H I S T O R I C A L P E R S P E C T I V E

Contemporary Art and Cybernetics: Waves of Cybernetic Discourse within Conceptual, Video and New Media Art

Etan J. Ilfeld

While ideas and concepts have always been the creative fuel of both the arts and the sciences, the defining characteristics of “information” have remained vaguely drawn, polemicized and a constant topic of investigation within 20th-century art and academia. The artworks surveyed in this paper will illustrate a set of artifacts highlighting the thematic overlap between cybernetics and art. We can trace these correlated developments by linking the skeuomorphs of information theory and cybernetics within the conceptual art of the 1960s and the video and new media art of the 1970s and the 1990s. A skeuomorph is a term from archaeology, indicating a design feature that is no longer functional. In the development of cybernetics, skeuomorphs can signify and act as threshold devices/ideas denoting a transition and influence from one wave/constellation to another.

The first wave of cybernetics began with the Macy conferences in New York City between 1946 and 1953 and drew together an interdisciplinary set of participants, which included some of the period’s top scientists. Cybernetics stems from the Greek root kybernetes, meaning steersman or governor; Norbert Wiener defined cybernetics as the study of communication and control in both animals and machines [1]. Cybernetics has since diverged into a number of fields, such as information theory, artificial intelligence, artificial life and bio-informatics (Fig. 1).

DEFINING “INFORMATION”

Information as a word is often used loosely and is rarely delineated. It is the noun of action for to inform, where both inform and informatio had previously existed in Latin. To inform traditionally meant “to give form to” or “to form an idea of.” Thus, to inform can be thought of in a multiplicity of ways: It can define that which has no form (i.e. pure content) or rather, ideas. One of Duchamp’s first readymades was a standard Bedfordshire urinal that he purchased in 1917 and submitted to an art exhibition that had proclaimed it would display all art entries. The piece, entitled Fountain (Fig. 2), was rotated by 90º and signed with the pseudonym “R. Mutt” [4]. Although Duchamp was on the committee of the exhibition, the board members were unaware of his involvement with Fountain and subsequently decided to hide it during the exhibition, as they could not agree whether or not Fountain could be considered an artwork.

Certainly, Duchamp’s readymades precipitated 20th-century conceptual art, which further entrenched its immateriality via its McLuhanite and cybernetic emphasis on information theory in the 1960s.

CONCEPTUAL ART: 1950 TO MID-1970S

Everything we do is music [and] everyone is in the best seat.

—John Cage [5]

Duchamp’s ideas were developed by conceptual artists including Sol LeWitt, who further stressed that the idea/concept...
of a work is more important than the aesthetics of the object and focused instead on the communicated content [6]. LeWitt’s premise became anti-formalist or rather informalist, and LeWitt developed conceptual art as a “postobject” art form. Meanwhile, the conceptual artists of the 1950s were very much aware of the cybernetic discourses that were prevalent at the time. As early as the 1950s, John Cage’s composition 4’33” could be viewed as a subversive deconstruction of Shannon’s information/noise binary. 4’33” was first performed by David Tudor in 1952 at Woodstock, New York; the piece consisted of three movements during which Tudor would open and close the keyboard lid while waiting silently for the audience to settle, thereby allowing the audience unknowingly to “perform” and alluding to the fact that there is no such thing as silence. Even the length of 4 minutes and 33 seconds was chosen by chance using an I Ching process. 4’33” can be viewed as a rebuke of Shannon and Weiner’s signal-based information, which had championed signal over noise; after all, it is precisely the “noise”—whispers, coughs and ambient sounds—that became the actualized message/signal in 4’33”.

By 1966, artist John Baldessari proclaimed, “I was beginning to suspect that information could be interesting in its own right and need not be visual as in Cubist, etc. art” [7], and began creating paintings that were depicted exclusively through words. Similarly, in 1968 the Institute for Contemporary Art’s Cybernetic Serendipity exhibition in London celebrated computer-aided creativity and cybernetic ideas in contemporary dance, poetry, music, animation, sculpture, robots, painting machines and “all sorts of works where chance was an important ingredient” [8]. In 1970, the “Information” show at the Museum of Modern Art (New York) celebrated the American apogee during which the synthesis of cybernetics and conceptual art was manifest in films, videos and avant-garde works such as John Giorno’s Dial-A-Poem and Adrian Piper’s blank notebooks that asked the viewers to collaborate: “write, draw or otherwise indicate any response suggested by this situation (this statement, the blank notebook and pen, the museum context, your immediate state of mind, etc.)” [9].

