9.2 Fourierova analýza
Příklady
Určete konvoluci funkcí $(f\ast g)(x)$:
$f(x)=\left\{ \begin{array}{r c l} 0 & &x\in(-\infty,0)\\[2pt] 2 & &x\in\langle 0,\infty) \end{array} \right.$
$g(x)=\left\{ \begin{array}{r c l} 0 & &x\in(-\infty,0)\\[2pt] 1 & &x\in\langle 0,\infty) \end{array} \right.$
$f(x)=\left\{ \begin{array}{r c l} 0 & & x\in(-\infty,0)\\[2pt] \text{e}^{-2x} & & x\in\langle 0,\infty) \end{array}\right.$
$g(x)=\left\{ \begin{array}{r c l} 0 & & x\in(-\infty,0)\\[2pt] \text{e}^{-x} & & x\in\langle 0,\infty) \end{array} \right.$
$f(x)=\left\{ \begin{array}{r c l} 0 & & x\in(-\infty,0)\\[2pt] \text{e}^{-x} & & x\in\langle 0,\infty) \end{array} \right.$
$g(x)=\left\{ \begin{array}{r c l} 0 & & x\in(-\infty,0)\\[2pt] \sin x & & x\in\langle 0,\infty) \end{array} \right.$
$f(x)=\left\{ \begin{array}{r c l} 0 & & x\in(-\infty,0)\\[2pt] \sin x & & x\in\langle 0,\infty) \end{array} \right.$
$g(x)=1$
$f(x)=\left\{ \begin{array}{r c l} 0 & & x\in(-\infty,0)\\[2pt] \sin x & & x\in\langle 0,\infty) \end{array} \right.$
$g(x)=\left\{ \begin{array}{r c l} 0 & & x\in(-\infty,0)\\[4pt] 1 & & x\in\left\langle 0,\dfrac{\pi}{2}\right\rangle\\[4pt] 0 & & x\in\left(\dfrac{\pi}{2},\infty\right)\\ \end{array}\right.$
$f(x)=\left\{ \begin{array}{r c l} 0 & & x\in(-\infty,0)\\[2pt] \sin x & & \in\langle 0,\infty) \end{array} \right.$
$g(x)=\sin(\text{a} x),\,\text{a}>0$
$f(x)=\left\{ \begin{array}{r c l} 0 & & x\in(-\infty,0)\\[2pt] \sin x & & x\in\langle 0,\infty) \end{array} \right.$
$g(x)=\left\{ \begin{array}{r c l} 0 & & x\in\left(-\infty,0\right)\\[2pt] 1-\dfrac{2}{\pi}x & & x\in\left\langle 0,\dfrac{\pi}{2}\right\rangle\\[4pt] 0 & & x\in\left(\dfrac{\pi}{2},\infty\right)\\ \end{array}\right.$
Určete Fourierův obraz funkce:
-
$f(x)=1$ pro $x\in\left\langle-\dfrac{1}{2},\dfrac{1}{2}\right\rangle$, $f(x)=0$ pro $x\notin\left\langle -\dfrac{1}{2},\dfrac{1}{2}\right\rangle$,$\widehat{f}(\omega)=\dfrac{2}{\omega}\sin\left(\dfrac{\omega}{2}\right)$
-
$f(x)=\text{e}^{-\text{b} x}$ pro $x\in\left\langle 0,\infty\right)$, $f(x)=0$ pro $x\in\left(-\infty,0\right)$, $\text{b}>0=\text{konst.}$,$\widehat{f}(\omega)=\dfrac{1}{\text{b}+\text{i}\omega}$
-
$f(x)=\text{e}^{-\text{b}|x|}$ pro $x\in\left(-\infty,\infty\right)$,$\widehat{f}(\omega)=\dfrac{2\text{b}}{\text{b}^2+\omega^2}$
-
$f(x)=\text{e}^{-\text{b} x^2}$ pro $x\in\left(-\infty,\infty\right)$,$\widehat{f}(\omega)=\sqrt{\dfrac{\pi}{\text{b}}}\,\text{e}^{-\frac{\omega^2}{4\text{b}}}$
-
$f(x)=1+x$ pro $x\in\left\langle-1,0\right)$, $f(x)=1-x$ pro $x\in\left\langle 0,1\right)$, $f(x)=0$ pro $|x|>1$,$\widehat{f}(\omega)=\dfrac{2}{\omega^2}\left(1-\cos\omega\right)$
-
$f(x)=x^2$ pro $x\in\left\langle-1,1\right\rangle$, $f(x)=0$ pro $|x|>1$.$\widehat{f}(\omega)=\dfrac{2}{\omega^3}\left[(\omega^2–2)\sin\omega+2\omega\cos\omega\right]$
Určete Fourierův obraz funkce:
-
$f(x)=\sin x$ pro $x\in\left\langle 0,2\pi\right\rangle$, $f(x)=0$ pro $x\notin\left\langle 0,2\pi\right\rangle$,$\widehat{f}(\omega)=\dfrac{\text{i}\omega\left(1-\text{e}^{-2\pi\text{i}\omega}\right)}{1-\omega^2}$
-
$f(x)=\cos x$ pro $x\in\left\langle 0,2\pi\right\rangle$, $f(x)=0$ pro $x\notin\left\langle 0,2\pi\right\rangle$,$\widehat{f}(\omega)=-\dfrac{1-\text{e}^{-2\pi\text{i}\omega}}{\omega^2–1}$
-
$f(x)=\sin x\cos x$ pro $x\in\left\langle 0,2\pi\right\rangle$, $f(x)=0$ pro $x\notin\left\langle 0,2\pi\right\rangle$,$\widehat{f}(\omega)=-\dfrac{1-\text{e}^{-2\pi\text{i}\omega}}{\omega^2–4}$
-
$f(x)=\sin^2x\cos^2x$ pro $x\in\left\langle 0,2\pi\right\rangle$, $f(x)=0$ pro $x\notin\left\langle 0,2\pi\right\rangle$,$\widehat{f}(\omega)=-\dfrac{2\text{i}\left(1-\text{e}^{-2\pi\text{i}\omega}\right)}{\omega\left(\omega^2–16\right)}$
-
$f(x)=\text{A}^{\text{B} x}$ pro $x\in\left\langle 0,1\right\rangle$, $f(x)=0$ pro $x\notin\left\langle 0,1\right\rangle$.$\widehat{f}(\omega)=\dfrac{1-\text{e}^{-\text{i}\omega}A^B}{\text{i}\omega-B\ln A}$
Ověřte platnost rovnice 9.10
-
na příkladu 9.23
$\widehat{f}(\omega)=-\dfrac{2\text{i}}{\omega}$,
$\widehat{g\,}(\omega)=-\dfrac{\text{i}}{\omega}$,
$\widehat{(f\ast g)}(\omega)=-\dfrac{2}{\omega^2}$
-
na příkladu 9.24
$\widehat{f}(\omega)=\dfrac{1}{2+\text{i}\omega}$,
$\widehat{g\,}(\omega)=\dfrac{1}{1+\text{i}\omega}$,
$\widehat{(f\ast g)}(\omega)=\dfrac{1}{2-\omega^2+3\text{i}\omega}$
-
na příkladu 9.25
$\widehat{f}(\omega)=\dfrac{1}{1+\text{i}\omega}$,
$\widehat{g\,}(\omega)=\dfrac{1}{1-\omega^2}$,
$\widehat{(f\ast g)}(\omega)=\dfrac{1}{(1+\text{i}\omega)(1-\omega^2)}$
-
na příkladu 9.26
$\widehat{f}(\omega)=\dfrac{1}{1-\omega^2}$,
$\widehat{g\,}(\omega)=\dfrac{1}{\text{i}\omega}$,
$\widehat{(f\ast g)}(\omega)=\dfrac{1}{\text{i}\omega(1-\omega^2)}$