Section 4. Finally, Section 5 concludes and outlines
several topics of future research.

2 Preliminaries

2.1 Decision trees

A decision tree can be seen as a tree representation of a
finitely-valued function over finitely-valued attributes.
The function is partially described by assignment of
class label(s) to input vectors of values of input at-
tributes. Such an assignment is usually represented by
a table with rows (records) containing values of input
attributes and the corresponding class label(s). The
main goal is to construct a decision tree which rep-
resents a function described partially by such a table
and, at the same time, provides the best classification
for unseen data (i.e. generalises sufficiently).

Each inner node of a corresponding decision tree is
labeled by an attribute, called a decision attribute for
this node, and represents a test regarding the values
of the attribute. According to the result of the test,
records are split into n classes which correspond to n
possible outcomes of the test. In the basic setting, the
outcomes are represented by the values of the split-
ting attribute. Leaves of the tree cover the collection
of records which all have the same function value (class
label). For example, the decision trees in Fig. 1 (bot-
tom) both represent the function f : A×B ×C → D
depicted in Fig. 1 (top). This way, a decision tree

A B C f(A,B,C)
good yes false yes
good no false no
bad no false no
good no true yes
bad yes true yes

B

C Y

N Y

N Y

F T

A

B C

N Y B Y

N Y

B G

N Y F T

N Y

Figure 1: Two decision trees (bottom) representing
example function f (top)

serves as a model approximating the function partially
described by the input data.

A decision tree induction problem is the problem
of devising a decision tree which approximates well
an unknown function described partially by a rela-
tively few records in the table. These records are usu-
ally split to two subsets called a training and testing
dataset. The training dataset serves as a basis of data
from which the decision tree is being induced. The
testing dataset is used to evaluate the performance of
the decision tree induced by the training dataset.

A vast majority of decision tree induction algo-
rithms uses a strategy of recursive splitting of the
collection of records based on selection of decision at-
tributes. This means that the algorithms build the
tree from the root to leaves, i.e. in top-down manner.
The problem of local optimization is solved in every in-
ner node. Particular algorithms differ by the method
solving the optimization problem, i.e. the method of
selection of the best attribute to split the records. Tra-
ditional criteria of selection of decision attributes are
based on entropy, information gain [Quinlan, 1993]
or statistical methods such as χ-square test [Mingers,
1987]. The aim is to induce the smallest possible tree
(in the number of nodes) which correctly decides train-
ing records. The preference of smaller trees follows di-
rectly from the Occam’s Razor principle according to
which the best solution from equally satisfactory ones
is the simplest one.

2.2 Formal concept analysis

In what follows, we summarize basic notions of FCA.
An object-attribute data table describing which ob-
jects have which attributes can be identified with
a triplet 〈X,Y, I〉 where X is a non-empty set of ob-
jects, Y is a non-empty set of attributes, and I ⊆
X × Y is an object-attribute relation. Objects and
attributes correspond to table rows and columns, re-
spectively, and 〈x, y〉 ∈ I indicates that object x has
attribute y (table entry corresponding to row x and
column y contains ×; if 〈x, y〉 6∈ I the table entry con-
tains blank symbol). In the terminology of FCA, a
triplet 〈X,Y, I〉 is called a formal context. For each
A ⊆ X and B ⊆ Y denote by A↑ a subset of Y and
by B↓ a subset of X defined by

A↑ = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I},
B↓ = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}.



That is, A↑ is the set of all attributes from Y shared by
all objects from A (and similarly for B↓). A formal
concept in 〈X,Y, I〉 is a pair 〈A,B〉 of A ⊆ X and
B ⊆ Y satisfying A↑ = B and B↓ = A. That is, a
formal concept consists of a set A (so-called extent)
of objects which fall under the concept and a set B
(so-called intent) of attributes which fall under the
concept such that A is the set of all objects sharing all
attributes from B and, conversely, B is the collection
of all attributes from Y shared by all objects from
A. Alternatively, formal concepts can be defined as
maximal rectangles of 〈X,Y, I〉 which are full of ×’s:
For A ⊆ X and B ⊆ Y , 〈A,B〉 is a formal concept
in 〈X,Y, I〉 iff A × B ⊆ I and there is no A′ ⊃ A or
B′ ⊃ B such that A′ ×B ⊆ I or A×B′ ⊆ I. Formal
concepts represent clusters hidden in object-attribute
data.

A set B(X,Y, I) = {〈A,B〉 |A↑ = B,B↓ = A} of
all formal concepts in data 〈X,Y, I〉 can be equipped
with a partial order ≤ modeling the subconcept-
superconcept hierarchy, e.g. dog ≤ mammal, defined
by 〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1).
Note that ↑ and ↓ form a so-called Galois connection
[Ganter and Wille, 1999] and that B(X,Y, I) is in fact
a set of all fixed points of ↑ and ↓. Under ≤, B(X,Y, I)
happens to be a complete lattice, called a concept lat-
tice of 〈X,Y, I〉, the basic structure of which is de-
scribed by the so-called main theorem of concept lat-
tices [Ganter and Wille, 1999].

Theorem 1 (1) The set B(X,Y, I) is under ≤ a com-
plete lattice where the infima and suprema are given
by ∧

j∈J〈Aj , Bj〉 = 〈⋂j∈J Aj , (
⋃

j∈J Bj)
↓↑〉,

∨
j∈J〈Aj , Bj〉 = 〈(⋃j∈J Aj)

↑↓,
⋂

j∈J Bj〉.
(2) Moreover, an arbitrary complete lattice V = 〈V,≤
〉 is isomorphic to B(X,Y, I) iff there are mappings
γ : X → V , µ : Y → V such that

(i) γ(X) is
∨
-dense in V, µ(Y ) is

∧
-dense in V;

(ii) γ(x) ≤ µ(y) iff 〈x, y〉 ∈ I.

For a detailed information on formal concept anal-
ysis we refer to [Carpineto and Romano, 2004; Gan-
ter and Wille, 1999] where a reader can find theoret-
ical foundations, methods and algorithms, and appli-
cations in various areas.

3 Decision tree induction based on
FCA

As mentioned above, a concept lattice without the
least element can be seen as a collection of overlap-
ping trees. The induction of a decision tree can be
viewed as a selection of one of the overlapping trees.
The question is: which tree do we select?

Transformation of input data Before coming to
this question in detail, we need to address a partic-
ular problem concerning input data. Input data to
decision tree induction contains various type of at-
tributes, including yes/no (logical) attributes, cate-
gorical (nominal) attributes, ordinal attributes, nu-
merical attributes, etc. On the other hand, Input data

to FCA consists of yes/no attributes. Transformation
of general attributes to logical attributes is known as
conceptual scaling, see [Ganter and Wille, 1999]. For
the sake of simplicity, we consider input data with cat-
egorical attributes in our paper and their transforma-
tion (scaling) to logical attributes. Decision attributes
(class labels) are usually categorical. Note that we
need not transform the decision attributes since we
do not use them for the concept lattice building step.

Let us present an example used throughout the pre-
sentation of our method. Consider the data table with
categorical attributes depicted in Fig. 2 (top). The
data table contains sample animals described by at-
tributes body temperature, gives birth, fourlegged,
hibernates and mammal, with the last attribute be-
ing the decision attribute (class label). The corre-
sponding data table for FCA with logical attributes
obtained from the original ones in an obvious way is
depicted in Fig. 2 (bottom).

Step 1 We can now approach the first step of our
method of decision tree induction—building the con-
cept lattice. In fact, we do not build the whole lattice.
Recall that smaller (lower) concepts result by adding
attributes to greater (higher) concepts. We can thus
imagine the lower neighbor concepts as refining their
parent concept. In a decision tree the nodes cover
some collection of records and are split until the cov-
ered records have the same value of class label(s). The
same applies to concepts in our approach: we need not
split concepts which cover objects having the same
value of class label(s). Thus, we need an algorithm
which generates a concept lattice from the greatest
concept (which covers all objects) and iteratively gen-
erates lower neighbor concepts. Such an algorithm is
Lindig’s NextNeighbor [Lindig, 2000], for instance.

In our method we further modify the concept lattice
building algorithm in two aspects. First, as mentioned
above, we do not compute lower neighbor concepts of
a concept which covers objects with the same class
label(s). Second, we do not build the ordinary concept
hierarchy by means of a covering relation, but instead,
we are skipping some concepts in the hierarchy. That
is, a lower neighbor concept c of a given concept d
generated by our method, can in fact be a concept for
which there exists an intermediate concept between c
and d.

The reason for this modification is that we have
to record as neighbors of a concept 〈A,B〉 all the
concepts which are generated by the collection of at-
tributes B with one additional attribute. In the result-
ing decision tree the addition of a (logical) attribute
to a concept means making a decision on the corre-
sponding categorical attribute in the tree node cor-
responding to the concept. Due to lack of space we
postpone a pseudocode of the algorithm of Step 1 to
the full version of the paper. Part of the concept lat-
tice built from data table in Fig. 2 (bottom), with our
new neighbor relationships drawn by dashed lines, is
depicted in Fig. 3.



Name body temp. gives birth fourlegged hibernates mammal
cat warm yes yes no yes
bat warm yes no yes yes

salamander cold no yes yes no
eagle warm no no no no
guppy cold yes no no no

Name bt cold bt warm gb no gb yes fl no fl yes hb no hb yes mammal
cat 0 1 0 1 0 1 1 0 yes
bat 0 1 0 1 1 0 0 1 yes

salamander 1 0 1 0 0 1 0 1 no
eagle 0 1 1 0 1 0 1 0 no
guppy 1 0 0 1 1 0 1 0 no

Figure 2: Input data table (top) and corresponding data table for FCA (bottom)
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10 011 0 12 0

13 2

14 2

15 0

16 0

17 2

18 2

19 0

20 0

gb yes

bt warm

bt cold

gb no

Figure 3: Part of the concept lattice and tree of con-
cepts (solid) of data table in Fig. 2

Step 2 The second step of our method is the selec-
tion of a tree of concepts from the part of the concept
lattice built in the first step. First, we calculate for
each concept c the number Lc of all of its lower con-
cepts. Note that each lower concept is counted for
each different attribute added to the concept c, cf.
our modification of concept neighbor relation.

Furthermore, for a concept c and a categorical at-
tribute a we define a collection N a

c containing for each
logical attribute z transformed from a the lower neigh-
bor concept of c generated from c by adding z, if such
a neighbor concept exists, or otherwise, (a copy of)
the least concept 〈Y ↓, Y 〉 generated by all attributes,
with L〈Y ↓,Y 〉 = ∞.

Now, we select a tree of concepts from the part of
the concept lattice by iteratively going from the great-
est concept (generated by all objects) to minimal con-
cepts. The selection is based on the number Lc of
lower concepts of the currently considered concept c.

(1) The root node of the tree is always the greatest
concept. This is the starting point of the tree selec-
tion.

(2) For each tree node/concept c we select the chil-
dren nodes/concepts in the selected tree as follows.
First, from all lower neighbor concepts of c we se-
lect the concept d with the minimal number Ld of its
lower concepts. Furthermore, if there is more than one
such neighbor concept, generated from c by adding
logical attributes transformed from different categori-
cal attributes, we select the one covering the maximal
number of objects/records. However, if there is still
more than one such concept, we select one of them
arbitrarily. Selecting the neighbor concept, which is
generated from c by adding a (logical) attribute trans-
formed from the categorical attribute a, means se-
lecting a for a decision attribute. Then, the children
nodes/concepts of c are going to be the concepts from
the collection N a

c .

(3) Finally, an edge between concept c and each con-
cept from the collection N a

c is created in the resulting
selected tree. The edge is labeled by the logical at-
tribute added in the concept. This means drawing
result possibilities of a decision test on attribute a.

Again, we postpone a pseudocode of the algorithm
of Step 2 to the full version of the paper.