Shannon and Cage’s dialogue was further played out in Christine Kozlov’s Information: No Theory (1969):

1. The recorder is equipped with a continuous loop tape.
2. The recorder will be set at record. All the sounds audible in the room will be recorded.
Cultural theorists Scott Lash and Celia Lury explain 1960s conceptual art as follows:

The ideas or concepts of [1960s] conceptual art are a “self-regulating series and systems of rules for the production of objects out of preformed materials. They are a series of propositions, systems of rules (and the parallel with the feedback loops of computers and other new media objects such as brands is worth drawing)” [12].

The circulation of ideas maintained a primacy over their material channeling. In the spirit of Duchamp’s ready-made, Gildo Meireles “hacked” Brazil’s social systems of distribution by recycling Coca-Cola bottles after painting “Yankees Go Home” onto them; in a similar interventionist manner, Meireles added authentic-looking stamped messages onto banknotes, with oppositional political slogans [13].

Arakawa’s Sculpting No. 1 (1961–1962) attempts to transcend materiality by utilizing arrows that point beyond the canvas’s edges, thereby directing the viewer toward an invisible work outside the painting. By ignoring the viewer’s imagination, Sculpting No. 1 relinquishes control of the perceptual experience yet maintains its influence through its physicality. Thus, the expected and unexpected are intertwined—a central motif in conceptual art—analogous to information theory’s signal and noise interdependence.

In Argentina in 1969, Graciela Carnevale welcomed visitors to his show, which consisted of an empty room with a glass window; he locked the visitors inside and waited for over an hour, until they finally broke the glass window and escaped [14]. Carnevale’s experimental art created an interplay between unexpected behavior and the expected, controlled physical structure, which was sufficient to motivate the audience to perform Carnevale’s intention of breaking the window: His piece transformed his audience from an indeterminate mob into a controlled signal, whose message was transmitted by their breakout. Meanwhile, the amount of time it took the audience to escape remained indeterminate until the event was actualized.

VIDEO ART: 1970s TO MID-1990s

In the second wave of cybernetics, Gordon Pask extended its realm to include the study of information flows in *all media* (e.g. feedback loops in cosmology, cognitive science and the theoretical interaction of any actors/agents) [15]. Certainly, it is not surprising to imagine that this conceptual expansion might seep into the art sphere and be synthesized with the technology of video.

Some art texts claim that between the mid-1970s and the early 1990s, media art had faded in response to the counter-culture, which included many artists and curators who began to associate technology with the Vietnam War and corporate capitalism [16]. However, conceptual artists, along with newcomers, kept experimenting with video art and produced a great deal of thought-provoking work during this period. Curiously, whereas the first wave of cybernetics followed the antiquated scientific paradigm of an observer outside a system—as Hayles points out, the term “reflexivity” does not appear at any single point of the original Macy transcripts—the second wave was determined to incorporate notions of reflexivity [17].

Scott Lash has suggested that video art may be a possible model for second-wave conceptual art, whose ideas often involve the “mediascape” and the information economy [18]. Curiously, much of the video art from the 1970s into the early 1990s also corresponds with second-wave cybernetic thought.

Indeed, Humberto Maturana’s neurophysiology research proved in the late 1950s that a frog’s visual perception constructs reality into what it wants/needs to see, which are small and fast-moving flies rather than large and slow-moving animals such as cows. Later, with Francisco Varela, he developed the term *auto-poiesis* to describe a living system through its ability to self-organize, while insisting that organisms were structurally coupled with their environment. Second-wave cybernetic discourse stressed that language is structurally coupled as a social system founded on a “reciprocal consensus” and therefore not representative of an external reality but rather of “consensual objects” [19]. Thus, Maturana and Varela emphasized reflexivity and an inevitably constructed subjectivity that permeates disciplines ranging from philosophy all the way into the hard sciences.

Video art’s specificity is inherently reflexive: Video’s closed-circuit feedback technology enables the transmission of live images capable of denoting their own structural organizations; this feature stands in direct opposition to the illusionism of film and TV, motivating the slogan “VT ≠ TV” (videotape is not television), which was employed during this time [20]. Additionally, video art maintained the dematerialist trend of first-wave conceptual art, as both tape recordings and live feeds projected onto screens dematerialized physical objects into visual representations—prompting a videotaped Jean Baudrillard in 1988 to...
ask: “Am I a man, or am I a machine?” [21]

Influenced by his participation in the Fluxus movement, Nam June Paik also began exploring video art and as early as the 1960s had created his first multitelevision-sculpture work, TV Cross. However, it was not until 1974 that Paik created one of the first sculptural-video feedback installations, TV-Buddha. By creating a live feed of a Buddha statue, Paik’s work generated interplay between Western media and an Eastern icon—enabling the viewer to interlace his own image into this media ecology. Paik considered broadcast TV to be an oppressive institution, which he attempted to subvert by turning the viewer into a user of the medium [22].

Akin to video, phenomenology contradicts realism by insisting that objects only exist for a user. Video’s structural coupling and phenomenology both shift objective judgment toward experience through the realization that there is no such thing as a subject-at-a-distance [23]. As a result, video art installations such as Paik’s TV-Buddha (1974) and Bruce Nauman’s Live/Taped Video Corridor (1970) address a subject that is fully immersed and invite the viewer to self-reflexively play with his or her environment, continuing conceptual art’s tradition of transforming its audience into an active user rather than a passive viewer.

MID-1990S TO PRESENT DAY

“You’re just analog players in a digital world.”

—Ocean’s Thirteen (Film, Warner Brothers, 2007)

The recent obsession to digitize is prevalent in everything from the Human Genome Project—completed 5 years ahead of schedule, in 2003—to Google’s attempt to digitize all the books within Stanford University’s libraries. Inevitably, as with Shannon’s noise-signal informatics, interpretation and digitization are confluent with discrimination (a close cousin of censorship) and are a loss of that which does not surpass the analog threshold from which a digital signal emerges. Additionally, digitization reinforces the realm of the virtual; as early as 1985, third-wave cybernetics explored the digitally structured worlds that could be created either as virtual representations of our physical world or as autonomous entities within the field of Artificial Life. Certainly, digital/virtual representations come with many advantages over “real”-world physical objects. Unlike physical objects, virtual objects can be transported at the speed of light and perfectly duplicated. Thus, the recent “Information Age” (or rather Digital Information Age, if we consider the information age to have begun with first-wave cybernetics) has sparked an all-encompassing digitized convergence. Even video art became digital in the 1990s and, as such, a sub-genre of new media art. Jean Baudrillard claimed that the digitization of biology (DNA), sound recording, TV/film, information
technology, etc. generated the idealization of reproducible codes such that there is no longer any meaningful difference between a copy and its original [24]. Of course, 1960s conceptual art had already emphasized collaboration, de-authorship, dematerialization and the un- uniqueness of the art object; however, digitization shifted the notion of “post-object” art into a virtual object and introduced a digitized production process whose ontology intermixed creation with technological duplication.

In classical Greece, Techne was known as the patron goddess of practical knowledge and art, and the word techne was used to refer to art and was responsible for the Greek derivation tikein—meaning “to create” [25]. In The Origin of the Work of Art (1935) and The Question Concerning Technology (1949) [26], Martin Heidegger pointed out that the root techne within technology originally implied a mode of revealing that which is hidden. Heidegger claimed that within art, techne was a “bringing forth out of concealedness” as a form of creative poiesis; whereas, within an instrumental context such as science, techne implies a mode of technicity that discloses intrinsically calculable resources. Technicity is that aspect of the creator/user/viewer’s identity that both forms and is represented via technological differentiation [27].

According to Krzysztof Ziarek, as technicity becomes digitized in the “Information Age,” Adorno and Heidegger’s terminology can be rephrased as: Calculation becomes computation; manipulability or instrumentality becomes programmability; enframing becomes formatting, or mainframing; resources and standing reserves become databases; and technicity becomes synonymous with digitality. Ziarek also claims that the technicity of digitization can be folded upon itself so as to reveal a form of poiesis; that is to say that technology can be operated in a non-instrumental mode of play, and that its digitization can be creative—thereby generating a space for digital art.

It is interesting to note that digital art does not necessarily need to be in binary code or magnetically archived. In fact, one could consider Chuck Close’s meticulous paintings within the realm of digital art, as their grid-based production process involves a form of digitization and strongly alludes to computerized pixels. Indeed, Close’s fractal-like pixel-within-pixel drawings bear a striking resemblance to JPEG compressions and to LCD monitor neighboring-pixel approximations.

As a post-photographic phenomenon, Close’s works hint at our photographic misreadings and at how we interpret visual stimuli. Certainly, the viewer of Close’s works is as much a user, who is able to zoom in or zoom out of the paintings by walking a few feet closer or backward, severely altering his/her perception of these colossal canvases—often as large as 20 feet—and their unusually large “pixels.”

Artist Scott Blake has attempted to emulate Close’s pixel-aesthetics by creating a software program, The Chuck Close Filter, that emulates and utilizes elements of Close’s technique in order to create his very own Chuck-Close-like artworks. Scott Blake’s Self Portrait Made with Chuck Close Filter (Fig. 3) demonstrates the potential of appropriating Close’s aesthetics into a purely digital form and resonates strikingly with Close’s work.