To illustrate the previuos description, let us con-
sider the example of a part of the concept lattice in
Fig. 3. The concepts are denoted by circled numbers
and the number of lower concepts is written to the
right of every concept. We select the tree of concepts
as follows. The root node of the tree is the greatest
concept 1. As children nodes of the root node are
selected concepts 2 and 3 since they form a collec-

tion N body temp.
1 of all lower neighbor concepts gen-

erated by both added (logical) attributes bt cold and
bt warm, respectively, transformed from the selected
categorical attribute body temp.. Note that we could
have as well selected concepts 4 and 5 from the col-

lection N gives birth
1 , but since both concepts 2 and 4

have the equal minimal number L2 and L4 of lower
concepts and both cover the equal maximal number
of objects/records, we have selected concept 2 and
thus the categorical attribute body temp. arbitrarily.
The edges of the selected tree are labeled by the cor-
responding logical attributes. Similarly, the children
nodes of concept 3 will be concepts 11 and 19, and
this is the end of the tree selection step since concepts
4, 11 and 19 have no lower neighbors. The resulting
tree of concepts is depicted in Fig. 3 with solid lines.

Let us briefly explain why our selection criterion
for the decision attribute is the minimal number of
lower concepts of the actual concept (or the maxi-
mal number of covered objects, respectively). This
criterion simply means the minimal number of added
attributes, hence the minimal number of decision at-
tributes in decisions following the actual decision, thus
leading to the minimal decision tree (according to the
previously mentioned Occam’s Razor principle). The
point is that the decision minimizing the number of
consecutive decisions should be a good decision.

Step 3 The last step (third one) of our method is
the transformation of the tree of concepts into a de-
cision tree. A decision tree has in its every node the
chosen categorical attribute on which the decision is
made and the edges from the node are labeled by the
possible values of the attribute. The leaves are labeled
by class label(s) of covered records. In the tree of
concepts the logical attributes transformed from (and



body temp.

gives birth no

no yes

warm cold

no yes

Figure 4: The decision tree of input data in Fig. 2

standing for the values of) the categorical attribute are
in the labels of edges connecting concepts. Hence the
transformation of the tree of concepts into a decision
tree is simple: edges are relabeled to the values of the
categorical attribute, inner concepts are labeled by the
corresponding categorical attributes, and leaves are la-
belled by class label(s) of covered objects/records.

The last problem to solve is multiple different class
label(s) of covered records in tree leaves. This can
happen for several reasons, for example the presence
of conflicting records in input data differing in class la-
bel(s) only. Common practice for dealing with multi-
ple different target class label(s) is as simple as picking
the major class label value(s) as the target classifica-
tion of records covered by leave node and we adopt this
solution. A special case are leave nodes represented by
(a copy of) the least concept, since the least concept
usually covers no objects/records. These nodes are
labelled by the class label(s) of their parent nodes.

The resulting decision tree of input data in Fig. 2
(top) transformed from the tree of concepts in Fig. 3
is depicted in Fig. 4.

4 Comparison with other algorithms

The asymptotic time complexity of the presented al-
gorithm is given by the (part of the) concept lattice
building step since this step is the most time demand-
ing. Since the modification of neighbor relation does
not alter the asymptotic time complexity, the over-
all asymptotic complexity of our method is equal to
O(|X||Y |2|L|) in the case of Lindig’s NextNeighbor al-
gorithm, for instance. Here, |X| is the number of input
records, |Y | is the number of (logical) attributes and
|L| is the size of the concept lattice, i.e. the number
of all formal concepts.

However, for the decision tree induction problem,
accuracy, i.e. the percentage of correctly and incor-
rectly decided records from both training and test-
ing dataset, is more important than time complexity.
We performed preliminary experiments and compared
our method to reference decision tree algorithms ID3
and C4.5 (entropy and information gain based) and
also to one instance based learning method (IB1) and
one artificial neural network trained by back propa-
gation [Mitchel, 1997] (MLP). We implemented our
method in C language. All other classifiers were bor-
rowed and run from the Weka1 (Waikato Environment
for Knowledge Analysis), a software package which
aids the development of and contains implementations

1Weka is a free software available at
http://www.cs.waikato.ac.nz/ml/weka/

Table 1: Characteristics of datasets used in experi-
ments
Dataset No. of attributes No. of records Class distribution
breast-cancer 6 138 100/38
kr-vs-kp 14 319 168/151
mushroom 10 282 187/95
vote 8 116 54/62
zoo 9 101 41/20/5/13/4/8/10

of several machine learning and data mining algo-
rithms in Java. Default Weka’s parameters were used
for the algorithms.

The experiments were done on selected public real-
world datasets from UCI machine learning reposi-
tory [Newman, Hettich, Blake and Merz, 1998]. The
datasets were cleared of records containing missing
values and actually, we selected subcollections of less-
valued attributes of each dataset and subcollections of
records of some datasets, due to computational time
of repeated executions on the same dataset. The basic
characteristics of the datasets are depicted in Tab. 1.
The results of averaging 10 executions of the 10-Fold
Stratified Cross-validation test (which gives total of
100 executions for each algorithm over each dataset)
are depicted in Tab. 2. The table shows average
percentage rates of correct decisions for both train-
ing (upper item in the table cell) and testing (lower
item) dataset part, for each compared algorithm and
dataset, plus average over all datasets. Bold face num-
bers denote the best results.

We can see that our FCA based decision tree induc-
tion method outperforms all other compared methods
on datasets vote and zoo, on both training and test-
ing data, and gains almost identical results to ID3 and
MLP on datasets breast-cancer and kr-vs-kp, outper-
forming C4.5 and IB1. On mushroom dataset, which
is quite sparse comparing to the other datasets, our
method is little behind ID3, C4.5 and MLP on train-
ing data, but, however, almost equal on testing data.
Clearly, the FCA based method outperforms instance
based learning methods and it seems that it could give
better results than traditional decision tree, entropy
based, methods and even neural network methods on
clear dense data. However, more experiments on addi-
tional datasets and deep insight are needed to approve
this conclusion. The experiments show that our sim-
ple FCA based method is promising in using FCA in
the decision tree induction problem.

The bottleneck of the method could be perfor-
mance, the total time of tree induction, but once one
already has the (whole) concept lattice of input data,
then the tree selection is very fast. This draws a
possible usage and perspective of the method: deci-
sion making from already available concept lattices.
The advantage of our method over other methods is
the conceptual information hidden in tree nodes (note
that they are in fact formal concepts). The attributes
covered by a node are the attributes common to all
objects/records covered by the node, which might be
usefull information for furher exploration, application
and interpretation of the decision tree. This type of
information is not (directly) available by other meth-
ods.



Table 2: Percentage correct rates for datasets in Tab. 1
training %
testing %

breast-cancer kr-vs-kp mushroom vote zoo average

FCA based
88.631
79.560

84.395
74.656

96.268
96.284

97.528
90.507

98.019
96.036

92.968
87.409

ID3
88.630
75.945

84.674
74.503

97.517
96.602

97.528
89.280

98.019
95.036

93.274
86.273

C4.5
86.328
79.181

82.124
72.780

97.163
96.671

94.883
86.500

96.039
92.690

91.307
85.564

IB1
84.887
71.901

79.132
68.886

96.556
95.214

97.020
91.303

97.799
94.463

91.079
84.353

MLP
88.550
79.939

84.426
74.880

97.234
95.992

95.545
88.106

97.678
95.536

92.687
86.891

5 Conclusion and topics for future
research

We have presented a simple novel method of decision
tree induction by selection of the tree of concepts from
a concept lattice. The criterion of choosing an at-
tribute based on which the node of the tree is split is
determined by the number of all lower concepts of the
concept corresponding to the node. The approach in-
terconnects areas of decision trees and formal concept
analysis. We have also presented some comparison
to classical decision tree algorithms, namely ID3 and
C4.5, and also to instance based learning and neu-
ral network methods, and have seen that our method
compares quite well and surely deserves more atten-
tion. Topics for future research include:

– Explore the possibility to compute a smaller num-
ber of formal concepts from which the nodes of a
decision tree is constructed.

– The problems of overfitting [Mitchel, 1997] in
data and uncomplete data, i.e. data having miss-
ing values for some attributes in some records.

– Incremental updating of induced decision trees
via incremental methods of building concept lat-
tices.
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We present a novel method for the construction of decision trees. The method utilises
concept lattices in that certain formal concepts of the concept lattice associated to input
data are used as nodes of the decision tree constructed from the data. The concept
lattice provides global information about natural clusters in the input data, which we
use for selection of splitting attributes. The usage of such global information is the main
novelty of our approach. Experimental evaluation indicates good performance of our
method. We describe the method, experimental results, and a comparison with standard
methods on benchmark datasets.

Keywords: decision trees; classification; machine learning; concept lattice; formal
concept analysis

1. Introduction

Decision trees represent the most commonly used method in data mining and machine

learning (Quinlan 1993, Dunham 2003, Tan et al. 2006). A decision tree is typically used

for a classification of objects into a given set of classes based on the objects’ attributes.

Many algorithms for the construction of decision trees are proposed in the literature, see

e.g. (Tan et al. 2006).

This paper presents a novel approach to decision tree construction, which is based on

formal concept analysis (FCA) of the input data. Our approach utilises concept lattices in

that certain formal concepts associated to input data are used as nodes of the decision tree

constructed from the input data. The concept lattice provides global information about

natural clusters, represented by formal concepts, in the input data. Using formal concepts

as nodes of decision trees is a straightforward idea because both formal concepts and

decision tree nodes represent collections of records (objects) in the input data defined by

having the same values for certain attributes. A challenge exists in how to select good

formal concepts for decision tree nodes. We attempt to consider a concept lattice (without

the least formal concept) as a collection of overlapping trees. The construction of a

decision tree is then reduced to the problem of selection of one of these trees.

FCA and concept lattices are utilised in several machine learning and decision tree

induction algorithms proposed in the literature. For instance, Carpineto and Romano

(1996) present GALOIS, a clustering method based on concept lattices, in which similarity
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between objects and clusters is defined as the number of common attributes shared by

objects. In (Mephu Nguifo and Njiwoua 2001), the authors use FCA in IGLUE, a method

which selects relevant categorical attributes and transforms them into continuous

numerical attributes which are then used to solve a decision problem by k-nearest

neighbour clustering. Another approach utilising FCA is described in Kuznetsov (2004)

which presents a model of learning from positive and negative examples. Fu et al. (2004)

provides a survey and theoretical and experimental comparison of several FCA-based

classification algorithms. Note that FCA-based approaches are commonly called lattice-

based or concept-based learning techniques in data mining (Fayyad et al. 1996, Pasquier

et al. 1999).

The paper is organised as follows. The next section contains preliminaries from

decision trees and formal concept analysis. In Section 3 we present our approach including

an algorithm for inducing decision trees. The algorithm is accompanied by an illustrative

example. An experimental evaluation of our method and a comparison to standard

methods on benchmark datasets is provided in Section 4. Section 5 presents conclusions

and outlines topics for future research.

2. Preliminaries

2.1 Decision trees

A decision tree can be considered as a tree representation of a function over attributes which

takes a finite number of values. The goal is to construct a tree that approximates a given

function, partially described by a table containing records in its rows, with a desired accuracy.

Every record consists of particular values of the function input values (attribute values) and

the corresponding output value (class label). For an object described by its attribute values,

the value assigned by the decision tree to those attribute values is considered the label of a

class to which the object belongs. A good decision tree is supposed to classify well both the

data described by the table records as well as ‘unseen’ data.

Each non-leaf node of a decision tree is labelled by an attribute, called a splitting

attribute for this node. Such a node represents a test, according to which records are split

into n classes which correspond to n possible outcomes of the test. In the basic setting, the

outcomes are represented by values of the splitting attribute. Leaf nodes of the tree

represent collections of records all of which, or the majority of which, have the same

function value (class label). For example, the table in Figure 1 (top) describes a partial

function f : A £ B £ C ! D. The decision trees in Figure 1 (bottom) represent two

functions, both of which are extensions of f.

A strategy commonly used in the existing algorithms for inducing decision trees from

data consists of constructing a decision tree in a top-down fashion, from the root node to

the leaves, by successively splitting existing nodes and creating new ones. For every node,

a splitting attribute is chosen to split the collection of records covered by the node into

smaller collections, which correspond to values of the splitting attribute. For every such

value, a new node is attached as a child to the node for which the splitting attribute has

been chosen. The process continues recursively until all the records corresponding to any

leaf node, or a prescribed majority of them, belong to the same class. A critical point in this

strategy is the selection of splitting attributes, for which many approaches were proposed.