Similarly, Vuk Ćosić digits classic films and TV shows—such as Star Trek, Psycho and Deep Throat (as Deep ASCII [1998] [Fig. 4])—into animations in which ASCII characters substitute for pixels [28]. According to post-structuralist theorist Maurice Blanchot, “power” cannot mark its own limit or “conceive” of a mode of “non-power,” and yet a nonutilitarian playfulness might provide an alternative, as a form of “non-power”—that is, neither active nor passive, but rather a mode of letting be [29]. Viewed in this light, Ćosić’s work synthesizes technical techne and poetic techne and illustrates the playful potential of ASCII text.
Curiously, Čosić is also famous for being the first to coin the term net.art in 1995, which was a sort of Duchampian ready-made, since he had seen the words “net” and “art”—joined by a period—in an e-mail message [30]. Conceptual Net.Art has cultivated an alternative—albeit virtual—platform and infrastructure for the Information Age’s social and economic systems. In 2000, Michael Daines hacked the virtual worlds of finance and cyberspace by attempting to sell his body within eBay’s sculpture category. Similarly, in 2002, artist Keith Obadike tried to sell his African-American identity on eBay in Blackness for Sale (2001); by echoing the slave auctions within the virtual world, Obadike illustrated that the body’s identity politics (gender, race, ethnicity, sexual orientation, etc.) are just as significant in today’s digital/virtual age [31].

EMERGENCE IN CYBERNETICS AND DIGITAL ART

The key relation between third-wave cybernetics and digital art is exemplified in the conceptualization and practice of emergence, which has opened new horizons and modes of art production. Howard Rheingold correlates the emergence of an on-line “collective intelligence” as analogous to the behavior of swarm systems where agents residing on one scale produce higher-level behavior and patterns [32]. Emergence may also occur when a recursive feedback loop evolves within a system in such a way as to lead to previously unforeseeable phenomena. Emergence provides an indeterminate and noninstrumentally playful evolution, allowing for a creative freedom. As a conceptual framework it is aligned with Blanchot’s notion of non-power as a mode of letting be and with the technological synthesis of Heidegger’s techne’s poesis and technicity. Like Heidegger, Blanchot stated, “That which art discovers, or uncovers, or lays bare will not be found under any encyclopaedic subject heading. To put it very simply: art is useless matter . . . art uses matter such that it is unused, workless, idle, useless” [33]. Similarly, Lev Manovich perceptively points out that new-media objects are readymades by default and are in line with Barthes’s criticism of the author as a sole-inventor, such that the text becomes a “tissue of quotations drawn from the innumerable centers of culture” [34]. Viewed in this light, the “computational ready-made” is a product of self-generated (emergent) algorithmic operations upon a new-media object and exemplifies the spaces within creativity, science and art.

Jeremy Wood is a GPS artist who carries a receiver with him religiously—everywhere he goes. His appropriation of GPS technology is both a form of emergent gameplay and a visual manifestation of emergence. In My Ghost (Fig. 5), Wood documents a decade of his movements throughout London and illustrates that the emergent patterns that are revealed as he treks are constrained within the city’s urban infrastructure. His practice takes place on several scales, and he often spells out sentences through his movements. Zooming in on the lower right of My Ghost reveals a Moby Dick quote tracing Wood’s movements, proclaiming: “True places are not on any map.”

John F. Simon’s aLife (2003) is a real-time software-driven animation that models the emergent evolution of six miniature and artificial worlds [35]. Curiously, Simon’s aLife is not concerned with scientific or instrumental knowledge but rather with exploring aesthetic possibilities and “capitalizing on accidents” [36]. Thus, emergence can be used to blur the boundaries between signal and noise—facilitating a mode of non-power that allows the cultivation of the unexpected and indeterminate. Similarly, Eduardo Kac utilizes emergence in his transgenic bioart. In Genesis (1999), Kac translated a quote from the Bible (Genesis 1:26) into a DNA sequence—ordered from a genetics lab—and infused it into a Petri dish with fluorescent E. coli bacteria (Fig. 6). Finally, the bacteria’s light source was connected to the Internet such that web users could turn it off and on, influencing the E. coli’s unpredictable mutation. As a result, Genesis parodies genetics’ tendency toward technoscientific manipulation and exemplifies the potential of emergence as a bridge between technological techne and poetic techne.