These include the well-known approaches based on entropy measures, Gini index,

classification error, or other measures defined in terms of class distribution of the records

before and after splitting (see Quinlan 1996, Murthy 1998, Tan et al. 2006 for overviews).
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2.2 Formal concept analysis

FCA is a method for analysis of object-attribute data (Ganter and Wille 1999, Carpineto

and Romano 2004). Such data is usually described by a table with rows and columns

representing objects and attributes, respectively, and with table entries containing attribute

values, which the objects have. In the basic setting, FCA deals with binary attributes, i.e.

every attribute applies or does not apply to a particular object. Many-valued attributes,

such as nominal and ordinal attributes, are transformed to binary ones using so-called

conceptual scaling. FCA produces two kinds of output from a given dataset. The first

output is called a concept lattice. A concept lattice is a partially ordered collection of

particular clusters called formal concepts. The second output consists of a non-redundant

base of particular attribute dependencies called attribute implications.

We now summarise basic notions of FCA. An object-attribute data table can be

identified with a triplet kX; Y; Ilwhere X is a non-empty set of objects, Y is a non-empty set

of attributes, and I # X £ Y is an object-attribute relation. Objects and attributes

correspond to table rows and columns, respectively, and kx; yl [ I indicates that object x

has attribute y (table entry corresponding to row x and column y contains £ ; if kx; yl � I

the table entry contains blank symbol). In terms of FCA, kX; Y ; Il is called a formal

context. For every A # X and B # Y denote by A " a subset of Y and by B # a subset of X

defined as

A " ¼ {y [ Y j for each x [ A : kx; yl [ I}; B # ¼ {x [ X j for each y [ B : kx; yl [ I}:

That is, A " is the set of all attributes from Y shared by all objects from A (and similarly

for B #). A formal concept in kX; Y; Il is a pair kA;Bl of A # X and B # Y satisfying A " ¼ B

and B # ¼ A. That is, a formal concept consists of a set A (so-called extent) of objects which

are covered by the concept and a set B (so-called intent) of attributes which are covered by

the concept such that A is the set of all objects sharing all attributes from B and,

conversely, B is the collection of all attributes from Y shared by all objects from

A. Alternatively, formal concepts can be defined as maximal rectangles of kX; Y; Il which
are full of £ ’s: For A # X and B # Y , kA;Bl is a formal concept in kX; Y; Il iff A £ B # I

Figure 1. Two decision trees (bottom) representing functions which extend the partial function f
(top).
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and there is no A0 . A or B0 . B such that A0 £ B # I or A £ B0 # I. Formal concepts

represent clusters hidden in object-attribute data.

A set BðX; Y ; IÞ ¼ {kA;Bl jA " ¼ B;B # ¼ A} of all formal concepts in kX; Y; Il can be

equipped with a partial order # . The partial order models a subconcept–superconcept

hierarchy, e.g. dog # mammal, and is defined by

kA1;B1l # kA2;B2l iff A1 # A2ðiff B2 # B1Þ: ð1Þ

Note that " and # form a Galois connection (Ganter and Wille 1999) and that BðX; Y ; IÞ

is in fact a set of all fixpoints of " and #. BðX; Y ; IÞ equipped with # happens to be a

complete lattice, called the concept lattice of kX; Y ; Il. The basic structure of concept

lattices is described by the so-called basic theorem of concept lattices (Ganter and

Wille 1999).

Theorem 2.1. (1) The set BðX; Y ; IÞ equipped with # forms a complete lattice in which

infima and suprema are given by

^
j[J

kAj;Bjl ¼
\
j[J

Aj;
[
j[J

Bj

 !#"* +
;
_
j[J

kAj;Bjl ¼
[
j[J

Aj

 !"#
;
\
j[J

Bj

* +
:

(2) Moreover, an arbitrary complete lattice V ¼ kV;# l is isomorphic to BðX; Y ; IÞ

iff there are mappings g : X ! V , m : Y ! V such that

(i) g ðXÞ is
W
� dense inV ;mðYÞ is

V
� dense inV ;

(ii) gðxÞ # mðyÞ iff kx; yl [ I:

Recall that the cover relation on BðX; Y ; IÞ is defined as follows. A formal concept

kA1;B1l covers a formal concept kA2;B2l if kA2;B2l # kA1;B1l and there is no kA3;B3l
distinct from both kA1;B1l and kA2;B2l such that kA2;B2l # kA3;B3l # kA1;B1l.

For detailed information on formal concept analysis we refer to Carpineto and Romano

(2004) and Ganter and Wille (1999) where the reader can find theoretical foundations,

methods and algorithms, and applications in various areas.

3. Decision tree induction based on FCA

In this section, we describe our algorithm for the induction of decision trees. As mentioned

above, the algorithm utilises a concept lattice associated to input data, i.e. a partially

ordered set of formal concepts in the sense of FCA. In particular, we attempt to consider

the concept lattice (without the least formal concept) as a collection of overlapping trees

and to select one tree from this collection as the resulting decision tree.

Input data and its transformation. We consider input data with categorical attributes in

our paper. To derive a concept lattice from the input data,we need to transform the categorical

attributes to binary attributes because, in its basic setting, FCAworkswith binary attributes. A

transformationof input data,which consists in replacingnon-binary attributes intobinaryones

is called conceptual scaling in FCA (Ganter and Wille 1999). Note that in our case, we need

not transform the class label attribute, i.e. the attribute determining to which class the record

belongs, because we build the concept lattice over the input attributes only. Throughout this

section,weuse the input data fromTable1 (top) to illustrate themain issues involved.Thedata

table contains sample animals described by attributes body temperature, gives birth,
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four-legged, hibernates, and mammal, with the last attribute being the class label attribute.

After an obvious transformation (nominal scaling) of the input attributes, we obtain the data

depicted in Table 1 (bottom). A concept lattice which we use in our method is derived from

data which we obtain after such transformation.

Next, we describe our algorithm. Step 1 describes how we compute the (part of)

concept lattice of the input data. Step 2 describes the selection of a tree from the concept

lattice computed in Step 1. Step 3 describes how we build the decision tree from the tree

computed in Step 2.

Step 1. In this step, we compute a part of the concept lattice associated to the data

corresponding to input attributes. For this purpose, we use the well-known Lindig’s

algorithm (Lindig 2000), which we modify in two respects. The original Lindig’s

algorithm, in its top-down version, generates all formal concepts of a concept lattice

associated to input data and the cover relation. It starts with the largest formal concept and

recursively generates all formal concepts that are covered by largest formal concept, then

generates all formal concepts which are covered by those covered by the largest formal

concept, and so on until all formal concepts have been computed. Our modification of

Lindig’s algorithm consists of two steps.

First, we do not generate lower neighbors of formal concept whose extent contains

objects that have all the same class label. That is, if c is the class label attribute, we do not

generate lower neighbors of formal concepts kA;Bl such that for every x1; x2 [ A, the

value of c on x1 equals the value of c on x2.

Second, contrary to Lindig’s algorithm which computes all formal concepts and the

cover relation, our modification computes a relation on the set of the computed formal

concepts which is in general larger than the cover relation. In the original Lindig’s algorithm,

procedure NEXTNEIGHBOR generates set ðNextÞNeighbors ofkA;Bl defined by

ðNextÞNeighbors of kA;Bl ¼ {kC;Dl jD ¼ ðB < {y}Þ#";

y [ Y 2 B such that ðB < {z}Þ#" ¼ D for all z [ D 2 B}:

It can be shown that ðNextÞNeighbors of kA;Bl is just the set of all formal concepts

covered by kA;Bl. In our modification, the procedure NEXTNEIGHBOR generates the set

Table 1. Input data table (top) and corresponding data table for FCA (bottom).

Name body temp. gives birth four-legged hibernates mammal

cat warm yes yes no yes
bat warm yes no yes yes
salamander cold no yes yes no
eagle warm no no no no
guppy cold yes no no no

Name bt cold bt warm gb no gb yes fl no fl yes hb no hb yes mammal

cat 0 1 0 1 0 1 1 0 yes
bat 0 1 0 1 1 0 0 1 yes
salamander 1 0 1 0 0 1 0 1 no
eagle 0 1 1 0 1 0 1 0 no
guppy 1 0 0 1 1 0 1 0 no
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ðOurÞNeighbors of kA;Bl defined by

ðOurÞNeighbors of kA;Bl ¼ {kC;Dl jD ¼ ðB < {y}Þ#"; y [ Y 2 B}:

Clearly, ðOurÞNeighbors of kA;Bl is (in general) larger than ðNextÞNeighbors of kA;Bl
because it may contain formal concepts which result by adding a single attribute y [
Y 2 B but are not covered by kA;Bl.

The reason for our modification is the following. As mentioned above, formal concepts

correspond to the nodes of a decision tree in our approach. Let a formal concept kA;Bl
correspond to a node n in a decision tree. Let y [ Y 2 B be a binary attribute corresponding

to value vy of a categorical attribute ay. That is, ay has value vy for object x in the original

input data if and only if y has value 1 for x in the transformed data with binary attributes. If ay

is the splitting attribute for node n, then kðB < {y}Þ#; ðB < {y}Þ#"l is the formal concept

corresponding to node ny which is connected to n via an edge representing the test ‘is the

value of ay equal to vy?’ In order to keep the possibility of having nodes n and ny in

the resulting decision tree, we need to generate both kA;Bl and kðB < {y}Þ#; ðB < {y}Þ#"l
even if kðB < {y}Þ#; ðB < {y}Þ#"l is not covered by kA;Bl in the concept lattice. This is why
ðOurÞNeighbors of kA;Bl is in general different from ðNextÞNeighbors of kA;Bl.

Algorithm 1 contains pseudocode of the modified Lindig’s algorithm. NEXTNEIGHBOR

is the main procedure. Formal concepts computed by the algorithm are stored in the

variable F . Variable kA;Bl* stores the lower neighbours of kA;Bl. The procedure DECIDED

prevents computing lower neighbours of formal concepts whose objects have the same

class label. Procedure NEIGHBORS computes the set ðOurÞNeighbors of kA;Bl. The

algorithm also computes for every formal concept kA;Bl the number LkA;Bl explained and

utilised in Step 2 below. The part of the concept lattice built from the data table in Table 1

(bottom) computed by Algorithm 1 is shown in Figure 2. Note that the new lower

neighbour relationship is displayed by dashed lines. The solid lines indicate a tree to be

selected from the part of the concept lattice using a procedure described in Step 2.

Step 2. In this step, we select a tree of formal concepts from the part of a concept lattice

computed in Step 1. For this purpose, we compute for every formal concept kA;Bl computed

in Step 1 the number LkA;Bl of all formal concepts which can be reached from kA;Bl by
following certain labelled paths from kA;Bl downward. Asmentioned in Step 1, the numbers

LkA;Bl are computed in Algorithm 1. The paths consist of labelled edges corresponding to

the lower neighbour relation described by ðOurÞNeighbors of . . . . In particular, an edge

Figure 2. Part of the concept lattice and tree of concepts (solid lines) of data table in Table 1.
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with label y goes from kC1;D1l to kC2;D2l if D2 ¼ ðD1 < {y}Þ#", i.e. if kC2;D2l belongs
to ðOurÞNeighbors of kC1;D1l due to attribute y. Therefore, LkA;Bl is the number of

formal concepts which can be reached from kA;Bl via the lower neighbour relation in a

way that counts a lower neighbour kC2;D2l of kC1;D1l multiple times. Namely, kC2;D2l
is counted k times where k is the number of attributes due to which kC2;D2l [
ðOurÞNeighbors of kC1;D1l, i.e. k ¼ j{y;D2 ¼ ðD1 < {y}Þ#"}j. The multiple counting of

formal concepts is ensured by the labelling used in kkC;Dl; yl in Algorithm 1.

Furthermore, for every formal concept kA;Bl we define collections N a
kA;Bl of formal

concepts that are candidates to become the children of kA;Bl in the selected tree. a denotes

a categorical attribute from the original input data. Note that every binary attribute yv from

the data obtained by transformation from the original input data corresponds to some value

v of some categorical attribute a. N a
kA;Bl is the collection of lower neighbour concepts of

kA;Bl defined as follows:

(a) for every value v of the categorical attribute a and the corresponding binary

attribute yv, if the formal concept kC;Dl from ðOurÞNeighbors ofkA;Bl which results by

adding attribute yv belongs to the part of the concept lattice computed in Step 1, then

kC;Dl belongs to N a
kA;Bl;

(b) if some formal concept kC;Dl from (a) does not belong to the part of the concept

lattice computed in Step 1, N a
kA;Bl contains the least formal concept kY #; Yl (in this case,

the least formal concept ‘replaces’’kC;Dl in N a
kA;Bl), and we put LkY #;Yl ¼ 1.
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Next, we select a tree from the part of the concept lattice computed in Step 1 by

iteratively going from the largest formal concept to the minimal ones. The selection is

based on the numbers LkA;Bl defined above.

(1) The root node of the tree is the largest formal concept kX;X "l.
(2) This step corresponds to selection of the splitting attribute. For every formal

concept kA;Bl in the tree which we construct we select from among all the

categorical attributes a categorical attribute a for which

min LkC;Dl j kC;Dl [ N a
kA;Bl

n o
attains the minimum value, i.e. we select a for which N a

kA;Bl contains a formal

concept kC;Dl with the smallest number LkC;Dl. The idea behind this rule is that a

small value of LkC;Dl indicates, in the optimistic scenario, a small number of

decision steps necessary to classify objects from A provided we start with a

decision based on a, because there is a short classification path in the decision tree

going from the node corresponding to kA;Bl. In case of a tie, i.e. if LkC1;D1l ¼

LkC2;D2l for some a1 – a2 with kC1;D1l [ N a1
kA;Bl and kC2;D2l [ N a2

kA;Bl, we select

ai for which the extent Ci is the largest. If there is still a tie, we break it arbitrarily.

The resulting categorical attribute a is later used as the splitting attribute for the

node of the decision tree that corresponds to formal concept kA;Bl.
(3) For every formal concept kA;Bl in the tree and the categorical attribute a selected

for kA;Bl in (2) we connect kA;Bl to each formal concept kC;Dl fromN a
kA;Bl by an

edge labelled by a binary attribute y for which D ¼ ðB < {y}Þ#".

Algorithm 2 contains a pseudocode of the algorithm that selects a tree from the part of

the concept lattice. SELECTTREE is the main procedure. Formal concepts of the selected

tree are stored in variable G. Edges between nodes are represented by variables kA;Blþ.
The procedure CHILDREN calculates N a

c .

To illustrate the previous description, consider the part of the concept lattice presented

in Figure 2. Formal concepts of this part are represented by circles, which contain the

numbers from 1 to 20 assigned to the formal concepts. For every formal concept kA;Bl, the
number LkA;Bl is attached to the right of the circle representing kA;Bl. Algorithm 2 selects a

tree of formal concepts as follows. The root node of the tree is the formal concept No. 1.

Formal concepts No. 2 and 3 are then selected as the children of the root since they are the

elements of the set N body temp:
1 of lower nodes corresponding to the attribute body temp:

which satisfies the conditions described in (2) above. Note that in this case, we could have

chosen N gives birth
1 instead of N body temp:

1 , since both the formal concept No. 2 from

N body temp:
1 and No. 4 from N gives birth

1 have the same minimal number L2 and L4 and both

contain the same number of objects in their extents. The edges of the selected tree are

labelled by binary attributes as described in (3) above. Similarly, the children of the formal

concept No. 3 are the formal concepts No. 11 and No. 19. This ends the tree selection

because the formal concepts No. 4, No. 11, and No. 19 have no lower neighbours.

The resulting tree is depicted in Figure 2 by the solid lines.

Step 3. In this step, the tree obtained in Step 2 is transformed into a decision tree. This

step is straightforward. We take the tree obtained in Step 2 and re-label its nodes and

edges. An inner node is labelled by the categorical attribute selected in (2) of Step 2 for this

node. For example, when constructing the decision tree from the tree selected in Figure 2,

the node corresponding to the formal concept No. 3 is labelled by gives birth. An edge

going from a node is labelled by the value of a categorical attribute corresponding to the
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binary attribute used as a label of this edge in (3) of Step 3. For example, the edge labelled

by gb no in Figure 2 is labelled by no in the resulting decision tree.

The last problem is the labelling of leaf nodes. Consider a leaf node of a tree obtained

in Step 2 corresponding to formal concept kA;Bl. If all objects from A have the same class

label c, or if c is the class label of a majority of objects from A, the corresponding node of

the decision tree is labelled by c. If a leaf node n of a tree obtained in Step 2 corresponds to

the least formal concept kY #; Yl, cf. (b) of Step 2, the corresponding node of the decision

tree is labelled by the label which would have been assigned to a leaf node corresponding

to the formal concept of the parent node of n.

The resulting decision tree of the input data in Table 1 (top) which result by the

transformation of the tree of formal concepts displayed in Figure 2, as described in Step 3,

is depicted in Figure 3.

4. Experimental evaluation

In this section, we describe experiments with our algorithm and its comparison to

reference algorithms for decision tree induction. Namely, we compared our algorithm with

decision tree algorithms ID3 and C4.5 (entropy and information gain based), an instance

based learning method (IB1), and a multilayer perceptron (MLP) neural network trained

by back propagation (Mitchell (1997)). We implemented our method in the C language.

The other algorithms were borrowed and run from Weka2 (Waikato Environment

for Knowledge Analysis; Witten and Frank 2005), a software package that contains

implementations of machine learning and data mining algorithms in Java. Default Weka’s
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parameters were used for the other algorithms and decision tree pruning was turned off

where available.

The experiments were done on selected public real-world datasets from UCI Machine

Learning Repository (Newman et al. 1998). The selected datasets are from different

areas (medicine, biology, zoology, politics, games). All the datasets contain only

categorical attributes with one class label attribute. Due to computational time demands,

the datasets were cleared of records containing missing values, of attributes with large

numbers of attribute values, and of randomly selected records, to allow for repeated

executions of the methods. Let us note in this context that our method is computationally

more demanding than the other methods, because of the need to compute a possibly large

number of formal concepts. Basic characteristics of the datasets are depicted in Table 2.

For datasets with already defined training and testing set (spect and monks-problems) the

upper numbers in the table cells relate to the training set and the lower numbers to the

testing set. For datasets without training and testing sets, the experiments were done

using the 10-fold stratified cross-validation test. The results of averaging 10 execution

runs on each dataset with randomly ordered records are depicted in Table 3. The table

shows the average percentage rates of correct classifications for both training (upper

number in the table cell) and testing (lower number) datasets for each algorithm and

Table 2. Characteristics of datasets used in experiments.

Dataset
training

testing

 !
No. of attributes No. of records Class distribution

breast-cancer 6 138 100/38
kr-vs-kp 14 319 168/151
mushroom 10 282 187/95
tic-tac-toe 27 239 156/83
vote 8 116 54/62
zoo 9 101 41/20/5/13/4/8/10
spect 22 80 40/10

187 15/172
monks-problems-1 17 124 62/62

432 216/216
monks-problems-2 17 169 105/64

432 290/142
monks-problems-3 17 122 62/60

432 204/228

Figure 3. The decision tree of the input data in Table 1.

R. Belohlavek et al.464

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
O
u
t
r
a
t
a
,
 
J
a
n
]
 
A
t
:
 
2
1
:
1
3
 
1
4
 
A
p
r
i
l
 
2
0
0
9



dataset being compared, plus the average over all datasets. Boldface numbers denote the

best results.

We can see that our method, which we call FCA based, outperforms C4.5 and IB1 and

gains almost identical results to ID3 and MLP on the training sets of all datasets. On the

testing sets this is also the case with the exception of tic-tac-toe, spect, and the monks-

problems, on which MLP outperforms all other methods.

5. Conclusion and topics of future research

We presented a novel method of decision tree induction based on formal concept analysis.

In this method, the decision tree is constructed using a selection of nodes and edges from a

modified line diagram of a concept lattice associated to input data. A heuristic based on a

global information provided by the concept lattice, namely, the numbers of particularly

defined lower formal concepts, is used to select splitting attributes. An experimental

evaluation suggests good performance. Our method outperformed the instance-based

method IB1 and is comparable to entropy-based methods ID3 and C4.5 and neural network

method MLP.

Future research should focus on the following topics:

– The main novelty in our approach consists in using global information regarding

natural clusters in input data that are represented by the concept lattice extracted from

the data. Further research, both experimental and theoretical is necessary to better

utilise this global information with respect to the design of good decision trees.

– Explore the possibility to compute a smaller number of formal concepts from which

the nodes of a decision tree are constructed.

Table 3. Classification accuracy for datasets from Table 2.

Training %
Testing % FCA based ID3 C4.5 IB1 MLP

breast-cancer 88.631 88.630 86.328 84.887 88.550
79.560 75.945 79.181 71.901 79.939

kr-vs-kp 84.395 84.674 82.124 79.132 84.426
74.656 74.503 72.780 68.886 74.880

mushroom 96.268 97.517 97.163 96.556 97.234
96.284 96.602 96.671 95.214 95.992

tic-tac-toe 98.991 100.000 95.165 100.000 100.000
85.197 80.519 78.539 83.262 97.827

vote 97.528 97.528 94.883 97.020 95.545
90.507 89.280 86.500 91.303 88.106

zoo 98.019 98.019 96.039 97.799 97.678
96.036 95.036 92.690 94.463 95.536

spect 92.250 92.250 89.250 88.250 91.500
55.187 54.866 59.679 59.251 60.481

monks-problems-1 100.000 100.000 96.532 100.000 99.193
85.648 79.259 76.828 74.722 95.833

monks-problems-2 100.000 99.763 92.958 100.000 100.000
63.518 59.976 62.314 68.055 99.814

monks-problems-3 100.000 100.000 98.360 100.000 99.016
90.694 91.041 92.870 78.634 92.870

average 95.608 95.838 92.880 94.364 95.314
81.729 79.703 79.805 78.569 88.345

Best performance is in bold.
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– Explore the problems of overfitting in data and incomplete data, i.e. data having

missing values for some attributes in some records. These problems were not

considered in this paper.

– Explore the possibility of incremental update of the induced decision trees via

incremental methods of constructing concept lattices.

– Explore computational efficiency of our method. Namely, the use of the global

information used for selecting the splitting attributes requires to compute a possibly

large number of formal concepts.

Acknowledgements

Supported by grant No. 1ET101370417 of GA AV �CR, by institutional support, research plan MSM
6198959214, and by the Bilateral Scientific Cooperation Flanders–Czech Republic, Special
Research Fund of Ghent University (Project No. 011S01106).

Notes

1. The paper is an extended version of a conference paper presented at CLA 2007, Montpellier,
France, 24–26 October 2007.

2. Weka is a free software available at http://www.cs.waikato.ac.nz/ml/weka/

Notes on contributors

Radim Belohlavek is a Professor of Systems Science at Binghamton

University-State University of New York. His academic interests are in the

areas of uncertainty and information, fuzzy logic and fuzzy sets, data and

knowledge engineering, data analysis, formal concept analysis, systems

theory. Radim is a Senior Member of IEEE and a member of ACM and

AMS. Before joining Binghamton University, he was a Professor and a

Head of Department of Computer Science, Palacky University, Olomouc

(Czech Republic).

Bernard De Baets leads KERMIT, the research unit Knowledge-Based

Systems. He serves on the Editorial Boards of various international

journals, in particular as co-editor-in-chief of Fuzzy Sets and Systems.

Bernard coordinates EUROFUSE, the EURO Working Group on Fuzzy

Sets, and is member of the Board of Directors of EUSFLAT, the Technical

Committee on Artificial Intelligence and Expert Systems of IASTED, and

of the Administrative Board of the Belgian OR Society.

Jan Outrata is an Assistant Professor at the Department of Computer

Science, Palacky University in Olomouc, Czech Republic. He has obtained

a PhD in Mathematics from Palacky University in 2006. His research

interests include fuzzy logic and fuzzy sets, formal concept analysis and

relational data analysis, clustering and knowledge engineering. He has

authored over 20 papers in conference proceedings and journals including

Journal of Computer and System Sciences, International Journal of General

Systems, and International Journal of Foundations of Computer Science.

R. Belohlavek et al.466

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
O
u
t
r
a
t
a
,
 
J
a
n
]
 
A
t
:
 
2
1
:
1
3
 
1
4
 
A
p
r
i
l
 
2
0
0
9



Vilem Vychodil is an Assistant Professor at SUNY Binghamton. He

obtained a PhD in Mathematics in 2004 from Palacky University, Olomouc.

His professional interests include fuzzy logic, fuzzy relational systems,

relational data analysis, uncertainty in data, mathematical logic, and logical

foundations of knowledge engineering. He has authored one monograph

(Springer) and over 70 papers in conference proceedings and journals

including Archives for Mathematical Logic, Mathematical Logic Quarterly,

Logic Journal of IGPL, Journal of Experimental and Theoretical Artificial

Intelligence, Fuzzy Sets and Systems, Journal of Multiple-Valued Logic and

Soft Computing. Vilem Vychodil is a member of the ACM and IEEE.

References

Carpineto, C. and Romano, G., 1996. A lattice conceptual clustering system and its application to
browsing retrieval. Machine learning, 24, 95–122.

Carpineto, C. and Romano, G., 2004. Concept data analysis. Theory and applications. New York:
Wiley.

Dunham, M.H., 2003. Data mining. Introductory and advanced topics. Upper Saddle River, NJ:
Prentice Hall.

Fayyad, U.M., Piatetsky-Shapiro, G. and Smyth, P., 1996. From Data mining to knowledge
discovery: an overview. In: U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy,
eds. Advances in knowledge discovery and data mining. Melno Park, CA: AAAI Press, 3–33.

Fu, H., et al., 2004. A comparative study of FCA-based supervised classification algorithms. In:
P. Eklund, ed. ICFCA 2004. Lecture notes in artificial intelligence 2961, Berlin/Heidelberg:
Springer-Verlag, 313–320.

Ganter, B. and Wille, R., 1999. Formal concept analysis. Mathematical foundations. Berlin:
Springer.

Kuznetsov, S.O., 2004. Machine learning and formal concept analysis. In: P. Eklund, ed. ICFCA
2004. Lecture notes in artificial intelligence 2961, Berlin/Heidelberg: Springer-Verlag,
287–312.

Lindig, C., 2000. Fast concept analysis. In: G. Stumme, ed. Working with conceptual structures –
contributions to ICCS 2000. Aachen: Shaker Verlag, 152–161.

Mephu Nguifo, E. and Njiwoua, P., 2001. IGLUE: a lattice-based constructive induction system.
Intelligent data analysis, 5 (1), 73–91.

Mitchell, T.M., 1997. Machine learning. McGraw-Hill, New York, 1997.
Murthy, S.K., 1998. Automatic construction of decision trees from data. Data mining and knowledge

discovery, 2, 345–389.
Newman, D.J., et al., 1998. UCI repository of machine learning databases. Irvine, CA: University of

California, Department of Information and Computer Science. Available from: http://www.ics.uci.
edu/,mlearn/MLRepository.html.

Pasquier, N., et al., 1999. Efficient mining of association rules using closed itemset lattices.
Information systems, 24 (1), 25–46.

Quinlan, J.R., 1993. C4.5: programs for machine learning. San Francisco, CA: Morgan Kaufmann.
Quinlan, J.R., 1996. Learning decision tree classifiers. ACM computing surveys, 28 (1), 71–72.
Tan, P.N., Steinbach, M. and Kumar, V., 2006. Introduction to data mining. Boston, MA: Addison

Wesley.
Witten, I.H. and Frank, E., 2005. Data mining: practical machine learning tools and techniques.

2nd ed. San Francisco, CA: Morgan Kaufmann.

International Journal of General Systems 467

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
O
u
t
r
a
t
a
,
 
J
a
n
]
 
A
t
:
 
2
1
:
1
3
 
1
4
 
A
p
r
i
l
 
2
0
0
9





Preprocessing input data for machine learning
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Abstract. The paper presents an utilization of formal concept analy-
sis in input data preprocessing for machine learning. Two preprocessing
methods are presented. The first one consists in extending the set of
attributes describing objects in input data table by new attributes and
the second one consists in replacing the attributes by new attributes. In
both methods the new attributes are defined by certain formal concepts
computed from input data table. Selected formal concepts are so-called
factor concepts obtained by boolean factor analysis, recently described
by FCA. The ML method used to demonstrate the ideas is decision tree
induction. The experimental evaluation and comparison of performance
of decision trees induced from original and preprocessed input data is per-
formed with standard decision tree induction algorithms ID3 and C4.5
on several benchmark datasets.

1 Introduction

Formal concept analysis (FCA) if ofted proposed to be used as a method for data
preprocessing before the data is processed by another data mining or machine
learning method [15, 8]. The results produced by these methods indeed depend
on the structure of input data. In case of relational data described by objects
and their attributes (object-attribute data) the structure of data is defined by
the attributes and, more particularly, by dependencies between attributes. Data
preprocessing in general then usually consits in transformation of the set of
attributes to another set of attributes in order to enable the particular data
mining or machine learning method to achieve better results [13, 14].

The paper presents a data preprocessing method utilizing formal concept
analysis in a way that certain formal concepts are used to create new attributes
describing the original objects. Selected formal concepts are so-called factor con-
cepts obtained by boolean factor analysis, recently described by means of FCA
in [1]. First, attributes defined by the concepts are added to the original set of
attributes, extending the dimensionality of data. New attributes are supposed
to aid the data mining or machine learning method. Second, the original at-
tributes are replaced by the new attributes which usually means the reduction

⋆ Supported by grant no. P202/10/P360 of the Czech Science Foundation
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of dimensionality of data since the number of factor concepts is usually smaller
than the number of original attributes. Here, a main question arises, whether the
reduced number of new attributes can better describe the input objects for the
subsequent data mining or machine learning method to produce better results.

There have been several attempts to transform the attribute space in order
to improve the results of data mining and machine learning methods. From
the variety of these methods we focus on decision tree induction. The most
relevant to our paper is are methods known as constructive induction or feature
construction [7], where new compound attributes are constructed from original
attributes as conjunctions and/or disjunctions of the attributes [11] or arithmetic
operations [12] or the new attributes are expressed inm-of-n form [9]. An oblique
decision tree [10] is also connected to our approach in a sense that multiple
attributes are used in the splitting condition (see section 3.1) instead of single
attribute at a time. Typically linear combinations of attributes are looked for,
e.g. [2]. Learning the condition is, however, computationally challenging.

Interestingly, we have not found any paper solely on this subject utilizing
formal concept analysis. There have been several FCA-based approaches on con-
struction of a whole learning model, commonly called lattice-based or concept-
based machine learning approaches, e.g. [6], see [3] for a survey and comparison,
but the usage of FCA to transform the attributes and create new attributes to
aid another machine learning method is discussed very marginally or not at all.
The present paper is thus a move to fill the gap.

The remainder of the paper is organized as follows. The next section contains
preliminaries from FCA and introduction to boolean factor analysis, including
the necessary tranformations between attribute and factor spaces. The main
part of the paper is section 3 demonstrating the above sketched ideas on selected
machine mearning method – decision tree induction. An experimental evaluation
on selected data mining and machine learning benchmark datasets is provided
in section 4. Finally, section 5 draws the conclusion.

2 Preliminaries

2.1 Formal Concept Analysis

In this section we summarize basic notions of FCA. For further information we
refer to [4]. An object-attribute data table is identified with a triplet 〈X,Y, I〉
where X is a non-empty set of objects, Y is a non-empty set of attributes, and
I ⊆ X × Y is an object-attribute relation. Objects and attributes correspond to
table rows and columns, respectively, and 〈x, y〉 ∈ I indicates that object x has
attribute y (table entry corresponding to row x and column y contains × or 1;
otherwise it contains blank symbol or 0). In terms of FCA, 〈X,Y, I〉 is called a
formal context. For every A ⊆ X and B ⊆ Y denote by A↑ a subset of Y and
by B↓ a subset of X defined as

A↑ = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I},
B↓ = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}.
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That is, A↑ is the set of all attributes from Y shared by all objects from A (and
similarly for B↓). A formal concept in 〈X,Y, I〉 is a pair 〈A,B〉 of A ⊆ X and
B ⊆ Y satisfying A↑ = B and B↓ = A. That is, a formal concept consists of a
set A (so-called extent) of objects which are covered by the concept and a set
B (so-called intent) of attributes which are covered by the concept such that A
is the set of all objects sharing all attributes from B and, conversely, B is the
collection of all attributes from Y shared by all objects from A. Formal concepts
represent clusters hidden in object-attribute data.

A set B(X,Y, I) = {〈A,B〉 |A↑ = B,B↓ = A} of all formal concepts in
〈X,Y, I〉 can be equipped with a partial order ≤. The partial order models a
subconcept-superconcept hierarchy, e.g. dog ≤ mammal, and is defined by

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1).

B(X,Y, I) equipped with ≤ happens to be a complete lattice, called the concept
lattice of 〈X,Y, I〉. The basic structure of concept lattices is described by the
so-called basic theorem of concept lattices, see [4].

2.2 Boolean Factor Analysis

Boolean factor analysis is a matrix decomposition method which provides a
representation of an object-attribute data matrix by a product of two different
matrices, one describing objects by new attributes or factors, and the other
describing factors by the original attributes [5]. Stated as the problem, the aim
is to decompose an n × m binary matrix I into a boolean product A ◦ B of an
n× k binary matrix A and a k×m binary matrix B with k as small as possible.
Thus, instead of m original attributes, one aims to find k new attributes, called
factors.

Recall that a binary (or boolean) matrix is a matrix whose entries are 0 or
1. A boolean matrix product A ◦ B of binary matrices A and B is defined by

(A ◦ B)ij =

k∨

l=1

Ail · Blj ,

where
∨

denotes maximum and · is the usual product. The interperetations of
matrices A and B is: Ail = 1 means that factor l applies to object i and Blj = 1
means that attribute j is one of the manifestations of factor l. Then A ◦B says:
“object i has attribute j if and only if there is a factor l such that l applies to i
and j is one of the manifestations of l”. As an example,



1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1


 =




1 0 0 1
1 0 1 0
1 1 0 0
0 0 1 0


 ◦




1 1 0 0 0
0 0 1 1 0
1 0 0 0 1
0 1 0 0 0


.

The (solution to the) problem of decomposition binary matrices was recently
described by means of formal concept analysis [1]. The description lies in an
observation that matrices A and B can be constructed from a set F of formal
concepts of I. In particular, if B(X,Y, I) is the concept lattice associated to I,



190 Jan Outrata

with X = {1, . . . , n} and Y = {1, . . . ,m}, and
F = {〈A1, B1〉, . . . , 〈Ak, Bk〉} ⊆ B(X,Y, I),

then for the n × k and k × m matrices AF and BF defined in such a way that
the l-th column (AF ) l of AF consists of the characteristic vector of Al and the
l-th row (BF )l of BF consists of the characteristic vector of Bl the following
universality theorem holds:

Theorem 1. For every I there is F ⊆ B(X,Y, I) such that I = AF ◦ BF .

Moreover, decompositions using formal concepts as factors are optimal in
that they yield the least number of factors possible:

Theorem 2. Let I = A◦B for n×k and k×m binary matrices A and B. Then
there exists a set F ⊆ B(X,Y, I) of formal concepts of I with

|F| ≤ k

such that for the n × |F | and |F | × m binary matrices AF and BF we have

I = AF ◦ BF .

Formal concepts F in the above theorems are called factor concepts. Each
factor concept determines a factor. For the constructive proof of the last theorem,
examples and further results, we refer to [1].

2.3 Transformations between attribute and factor spaces

For every object i we can consider its representations in the m-dimensional
Boolean space {0, 1}m of original attributes and in the k-dimensional Boolean
space {0, 1}k of factors. In the space of attributes, the vector representing object
i is the i-th row of the input data matrix I, and in the space of factors, the
vector representing i is the i-th row of the matrix A.

Natural transformations between the space of attributes and the space of
factors is described by the mappings g : {0, 1}m → {0, 1}k and h : {0, 1}k →
{0, 1}m defined for P ∈ {0, 1}m and Q ∈ {0, 1}k by

(g(P ))l =

m∧

j=1

(Blj → Pj), (1)

(h(Q))j =

k∨

l=1

(Ql · Blj), (2)

for 1 ≤ l ≤ k and 1 ≤ j ≤ m. Here, → denotes the truth function of classical
implication (1 → 0 = 0, otherwise 1), · denotes the usual product, and

∧
and

∨

denote minimum and maximum, respectively. (1) says that the l-th component
of g(P ) ∈ {0, 1}k is 1 if and only if for every attribute j, Pj = 1 for all positions
j for which Blj = 1, i.e. the l-th row of B is included in P . (2) says that the j-th
component of h(Q) ∈ {0, 1}m is 1 if and only if there is factor l such that Ql = 1
and Blj = 1, i.e. attribute j is a manifestation of at least one factor from Q.

For results showing properties and describing the geometry behind the map-
pings g and h, see [1].



Preprocessing input data for machine learning by FCA 191

3 Boolean Factor Analysis and Decision Trees

The machine learning method which we use in this paper to demonstrate the
ideas presented in section 1 is decision tree induction.

3.1 Decision Trees

Decision trees represent the most commonly used method in data mining and
machine learning [13, 14]. A decision tree can be considered as a tree represen-
tation of a function over attributes which takes a finite number of values called
class labels. The function is partially defined by a set of vectors (objects) of
attribute values and the assigned class label, usually depicted by a table. An
example function is depicted in Fig. 1. The goal is to construct a tree that ap-
proximates the function with a desired accuracy. This is called a decision tree
induction. An induced decision tree is typically used for classification of objects
into classes, based on the objects’ attribute values. A good decision tree is sup-
posed to classify well both objects described by the input data table as well as
“unseen” objects.

Each non-leaf tree node of a decision tree is labeled by an attribute, called a
splitting attribute for this node. Such a node represents a test, according to which
objects covered by the node are split into v subcollections which correspond to v
possible outcomes of the test. In the basic setting, the outcomes are represented
by values of the splitting attribute. Leaf nodes of the tree represent collections
of objects all of which, or the majority of which, have the same class label. An
example of a decision tree is depicted in Fig. 4.

Many algorithms for the construction of decision trees were proposed in the
literature, see e.g. [14]. A strategy commonly used consists of constructing a
decision tree recursively in a top-down fashion, from the root node to the leaves,
by successively splitting existing nodes into child nodes based on the splitting
attribute. A critical point in this strategy is the selection of splitting attributes in
nodes, for which many approaches were proposed. These include the well-known
approaches based on entropy measures, Gini index, classification error, or other
measures defined in terms of class distribution of the objects before and after
splitting, see [14] for overviews.

Remark 1. In machine learning, and in decision trees at particular, the input
data attributes are very often categorical attributes. To utilize FCA with the
input data, we need to transform the categorical attributes to binary attributes
because, in its basic setting, FCA works with binary attributes. A transforma-
tion of input data which consists in replacing non-binary attributes into binary
ones is called conceptual scaling in FCA [4]. Note that we need not transform
the class attribute, i.e. the attribute determining to which class the object be-
longs, because we transform the input attributes only in our data preprocessing
method.

Throughout this paper, we use input data from Fig. 1 (top) to illustrate
the data preprocessing. The data table contains sample animals described by
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attributes body temperature, gives birth, fourlegged, hibernates, and mammal,
with the last attribute being the class. After an obvious transformation (nominal
scaling) of the input attributes, we obtain the data depicted in Fig. 1 (bottom).
Boolean factor analysis which we use in our method is applied on data which
we obtain after such transformation. For illustration, the decision tree induced
from the data is depicted in Fig. 4 (left).

Name body temp. gives birth fourlegged hibernates mammal

cat warm yes yes no yes
bat warm yes no yes yes

salamander cold no yes yes no
eagle warm no no no no
guppy cold yes no no no

Name bt cold bt warm gb no gb yes fl no fl yes hb no hb yes mammal

cat 0 1 0 1 0 1 1 0 yes
bat 0 1 0 1 1 0 0 1 yes

salamander 1 0 1 0 0 1 0 1 no
eagle 0 1 1 0 1 0 1 0 no
guppy 1 0 0 1 1 0 1 0 no

Fig. 1. Input data table (top) and corresponding data table for FCA (bottom)

3.2 Extending the collection of attributes

The first approach proposed in our data preprocessing method is the extension
of the collection of attributes by new attributes which are created using boolean
factor analysis. In praticular, the new attributes are represented by factors ob-
tained from the decomposition of input data table.

Let I ⊆ X × Y be input data table describing objects X = {x1, . . . , xn} by
binary attributes Y = {y1, . . . , ym}. Considering I as a n × m binary matrix,
we find a decomposition I = A ◦ B of I into the n × k matrix A describing
objects by factors F = {f1, . . . , fk} and k × m matrix B explaining factors F
by attributes. The decomposition of example data table in Fig. 1 is depicted in
Fig. 2. The new collection of attributes Y ′ is then defined to be Y ′ = Y ∪ F
and the extended data table I ′ ⊆ X × Y ′ is defined by I ′ ∩ (X × Y ) = I and
I ′ ∩ (X ×F ) = A. Hence the new collection of attributes is the union of original
attributes and factors and the extended data table is the apposition of original
data table and the table representing the matrix describing objects by factors.
Fig. 3 depicts the extended data table.

The key part is the decomposition of the original data table. In the decompo-
sition of binary matrices the aim is to find the decomposition with the number
of factors as small as possible. However, since the factors, as new attributes, are
used in the process of decision tree induction in our application, we are looking
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Fig. 2. Boolean matrix decomposition of input data in Fig. 1

Name bc bw gn gy fn fy hn hy f1 f2 f3 f4 f5 f6 mammal

cat 0 1 0 1 0 1 1 0 0 0 1 0 0 1 yes
bat 0 1 0 1 1 0 0 1 0 0 1 0 1 0 yes

salamander 1 0 1 0 0 1 0 1 0 0 0 1 0 0 no
eagle 0 1 1 0 1 0 1 0 1 0 0 0 0 0 no
guppy 1 0 0 1 1 0 1 0 0 1 0 0 0 0 no

Fig. 3. Extended data table for input data in Fig. 1

also for the factors which have a good “decision ability”, i.e. that the factors are
good candidates to be splitting attributes. To compute the decomposition we
can use the algorithms presented in [1], with modified criterion of optimality of
computed factors. In short, the algorithms apply a greedy heuristic approach to
search in the space of all formal concepts for the factor concepts which cover the
largest area of still uncovered 1s in the input data table. The criterion function
of optimality of a factor is thus the “cover ability” of the corresponding factor
concept, in particular the number of uncovered 1s in the input data table which
are covered by the concept, see [1]. The function value is, for the purposes of
this paper, translated to the interval [0, 1] (with the value of 1 meaning the most
optimal) by dividing the value by the total number of still uncovered 1s in the
data table.

The new criterion function c : 2X×Y → [0, 1] of optimality of factor concept
〈A,B〉 is:

c(〈A,B〉) = w · cA(〈A,B〉) + (1 − w) · cB(〈A,B〉), (3)

where cA(〈A,B〉) ∈ [0, 1] is the original criterion function of the “cover ability”
of factor concept 〈A,B〉, cB(〈A,B〉) ∈ [0, 1] is a criterion function of the “deci-
sion ability” of factor concept 〈A,B〉 and w is a weight of preference among the
functions cA and cB . Let us focus on the function cB . The function measures the
goodness of the factor, defined by the factor concept, as splitting attribute. As
was mentioned in section 3.1, in decision trees, a common approaches to selec-
tion of splitting attribute are based on entropy measures. In these approaches,
an attribute is the better splitting attribute the lower is the weighted sum of
entropies of subcollections of objects after splitting the objects based on the
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attribute. We thus design the function cB to be such a measure:

cB(〈A,B〉) = 1 −
(

|A|
|X| · E(class|A)

− log2
1

|V (class|A)|
+

|X \ A|
|X| · E(class|X \ A)

− log2
1

|V (class|X\A)|

)
,

(4)

where V (class|A) is the set of class labels assigned to objects A and E(class|A)
is the entropy of objects A based on the class defined as usual by:

E(class|A) = −
∑

l∈V (class|A)

p(l|A) · log2 p(l|A), (5)

where p(l|A) is the fraction of objects A with assigned class label l. The value
of − log2

1
|V (class|A)| in (4) is the maximal possible value of entropy of objects A

in the case the class labels V (class|A) are assigned to objects A evenly and the
purpose of it is to normalize the value of cB to the interval [0, 1]. Note that we
put 0

0 = 0 in calculations in (4).

Now, having the extended data table I ′ ⊆ X × (Y ∪ F ) containing new
attributes F , the decision tree is induced from the extended data table instead of
the original data table I. The class labels assigned to objects remain unchanged,
see Fig. 3. For ilustration, the decision tree induced from data table in Fig. 3 is
depicted in Fig. 4 (right). We can see that the data can be decided by a single
attribute, namely, factor f3 the manifestations of which are original attributes bt
warm and gb yes. Factor f3, as the combination of the two attributes, is a better
splitting attribute in decision tree induction than the two attributes alone.

body temp.

gives birth no

no yes

warm cold

no yes

f3

yes no

1 0

Fig. 4. The decision trees induced from original data table in Tab. 1 (left) and from
extended data table in Tab. 3 (right)

The resulted decision tree is used as follows. When classifying an object x
described by original attributes Y as a vector Px ∈ {0, 1}m in the (original)
attribute space, we first need to compute the description of the object by new
attributes/factors F as a vector g(Px) ∈ {0, 1}k in the factor space. This is
accomplished by (1) using the matrix B explaining factors in terms of origi-
nal attributes. The object described by concatenation of Px and g(Px) is then
classified by the decision tree in a usual way.

For instance, an object described by original attributes Y as vector (10011010)Y
is described by factors F as vector (010000)F . The object described by concate-
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nation of these two vectors is classified by class label no by the decision tree in
Fig. 4 (right).

3.3 Reducing the collection of attributes

The second approach consits in the replacement of original attributes by factors,
i.e. discarding the original data table. Hence the new collection of attributes Y ′

is defined to be Y ′ = F and the new data table I ′ ⊆ X × Y ′ is put to I ′ = A,
where A is the n × k binary matrix describing objects by factor resulting from
the decomposition I = A ◦ B of input data table I. Hence the new reduced
data table for example data in Fig. 1 is a table depicted in Fig. 3 restricted to
attributes f1, . . . , f6.

Since the number of factors is usually smaller than the number of attributes,
see [1], this transformation usually leads to the reduction of dimensionality of
data. However, the transformation of objects from attribute space to the factor
space is not an injective mapping. In particular, the mapping g from attribute
vectors to factor vectors maps large convex sets of objects to the same points
in the factor space, see [1] for details. Namely, for two distinct objects x1, x2 ∈
X with different attributes, i.e. described by different vectors in the space of
attributes, Px1

6= Px2
, which have different class labels assigned, class(x1) 6=

class(x2), the representation of both x1, x2 by vectors in the factor space is the
same, g(Px1

) = g(Px2
).

Consider the relation ker(g) (the kernel relation of g) describing such a sit-
uation. The class [x]ker(g) ∈ X/ker(g) for an object x ∈ X contains objects
represented in (original) attribute space which are mapped to the same object
x represented in factor space. The class label assigned to each object x ∈ X in
the new data table I ′ is the majority class label for the class [x]ker(g) ∈ X/ker(g)
defined as follows: a class label l is a majority class label for [x]ker(g) if l is as-
signed to the most of objects from [x]ker(g), i.e. if l = class(x1) for x1 ∈ [x]ker(g)
such that for each x′ ∈ [x]ker(g) it holds:

|{x2 ∈ [x]ker(g) | class(x2) = l}| ≥ |{x2 ∈ [x]ker(g) | class(x2) = class(x′)}|.

Finally, the decision tree is induced from the transformed data table I ′ ⊆
X × F , where class labels assigned to each object x ∈ X is the majority class
label for the class [x]ker(g) ∈ X/ker(g). Similarily as in the first approach in
section 3.2, when classifying an object x described by original attributes Y as
a vector Px ∈ {0, 1}m in the (original) attribute space, we first compute the
description of the object by factors F as a vector g(Px) ∈ {0, 1}k in the factor
space. The object described by g(Px) is classified by the decision tree. In our
example, the decision tree induced from reduced data table (the table in Fig. 3
restricted to attributes f1, . . . , f6) is the same as the tree induced from the
extended data table, i.e. the tree depicted in Fig. 4 (right).
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4 Experimental Evaluation

We performed series of experiments to evaluate our data preprocessing method.
The experiments consist in comparing the performance of created machine learn-
ing models (e.g. decision trees) induced from original and preprocessed input
data. In the comparison we used reference decision tree algorithms ID3 and
C4.5 [13] (entropy and information gain based) and also an instance based
learning method (IB1). The algorithms were borrowed and run from Weka 1,
a software package that contains implementations of machine learning and data
mining algorithms in Java. Default Weka’s parameters were used for the algo-
rithms.

Table 1. Characteristics of datasets used in experiments

Dataset No. of attributes (binary) No. of objects Class distribution

breast-cancer 9(51) 277 196/81

kr-vs-kp 36(74) 3196 1669/1527

mushroom 21(125) 5644 3488/2156

tic-tac-toe 9(27) 958 626/332

vote 16(32) 232 124/108

zoo 15(30) 101 41/20/5/13/4/8/10

The experiments were done on selected public real-world datasets from UCI
Machine Learning Repository. The selected datasets are from different areas
(medicine, biology, zoology, politics, games). All the datasets contain only cate-
gorical attributes with one class label attribute and the datasets were cleared of
objects containing missing values. Basic characteristics of the datasets are de-
picted in Tab. 1. The numbers of attributes are of original categorical attributes
and, in brackets, of binary attributes after nominal scaling (see remark 1). The
experiments were done using the 10-fold stratified cross-validation test. The fol-
lowing results are of averaging 10 execution runs on each dataset with randomly
ordered records.

Due to the limited scope of the paper we show only the results of data
preprocessing by reducing the original attributes to factors and the results for
adding the factors to the collection of attributes are postponed to the full version
of the paper. The results are depicted in Tab. 2. The tables show ratios of
the average percentage rates of correct classifications for preprocessed data and
original data, i.e. the values indicate the increase factor of correct classifications
for preprocessed data. The values are for both training (upper number in the
table cell) and testing (lower number) datasets for each algorithm and dataset
being compared, plus the average over all datasets. In the case of top table the

1 Waikato Environment for Knowledge Analysis, available at
http://www.cs.waikato.ac.nz/ml/weka/
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criterion of optimality of generated factors (3) was set to the original criterion
function of the “cover ability” of factor concept, i.e. the original criterion used
in the algorithms from [1]. This corresponds to setting w = 1 in (3). In the case
of bottom table the criterion of optimality of generated factors was changed to
the function of the “decision ability” described in section 3.2, i.e. w = 0 in (3).

Table 2. Classification accuracy for datasets from Tab. 1, for w = 1 (top) and w = 0
(bottom table) in (3)

training %

testing %
breast-cancer kr-vs-kp mushroom tic-tac-toe vote zoo average

ID3
1.020

1.159

1.000

0.993

1.000

1.000

1.000

1.123

1.000

0.993

1.018

0.962

1.006

1.038

C4.5
1.031

0.989

0.998

0.994

1.000

1.000

1.028

1.092

0.998

0.994

1.006

0.940

1.010

1.002

IB1
1.020

0.970

1.000

1.017

1.000

1.000

1.000

1.000

1.000

1.005

1.020

0.965

1.007

0.993

training %

testing %
breast-cancer kr-vs-kp mushroom tic-tac-toe vote zoo average

ID3
1.020

1.153

1.000

1.000

1.000

1.000

1.000

1.157

1.000

1.017

1.018

0.980

1.006

1.051

C4.5
1.047

1.035

1.000

0.998

1.000

1.000

1.033

1.138

1.000

1.007

1.006

0.958

1.014

1.023

IB1
1.020

0.951

1.000

1.083

1.000

1.000

1.000

1.213

1.000

1.033

1.020

0.967

1.007

1.041

We can see that while not inducing worse learning model at average on train-
ing datasets the methods have better performance at average on testing dataset
for input data preprocessed by our methods (with the exception of dataset zoo
which has more than two values of class attribute). For instance, ID3 method
has better performance by 3.8% (5.4% without zoo) for criterion of optimality
of generated factors being the original criterion function of the “cover ability”
of factor concept, while for criterion of optimality of generated factors being
the function of the “decision ability” the performance is better by 5.1% (6.5%
without zoo). The results for adding the factors to the collection of attributes
are very similar, with ±1% difference to the results for reducing the original
attributes to factors, with the exception of dataset zoo, where the difference was
+4%.
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5 Conclusion

We presented two methods of preprocessing input data to machine learning
based on formal concept analysis (FCA). In the first method, the collection of
attributes describing objects is extended by new attributes while in the second
method, the original attributes are replaced by the new attributes. Both meth-
ods utilize boolean factor analysis, recently described by FCA, in that the new
attributes are defined as factors computed from input data. The number of fac-
tors is usually smaller than the number of original attributes. The methods were
demonstrated on the induction of decision trees and an experimental evaluation
indicates usefullness of such preprocessing of data: the decision trees induced
from preprocessed data outperformed decision trees induced from original data
for two entropy-based methods ID3 and C4.5.
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Abstract—We present two input data preprocessing methods
for machine learning (ML). The first one consists in extending
the set of attributes describing objects in input data table by
new attributes and the second one consists in replacing the
attributes by new attributes. The methods utilize formal concept
analysis (FCA) and boolean factor analysis, recently described
by FCA, in that the new attributes are defined by so-called
factor concepts computed from input data table. The methods
are demonstrated on decision tree induction. The experimental
evaluation and comparison of performance of decision trees
induced from original and preprocessed input data is performed
with standard decision tree induction algorithms ID3 and C4.5
on several benchmark datasets.
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I. INTRODUCTION

Input data is often subject to some sort of data preprocessing
before the data is processed by a data mining or machine
learning method. In common case of relational data described
by objects and their attributes (object-attribute data) data
preprocessing usually consists in transformation of the set of
attributes to another set of attributes in order to enable the
particular data mining or machine learning method to achieve
better results [13], [14].

The paper presents a data preprocessing method utilizing
boolean factor analysis (BFA), recently described by means
of formal concept analysis (FCA) [1]. The utilization consists
in creating new attributes describing the original objects.
The new attributes are defined in terms of so-called factor
concepts obtained by BFA using FCA. We show two meth-
ods. First, new attributes are added to the original set of
attributes, extending the dimensionality of data. New attributes
are supposed to aid the data mining or machine learning
method. Second, the original attributes are replaced by the new
attributes which usually means the reduction of dimensionality
of data. Here, a main question arises, whether the reduced
number of new attributes can better describe the input objects
for the subsequent data mining or machine learning method
to produce better results.

There have been several attempts to transform the attribute
space in order to improve the results of data mining and
machine learning methods. We focus on decision tree induc-
tion. The most relevant to our paper is a method known as
constructive induction [7], where new compound attributes

are constructed from original attributes as conjunctions and/or
disjunctions of the attributes [12] or the new attributes are
expressed in m-of-n form [8]. An oblique decision tree [10]
is also connected to our approach in a sense that multiple
attributes are used in the splitting condition (see section III-A)
instead of single attribute at a time, see e.g. [2]. Learning the
condition is, however, computationally challenging.

II. PRELIMINARIES

A. Formal Concept Analysis

Formal concept analysis (FCA) is a method for analysis of
object-attribute data [3], [4]. Such data is usually described
by a table with rows and columns representing objects and
attributes, respectively, and with table entries containing at-
tribute values which the objects have. See Fig. 1 (bottom) for
an example of such a table. In the basic setting, FCA deals
with binary attributes, i.e. every attribute applies or does not
apply to a particular object. Many-valued attributes, such as
nominal and ordinal attributes, are transformed to binary ones
using so-called conceptual scaling. One of the outputs of FCA
is a concept lattice, a partially ordered collection of particular
clusters called formal concepts. Due to lack of space we refer
for formal description and further information on FCA to [3],
[4].

B. Boolean Factor Analysis

The aim of boolean factor analysis (BFA) is to decompose
an n × m binary matrix I into a boolean product A ◦ B of
an n× k binary matrix A and a k ×m binary matrix B with
k as small as possible. Thus, instead of m original attributes,
one aims to find k new attributes, called factors.

Recall that a binary (or boolean) matrix is a matrix whose
entries are 0 or 1. A boolean matrix product A ◦B of binary
matrices A and B is defined by

(A ◦B)ij =
k∨

l=1

Ail ·Blj ,

where
∨

denotes maximum and · is the usual product. The
interpretation of matrices A and B is: Ail = 1 means that
factor l applies to object i and Blj = 1 means that attribute
j is one of the manifestations of factor l. Then A ◦ B says:
“object i has attribute j if and only if there is a factor l such
that l applies to i and j is one of the manifestations of l”.



The (solution to the) problem of decomposing binary matri-
ces was recently described by means of formal concept analy-
sis [1]. The description lies in an observation that matrices A
and B can be constructed from a set F of formal concepts of
I . In particular, if B(X,Y, I) is the concept lattice of I , with
X = {1, . . . , n} and Y = {1, . . . ,m}, and

F = {〈A1, B1〉, . . . , 〈Ak, Bk〉} ⊆ B(X,Y, I),

then for the n × k and k ×m matrices AF and BF defined
in such a way that the l-th column (AF ) l of AF consists
of the characteristic vector of Al and the l-th row (BF )l of
BF consists of the characteristic vector of Bl, the following
universality theorem holds:

Theorem 1: For every I there is F ⊆ B(X,Y, I) such that
I = AF ◦BF .

Moreover, decompositions using formal concepts as factors
are optimal in that they yield the least number of factors
possible:

Theorem 2: Let I = A ◦ B for n × k and k × m binary
matrices A and B. Then there exists a set F ⊆ B(X,Y, I) of
formal concepts of I with |F| ≤ k such that for the n×|F | and
|F | ×m binary matrices AF and BF we have I = AF ◦BF .

Formal concepts F are called factor concepts. Each factor
concept determines a factor. For the constructive proof of the
last theorem, examples and further results, we refer to [1].

C. Transformations between attribute and factor spaces

For every object i we can consider its representations in the
m-dimensional Boolean space {0, 1}m of original attributes
and in the k-dimensional Boolean space {0, 1}k of factors.

Natural transformations between the space of attributes
and the space of factors is described by the mappings g :
{0, 1}m → {0, 1}k and h : {0, 1}k → {0, 1}m defined by

(g(P ))l =

m∧

j=1

(Blj → Pj), (h(Q))j =

k∨

l=1

(Ql ·Blj), (1)

for 1 ≤ l ≤ k and 1 ≤ j ≤ m. Here, → denotes the truth
function of classical implication (1 → 0 = 0, otherwise 1), ·
denotes the usual product, and

∧
and

∨
denote minimum and

maximum, respectively. (1, left) says that the l-th component
of g(P ) ∈ {0, 1}k is 1 if and only if the l-th row of B
is included in P . (1, right) says that the j-th component of
h(Q) ∈ {0, 1}m is 1 if and only if attribute j is a manifestation
of at least one factor from Q.

For results showing properties and describing the geometry
behind the mappings g and h, see [1].

III. BOOLEAN FACTOR ANALYSIS AND DECISION TREES

The machine learning method which we use to demonstrate
the ideas presented in section I is decision tree induction.

A. Decision Trees

Decision trees represent the most commonly used method in
data mining and machine learning [13], [14]. A decision tree
can be considered as a tree representation of a function over
attributes which takes a finite number of values called class

Name body temp. gives birth fourlegged hibernates mammal
cat warm yes yes no yes
bat warm yes no yes yes

salamander cold no yes yes no
eagle warm no no no no
guppy cold yes no no no

Name bt cold bt warm gb no gb yes fl no fl yes hb no hb yes mammal
cat 0 1 0 1 0 1 1 0 yes
bat 0 1 0 1 1 0 0 1 yes

salamander 1 0 1 0 0 1 0 1 no
eagle 0 1 1 0 1 0 1 0 no
guppy 1 0 0 1 1 0 1 0 no

Fig. 1. Input data table (top) and corresponding data table for FCA (bottom)

labels. The function is partially defined by a set of vectors
(objects) of attribute values and the assigned class label,
usually depicted by a table. An example function is depicted
in Fig. 1. The goal is to construct a tree that approximates the
function with a desired accuracy. An induced decision tree
is typically used for classification of objects into classes. A
good decision tree is supposed to classify well both objects
described by the input data table as well as “unseen” objects.

Each non-leaf node of a decision tree is labeled by an
attribute, called a splitting attribute for this node. Such a node
represents a test, according to which objects covered by the
node are split into v sub-collections which correspond to v
possible outcomes of the test. In the basic setting, the outcomes
are represented by values of the splitting attribute. Leaf nodes
of the tree represent collections of objects all of which, or the
majority of which, have the same class label. An example of
a decision tree is depicted in Fig. 4.

Many algorithms for the construction of decision trees
were proposed in the literature, see e.g. [14]. A strategy
commonly used consists of constructing a tree recursively from
the root node to the leaves, by successively splitting existing
nodes into child nodes based on the splitting attribute. The
many well-known approaches proposed for the selection of
splitting attributes are based on entropy measures, Gini index,
classification error, or other measures defined in terms of class
distribution of the objects before and after splitting, see [9],
[14] for overviews.

Remark 1: In machine learning the input data attributes are
very often categorical attributes. To utilize FCA with the input
data, we need to transform the categorical attributes to binary
attributes using conceptual scaling [4]. Note that we need not
transform the class attribute because we manipulate the input
attributes only in our data preprocessing methods.

Throughout this paper, we use input data from Fig. 1 (top)
to illustrate the data preprocessing. The data table contains
sample animals described by five attributes, with the last
attribute being the class. After an obvious transformation
(nominal scaling) we obtain the data depicted in Fig. 1
(bottom). Boolean factor analysis is applied on the transformed
data. For illustration, the decision tree induced from the data
is depicted in Fig. 4 (left).






0 1 0 1 0 1 1 0
0 1 0 1 1 0 0 1
1 0 1 0 0 1 0 1
0 1 1 0 1 0 1 0
1 0 0 1 1 0 1 0


 =




0 0 1 0 0 1
0 0 1 0 1 0
0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0


 ◦




0 1 1 0 1 0 1 0
1 0 0 1 1 0 1 0
0 1 0 1 0 0 0 0
1 0 1 0 0 1 0 1
0 1 0 1 1 0 0 1
0 1 0 1 0 1 1 0




Fig. 2. Boolean matrix decomposition of input data in Fig. 1

Name bc bw gn gy fn fy hn hy f1 f2 f3 f4 f5 f6 mammal
cat 0 1 0 1 0 1 1 0 0 0 1 0 0 1 yes
bat 0 1 0 1 1 0 0 1 0 0 1 0 1 0 yes

salamander 1 0 1 0 0 1 0 1 0 0 0 1 0 0 no
eagle 0 1 1 0 1 0 1 0 1 0 0 0 0 0 no
guppy 1 0 0 1 1 0 1 0 0 1 0 0 0 0 no

Fig. 3. Extended data table for input data in Fig. 1

B. Extending the collection of attributes

Our first proposed data preprocessing method is the exten-
sion of the collection of attributes by new attributes which are
created using BFA.

Let I ⊆ X × Y be input data table describing objects
X = {x1, . . . , xn} by binary attributes Y = {y1, . . . , ym}.
Considering I as a n×m binary matrix, we find a decompo-
sition I = A◦B of I into the n×k matrix A describing objects
by factors F = {f1, . . . , fk} and k ×m matrix B explaining
factors F by attributes. The decomposition of example data
table in Fig. 1 is depicted in Fig. 2. The new collection of
attributes Y ′ is then defined to be Y ′ = Y ∪F and the extended
data table I ′ ⊆ X × Y ′ is defined by I ′ ∩ (X × Y ) = I and
I ′ ∩ (X × F ) = A. Fig. 3 depicts the extended data table.

Recall that in the decomposition of binary matrices the aim
is to find the decomposition with the number of factors as
small as possible. To compute the decomposition one can
use the algorithms presented in [1]. In short, the algorithms
apply a greedy heuristic approach to search in the space of
all formal concepts for the factor concepts which cover the
largest area of still uncovered 1s in the input data table. The
criterion function of optimality of a factor is thus the “cover
ability” of the corresponding factor concept, in particular the
number of uncovered 1s which are covered by the concept,
see [1]. The function value is translated to the interval [0, 1]
(with the value of 1 meaning the most optimal). However,
since the factors, as new attributes, are used in the process of
decision tree induction in our application, we are looking also
for the factors which have a good “decision ability”, i.e. that
the factors are good candidates to be splitting attributes.

The new criterion function c : 2X×Y → [0, 1] of optimality
of factor concept 〈A,B〉 is:

c(〈A,B〉) = w · cA(〈A,B〉) + (1− w) · cB(〈A,B〉), (2)

where cA(〈A,B〉) ∈ [0, 1] is the original criterion function of
the “cover ability”, cB(〈A,B〉) ∈ [0, 1] is a criterion function
of the “decision ability” and w is a weight of preference among
the functions cA and cB . Let us focus on the function cB ,
which measures the goodness of the factor, defined by the
factor concept, as splitting attribute. In common approaches
to selection of splitting attribute based on entropy measures,
an attribute is the better splitting attribute the lower is the

body temp.

gives birth no

no yes

warm cold

no yes

f3

yes no

1 0

Fig. 4. The decision trees induced from original data table in Tab. 1 (left)
and from extended data table in Tab. 3 (right)

weighted sum of entropies of sub-collections of objects after
splitting the objects based on the attribute. We thus design the
function cB to be such a measure:

cB(〈A,B〉) = 1−(
|A|
|X| ·

E(class|A)

− log2
1

|V (class|A)|
+
|X \A|
|X| ·

E(class|X \A)

− log2
1

|V (class|X\A)|

)
,

(3)

where V (class|A) is the set of class labels assigned to objects
A and E(class|A) is the entropy of objects A based on the
class defined as usual. Note that we put 0

0 = 0 in calculations
in (3).

Now, the decision tree is induced from the extended data
table I ′ ⊆ X × (Y ∪ F ) instead of the original data table
I . The class labels assigned to objects remain unchanged, see
Fig. 3. For illustration, the decision tree induced from data
table in Fig. 3 is depicted in Fig. 4 (right). We can see that
the data can be decided by a single attribute, namely, factor
f3 the manifestations of which are original attributes bt warm
and gb yes.

When classifying an object x described by original attributes
Y as a vector Px ∈ {0, 1}m in the (original) attribute
space, we first compute the description of the object by new
attributes/factors F as a vector g(Px) ∈ {0, 1}k in the factor
space by (1, left). The object described by concatenation of
Px and g(Px) is then classified by the decision tree in a usual
way.

C. Reducing the collection of attributes

The second of our two methods consists in the replacement
of original attributes by factors. Hence the new collection of
attributes Y ′ is defined to be Y ′ = F and the new data table
I ′ ⊆ X × Y ′ is put to I ′ = A. The new reduced data table
for example data in Fig. 1 is thus a table depicted in Fig. 3
restricted to attributes f1, . . . , f6.

Since the number of factors is usually smaller than the num-
ber of attributes, see [1], the transformation of objects from
attribute space to the factor space usually leads to the reduction
of dimensionality of data. However, the transformation is not
an injective mapping, see [1] for details. Namely, for two
distinct objects x1, x2 ∈ X described by different vectors in
the space of attributes and different class labels assigned, the
representation of both x1, x2 by vectors in the factor space
might be the same.

Consider the relation ker(g) (the kernel relation of g)
describing such a situation. We select the class label assigned



TABLE I
CHARACTERISTICS OF DATASETS USED IN EXPERIMENTS

Dataset No. of attributes (binary) No. of objects Class distribution
breast-cancer 9 (51) 277 196/81

kr-vs-kp 36 (74) 3196 1669/1527

mushroom 21 (125) 5644 3488/2156

tic-tac-toe 9 (27) 958 626/332

vote 16 (32) 232 124/108

to each object x ∈ X in the new data table I ′ to be the majority
class label for the class [x]ker(g) ∈ X/ker(g).

Finally, the decision tree is induced from the transformed
data table I ′ ⊆ X × F . Similarly as in the first method from
section III-B, when classifying an object x, we first compute
the description of the object by factors F as a vector g(Px) ∈
{0, 1}k in the factor space and the object described by g(Px) is
classified by the decision tree. In our example, the decision tree
induced from reduced data table (the table in Fig. 3 restricted
to attributes f1, . . . , f6) is the same as the tree induced from
the extended data table, i.e. the tree depicted in Fig. 4 (right).

IV. EXPERIMENTAL EVALUATION

The experiments consist in comparing the performance of
created machine learning models (e.g. decision trees) induced
from original and preprocessed input data. In the comparison
we used reference decision tree algorithms ID3 and C4.5 [13]
(entropy and information gain based) and also an instance
based learning method (IB1). The algorithms were borrowed
and run from Weka [15].

Selected public real-world datasets from UCI Machine
Learning Repository [11] we used in the experiments. Basic
characteristics of the datasets are depicted in Tab. I. The
numbers of attributes are of original categorical attributes
and, in brackets, of binary attributes after nominal scaling
(see remark 1). The experiments were done using the 10-
fold stratified cross-validation test. The following results are of
averaging 10 execution runs of model learning on each dataset
fold with randomly ordered records.

Due to the very limited scope of the paper we show only
the results of data preprocessing by reducing the original
attributes to factors. The results are depicted in Tab. II. The
tables show ratios of the average percentage rates of correct
classifications for preprocessed data and original data, i.e. the
values indicate the increase factor of correct classifications for
preprocessed data. In the case of table on the left the criterion
of optimality of generated factors (2) was set to the original
criterion function of the “cover ability” of factor concept,
which corresponds to setting w = 1 in (2). In the case of
table on the right the criterion was changed to the function of
the “decision ability” described in section III-B, i.e. w = 0.

We can see that, for input data preprocessed by our methods,
while not inducing worse learning model at average on training
datasets the induction methods have better performance at
average on testing datasets. For instance, ID3 method has
better performance by 5.4% for criterion of optimality of

TABLE II
CLASSIFICATION ACCURACY INCREASE FOR DATASETS FROM TAB. I, FOR

w = 1 (LEFT TABLE) AND w = 0 (RIGHT TABLE) IN (2)

training %

testing %
ID3 C4.5 IB1

breast-cancer
1.020

1.159

1.031

0.989

1.020

0.970

kr-vs-kp
1.000

0.993

0.998

0.994

1.000

1.017

mushroom
1.000

1.000

1.000

1.000

1.000

1.000

tic-tac-toe
1.000

1.123

1.028

1.092

1.000

1.000

vote
1.000

0.993

0.998

0.994

1.000

1.005

average
1.004

1.054

1.011

1.014

1.004

0.998

training %

testing %
ID3 C4.5 IB1

breast-cancer
1.020

1.153

1.047

1.035

1.020

0.951

kr-vs-kp
1.000

1.000

1.000

0.998

1.000

1.083

mushroom
1.000

1.000

1.000

1.000

1.000

1.000

tic-tac-toe
1.000

1.157

1.033

1.138

1.000

1.213

vote
1.000

1.017

1.000

1.007

1.000

1.033

average
1.004

1.065

1.016

1.036

1.004

1.056

generated factors being the original criterion function of the
“cover ability” of factor concept, while for the criterion being
the function of the “decision ability” the performance is better
by 6.5%. We just note that the results for adding the factors
to the collection of attributes are very similar, with ±1%
difference only.
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