CONCLUSION

Cybernetics concepts such as dematerialization, reflexivity and digitization remain highly influential within contemporary art practices. For example, Arakawa’s Sculpting No. 1, which consisted of a canvas filled with arrows pointing outside the frame, is much aligned with first-wave cybernetics and the idea of dematerialization, while John Cage’s 4’33” highlights elements of chance and noise. Peter Kennedy’s 1970s 10-minute video piece in which he removes and transfers bandages from a microphone to a video camera illustrates the transition from silence to invisibility and exemplifies 1970s video art’s themes of reflexivity, structural coupling and phenomenology—in accord with second-wave cybernetic discourse. Similarly, new media art employs third-wave cybernetic discourse and champions notions of emergence, virtualization, de-authorization, gift economies and digitization.

The artworks surveyed in this paper have provided a set of artifacts that illustrate the thematic overlap between cybernetics and art. While the art practices surveyed are far from an exhaustive taxonomy, they provide examples of the prevalent concepts of each period (Fig. 7).

The question remains as to why there has been at minimum a 15-year lag between the ideas proposed in cybernetics and their artistic counterparts. What caused this delay? While it takes time for
ideas to seep into the social consciousness, artists are often capable of rapidly integrating ideas and conceptualizing new ones. Perhaps these ideas first had to be incorporated into the technologies these artists used. New media studies often suggest a form of technological determinism; however, scholars such as David Morley and Raymond Williams strongly oppose the idea that technology follows a path that is intrinsic to its inner structure (a sort of predetermined road of progress); instead they emphasize that technological history is often the outcome of social struggles between powerful interest groups [37]. Perhaps the correlation between cybernetics and art is itself a form of emergence? One thing is certain: Cybernetic thought and art’s synthesis have revealed a poetic technicity within the technological and spawned an ever-emerging and continuous source of concepts and ideas.

References and Notes

Unedited references as provided by the author.

3. C.E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical Journal, vol. 27, pp. 379–423 and 623–656, July and October, 1948. Shannon defined information as the mathematical logarithm of the number of elements within a message set. In contrast, it is worth noting that this notion of information was highly contested by Donald McKay, who advocated a contextualized meaning for information based upon a message’s interpreter; for McKay, see Hayles [2] p. 54. First-wave cybernetician Ross Ashby explains Shannon’s and Wiener’s notion of communication as an act that “necessarily implies the existence of a set of possibilities,” which he illustrates with the example of a coded set of messages from a wife attempting to send a message to her husband in prison, which the warden attempts to interpret/obstruct. Ashby, Ross, An Introduction to Cybernetics (Clapham and Hall, 1957) p. 123.

17. Hayles suggests that reflexivity was avoided during the first wave because its recursive nature required a more advanced level of computational power and that homeostasis was more in line with 1950s McCarthyism, which stressed a return to normalcy. See Hayles [2] p. 69.

27. “Particular tastes and their associated cultural networks have always been marked by particular technologies, e.g., rockers with motorbikes and mods with scooters.” Jon Dovey and Helen W. Kennedy, Game Culture: Issues in Cultural and Media Studies (Open University Press, 2006) p. 149.

28. See also <www.localmuseum.org/index.php/lea/exhibition/lea_new_media_exhibition_interview_with_vuk_cosic/> for an online exhibition of work by Cosic.

Manuscript received 5 April 2010.

Eila Ilfeld launched Tenderpixel Gallery as a platform to showcase emerging artists in central London. Ilfeld is particularly interested in the intersections of art, technology and media. After graduating from Stanford University he added to his eclectic education a Master’s in Film Studies from the University of Southern California and a Master’s in Interactive Media from Goldsmiths, University of London. He is also a professionally ranked chess master, filmmaker and serial entrepreneur. Additionally, Ilfeld is a digital artist and his New Kind of Cinema work has been featured and archived in Rhizome’s ArtBase.
A WORD OF THANKS

Thanks to Our Reviewers

The Leonardo publications are peer reviewed: before acceptance, every article is reviewed and commented on, usually by three anonymous reviewers. Based on these reviews we make a decision whether to publish the text.

Leonardo covers a wide variety of fields, many of them interdisciplinary and often in emerging areas of experimentation, research and scholarship. Our peer reviewers help us focus on new topics of interest, as other areas may move out of the center of experimentation and become part of established disciplines. In very new areas of inquiry it is often difficult for us to identify three reviewers competent to review the work; in these cases we may ask the authors themselves to suggest new reviewers for our peer review panel. The Leonardo Network in a very real sense grows and evolves through this process of collaborative filtering.

We wish to take this opportunity to thank some of the reviewers who in the past year have on a volunteer basis spent time writing very thoughtful reviews that both help us make a publication decision and help the authors to improve their texts: