Fyziologické a patofyziologické procesy stárnutí

Diplomová práce

Brno 2010

Autor: Martina Píšová
Vedoucí práce: doc. RNDr. Martin Vácha, Ph.D
Prohlašuji, že předložená diplomová práce je mým původním autorským dílem, které jsem vypracovala samostatně. Veškerou literaturu, z níž jsem při zpracování své práce čerpala, řádně cituji a je uvedena v seznamu použité literatury.

V Brně 2010 ……………………………
Poděkování

Chtěla bych poděkovat doc. RNDr. Martinu Váchovi, PhD. za cenné rady a připomínky, odborné vedení, ochotné jednání a poskytnuté materiály při psaní této práce.
Obsah

Abstrakt ... 7
Úvod ... 8
1. Stárnutí ... 9
 1.1 Definice stárnutí a změny odehrávající se během tohoto procesu 9
2. Gerontologie .. 10
 2.1 Princip životní historie ... 11
 2.2 Mechanický princip ... 12
3. Délka života ... 13
 3.1 Průměrná a maximální délka života .. 13
 3.2 Fyziologické limity .. 14
 3.2.1 Pohlaví ... 14
 3.2.2 Hmotnost druhu ... 15
 3.2.3 Metabolismus ... 15
 3.2.4 Energetický obrat ... 15
4. Charakteristiky stárnutí .. 18
 4.1 Zvýšení úmrtnosti s rostoucím věkem ... 18
 4.2 Změny v biochemickém složení tkání .. 19
 4.3 Progresivní pokles ve fyziologických funkcích .. 19
 4.4 Redukce schopnosti adaptivně reagovat na environmentální podněty 19
 4.5 Zvýšená citlivost a zranitelnost ... 20
5. Mechanismy a příčiny stárnutí .. 20
6. Teorie stárnutí .. 21
 6.1 Stochastické teorie .. 21
 6.1.1 Teorie somatických mutací a opravy DNA .. 21
 6.1.2 Teorie chyba – pohroma (error – catastrophe) ... 22
 6.1.3 Teorie příčných vazeb (modifikace proteinu) ... 23
 6.1.4 Teorie volných radikálů / Teorie mutací mitochondriální DNA 24
 6.2 Vývojově-genetické teorie .. 25
 6.2.1 Geny dlouhověkosti ... 26
 6.2.1.1 Sirtuiny ... 26
 6.2.2 Syndromy zrychleného stárnutí .. 27
6.2.2.1 Wernerův syndrom ... 27
6.2.2.2 Hutchinson-Gilfordův syndrom 28
6.2.2.3 Downův syndrom ... 28
6.2.3 Neuroendokrinní teorie .. 28
6.2.4 Imunologická teorie ... 29
6.2.5 Buněčné stárnutí ... 29
6.2.5.1 Telomery ... 30
6.2.6 Buněčná smrt .. 32
6.2.7 Teorie programovaného stárnutí 33
7. Stárnutí mozku .. 34
 7.1 Apolipoproteiny ... 34
 7.2 Anatomické změny v mozku během nepatologického stárnutí 35
 7.3 Změny na buněčné úrovni 36
 7.3.1 Akumulace pigmentu 36
 7.3.2 Neurofibrilární smotky (tangles) a neuropilová vlákna (threads) 37
 7.3.3 Senilní plaky .. 37
 7.3.4 Hiranoova tělíška (Hirano bodies) 38
 7.4 Mozek, proces myelinizace a remyelinizace 38
 7.5 Vliv zinku na činnost mozku 41
8. Terapie proti stárnutí .. 42
 8.1 Kosmetické léčení ... 42
 8.2 Příjem minerálních látek 43
 8.2.1 Nedostatek esenciálních látek 43
 8.2.2 Nedostatek vitamínu D 43
 8.3 Rapamycin ... 44
 8.4 Chlorella ... 45
 8.5 Koenzym Q10 .. 46
 8.6 Kalorická restrikce .. 47
 8.6.1 Kalorická restrikce a metabolická stabilita 49
 8.7 Kmenové buňky .. 49
9. Inzulinový paradox ... 50
 9.1 Stárnutí, proteostáza a neurodegenerace 54
10. Neurodegenerativní onemocnění 55
 10.1 Rozvoj a genetika neurodegenerativních onemocnění 56
10.2 Vztah příznaku a lokalizace poškození .. 56
 10.2.1 Polyglutaminová onemocnění .. 57
 10.2.2 Taupatie a alfa-synukleinopatie ... 57
10.3 Amyotrofická laterální skleróza .. 58
10.4 Alzheimerova choroba ... 59
 10.4.1 Charakteristické nálezy u Alzheimerovy choroby 61
 10.4.2 Možnost biologického ovlivnění Alzheimerovy choroby 63
10.5 Parkinsonova choroba ... 63
 10.5.1 Epidemiologie .. 63
 10.5.2 Etiopatogeneze .. 65
 10.5.3 Patofyziologie příznaků ... 66
 10.5.4 Demence při Parkinsonově chorobě 66
 10.5.5 Terapie .. 67
 10.5.6 Vliv činnosti mitochondrií na Parkinsonovu chorobu 68
 10.5.6.1 Struktura mitochondrie .. 68
 10.5.6.2 Geny sdružené s Parkinsonovou chorobou 70
 10.5.7 Vliv serotoninu na výskyt deprese u PD 74
 10.5.8 Lékařský výzkum léčby Parkinsonovy choroby 75

11. Hypertenze a cerebrovaskulární poruchy ... 77
 11.1 Vaskulární demence ... 78
 11.2 Hypertenze a kognitivní funkce ... 78
 11.3 Léčba hypertenze .. 79

12. Ateroskleróza .. 80
 12.1 Příčiny vzniku onemocnění ... 81
 12.2 Morfologické projevy a vývoj onemocnění 81
 12.3 Komplikace .. 82
 12.3.1 Rizikový faktor: zvýšené vylučování albuminu močí 84
 12.4 Prevence a terapie ... 84

Závěr .. 85
Seznam zkratek .. 86
Použitá literatura ... 88
Internetové zdroje .. 93
Diplomová práce pojednává o problematice stárnutí a degenerativních chorob, které se stářím velmi úzce souvisí. V úvodu jsou obsaženy základní definice stárnutí a procesy, které se odehrávají ve stárnoucím organismu. Dále se práce zabývá teoriemi a možnými příčinami stárnutí a jsou zmíněny i možné terapie, které by mohly prodloužit délku života. V druhé části práce jsou charakterizovány základní neurodegenerativní onemocnění – Alzheimerova choroba a Parkinsonova choroba. Okrajově je zmíněna hypertenze a cerebrovaskulární poruchy. Na závěr práce je rozebrána problematika aterosklerózy, jako onemocnění, které je nejčastější příčinou úmrtí v civilizovaných zemích.

Graduation theses discuss issues of aging and degenerative diseases, which are very closely related to age. The introduction contained a basic definition of aging processes that occur in an aging body. Furthermore, this work deals with theories and possible causes of aging and are mentioned as possible therapies that could extend life expectancy. In the second part, fundamental neurodegenerative diseases are characterized – Alzheimer disease and Parkinson disease. This work mentions briefly hypertension and cerebrovascular disorders. Finally, the work analyses the problem of atherosclerosis, a disease that is the most common cause of death in civilized countries.
Stárnutí je proces, který se u živých organismů projevuje postupným opotřebováním těla a vnitřních orgánů. Postupně dochází ke snížování efektivity a účinnosti fungování organismu a hromaděním různých defektů. Dochází k vyšší náchylnosti k nemocem, které mohou skončit dřívějším úmrtím. Stárnutí se dá jen těžko časově ohraničit. Organismus jako všechny existující systémy a struktury začíná stárnout už v okamžiku svého vzniku. Proto se někdy za stárnutí v užším slova smyslu považuje věk, kdy se začíná zvyšovat riziko úmrtí.

Otázka délky života i potenciální nesmrtelnost zajímá člověka už od nepaměti. Biomedicínské objevy posledních desetiletí poněkud pozměnily pohled na stárnutí a smrt jako na důsledky pouhého opotřebování organismu podobného opotřebování součástek neživého stroje. Objevy programované buněčné smrti a porozumění sebeobnovnému potenciálu živých těl ukázaly i na hlubší a vnitřní důkazy ztráty funkčnosti s věkem a přinesly otázku po možné nesmrtelnosti. Dosud jsou zkoumány nejrůznější prostředky a metody, jak zajistit nesmrtelnost, zatím ale bez zásadního úspěchu. Ačkoliv se daří stále prodlužovat průměrný věk lidské populace a oddalovat následky stárnutí, musíme přesto konstatovat, že stárnutí a smrt je u každého organismu nevyhnutelný proces, jehož podstatu v současné době nejsme schopni zastavit.

1. Stárnutí

V procesu stárnutí dochází k progresivnímu poklesu fyzických schopností a je redukovaná schopnost účinně reagovat na environmentální stres, což vede ke zvýšené citlivosti a zranitelnosti organismu a končí vznikem onemocnění a smrti. Pokusy o porozumění všem příčinám stárnutí je stále omezeny přílišnou složitostí tohoto problému (Troen, 2003).

1.1 Definice stárnutí a změny odehrávající se během tohoto procesu

Pojem stárnutí (aging) je běžně užíván pro procesy, které se odehrávají po období dospívání, a které vedou k výkyvům homeostázy a zvýšené zranitelnosti organismu, avšak správnější pojem pro tyto procesy by bylo senescence. Stárnutí (aging) můžeme charakterizovat spíše jako dlouhodobý (s časem související) proces. „Normální“ stárnutí je nezadržitelná fyziologická změna, kdežto patologické stárnutí zahrnuje i nemoci spojené se stářím. Například menopauza a pokles ve funkci ledvin patří mezi klasické znaky normálního stárnutí. Naopak ischemická choroba srdeční je příklad patofyziologického procesu, který můžeme pozorovat u některých osob ve stáři, ale nemusí se nutně vyskytovat u každého staršího člověka. Tento přístup umožňuje rozdělit příčiny stárnutí do dvou kategorií – vnitřní (vývojově-genetické) a vnější (stochastické). Obě příčiny se v procesu stárnutí mohou uplatňovat. Změny v homeostáze u starších osob jsou pravděpodobně výsledkem genetického programu, který určuje odpověď na exogenní vlivy, čímž se zvyšuje náchylnost ke vzniku nemoci a smrti (Troen, 2003).

Život je doprovázen metabolickými pochody, ve kterých se postupně začínají vyskytovat nežádoucí vedlejší efekty. Tyto nebezpečné vedlejší účinky se v těle akumulují a mohou způsobovat patologické změny, které vedou k úmrtí organismu (Stefánsson, 2005). Stárnutí se proto definiuje také jako mnohostranný proces opotřebení těla a vnitřních orgánů, který se nedá časově ohraničit. Někdy se považuje za stárnutí věk, kdy se zvyšuje riziko úmrtí. U člověka by v tom případě začínalo stárnutí již na počátku puberty (URL 1).

S rostoucím věkem dochází k poškození mechanismů, které regulují množství glukózy v krvi, proto se u některých starších osob se začíná rozvíjet diabetes mellitus. Klesá produkce inzulínu a zvyšuje se zastoupení proinzulínu. Mění se mozkové funkce, a to především díky úbytku mozkových buněk, což může vést ke vzniku

Stárnutí je podřízeno termodynamickým zákonnům. Organismus je otevřený, dynamický systém, kterým neustále proudí složky, ze kterých je složen. Poškození starých („opotřebovaných“) částí je rovnováha s vytvářením nového materiálu. U člověka je za sedm let přeměněno až 90% materiálu. Každý živý organismus má mechanismy, které slouží k opravě defektních buněk. Proto je pro život nezbytně nutné, aby si organismus udržel co nejdéle schopnost obnovovat a opravovat poškozené části (Prinzinger, 2005).

2. Gerontologie

Prudce se rozvíjí průmysl spojený s prostředky, které mají zpomalit proces stárnutí. Jedná se látky s antioxidanty, které eliminují volné kyslíkové radikály, cheláty (cyklické komplexní sloučeniny) vázající těžké kovy jako je měď a železo, látky vylepšující
mozkové funkce (především paměť) nebo růstové hormony zvyšující svalovou hmotu (Stefánsson, 2005).

Gerontologie se dělí do 3 problémových okruhů. Gerontologie experimentální, která se zabývá otázkami, proč a jak živé organismy stárnou. Gerontologie sociální se zabývá vztahem starého člověka a společnosti včetně fenoménu stárnutí populace - má aspekty demografické, ekonomické, politické, sociologické, psychologické, etické, právní, urbanistické, ale i další. A konečně gerontologie klinická neboli geriatrie, která se zabývá zdravotním a funkčním stavem ve stáří, zdravím podmíněnou kvalitou života starých lidí, zvláštnostmi chorob, jejich diagnostikování a léčení ve stáří (URL 2).

Tento obor poskytuje také informace definující základní principy stárnutí. Přestože byla popsána celá řada principů, ráda bych zmínila dva, které jsou považovány za základní. Jedná se o princip životní historie a mechanický princip.

2.1. Princip životní historie

Evoluční entropie je faktorem, který se používá pro porovnávání potenciální délky života. Pozdní věk pohlavního dospívání, malý počet potomků a schopnost rozmnožovat se i v pozdním věku jsou pozitivně korelovány s dlouhověkostí. Naopak brzký reprodukční věk a velký počet potomků jsou spojeny s kratší délku života. Z toho vyplývá, že entropie a délka života jsou pozitivně korelovány (Obr. 1).
Obr. 1: Srovnání evoluční entropie myší a člověka

Křivka pro myš popisuje populaci, která má nízký věk sexuální dospělosti a velké množství potomků (tedy mají nízkou entropii). Naopak u člověka křivka znázorňuje pozdní věk sexuální dospělosti a malý počet potomků (tedy vysokou entropii). (Zdroj: Demetrius, 2005)

2.2 Mechanický princip

Mechanický pohled popisuje stárnutí jako progresivní poruchu homeostázy nebo homeodynamiky, tedy schopnosti těla udržet stálý rovnovážný stav. Nesprávná funkce může vést k akumulaci poruch nukleových kyselin, proteinů a lipidů a k poškození funkcí tkání a buněk. Homeostáza a homeodynamika primárně závisí na udržovacích a opravných procesech. Poškození těchto mechanismů způsobuje stárnutí a může vyvolat nemoci související se stářím (Demetrius, 2005).
3. Délka života

Různé živočišné druhy vykazují velkou rozmanitost v délce života. Rozsah je od několika hodin až po stovky let (Kirkwood, 2005). Mezi nejpoužívanější modely procesu stárnutí patří haďátko Caenorhabditis elegans žijící pouze po dobu 2 týdnů, moucha Drosophila melanogaster, jejíž délka života je okolo 2 měsíců, dále je to myš Mus musculus, která se dožívá 2 měsíců a člověk, jehož průměrná délka života je 70 – 80 let. Z velké variability délky života vyplývají otázky, zda lidské buňky jsou chráněny proti procesům opotřebení jako je mitochondriální oxidativní poškození (viz. kapitola 6.1.4), poruchy v DNA (viz. kapitola 6.1.1) nebo vůči zkracování telomer (viz. kapitola 6.2.5.1) lépe než buňky jiných druhů, které ţijí podstatně kratší dobu (Finkel, 2007).

Délka života se stanovuje maximální a průměrná.

3.1 Průměrná a maximální délka života

Na délku života jak maximální, tak průměrnou mají vliv fyziologické limity.

3.2 Fyziologické limity

Fyziologické limity jsou omezení determinující délku života. Mezi tyto limity patří pohlaví, hmotnost druhu (nejedná o hmotnost jedince jako takového), metabolismus a energetický obrat.

3.2.1 Pohlaví

Pohlaví je významným faktorem délky života. Obecně v celé živočišné říši platí, že samice se dožívají vyšší délky života než samci. U člověka je zjištěno, že ženy žijí v průměru o 5-9 let déle než muži. Částečně na tento fakt může mít vliv produkce ženského hormonu estrogenu, který působí jako ochrana proti vzniku aterosklerózy.
V důsledku toho je u žen výrazně nižší mortalita na ischemickou chorobu srdeční (Prinzinger, 2005).

Existují jasné rozdíly ve stárnutí mozků v závislosti na pohlaví, což naznačuje, že mozek prochází sexuálně dimorfickými změnami v genové expresi. Obecně se u mužů vyskytuje více genových změn než u žen a jejich geny bývají více postižené. V mužském mozku je s rostoucím věkem pozorována zejména změna v metabolických aktivitách, které zde probíhají (Berchtold et al., 2008).

3.2.2 Hmotnost druhu

Tělní hmotnost je znakem, který lze využít při determinaci délky života. Pomocí tělesné hmotnosti můžeme vyjadřit vztah mezi velikostí organismu a délkou jeho života. Fyzická délka života je závislá na čtvrté odmocnině tělesné hmotnosti. Platí, že větší tělesná hmotnost je pozitivně korelována s délkou života. Naopak menší tělní hmotnost znamená kratší délku života (Graf 1).

Délku života můžeme také hodnotit z hlediska vztahu mezi celkovou tělesnou hmotností a specifickou metabolizovanou energií, což je veličina, která charakterizuje celkové množství energie, kterou organismus využívá pro své metabolické pochody. Platí, že čím je vyšší tělesná hmotnost, tím je nižší metabolizovaná energie a naopak menší tělní hmotnost znamená vyšší spotřebu energie (Prinzinger, 2005).
Větší tělesná hmotnost je pozitivně korelována s vyšší délou života a naopak menší tělesná hmotnost znamená kratší délku života. (Zdroj: Prinzinger, 2005)

3.2.3 Metabolismus

Metabolické cesty jsou velmi podobné u všech aerobních organismů (bakterie, rostliny, zvířata). Všechny organismy dýchající vzdušný kyslík tvoří ve svých metabolických cestách stejné meziprodukty a využívají podobné enzymy k uvolňování chemicky vázané energie. K odlišení aerobních organismů z hlediska metabolismu se proto definují tzv. vnitřní hodiny, které jsou specifické pro každý organismus.

<table>
<thead>
<tr>
<th>Bakterie (mezi dvěma děleními)</th>
<th>0,0003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednobuněčný organismus</td>
<td>0,005</td>
</tr>
<tr>
<td>brouk</td>
<td>0,5</td>
</tr>
<tr>
<td>myš</td>
<td>3 - 4</td>
</tr>
<tr>
<td>krysa</td>
<td>5 - 8</td>
</tr>
<tr>
<td>pes</td>
<td>14 - 24</td>
</tr>
<tr>
<td>kráva</td>
<td>30 - 40</td>
</tr>
<tr>
<td>slon</td>
<td>60 - 70</td>
</tr>
<tr>
<td>velryba</td>
<td>80-100</td>
</tr>
</tbody>
</table>
3.2.4 Energetický obrat

Prakticky všechny organismy produkují energii v mitochondriích. Dochází zde k oxidaci kyslíkem a uložení energie ve formě ATP. Množství energie, které je vyprodukováno, je závislé na délce života organismu. Souvislosti mezi energetickým obratem a životností byly pozorovány u různých druhů organismů.

Na délku života má vliv mnoho faktorů, které bliže popisuje následující přehled.

1. Životnost (čas do dalšího dělení) je u jednobuněčných organismů ovlivněn teplou média, ve kterém se nacházejí. Zvýšení jeho teploty vede ke zkrácení délky života na polovinu.
2. Papoušci a draví ptáci, kteří jsou chováni v zajetí, jsou sice neschopni života ve volné přírodě, ale dosahují vyšší délky života než stejné druhy žijící volně.
3. Chobotnice patří mezi vysoce aktivní druhy, které se ale dožívají pouze 4-6 let. Naopak velcí nepohybliví měkkýši jsou schopni dožít se až 20-40 let.
4. Živočichové, kteří šetří energii strnulostí nebo hibernací, například netopýři nebo ječi, žijí mnohem déle než živočichové, kteří jsou aktivní po celý rok.
5. Živočichové s většími energetickými výdaji žijí kratší život než druhy živočichů s nízkou aktivitou. Příkladem mohou být krokodýli, kteří jsou poměrně pasivní, a kteří žijí vyrazně déle než vysoce aktivní kolibříci.
6. U myší byl prokázán vliv kalorické restrikce (nízkoenergetická strava) na délku života. Myší, kterým je podávána strava s nízkým obsahem energie jsou schopny dosáhnout dvakrát vyšší délky života.
7. Kastrovaní samci se dožívají vyšší délky života, protože jejich energetický obrat je nižší. Jejich primárním cílem, pro který využívají energii, není reprodukce.
8. Samice žijí v průměru o 10% délce než samci. Hlavní příčinou je, že samci mají vyšší metabolický obrat (energie je využívána intenzivněji než u samic).
9. Hyperfunkce štítné žlázy redukuje délku života (je rychlejší metabolická činnost), ačkoli hypofunkce nemá vliv na délku života.
10. Lidé se sedavým způsobem života a ti kteří mají dostatek spánku, žijí déle než lidé s těžkou fyzickou náhahou (Prinzinger, 2005).
4. Charakteristiky stárnutí

U savců existuje pět základní charakteristik stárnutí: zvýšení úmrtnosti s rostoucím věkem, změny v biochemickém složení tkání, progresivní pokles ve fyziologických funkcích, redukce schopnosti adaptivně reagovat na environmentální podněty a zvýšená citlivost a zranitelnost.

4.1 Zvýšení úmrtnosti s rostoucím věkem

Exponenciální zvýšení úmrtnosti s rostoucím věkem bylo poprvé popsáno na počátku 19. století. V roce 1995 připadalo na osoby ve věku 25 – 44let 189,5 úmrtí z různých příčin na 100 000 obyvatel, ale u osob starších 65let byl poměr více než 25krát vyšší – na 100 000 obyvatel připadalo 5,069 úmrtí. U všech druhů organismů, jak u bezobratlých, obratlovců, ale i jednobuněčných organismů, platí stejně vzorce pro přežití organismů ve vyšším věku (Obr. 2) (Troen, 2003).

![Křivky životaschopnosti](image.png)

Obr. 2: Křivky životaschopnosti u různých modelových organismů (*Homo sapiens, Mus musculus, Caenorhabditis elegans a Saccharomyces cerevisiae*) mají velmi podobný charakteristický tvar. (Zdroj: Troen, 2003)
4.2 Změny v biochemickém složení tkání

Lidské tělo je složeno z tukové, kostní a svalové tkáňi, které v organismu zabírají určitý prostor. Svalová tkáň zabírá v našem těle mnohem méně místa než tkáň tuková. Proto pro určení toho, jak jedince vypadá, není důležitá pouze celková hmotnost, ale také složení těla (tedy poměr svalové, kostní a tukové tkáňi). S rostoucím věkem dochází k významnému poklesu v LBM (hmotnost těla bez tuků) a ubývá kostní hmoty. Množství podkožního tuku se nemění nebo mírně klesá, ale celkové procento tuku v organismu s věkem roste vzhledem úbytku svalové a kostní hmoty.

4.3 Progresivní pokles ve fyziologických funkcích

S rostoucím věkem dochází k poklesu rychlosti glomerulární filtrace (množství profiltrované krve v ledvinnýchglomerulech), což může mít za následek i úplné selhání tvorby močí. Méní se i míra srdeční činnosti a vitální kapacita plic. Pokles funkce je lineární a prokazatelně k němu dochází od věku 30-ti let. Přesto je velikost poklesu fyziologických funkcí poměrně heterogenní, jak mezi různými orgány, tak i mezi různými jedinci (Troen, 2003).

4.4 Redukce schopnosti adaptivně reagovat na environmentální podněty

4.5 Zvýšená citlivost a zranitelnost

Výskyt různých druhů onemocnění a úmrtnost na ně roste po překročení hranice stáří exponenciálně s rostoucím věkem. Mezi pět nejčastějších příčin úmrtí u osob starších 65-ti let patří srdeční onemocnění, rakovina, mozková mrtvice, chronické onemocnění plíc a zánět plíc spojený s chřipkou. Počet úmrtí na dané onemocnění u osob starších 65-ti let v porovnání s osobami ve věku 25 – 44let je u srdečních onemocnění 92krát vyšší, u rakoviny 43krát vyšší, u mozkové mrtvice 100krát vyšší, u chronického onemocnění plíc 100krát vyšší a zánětu plíc s chřipkou 89krát vyšší. Podstata tohoto prudkého nárůstu úmrtnosti není zcela objasněna, ale pravděpodobně je spojena se změnami funkci různých buněk, které způsobí poruchu funkce tkáně nebo orgánu a vedou ke vzniku systémového onemocnění (Troen, 2003).

5. Mechanismy a příčiny stárnutí

Předpokládá se, existují tři kategorie genů, které jsou zapojeny do procesu stárnutí. Jednak se jedná o geny, které regulují somatickou údržbu a opravu, dále se uplatňují tzv. negativně pleiotropické geny, které umožňují přežití v raném věku po narození, ale působí nevýhodně v pozdějším věku (antagonistická pleiotropie). Existují předpoklady, že tento proces může hrát pravořadou úlohu v procesu stárnutí. Poslední kategorií jsou geny ovlivněné škodlivými mutacemi, které působí ve vyšším věku, a na které evoluční selekce působí velmi slabě.

Přítomnost těchto genů představuje spektrum působení na organismy od obecných po vysoce druhově specifické. Geny, které jsou zapojeny do procesů udržování buněk a

6. Teorie stárnutí

Z historického hlediska můžeme teorie stárnutí rozdělit do dvou obecných kategorií: stochastické a vývojově-genetické. Tyto dně kategorie se navzájem nevylučují, protože během života dochází postupně k poklesu vlivu aktivní genetické kontroly a zvyšuje se vliv stochastického působené. Projevuje se posun v důležitosti působení genů od obecných k druhově specifickým (Troen, 2003).

6.1 Stochastické teorie

Stochastické teorie předpokládají, že stárnutí je způsobeno náhodným poškozením životně důležitých molekul. Poškození se může hromadit, a když dosáhne určitého stupně, dojde k poklesu fyzio logických funkcí (Troen, 2003).

6.1.1 Teorie somatických mutací a opravy DNA

Teorie somatických mutací vychází z faktu, že u řady buněk starých organismů byla nalezena zvýšená frekvence poruch DNA. Teorie předpokládá, že vznik somatických mutací, ať již způsobených fyzikálními či chemickými mutageny, je primární příčinou
stárnutí. Tato teorie stanovuje, že genetické poškození, které je způsobeno zářením přirozeného pozadí (background radiation), způsobuje vznik mutací, které vedou k poškození fyziologických funkcí buňky a konečně ke smrti (Holliday, 2000; Troen 2003). Pokud je organismus vystaven ionizujícímu záření, výsledkem je zkrácení délky života v důsledku zvětšení výskytu rakoviny a glomerulosklerózy. Glomeruloskleróza je onemocnění ledvin, u kterého dochází k ukládání hyalinu (heterogenní směs proteinů, která vzniká jako projev fyziologické regrese nebo patologické degenerace některých tkání) v interkapilárních prostorách ledviny.

Teorie opravy DNA je více specifická než teorie somatických mutací. Schopnost opravovat poškození DNA způsobené UV zářením v buněčných kulturách druhů organismů s různou délka života, přímo koreluje s maximální délkou života. Bohužel zatím neexistuje dostatek experimentálních důkazů, které by prokazovaly, že tento rozdíl mezi druhy je hlavní příčinou stárnutí. Nezdá se, že změny v celkové schopnosti opravovat poškozenou DNA by souvisely s věkem, ačkoli existují specifické opravy určitých úseků DNA, které se zdají být důležité v souvislosti s věkem (Troen, 2003).

6.1.2 Teorie chyba – pohroma (error – catastrophe)

Tato teorie předpokládá, že existují náhodné chyby v proteinech řídících syntézu DNA. Chyba v proteinu se obvykle odstraňuje pomocí degradace poškozeného proteinu, který je následně nahrazen bezchybnou molekulou. Molekuly, které obsahují nějakou chybu, a které jsou zapojeny do procesu syntézy nějaké látky, mohou způsobit vznik chyby v produktu dané syntézy. Pokud dochází v organismu k postupné kumulaci látek s chybou, může tento proces vyústit v pohromu (error – catastrophe), která je neslučitelná s normálními funkcemi organismu a s životem. U starších organismů byla v tkáních a buňkách identifikována řada pozměněných proteinů (proteinů s chybou), které byly místo post-translačními modifikacemi (úpravy proteinů po jejich syntéze, které dodávají proteinům nové vlastnosti, stabilizují jejich konformaci nebo pomáhají regulovat jejich funkci) upravovány glykací (neboli neenzymovou glykosylocí, což je neenzymatická vazba glukózy na aminoskupinu aminokyselin různých tkáňových a plazmatických proteinů) nebo oxidací. Jejich počet se s rostoucím věkem zvyšuje, protože organismus ztrácí schopnost tyto poškozené proteiny odstraňovat (Troen, 2003).
6.1.3 Teorie příčných vazeb (modifikace proteinu)

Teorie příčných vazeb vychází z faktu, že během života organismu dochází k chemickým změnám životně důležitých makromolekul (nukleové kyseliny, pojivové bílkoviny). Tyto změny spočívají zejména ve vytváření příčných vazeb mezi řetězci makromolekul i uvnitř těchto řetězců (síťování). U pojivových bílkovin je důsledkem tvorby příčných vazeb zhoršení jejich mechanických vlastností, u DNA mohou tyto změny vést k ztrátě informační kapacity. Teorie příčných vazeb považuje tento proces za primární příčinu stárnutí (Troen, 2003).

Konečné produkty glykosylace (advanced glycosylation end products - AGEs) mohou zvyšovat rychlost stárnutí a jsou také zapojené do procesů spojených se vznikem diabetu, očních poruch a hromadění amyloidu (amyloid je patologická forma proteinu, která se velmi často vyskytuje v souvislosti s neurodegenerativními onemocněními). Při vysoké hladině krevního cukru může glykosylace způsobit to, že se proteiny začnou od sebe dělit. Vytvoří neelastické vazby, které mohou poškodit vytvoření siťování makromolekul, jako je kolagen, elastin, osteokalcin (nekolagenní bílkovina, vyskytující se v kostech a zubovině) a krystalin (protein oční čočky, který je zodpovědný za vznik šedého zákalu (kataraktu) u osob s diabetem), může ovlivňovat jak regulaci genové exprese, tak difuzi esenciálních molekul. Interakce mezi kovalentními vazbami proteinů může také hrát důležitou úlohu ve snižování pružnosti cévních stěn s rostoucím věkem (Troen, 2003).
6.1.4 Teorie volných radikálů / Teorie mutací mitochondriální DNA

Volné radikály způsobují vznik dvou druhů onemocnění. První skupinou jsou onemocnění čistě genetická (autozomálně recesivní onemocnění), která jsou způsobena geneticky podmíněnou nedostatečnou ochranou vůči proti kyslíkovým radikálům. Druhou skupinou jsou onemocnění, která spojují genetické a vnější faktory. Příkladem může být lupénka (Lupus), kde byla prokázána geneticky zvýšená citlivost jaderné DNA jednoho nebo více typů buněk k poškození volnými radikály.

Hypotéza mutací mitochondriální DNA a teorie volných radikálů představuje syntézu několika teorií. Předpokládá se, že reaktivní formy kyslíku významně přispívají k hromadění mutací mitochondriální DNA, což vede ke vzniku bioenergetického nedostatku a konečným důsledkem může být stárnutí a buněčná smrt. Celý proces se nazývá redoxní mechanismus mitochondriálního stárnutí. Mitochondriální DNA (mtDNA) prodělává s věkem progresivní zvyšování oxidativního poškození v kosterních svalech, srdečním svalu a v mozku. Tento expozicionální nárůst poškození je korelovan se somatickými mutacemi mtDNA. Poškození mtDNA vede k defektní mitochondriální respiraci, která způsobuje zvýšenou produkc volných kyslíkových radikálů, a tím dochází...
k dalšímu navýšení poškození mtDNA. Defekty v mitochondriální respiraci s rostoucím věkem nepozorujeme pouze v normálních stárnoucích tkáních, ale také u osob s Parkinsonovou, Alzheimerovou chorobou, Huntingtonovou choreou a u osob s pohybovými nemocemi (Troen, 2003; Greaves & Turnbull, 2009).

Apoptóza buněk souvisí s fragmentací mtDNA. Proto se zkoumá otázka, zda stárnutí tkání je způsobeno mutacemi mtDNA. Specifické mutace, jejichž počet narůstá s věkem, málokdy představují více než několik procent z celkového množství vlivů, kterými je mtDNA ovlivněna. Ačkoliv některé studie naznačují, že mtDNA je mutacemi ovlivněna až z 85% a toto číslo s věkem neustále narůstá.

Při pokusech na myších bylo zjištěno, že kalorická restrikce byla schopna omezit hromadění mutací mtDNA s rostoucím věkem. Dále existují látky, které jsou schopny obcházet bloky v respiračním řetězci. Těmito látkami je například koenzym Q10, tokoferol (vitamín E), nikotinamid (vitamín B3) nebo kyselina ascorbová (vitamín C). U těchto látok je možné předvidat, že mohou být schopny tlumit negativní účinky, které vnikají v důsledku mitochondriálních onemocnění a stárnutí. Koenzym Q10, který byl dodáván v potravě hlistům, prodloužil jejich délku života o 60%. Epidemiologické studie naznačují, že antioxidany dodávané v potravě mohou redukovat výskyt vaskulární demence (viz kapitola 11.1), kardiovaskulárních onemocnění a výskyt rakoviny u člověka. Komplex interakcí pro-oxidantů a antioxidantů v buňkách a regulace rovnováhy mezi těmito dvěma skupinami látek v mitochondriích je tedy důležitý pro udržení buněčné a tkáňové integrity během stárnutí (Troen, 2003).

6.2 Vývojově-genetické teorie

Vývojově-genetické teorie považují stárnutí za součást genetického programu a za součást řízeného procesu vývoje a dospívání. Tato skupina teorií je podporována pozorovánímí, ve kterých bylo zjištěno, že maximální délka života je vysoce specificky spjata s druhem. Navíc byly prováděny studie, ve kterých se porovnávala délka života u monozygotických a dizygotických dvojčat a mezi sourozenci, kteří pocházeli z dvojčat. U monozygotických dvojčat byla pozoruhodná podobnost v délce života, která se u dalších dvou podobných skupin nevyskytovala (Troen, 2003).
6.2.1 Geny dlouhověkosti

Existuje řada důkazů, že maximální délka života u mnoha druhů je řízena geneticky, ačkoli stupeň dědičnosti je pravděpodobně nižší než 35%. Přes toto zdánlivě malé číslo, genetické mutace mohou významně modifikovat stárnutí. U kvasinek se vyskytují geny, které ovlivňují jak průměrnou, tak maximální délku života. Produkty těchto genů působí různými způsoby. Ovlivňují odpověď na stresový podnět, vnímání nutričního stavu nebo zvyšují metabolickou aktivitu. U některých jedinců z kmene Nematoda (Caenorhabditis elegans), u kterých došlo k mutaci v genech, byla zjištěna prodloužená délka života. Geny, které u tohoto kmene pravděpodobně hrají úlohu v procesu stárnutí, jsou age-1, který ovlivňuje rychlost stárnutí, daf-2 a daf-23, které aktivují zpoždění ve vývoji, spe-26, který redukuje fertilitu a clk-1, který ovlivňuje biologické hodiny. Tyto geny zároveň mění odolnost vůči stresu (především v odpovědi na UV záření), ovlivňují vývoj, signální cesty a metabolickou aktivitu.

Jak už bylo poznáno u stochastických teorií, polymorfismus mitochondriální DNA je spojen s dlouhověkostí. Alela ε4 apolipoproteínu E, která souvisí s zvýšeným výskytem srdečních onemocnění a Alzheimerovou chorobou, způsobuje snížení délky života, ale alela ε2 apolipoproteínu E je naopak velmi často nacházena u osob, které se dožijí velmi vysokého věku (často se vyskytuje u stoletých lidí) (Troen, 2003).

6.2.1.1 Sirtuiny

Sirtuiny patří mezi významné látky, které chrání buňky, tkáně, organely a v konečném důsledku i celý organismus před poškozením, které způsobují volné radikály. Sirtuiny jsou zvláštní bílkoviny, které mají za úkol hlidat správné vyladění genů a udržovat
jejích činnost na optimální úrovni. Pokud vznikne poškození v molekule DNA, sirtuiny se snaží toto poškození opravit, ale v tomto okamžiku přestávají kontrolovat geny, které mohou svou nadměrnou činností způsobovat poškození buňkám. Když dojde v lidské buňce k poškození DNA, až 90% sirtuinů opustí svá kontrolní místa a snaží se co nejrychleji opravit poškozenou DNA (Petr, 2009).

6.2.2 Syndromy zrychleného stárnutí

U člověka se vyskytuje několik genetických onemocnění, které jeví znaky urychleného stárnutí (progerie). Progerie je nemoc, která způsobuje předčasný a urychlený rozvoj stařeckého vzhledu (fenotypu stáří) a typických chorob stáří (např. aterosklerózy, osteoartrózy, osteoporózy, nádorů) se zkrácením délky života (URL 3). Jedná se o Hutchinson-Gilfordův syndrom, u kterého můžeme pozorovat brzký počátek progerie u dětí, Wernerův syndrom, kde vzniká progerie u dospělých osob a Downův syndrom (trisomie na 21. chromozomu) (Troen, 2003).

6.2.2.1 Wernerův syndrom

6.2.2.2 Hutchinson-Gilfordův syndrom

6.2.2.3 Downův syndrom

6.2.3 Neuroendokrinní teorie

28
podporována řadou experimentů, kdy bylo dokázáno, že zásahem do neuroendokrinních funkcí u hladavců je možné dosáhnout prodloužení života. Například levodopa, což je dopaminergní látka, prodloužila život u myší tím, že chránila dopaminergní neurony před poškozením, které se vyskytuje ve vyšším věku. Změny, které se ve vyšším věku vyskytují v neuroendokrinním systému, mohou být způsobeny fundamentálními změnami ve všech buňkách a mohou proto být sekundárním znakem fenotypu stárnutí. Podle této teorie by se dalo říci, že se stárne ne proto, že klesá produkce hormonů, nýbrž protože klesá produkce hormonů, tak se stárne. K hormonům, jejichž produkce s věkem klesá, patří i mužský pohlavní hormon testosteron, hormony nadledvin, šišinkový hormon - melatonin a růstový hormon z předního laloku hypothfyzy (Troen, 2003)

6.2.4 Imunologická teorie

6.2.5 Buněčné stárnutí

Na základě svých pozorování odhalili iniciaciální periodu, která je charakteristická velmi rychlou počáteční proliferací, následně dochází k poklesu rychlosti růstu a proliferační aktivity a tato fáze končí úplným zastavením proliferace. Hayflick a Moorhead předpokládali, že stárnutí je jev, který se odehrává jak na úrovni buněčné, tak na úrovni organismu a je spojen se ztrátou funkční kapacity jednotlivce, což odráží souhrnný pokles
funkčních možností jednotlivých buněk. Je ale důležité si povšimnout, že populace stárnoucích buněk nemusí nutně zemřít, ale mohou v buněčné kultuře zůstávat i několik let v post-mitotickém stavu (nedochází u nich k proliferaci). Ztráta proliferace je u lidských buněk jejich vlastní schopností a nezávisí na prostředí nebo kultivačních podmínkách. To, kolikrát buňka podstoupí dělení, je důležitějším faktorem ke zjištění pro liferační životnosti, než čas, který buňka stráví v kultivačním médiu. Buňky mají pravděpodobně vnitřní mechanismus, který počítá počet dělení a ne čas, který buňky žijí.

Při studiu stárnoucích buněk se využívají především metody, které zkoumají dráhy zapojené do regulace buněčné proliferace a dráhy ovlivňující adaptivní odpovědi buňky. Stárnoucí buňky jsou obvykle méně citlivé vůči působení mitogenů. Mohou se u nich vyskytovat změny v růstových faktorech v porovnání s mladými buňkami, změny v signálních drahách a v transkripčních faktorech. Tyto změny indikují, že stárnoucí buňky se nacházejí ve stavu růstu, který se ale výrazně odlišuje od mladých buněk a naznačuje, že ve stárnoucí buňce se odehrávají komplexní změny v její fyziologii (Troen, 2003).

6.2.5.1 Telomery

V loňském roce (2009) získala Nobelovu cenu za medicínu a fyziologii trojice amerických vědců, kteří přispěli k pochopení mechanismu řídícího stárnutí buněk. Porucha tohoto procesu se podílí na vzniku rakoviny i dalších chorob. Cenu získala Elizabeth
Blackburn (61) z Kalifornské univerzity, její bývalá studentka Carol Greider (48) z Univerzity Johnse Hopkinse a Jack Szostak (57) z Lékařského institutu Howarda Hughese. Nobelova cena byla oficiálně udělena „za objev způsobu, jakým jsou chromozomy chráněny telomerami a enzymem telomerázou“. Když se buňka dělí, je potřeba zkopírovat všechny chromozomy nesoucí dědičnou informaci, aby každá z dceřiných buněk získala vlastní sadu. Ale standardní mechanismus, který toto kopírování zajišťuje, si neumí poradit s konci chromozomů – při každém dělení je o kousek zkrátil. Chromozomy tak mají tendenci se neustále zkracovat, a jakmile se zkrátil nad únosnou míru, buňka zahyne.

Vědci zjistili, že telomery jsou tvořeny specifickým řetězcem DNA, v němž se pořad dokola opakuje jedna sekvence „písmen“. Nenese žádnou užitečnou informaci, takže pokud se o kousek zkrátil, nic se nestane. Poté objevil telomerázu - enzym zodpovědný za kopírování této DNA. Telomeráza tedy umí zajistit, aby se chromozom zkopíroval celý. Buňky v těle se mezi sebou liší aktivitou tohoto enzymu, tedy rychlostí, s jakou se stavají „neplodnými“.

Pokud poznáme mechanismus, jímž je stárnutí buněk řízeno, otevírají se nové možnosti léčby mnoha chorob. Právě proto je objev oceněný letošní Nobelovou cenou za fyziologii a medicínu tak významný. V současnosti vědci stále poznávají detaily celého procesu a hledají způsoby, jak tyto znalosti využít v klinické praxi (URL 4).
6.2.6 Buněčná smrt

Látky navazující apoptózu pronikají buď přímo do buňky, nebo spustí biochemickou kaskádu z vnější části cytoplazmatické membrány. Vnitrobuněčná cesta se spouští převážně ve chvíli, kdy je buňka v jakékoliv formě stresu, jako je vystavení glukokortikoidům, teplu, radiaci, nedostatek živin, virová infekce buňky, nedostatek
kyslíku či také zvýšený obsah vápníkových iontů uvnitř buňky. Všechny tyto jmenované signály jsou na počátku enzymatické kaskády, která je zodpovědná provedení vlastní apoptózy (URL 5, URL 6).

6.2.7 Teorie programovaného stárnutí

7. Stárnutí mozku

Všechny patologické znaky, které se vyskytují u Alzheimerovy choroby (AD), můžeme pozorovat také u mozku stárnoucích osob, kteří nemají porušený intelekt. Tyto znaky se u nich projevují pouze v menší míře. To je jeden z argumentů, který slouží k podpoře myšlenky, že AD je nevyhnutelný následek stárnutí. Zda se u osoby vyvine AD nebo se jí vyhne, potom může určovat kombinace genetických faktorů a prostředí, bez ohledu na věk. I mozek zdravých jedinců, u kterých se neprojevují poruchy kognitivních funkcí, vykazuje srostoucím věkem redukci objemu a hmotnosti. Tyto změny jsou způsobeny ztrátou nervových buněk, ale je velmi těžké přesně odhadnout, jak velké množství těchto buněk se ztratí. Ztráta nervových buněk ve stárnoucím mozku se projevuje pouze v určitých oblastech. Vytváří se neurofibrilární smotky a senilní plaky, které jsou typické pro Alzheimerovu chorobu (viz. kapitola 10.4), ale u tohoto onemocnění jsou mnohem více rozšířené než u běžného staršího člověka, který nemá nijak poškozené intelektuální schopnosti. U Alzheimerovy choroby dochází k akceleraci stárnutí mozku. Nicméně u tohoto onemocnění hrají významnou úlohu genetické predispozice, což naznačuje, že AD nemusí být nevyhnutelným procesem ve stáří. Souhra genetických a environmentálních faktorů může determinovat stupeň patologického poškození stárnoucího mozku, a jestli se u jednotlivce rozhodne demence související se stárím.

7.1 Apolipoproteiny

Apolipoproteiny obecně slouží jako informační molekuly, které zajišťují vazbu lipoproteinu na specifická vazebná místa. Prostřednictvím apolipoproteínu E (ApoE) se lipoproteiny vážou na specifické receptory v játrách. ApoE mRNA (informační ribonukleová kyselina) byla v největším množství nalezena v játrách, ale vyskytuje se také v mozkové tkáni, kde je syntetizována hlavně astrocyty a mikrogliemi. ApoE v mozku má
vliv na neuronální reparaci, růst dendritů, synaptickou plasticitu a je popsán i jeho protizánětlivý vliv. Byl popsán vliv ApoE na cholesterol, aktivitu acetylcholinesterázy, beta-sekretázy a také se zkoumá souvislost s oxidativním stresem a AD.

ApoE je důležitým přenašečem cholesterolu v mozku a cholesterol reguluje produkci a ukládání amyloidu. Přítomnost izoformy ApoE4 je rizikovým faktorem jak pro vznik hyperlipidémie, tak AD. ApoE je asociovan se zvýšenou hladinou cirkulujícího cholesterolu a také s vyšším obsahem cholesterolu v mozku pacientů s AD. ApoE hraje důležitou roli v metabolismu cholesterolu v mozku.

Aktivita cholinacetyltransferázy v hipokampu negativně koreluje s počtem ApoE ε4 alel, což ukazuje na propojení mezi lipidovým metabolismem a cholinergním systémem. Přesto tento vztah stále není zcela objasněn.

Genetické faktory hrají významnou úlohu v nepatologickém poklesu funkčních vlastností mozku a je vysoce pravděpodobné, že budou v budoucnu objeveny další geny, které ovlivňují pokles kognitivních funkcí v závislosti na věku. Prostředí, ve kterém člověk žije, je také faktorem, který ovlivňuje funkce mozku ve stáří. Bylo prokázáno, že nízké vzdělání, tedy menší pracovní a motorické funkce mozku, způsobila povzestní poklesu paměťových funkcí a může vyústit až v demenci (Anderton, 2002).

7.2 Anatomické změny v mozku během nepatologického stárnutí

Magnetická rezonance prokázala, že s rostoucím věkem dochází k velkému zmenšování objemu a hmotnosti mozku u osob starších 60 let. Zmenšování objemu mozku je doprovázeno zvětšováním komor a zvětšováním prostorů, kde se nachází mozkomišní mok. Nejvíce zasaženými oblastmi mozku jsou hipokampus a čelní laloky. Ve věku od 30 do 90 let se objem mozkové kůry snižuje o 14%, hipokampus o 35% a bílé hmoty uvnitř
hemisféř o 26%. Největší objemové ztráty bílé mozkové hmoty se odehrávají ve věku od 50 let. Ztráty následně ovlivňují komunikační síť mozku, protože bílá hmoda obsahuje podkorová nervová vlákna, která spojují mozkovou kůru a korové oblasti s míchou.

Bylo také zjištěno, že dochází ke ztrátě neuronů v mozku s rostoucím věkem. Nejvíce postiženými oblastmi mozku je opět hipokampus, mozková kůra a amygdala. Z mozkové kůry se postupně s rostoucím věkem ztrácí asi 10% neuronů. Některé neurony se úplně nevytrácí, pouze zmenšují svoji velikost. Některé oblasti mozku jsou ušetřeny jak zmenšování svého objemu, tak ztráty neuronů. Takovou oblastí jsou například bazální ganglia, ve kterých dochází ke zmenšování objemu a ztrátě neuronů pouze v souvislosti s patologickými procesy jako je Alzheimerovy choroba.

Mozek se neliší od jiných orgánů v procesu stárnutí. I u něj dochází s rostoucím věkem ke zvyšování pravděpodobnosti, že dojde ke vzniku patologického onemocnění. Nejběžnější formou patologického stárnutí je výskyt velkého množství plaků a splétí s doprovodnou demencí. Otázkou zůstává, zda je Alzheimerova choroba patologická ve smyslu nemoci, nebo je to pouze akcelerovaný proces normálního stárnutí, protože charakteristická poškození jsou v malém množství přítomny i v mozku starších osob, které ale nemají poškozené intelektuální schopnosti (Anderton, 2002).

7.3 Změny na buněčné úrovni

Změny odehávající se na úrovni buňky souvisí především se vznikem charakteristických útvarů, který můžeme pozorovat i neurodegenerativních onemocnění. Dochází k akumulaci pigmentu lipofuscinu, vytvářejí se neurofibrilární smotky, neuropilová vlákna, senilní plaky a Hiranova tělíska.

7.3.1 Akumulace pigmentu

7.3.2 Neurofibrilární smotky (tangles) a neuropilová vlákna (threads)

Neurofibrilární smotky a senilní plaky jsou považovány za histopalogickou známkou Alzheimerovy choroby společně s výskytem tzv. Hiranových tělisek (Hirano bodies). Přestože jsou všechny tyto znaky především znakem AD, můžeme je najít i u osob, které nejsou postiženy demencí. Hlavní rozdíl je ale v množství. U AD jsou senilní plaky a neurofibrilární smotky ve vysokém množství a jsou široce rozšířené. Naopak v procesu „normálního“ stárnutí počet neurofibrilárních smotků, které se vyskytují v tělech neuronů, je poměrně nízký a jejich výskyt je omezen pouze na hipokampus a amygdalu. Neurofibrilární změny, které postihují hipokampus, mohou být následně spojeny s poškozením kognitivních funkcí.

Neurofibrilární smotky jsou složeny z párových helikálních filament a k nim připojených rovných filament. U osob s AD bylo zjištěno, že neurony postižené spletí neurofibril, mají kompletně redukovaný cytoskelet a chybí jim také neurofilamenta. Tudiž ztráta neuronů může být následkem nedostatku funkčního cytoskeletu.

7.3.3 Senilní plaky

Senilní plaky (Obr. 3) se vyskytují v oblasti šedé hmoty mozku, která obsahuje těla nervových buněk a tvoří mozkovou kůru i podkorová jádra. Senilní plaky jsou vysoké až 200μm a skládají se z centrálního extracelulárního jádra tvořeného amyloidem obklopeného abnormálními neurity, které jsou známé taky jako neuritické plaky. Centrální kůra je tvořena velkým počtem proteinů. Hlavní protein je malý peptid tvořený 39-43 aminokyselinami a je obvykle znám pod názvem amyloid β-peptid. Aβ se skládá do fibril. V normálně stárnoucím mozku je pouze malý počet plaků, ale u AD je Aβ jedním z hlavních znaků a vyskytuje se zde ve velkém množství. Předpokládá se pozitivní korelace mezi poklesem kognitivních funkcí a celkovým množstvím Aβ v mozku.
Abnormální neurity obklopující jádro Aβ jsou tvořeny párovými helikálními filamenty a chybí jim normální cytoskelet (Anderton, 2002).

Obr. 3: Senilní plaky a neurofibrilární smotky
Tyto dva útvary jsou charakteristikami stárnoucího mozku člověka jak s nepoškozenými kognitivními funkcemi, tak u osob s Alzheimerovou chorobou, kde se ale vyskytují ve výrazně větší míře. (Zdroj: URL 7)

7.3.4 Hiranova tělíska (Hirano bodies)

Hiranova tělíska jsou tyčinkovité, intracelulární, eozinofilní struktury, které jsou přibližně 30μm dlouhé a 8μm široké. Můžeme je nalézt v sousedství hipokampálních pyramidalních buněk. Jejich počet se zvyšuje s rostoucím věkem, ale u AD se opět nacházejí v mnohem větší míře než u normálně stárnoucího mozku. Hiranova tělíska jsou intracelulární agregáty aktinu nebo tropomyosinu (Anderton, 2002).

7.4 Mozek, proces myelinizace a remyelinizace

Mozek savců má schopnost částečné sebeopravy (remyelinizace – opětovné vytvoření myelinových pochev nervových spojů). S věkem se ale účinnost remyelinizace snižuje nebo se vytrácí úplně, což má za následek zvýšený výskyt onemocnění souvisejících se stářím (Nave, 2008; Shen et al., 2008).
Myelinová pochva (Obr. 4) funguje jako izolační vrstva. Čím je vlákno silnější, tím jsou myelinové segmenty mezi zářezy delší, což urychluje vedení vzruchu (URL 8). Myelinová pochva je dále potřebná pro motorické, senzorické a vyšší funkce mozku, ale je významná také pro dlouhodobé přežití nervové buňky (Nave, 2008).

Myelin může být poškozen mnoha různými druhy nemocí, jako je například roztroušená skleróza. Roztroušená skleróza (sclerosis multiplex) je chronické autoimunitní onemocnění, při kterém lidský imunitní systém napadá centrální nervovou soustavu (mozek a mích), čímž způsobuje demyelinizaci (rozpad myelinových pochev).

U roztroušené sklerózy autoreaktivní buňky imunitního systému opakovaně napadají oligodendrocyty a myelin a vytvářejí oblasti s lokálním zánětem (tzv. plaky) v bílé hmotě mozku. Za běžného stavu prekurzory oligodendrocytů (OP) znovu osídlovají napadenou oblast a diferencují se v dospělé oligodendrocyty, které remyelinizují postižený axon. Ale když tento proces nefunguje, postižené axony postupně degenerují (Nave, 2008).

Epigenetické mechanismy reflektují změny v genové expresi, které nejsou určovány samotnými sekvencemi DNA. Zahrnují změny na chromatinu, což jsou komplexy DNA s histony. Těmito změnami je ovlivněn například enzym histonová

Během normálního vývoje myelinizace vyžaduje redukovanou aktivitu transkripčních faktorů, které inhibují diferenciaci oligodendrocytů, což může být přičinou, proč si OP buňky udržují charakter kmenové buňky. HDAC je esenciální pro diferenciaci OP buněk, protože inhibice těchto enzymů výrazně zasahuje do normálního vývoje (Shen et al., 2005). Ukazuje se tedy spojení mezi zjevným poklesem remyelinizace s rostoucím věkem a změnami v genové expresi OP buněk u dospělých jedinců (Nave, 2008).

7.5 Vliv zinku na činnost mozku

Dnešní neurobiologie není zaměřena pouze na studium aspektů stárnutí mozku, ale také na vytváření strategií sloužících k ochraně kapacity mozku a především výskytu neurodegenerativních onemocnění. V souladu s tímto trendem je věnována pozornost především metabolismu zinku. Zinek působí jako neuromodulátor v excitačních synapsích a uplatňuje se při odpovědi na stresové podněty.

Mozek má nejvyšší obsah zinku v porovnání s ostatními orgány. Průměrná koncentrace zinku je odhadována na 150 μmol/l. Zinek není ve všech částech mozku rozložen rovnoměrně. Nejvyšší množství se nachází v šedé mozkové hmotě, hipokampu, amygdale a neokortexu.

Fyziologická role zinku je v modulaci a uvolnění glutamátu a γ-aminomášelné kyseliny (GABA). Glutamát je hlavním excitačním transmíterem, který působí v centrální nervové soustavě. Uvolnění zinku redukuje schopnost glutamátu aktivovat post-synaptické receptory.

8. Terapie proti stárnutí

Terapie proti stárnutí jsou založeny na vědeckých důkazech, které prokázaly, že působením na fyziologické funkce organizmu může dojít ke zpomalení procesu stárnutí. Některé procesy zahrnují dodávání hormonů, především růstového hormonu, melatoninu a estrogenu. Dalším principem jak prodloužit život je dodávání živin. Buď se jedná o syntetické látky, nebo přírodní antioxidanty (rapamycin, Chlorella, koenzym Q10). Jako velmi nadějnou terapii proti stárnutí se jeví kalorická restrikce a také poznatky z oboru studia kmenových buněk. Přestože se některé prostředky v léčbě stárnutí jeví jako prospěšné, žádný z nich zatím neléčí stárnutí samo o sobě (Rattan, 2005).

8.1 Kosmetické léčení

Kosmetické léčení se používá k odstranění vnějších znaků stárnutí. Není schopné ovlivnit základní buněčné a biochemické procesy v organismu. V kosmetickém léčení se používá především látka N⁶-furfuryladenin neboli kinetin (Obr. 7), která zabraňuje rozvinutí chorob kůže. Dále se využívají carnosin, což je z chemického hlediska dipeptid β-alanyl-L-histidin (Rattan, 2005) Tato látka pomáhá při nespavosti, urychluje hojení povrchových ran, podporuje růst vlasů a také zvětšování svalového objemu (Rattan, 2005).

\[\text{Obr. 5: Struktura kinetinu (Zdroj: URL 11)} \]
8.2 Příjem minerálních látek

8.2.1 Nedostatek esenciálních látek

Nedostatek stopových prvků může způsobit poruchy ve struktuře DNA, kdy konečným výsledkem může být vznik rakovinného bujení. Na organismus má vliv předeším nedostatek vitamínů C (kyselina askorbová), E (tokoferol), B₆ (pyridoxin), B₁₂ (kobalamin), B₃ (niacin), B₉ (kyselina listová), železa a zinku. Při deficienci stopových prvků se objevuje nárůst výskytu rakoviny až ve čtvrtině testované populace, pokud má ve stravě méně zeleniny a ovoce v porovnání s jinými testovanými skupinami. Ovoce a zelenina jsou hlavními zdroji kyseliny listové. Nízký příjem této kyseliny může být spojen s několika typy rakovinného bujení. Nedostatek této kyseliny, stejně jako nedostatek vitamínů B₆ a B₁₂ způsobuje chromozomální poruchy díky masivní inkorporaci uracilu do DNA. Nedostatek zinku způsobuje oxidativní poškození DNA a inaktivaci nádorového supresoru p53. Všechny tyto poškození následně vedou ke vzniku genetického poškození (Ames, 2005).

8.2.2 Nedostatek vitamínu D

Za normálních okolností se vitamín D (kalciferol) tvoří v kůži působením slunečního záření z provitamínu 7-dehydrocholesterolu (derivátu cholesterolu). Ultrafialové záření štěpí jádro sloučeniny za vzniku cholecalciferolu, tedy vitamínu D.

Nedostatek vitamínu D je problémem především v severních zemích, protože vitamín D je formován s pomocí ultrafialového záření. Nedostatek slunečního záření může vést k chronickému nedostatku vitamínu D. Vitamín D reguluje množství vápníku v těle a jeho nedostatek způsobuje řídnutí kostí. Navíc bylo zjištěno, že nedostatek vitamínu D je
spojen se zvýšeným rizikem vzniku rakoviny, primárně rakovinou konečníku a prostaty (Ames, 2005).

8.3 Rapamycin

Je testována řada různých látek, u kterých se předpokládá schopnost prodloužit průměrnou délku života u člověka. Jednou z nich je látka zvaná rapamycin (Obr. 6). Bylo zjištěno, že rapamycin významně zvyšuje délku života u testovaných zvířat – myší. Proto se začíná spekulovat, zda je možné pomocí této látky ovlivnit délku života i u člověka (Kaeberlein & Kennedy, 2009).

Rapamycin byl první látkou, která ve velké míře zvyšovala délku života jak u samců, tak samic myší. V porovnání s běžnou délkou života, rapamycin zvyšoval délku života u samic o 38% a u samců o 28%.

Rapamycin byl identifikován jako produkt bakterie *Streptomyces hygroscopicus*. Předpokládá se, že sloučenina působí jako inhibitor kinázového enzymu tzv. TOR. Bylo zjištěno, že TOR je první látka, která reguluje délku života u každého ze čtyř hlavních modelových organismů, které se využívají při studiu stárnutí: kvasinek, hlistů, much a myší.

Jak ovlivňuje aktivita TOR stárnutí? Jedná se o souhrn mnoha funkcí. TOR podporuje translaci mRNA, inhibuje cesty, které degradují buněčné produkty
v lysozomech, tzv. proces autofágie. Autofágie je jedním z mechanismů, které slouží k udržení buněčné homeostázy. TOR také ovlivňuje růst buňky, průběh buněčného cyklu, metabolismus mitochondrií a signální dráhy inzulínu. Všechny tyto procesy přispívají k prodloužení života u myší.

Analogy rapamycinu jsou využívány v lékařství, kde slouží k léčbě určitých forem rakoviny (Kaeberlein & Kennedy, 2009).

8.4 Chlorella

Oxidativní stres je jednou z hlavních příčin způsobujících postupnou ztrátu paměti a pokles činnosti kognitivních funkcí (všechny myšlenkové procesy, které nám umožňují rozpoznávat, pamatovat si, učit se) ve vyšším věku (Nakashima et al., 2009; URL 14).

Nedostatek kyseliny listové, vitamínu B₆ a B₁₂ je spojeno se zvýšujícím se množství homocysteiny v krvi. Homocystein je vysoce reaktivní aminokyselina, která ve větší míře způsobuje zvýšené riziko vzniku kardiovaskulárních poruch, mozkové mrtvice a AD. Chlorella je naopak bohatá na kyselinu listovou (1000 – 3000 μg/100g) a je tedy možné předpokládat, že Chlorella zlepšuje kognitivní funkce u myší prostřednictvím interakce kyseliny listové a antioxidantů.

Chlorella a její extrakty se používají jako doplněk zdravé stravy. Chlorella má řadu různých imunofarmakologických funkcí a působí také jako antioxidant in vitro a in vivo, pravděpodobně proto, že obsahuje velké množství chlorofylů a karotenoidů, včetně β-karotenu a luteinu. Bylo zjištěno, že při dlouhodobém působení ovlivňuje oxidativní stres, tělesnou hmotnost, kognitivní schopnosti a centrální nervový systém (Nakashima et al., 2009).
8.5 Koenzym Q10

Koenzym Q10 (jinak taky ubichinon, CoQ10) je z chemického hlediska benzochinon (Obr. 7) a koenzym. Koenzym je nízkomolekulární látku nebílkovinné povahy, která tvoří součást složených enzymů. CoQ10 je přírodní antioxidant, který má dvě funkce. Má vliv na mitochondriální depolarizaci, na přenos elektronů v mitochondriálním komplexu I a II (uplatňuje se u akceptoru cytochromu bc1) a chrání mitochondrie a lipidové membrány před volnými radikály. Hladina koenzymu Q10 v mitochondriích u osob s Parkinsonova choroba (PD) je velmi nízká a poměr oxidovaného a redukovaného koenzymu Q10 je větší u osob s PD než u zdravého člověka. U myší a primátů koenzym Q10 chrání proti oxidativnímu stresu a ztrátě dopaminergních neuronů (Henchcliffe & Beal, 2008, URL 15).

CoQ10 je funkčně podobný vitaminům. Je obsažen ve většině lidských buněk, kromě červených krvinek a buněk v čočce, kterým chybí mitochondrie. Koenzym Q10 významně přispívá ke konverzi energie z potravy do chemické energie ATP. Nejvíce CoQ10 tedy obsahují srdce, plíce, játra, tedy orgány s největšími požadavky na energii. CoQ10 je z části syntetizován v těle, z části je přijímán potravou. S věkem klesá podíl vlastní syntézy.

Stárnutí bývá spojováno s poklesem CoQ10 v mitochondriálním obsahu. Mitochondriální respirační řetězec je bohatým zdrojem volných kyslíkových radikálů. Tyto reaktivní kyslíkové sloučeniny indukují mutace mitochondriální DNA, což vede k narušení produkce energie. Jelikož CoQ10 je integrnální součástí respiračního řetězce, nachází se tedy přímo u zdroje volných kyslíkových radikálů a jeho antioxidační vlastnosti výrazně ovlivňují celkovou antioxidační kapacitu mitochondrie (URL 15).

Obr. 7: Struktura koenzymu Q10: 2,3-dimethoxy-5-methyl-6-dekaprenyl-1,4-benzochinon. (Zdroj: URL 16)
8.6 Kalorická restrikce

Kalorická restrikce je jev, který může prodloužit jak průměrnou, tak i maximální délku života a prokazatelně prodlužuje život u myší a krys o více než 50%. Ačkoli příjem kalorií je silně omezen, esenciální živiny, jako jsou vitamíny a minerály, jsou udržovány na hladině ekvivalentní s příjmem potravy ad libitum (množství potravy, které organismus konzumuje, když nejsou nijak omezené zdroje). Délka života se zvyšuje až do dosažení optimálního stupeň příjmu potravy (odpovídá zhruba 60% ad libitum). Další následná redukce příjmu potravy vede k hladovění a naopak dochází ke zkracování životaschopnosti organismu. Bylo prokázáno, že u hřiští je kalorická restrikce spojena s činností transkripčních faktorů (proteiny, které mají schopnost spouštět či jinak regulovat transkripci DNA, mezi transkripční faktory řadíme jak specializované proteiny spouštějící transkripci u konkrétních genů, tak i obecné faktory nutné pro správný průběh procesu transkripce) (Cohen & Dillin, 2008).

U živočichů, kteří mají omezený příjem kalorií, byl pozorován pozdější počátek výskytu fyziologických a patofyziologických změn spojených se stářím. Tyto změny zahrnují pozdější změny v produkci hormonů, lepší funkce imunitního systému, udržení samičí reprodukce a menší výskyt tvořby nádorů. U živočichů s kalorickou restrikcí byla zjištěna výrazně menší velikost a hmotnost těla, menší procentuální množství tuku a hmotnost některých orgánů. Další je snížená specifická rychlost metabolismu a spotřeba kyslíku na gram hmotnosti tkání. Vliv kalorické restrikce na délku života byl zatím přesvědčivě prokázán pouze u hladavců (Troen, 2003).

Bylo zjištěno, že kalorická restrikce u člověka ovlivňuje krevní lymfocyty. Lymfocyty izolované od lidí s nižším BMI (body mass index), měly vyšší schopnost opravy DNA a měly vyšší množství DNA – polymerázy β. Nízkoenergetická strava měla také vliv na metabolismus glukózy a neuronální odolnost. Přesto u člověka zatím není prokazatelně dokázáno, že by kalorická restrikce prodlužovala život (Anson et al., 2003).

Kalorická restrikce u makaka Rhesus vedla ke snížení tělní teploty a ke zvýšení množství HDL lipoproteinu (cholesterol v lipoproteinech s vysokou hustotou, tzv. „hodný cholesterol“) (Troen, 2003). Nejpřesvědčivější důkaz o pozitivním působení kalorické restrikce se týká metabolických onemocnění. Zatímco makakové s běžnou stravou onemocněli cukrovkou anebo na ni mělo náběh, protože měli vyšší obsah glukózy v krvi, u žádného z makaků s upravenou stravou se cukrovka neobjevila. Výskyt srdečně-cévních onemocnění a nádorů byl snížen o padesát procent. Bylo zjištěno, že strava s nižším
obsahem kalorií, má pozitivní vliv šedou mozkovou kůru v průběhu stárnutí opic. Přesto zde nebyl prokázán přímý vliv kalorické restrikce na délku života.

U skupiny makaků s nízkokalorickou dietou můžeme pozorovat větší procento přeživších jedinců, avšak rozdíl mezi oběma skupinami (s běžnou stravou a na dietě) není statisticky průkazný. Jestliže poslední z opic se sníženým příjmem kalorií zemře ve stejné dobu jako poslední opice z kontrolní skupiny, bude to znamenat, že má omezený přísun kalorií pozitivní vliv pouze na oddálení nemoci, ale neprodlužuje život (Obr. 8). Přesto tyto studie zabývající se vlivem kalorické restrikce na délku života u makaků jsou velice důležité, protože makakové jsou s lidmi blízce příbuzní a pokud by byl prokázán vliv na délku života u makaků, bylo by možné, že stejné vlivy bude mít i na člověka (URL 12).

Kalorickou restrikci se rozumí dieta s omezeným přísunem kalorií. Tedy jedná se o běžnou zdravou stravu se všemi normálními složkami, která ovšem obsahuje o třicet procent méně kalorií, než je obvyklé. Kalorická restrikce působí preventivně nebo alespoň oddály vznik diabetu, rakoviny, srdečně-cévních chorob a atrofii (odumírání) mozku. Zatím není možné s jistotou říci, zda omezený přísun kalorií prodlužuje život všech zvířat, natož lidí, ale je prokázáno, že slouží jako prevence vzniku chorob a zlepšuje kondici zvířat ve stáří (Troen, 2003; URL 12).

Obr. 8: Vliv kalorické restrikce u makaka Rhesus

Subjektivně můžeme z obrázku posoudit, že makak ze skupiny s omezeným přísunem kalorií se zdají být opticky mladší. Objektivně lze shrnout, že trpěly méně chorobami souvisejícími s věkem, a když onemocněly, tak až v pozdějším věku.

Na levé straně vidíme fotografií makaka, kterému je 27 let a který přijímal nízkokalorickou stravu, zatímco na pravé straně je makak, kterému je 29 let, a který přijímal normální stravu. (Zdroj: URL 12)
8.6.1 Kalorická restrikce a metabolická stabilita

Existují studie, které vycházejí z hypotéz, že kalorická restrikce může prodloužit život pomocí zvýšení stability metabolických sítí.

Velmi častým modelovým organismem pro studium procesů stárnutí je myš (Mus musculus). Myši sdílí podobné geny jako člověk, ale odlišují se v morfometrii a fyziologii.

Volné kyslíkové radikály (ROS) jsou vedlejším produktem metabolismu mitochondrií. Zvýšená produkce ROS může mít za následek poškození proteinů, DNA nebo lipidů. Organismy s malou metabolickou aktivitou mají nižší produkci ROS, proto jsou schopny udržet množství volných kyslíkových radikálů poměrně stabilní hladině. Naopak organismy s vysokou metabolickou aktivitou tvoří velké množství ROS. Organismy nejsou schopny udržet množství ROS na optimálních hodnotách a následkem je narušení homeostázy. Tento rozdíl ve schopnosti udržet homeostázu je důležitý pro porovnání rychlosti stárnutí u myší a u člověka. Myši patří do skupiny organismů s vysokou metabolickou aktivitou a tedy nižší schopností udržet homeostázu, což se projevuje kratší délku života, protože se akceleruje proces stárnutí. Naopak lidé mají poměrně nižší metabolickou aktivitu, jsou schopní regulovat množství ROS a udržet rovnovážný stav, proto je u nich proces stárnutí výrazně pomalejší než u Mus musculus (Demetrius, 2005).

8.7 Kmenové buňky

Studium kmenových buněk je v současné době velmi významným a sledovaným vědeckým odvětvím. Využití kmenových buněk v medicíně slibuje vylepšení regeneračních schopností těla, pokud dojde k jeho poškození úrazem, nemocí nebo vlivem procesu stárnutí. Kmenové buňky jsou nediferencované živočišné buňky, které mají schopnost se dělit a přeměnit se na jiný buněčný typ (diferencovat). Tato schopnost umožňuje tělu vytvořit nové buňky a opravit tak poškozené části těla tvořené buňkami, které se již dělit neumí.

Většina lidských embryonálních kmenových buněk (ESC) má schopnost diferencovat se v různé buněčné typy. Možnou nevýhodou při použití ESC může být jejich neslučitelnost s pacientovým imunitním systémem, který pravděpodobně rozpozná nové buňky jako cizí a zničí je.
Kmenové buňky u dospělého jedince jsou lokalizovány pouze na určitých místech, jako je kostní dřeň, nebo bazální vrstva pokožky. Pravé kmenové buňky mají schopnost sebeobnovy po celou dobu existence organismu. Výzkum kmenových buněk je založen na informacích odvozených ze studií kostní dřeně, která je zdrojem krvinek pro tělo, ale využívány jsou i buňky, které se získávají z tkáně amniového vaku v placentě nebo z pupečníkové krve (Rosenthal, 2005).

9. Inzulínový paradox

O tzv. inzulínovém paradoxu se v poslední době nehovoří pouze v souvislosti s kalorickou restrikcí, která je považována za jeden z možných způsobů, jak prodloužit délku života (viz. kapitola 8.6), ale také proto, že slouží jako jedna z determinant vzniku neurodegenerativních onemocnění.

Tzv. inzulínový paradox se vyskytuje u organismů ve vztahu k proteotoxicitě a souvisí s činností signálních drah IGF1 (Insulin/insulin-like growth factor 1). Signální cesty IGF1 (IIS) regulují mnoho biologických funkcí. U hlístů mají vliv na to, zda jedinec zůstane v klidovém larválním stádiu nebo se z něj stane dospělec a ovlivňují i jejich reprodukci. Regulace délky života pomocí IIS se děje pouze v období dospělosti (Cohen & Dillin, 2008).

Každý organismus má optimální stupeň IIS, který maximalizuje jeho reprodukci, zdraví a délku života. Když je míra IIS větší nebo menší než optimum, dochází k narušení metabolismu, což může způsobit vznik onemocnění anebo případně i zkrácení délky života (Obr. 9). Dysregulace hladiny inzulínu může způsobit vznik polycystického ovariálního syndromu, což je nejčastější příčina sterility u žen. Z evolučního hlediska není míra IIS nalaďená na přizpůsobování potřebám jednotlivce, spíše se jedná o vylepšování potřeb druhu. Příkladem mohou být hlísti. Hlísti, kteří rostou při neomezeném přísunu potravy, se dožívají kratší délky života, ale reprodukují se rychleji. Vzhledem k jejich krátkému životu spotřebují menší množství zdrojů, které jsou potřeba pro další generaci jejich potomků k dosažení dospělosti. Vysoká reproducitivní schopnost a snadnější dosažitelné zdroje pro potomstvo jsou výhodou pro přežití druhu. Když je ale příjem potravy omezen, IIS zprostředkovává transformaci mladé larvy do klidového stádia (dauer larva), které může žít, než se vrátí podmínky prostředí do optima. Potom se dauer larva přeměňuje v dospělce.

Zdá se, že optimální hodnoty IIS jsou v souladu s regulací délky života pomocí kalorické restrikce. Progresivní redukce v množství přijímané potravy umožňuje prodloužení délky života až do té doby, dokud organismus nedosáhne svého optima v množství přijímané potravy. Pokud bychom v redukci dále pokračovali, organismus začne hladovět, což naopak způsobí zkrácení jeho délky života. Je prokázáno, že redukce IIS je u bezobratlých organismů prospěšná, kdežto redukce IIS u obratlovců vede k resistenci vůči inzulínu a následně ke vzniku diabetu (inzulínový paradox).

Hlavním úkolem je v současné době zjistit, zda je u člověka možné, aby IIS fungoval i bez vedlejší škodlivých efektů. U jedinců s nízkou hodnotou aktivity IIS se vyvíjí diabetes. Je tedy velmi zajímavé, zda se u jedinců s mnohem vyššími hodnotami aktivity IIS než je optimum, vyvine například Alzheimerova choroba, u které jsou redukované proteotoxické aktivity. Je známo, že diabetes typu II je rizikovým faktorem pro vznik neurodegenerativních onemocnění. Ale proč tomu tak je? Tento problém můžeme vysvětlit tím, že dochází ke ztrátě specifických tkáňových regulátorů IIS: vysoká hladina inzulínu v krvi, která je typická pro pacienty s diabetem, zvyšuje hladinu IIS v mozu a dochází ke kumulaci agregátů a vzniku nemoci.
Se zvyšujícím se věkem klesá činnost ochranných funkcí (disagregace, aktivní agregace, proteolýza a transport). To je způsobeno výskytem velkého množství toxických látek v organismu, na čemž se podílí IIS. Předpokládá se, že IIS je jednou z determinant výskytu neurodegenerativních onemocnění v pozdním věku (Obr. 10) (Cohen & Dillin, 2008).

Obr. 10: Schopnost odstraňovat toxické oligomery v závislosti na věku

Lidské neurodegenerativní onemocnění sdílejí podobné znaky. Jedná se především o výskyt toxických proteinů, které se objevují na počátku onemocnění. Existuje tedy jednoznačné spojení mezi procesem stárnutí a agregaci toxických proteinů.

Inzulín podobný růstový faktor (IGF1) je látka, která ovlivňuje délku života, metabolismus a funguje také jako regulátor odolnosti vůči stresu. Redukce signálů inzulínu může zvýšit dlouhověkost a zpozdění počátek výskytu toxických proteinů (Cohen & Dillin, 2008).

Prvním faktorem ovlivňujícím proces stárnutí je kalorická restrikce, u které je známo, že je schopna prodloužit délku života hlodavců (myši) (viz. kapitola 8.6) (Bishop & Guarente, 2007). Druhým faktorem jsou signální dráhy IGF1. Ty fungují jako aktivní regulátor celkové délky života a ovlivňují i dospívání u některých druhů organismů (mouchy, hlisti, myši) a třetím faktorem (nejnověji objeveným), který se řadí mezi determinanty délky života, je míra mitochondriální respirace (Cohen & Dillin, 2008).

Komponenty IIS dráhy jsou důležité pro udržení homeostázy proteinů (proteostáza). Proteostáza je stav, kdy se proteiny nacházejí v příznivých podmínkách, ve kterých je jejich složení, distribuce, integrita a interakce s jinými proteiny udržována na optimální úrovni. Proteostázu lze definovat jako komplexní soubor intracelulárních regulačních dráh, které se podílejí na buněčné a biochemické homeostáze proteinů. Jedná se především o systémy a dráhy podílející se na syntéze, sbalování, posttranslačních modifikacích, ale i regulované degradaci proteinů v buňce. Komponenty IIS se dále uplatňují při kumulaci toxických proteinů (tzv. proteotoxicita) v neuronech a jiných tkání především u nematod (Caenorhabditis elegans) a u myší. Proteotoxicita je stav, kdy dochází k agregaci proteinů nebo peptidů v různých typech buněk, které následně vykazují toxický efekt. Neurotoxicita je stav, kdy toxický efekt můžeme pozorovat pouze v nervových buňkách neboli neuronech (Cohen & Dillin, 2008).
9.1 Stárnutí, proteostáza a neurodegenerace

Předpokládá se, že proces stárnutí aktivně potlačuje schopnost buňky odstraňovat agregáty toxických proteinů. V důsledku toho, dochází k hromadění agregátů a iniciuje se proces neurodegenerace v pozdním věku. Ve spojitosti s tímto procesem se poukazuje na to, že i IIS je spojen s procesem stárnutí, proteotoxicitou a počátkem neurodegenerace v pozdním věku (Obr. 11) (Cohen & Dillin, 2008).
Amyloidový prekurzorový protein (APP) je primárním zdrojem amyloidu β peptidu. Aβ se uvolňuje při proteolýze APP a následně se z něj tvoří toxické oligomery. Transkripční faktor tepelného šoku 1 (HSF-1) aktivuje pochody vedoucí k disagregaci těchto toxických látek (primární cesta). Zde dochází k narušení agregátů Aβ a jejich degradaci. Pokud je primární cesta disagregace přetížená, dochází pomocí regulátoru DAF-16 k aktivaci sekundární cesty. Sekundární cesta vede ke vzniku vysokomolekulární hmoty s nízkou toxicitou, která může být z buněk vyloučena (sekrece) nebo dojde k pomalé disagregaci a konečné degradaci.

IIS cesta reguluje aktivitu obou ochranných mechanismů zajišťujících odstraňování toxických oligomerů z těla (pomocí negativní regulace HSF-1 a DAF-16).

(Zdroj: Cohen & Dillin, 2008)

10. Neurodegenerativní onemocnění

Neurodegenerativní (ND) onemocnění jsou široká skupina chorob centrálního a periferního nervového systému. Jedná se o skupinu onemocnění, které se většinou objevují až ve vyšším věku a jsou jednou z častých příčin úmrtí. Bývají způsobena předčasným zánikem nebo degenerací nervových buněk. Nejčastější ND onemocnění jsou Alzheimerova choroba, která se projevuje progresující demencí, a Parkinsonova choroba (URL 17).
10.1 Rozvoj a genetika neurodegenerativních onemocnění

Předpokládá se, že příčinou neurodegenerativních onemocnění by mohla být genetická abnormalita, která vyvolá biochemickou poruchu. Jedná se buď o omezení produkce některého proteinu, nebo o změnu jeho struktury, která je potom fyziologicky neaktivní. Buňka může produkovat i protein, který je pro organismus toxický. Porucha metabolismu buňky vede k morfologickým odchylkám (např. atrofie určitých oblastí mozku) a především ke ztrátě funkcí poškozených skupin neuronů. Z lokalizace a míry poškození se následně detekují klinické projevy.

Dědičnost je považována za významný faktor v rozvoji neurodegenerativních onemocnění, přesto nemá u všech typů nemoci stejný význam. U Huntingtonovy choroby je velmi významná, naopak u Parkinsonovy nemoci se zase uplatňuje málo.

Mutace buď zasáhne jeden gen, nebo změní delší úsek DNA. Navíc u jediné choroby se může projevit více než jedna mutace genů na různých chromozomech. To je typické například pro Alzheimerovu chorobu (jedná se o mutace na chromozomech 21, 19, 14 a 1).

10.2 Vztah příznaku a lokalizace poškození

Dá se tedy shrnut, že zatímco polyglutaminová onemocnění mají tendenci poškozovat mozeček a vedou k postojovým nestabilitám (ataxii), alfa-synukleinopatie působí poruchu substantia nigra, což je černohnědá hmota ve středním mozku, a taupatie
narušují pyramidové neurony kůry mozkové a projevují se jako demence (Horáček & Motlová, 1999).

10.2.1 Polyglutaminová onemocnění

10.2.2 Taupatie a alfa-synukleinopatie

Taupatie a alfa-synukleinopatie jsou spojeny s hromaděním dvou patologických proteinů: proteinu tau (Obr. 12) a proteinu alfa-synukleinu, který vytváří v těle neuronů Lewyho tělíska. Hromadění proteinu tau je charakteristické pro demencí u Parkinsonovy choroby, Alzheimerové chorobu, progresivní supranukleární obrnu a některé formy prionových onemocnění. Lewyho tělíska nacházíme u Parkinsonovy choroby, některých forem Alzheimerovy choroby a některých prionových infekcí (Horáček & Motlová, 1999).

U neurodegenerativních onemocnění se tau protein chemicky mění. Dochází k párování molekul tau a vytvářejí se shluky. To má za následek rozpad mikrotubulů a porušení transportního systému. Dochází k přerušení komunikace mezi jednotlivými neurony a celý proces končí smrtí buněk. (Zdroj: URL 18)

10.3 Amyotrofická laterální skleróza

Amyotrofická laterální skleróza (ALS) je onemocnění, které se také řadí mezi ND onemocnění. U tohoto onemocnění dochází k zániku centrálního (korového) a periferního (mišního) motoneuronu. Motoneuron je nervová buňka, která se účastní pouze přenosu signálu k pohybu. U ALS můžeme pozorovat oslabení svalstva končetin, polykacího
svalstva, naopak čití a psychický stav pacienta zůstává intaktní (neporušený). ALS je závažné onemocnění, které je v současné době velmi špatně léčitelné (URL 17).

10.4 Alzheimerova choroba

Alzheimerova choroba je nejčastější ze všech demencí. Představuje asi 50-60% všech demencí a dalších 10% je smíšené etiologie, kde se kromě alzheimerovských změn projevují i ischemicko-vaskulární změny. Většinou toto onemocnění postihne osoby starší 65 let. Odhaduje se, že v roce 2006 trpělo touto chorobou zhruba 26,6 miliónů lidí na celém světě. Předpokládá se, že do roku 2050 by se toto číslo mohlo zdvojnásobit.

Alzheimerova choroba je progresivní neurodegenerativní onemocnění, které se projevuje syndromem demence, které je definováno patologickými nálezy. Tyto nálezy jsou společné pro všechny postižené. Individuální je doba vzniku nemoci, rychlost progrese a další klinické odchylky (URL 19).

Obr. 13: Oblasti mozku, které jsou nejvíce zasaženy Alzheimerovou chorobou.
Lidé trpící touto nemocí pomalu ztrácí schopnost učit se, pamatovat si. Jsou ovlivněny jejich kognitivní funkce (chování, řeč, úsudek) a inteligenční schopnosti. (Zdroj: URL 20)

Liší se mohou genetické predispozice jednotlivých pacientů, i množství a druh nejrůznějších faktorů ovlivňujících rozvoj a průběh nemoci. Každý člověk vnímá symptomy různě, ale mezi nejčastější patří zmatenost, hněv, války nálad, problémy s řečí, ztráta dlouhodobé paměti a všeobecný útlum postiženého (Obr. 13).

Alzheimerova choroba má některé významné neuropatologické nálezy. U většiny pacientů lze zjistit zobrazovacími metodami kortiko-subkortikální atrofie na mozku. Ve
většině případů odpovídá stupeň atrofie postižení kognitivních funkcí (Obr. 14). Mohou ale existovat i pacienti s rozvinutou Alzheimerovou chorobou bez známek makroskopické atrofie (URL 19).

Obr. 14: Řez mozkem pacienta s Alzheimerovou chorobou a zdravého člověka.
U mozku pacienta s AD je viditelná atrofie (regresivní změna postižující normálně vyvinutý orgán). Při atrofii dochází k úbytku živé tkáně. Mozek pacienta s AD na obrázku je zasažen především v oblasti řečového a paměťového centra. (Zdroj: URL 21)

V mozkové kůře jsou při Alzheimerově chorobě pozorovány chumáče rozpadlých nervových vláken. V jejich středu se často objevuje útvar tvořený bílkovinnou amyloidem, který poškozuje výběžky nervových buněk. Bílkovina, z níž vzniká amyloid, je běžnou součástí membrán nervových buněk. Při Alzheimerově chorobě jí vzniká nadbytek a předpokládá se, že dochází k jejímu zpracování jiným způsobem, který souvisí se vznikem Alzheimerovy choroby. Přesný mechanismus není v současné době zcela objasněn (Obr. 15).

Mezi charakteristické rysy Alzheimerovy choroby patří narušení cholinergního systému – zvýšená aktivita cholinacetyltransferázy v mozkové kůře. Dále se vytvářejí amyloidní plaky a neurofibrilární smotky, které můžeme najít v buněčných tělech neuronů. Dochází také k synaptickým změnám a narušení transportu nervového růstového faktoru v cholinergních neuronech (URL 19).
Obr. 15: Průběh vzniku Alzheimerovy choroby.

10.4.1 Charakteristické nálezy u Alzheimerovy choroby

Nemoc je diagnostikována především nálezy na CT, případně MR, a opírá se taky o klinický obraz. V poslední době se začíná využívat i metoda PET (pozitronová emisní tomografie) (Urbánek, 2000).

Důležitým nálezem u Alzheimerovy choroby je tvorba patologických proteinů. Beta-amyloid je významný degenerativní protein, který tvoří základ tzv. alzheimerovských plaků. Polymerovaný beta-amyloid tvoří jádra (drůzy). Kolem nich dochází k odumírání

V současné době není přesně známo, který z degenerativních proteinů je primární. Existují ale nové studie, které považují za primární beta-amyloid, který potom vede sekundárně ke vzniku smotků.

Další patologický řetězec, podílející se rozvoji Alzheimerovy choroby, je poškození mitochondrií. Bývá zjišťována hyperaktivita sukcinildehydrogenázy a dalších enzymů, a to
především v místech, kde později vznikají plaky. Dále bývá detekována snížená oxidace glukózy, která koreluje se stupněm demence, nebo vyšší hladina enzymu monoaminoxidázy, a to především B-typu. Uvažuje se také o nedostatku nervových růstových faktorů, které jsou v CNS vytvářeny gliovými buňkami (URL 19).

10.4.2 Možnost biologického ovlivnění Alzheimerovy choroby

K ovlivnění acetylcholinergního systému je využíváno několik terapeutických strategií. Jednak se jedná o podávání prekurzorů acetylcholinu, kdy jsou používány různé druhy lecitinu, především sójový lecitin. Z lecitinu se pomalu uvolňuje cholin jako prekurzor pro tvorbu acetylcholinu. Dále se využívá podávání inhibitorů acetylcholinesteráz nebo přímých muskarinových a nikotinových agonistů (URL 19).

10.5 Parkinsonova choroba

Parkinsonova choroba je onemocnění nervového systému s chronicko-progresivním průběhem, které vzniká na základě nadměrného odumírání buněk v substantia nigra a následným nedostatkem dopaminu v mozkou (Haňková, 2007).

10.5.1 Epidemiologie

Parkinsonova choroba patří k nejčastějšímu degenerativnímu onemocnění. Výskyt Parkinsonovy choroby v populaci se pohybuje v rozmezí 84 – 187 postižených na 100 000 obyvatel, což znamená, že postihuje asi 1 - 4 promile populace nad 50 let. Po 60. roce věku však výskyt nemoci roste až k jednomu procentu. V České republice žije přibližně 10 000 nemocných. Nemoc se rozvíjí pomalu nejčastěji mezi 50. a 60. rokem života.
Existují dva druhy Parkinsonovy choroby. Jeden je označovaný jako tzv. young onset typ, kdy se onemocnění vyskytuje před 40. rokem života. Druhým běžnějším typem je tzv. late onset typ, který má začátek až v pozdějším věku.

Mortalita se pohybuje od 0,5 – 3,8 případů na 100 000 obyvatel. Mírně převažuje výskyt nemoci u mužů. Rozdíl v postižení mužů a žen je však velmi malý (1,2:1) (Haňková, 2007).

Asi u 20% nemocných je onemocnění spojeno s psychickým defektem typu demence. U některých dochází k rozvoji deprese až k pasivitě. V těchto případech bývají Lewyho tělíska nalezena v mozkové kůře. V pokročilem stádiu dochází k totální spontánní nehybnosti.

Histopatologicky jde o ztrátu neuronů syntetizujících dopamin (1-(3,4-dihydroxyfenyl)-2-aminoethan), především v diencefálicko-mesencefalické oblasti (Obr. 16), ale i jiných katecholaminů, serotoninu a noradrenalinu. Choroba se klinicky projevuje až tehdy, když je zničeno více než 80% dopaminergních neuronů (Haňková, 2007). Ztráta dopaminu má za následek svalovou ztuhlost, zpomalení pohybů a třes zejména horních končetin (URL 17).

Obr. 16: Substantia nigra (černá hmota)
Substantia nigra je párová struktura ve středním mozku (mesencephalu). Je součástí bazálních ganglií a hraje významnou roli v řízení pohybu. Substantia nigra je složena za dvou částí s odlišným zapojením a rozdílnou funkcí - pars compacta, která slouží pro vstup signálu do okruhu bazálních ganglií a zásobuje striatum dopaminem, a pars reticularis, která slouží pro přenos signálu z bazálních ganglií do dalších struktur mozku. Parkinsonova choroba vzniká poškozením dopaminergních neuronů pars compacta. Jedná se o místo, které je v případě Parkinsonovy choroby nejvíce postižené. (Zdroj: URL 23)
10.5.2 Etiopatogeneze

Parkinsonova choroba je nemoc způsobená presynaptickým mechanismem, protože dochází ke ztrátě neuronů v oblasti substantia nigra. Striatum je oblast postsynaptická a nebývá vážněji poškozena.

Pokud dojde k poklesu množství dopaminu pod 20% původního množství, začnou se rozvíjet klinické příznaky onemocnění. Do této doby se hovoří o tzv. preklinickém období, které trvá zhruba 3 – 5 let. V tomto období se uplatňují kompenzační mechanismy, které nedovolují pokles množství dopaminu pod hranici 20% původního množství, ačkoli už dochází ke ztrátě neuronů. Existují 3 základní etiopatogenetické hypotézy – endotoxická, exotoxická a genetická.

Hypotéza endotoxická vychází z toho, že mozek má vytvořeny účinné detoxikační mechanismy, kterými je schopen se udržít skolodivým vlivům některých látek vznikajících v mozku. K těmto mechanismům patří tzv. protektivní enzymy, například kataláza. K endotoxickému poškození může dojít dvěma způsoby. Buď jsou toxiny v mozku v normálním množství, ale detoxikační mechanismy nepostačují k jejich odbourání, následkem nějaké genetické či získané poruchy, nebo jsou detoxikační mechanismy v pořádku, ale toxiny jsou v mozku přítomny v nadměrném množství, tudíž fyziologické množství detoxikačních mechanismů nestačí. Pokud k endotoxickému poškození dochází v oblasti striatonigrálního komplexu, může se toto poškození klinicky projevovat v podobě Parkinsonovy nemoci.

Mezi toxiny poškozující striatonigrální komplex patří například beta-karboliny, chinony, semichinony a izochinoliny, ale především to jsou volné kyslíkové radikály, tj. látky vysoce reaktivní a nestabilní, poškozující buněčné proteiny, lipidy a DNA. Vznikají při oxidativní deaminaci, tzn. při degradaci dopaminu pomocí enzymu monoaminoxidázy typu B (Haňková, 2007).

Hypotéza exotoxická vznikla na základě objevení účinků látky 1-methyl-4-fenyl-1,2,3,6 tetrahydropyridin (MPTP). MPTP je protoxin, který má za následek selektivní neurotoxické poškození dopaminergních buněk. MPTP prochází přes hematoencefalickou bariéru a dostává se do gliových buněk. Tady se potom konvertuje na nestabilní meziprodukt. Ten se dále mění na vlastní toxickou látku 1-methyl-4-fenylpiridinium (MPP+). Tato látk proniká do katecholaminových neuronů a kumuluje se zde v melaninu a dále doposud neobjasněným způsobem proniká do mitochondrií, kde naruší funkci mitochondriálního komplexu I. Tím dojde jednak k defektu respiračního řetězce, který
způsobí smrt neuronu, dále také k větší tvorbě volných kyslikových radikálů (Haňková, 2007).

Hypotéza genetická vychází z genetických predispozic pacientů, kteří přibližně v 5% udávají, že podobně postižen byl v rodině alespoň jeden jejich příbuzný. Je vysoce pravděpodobné, že existence geneticky podmíněné vlohy pro Parkinsonovu nemoc může způsobit vznik onemocnění u těch nositelů, kteří se v průběhu svého života setkávají s dalšími rizikovými faktory – jako jsou například pesticidy, které obsahují MPTP (Haňková, 2007).

10.5.3 Patofyziologie příznaků

10.5.4 Demence při Parkinsonově chorobě

Léčba Parkinsonovy choroby zaznamenává neustálý pokrok, přesto stále nejsme schopni ji plně vyléčit. U nemocných dochází ke zlepšení jejich potíží, ale výrazným problém je ztráta účinnosti po několika letech podávání léků nebo výskyt psychických poruch, jako je halucinace nebo paranoidní bludy (URL 17, URL 24).

Nejčastějším vedlejším účinkem, který se objevuje po delším užívání léku, je nausea (pocit na zvracení). Nausea je způsobena dopaminem ve střevech a v krvi, který zde vzniká z levodopy. Výše zmíněnou použití carbidopou společně s levodopou vede ke zmírnění vedlejších účinků. Carpidoba zpomaluje přeměnu levodopy na dopamin v krevním oběhu, takže se více této látky dostane do mozku. Dále se může využívat entacapon, který působí jako inhibitor, který blokuje klíčový enzym zodpovědný za přeměnu levodopy na dopamin předtím, než dosáhne mozku.

Chirurgický zákrok má význam u pacientů, u kterých je pozorován rychle se zhoršující stav a rychlý rozvoj nemoci, nebo již příznivě nereagují na jiný způsob léčby. Principem zákroku je zničení nebo stimulace určitých oblastí mozku:
Pallidotomie se používá pouze u pacientů s agresivním průběhem onemocnění nebo u pacientů, kteří nereaguji na žádný způsob léčby. Při pallidotomii se zničí malá část nervové tkáně nazývané bledé jádro (globus pallidus). Globus pallidus je považováno za oblast, která je během Parkinsonovy choroby nadměrně aktivní. Pallidotomie je účinná především pro omezení dyskinéze.

Thalamotomie je metoda, u které se zničí část thalamu, která má bohatá propojení na bazální ganglia. Tímto zásahem se neodstraní ostatní příznaky Parkinsonovy choroby (URL 24).

10.5.6 Vliv činnosti mitochondrií na Parkinsonovu chorobu

Pokrok v genetice PD odhalil významnou roli dysfunkcí objevujících se u mitochondrií, ale také zásadní roli genů jako Parkin nebo PINK1, které jsou lokalizovány právě v mitochondriích. Snížená funkce mitochondrií vede pravděpodobně k zintenzivnění oxidativního stresu (Henchcliffe & Beal, 2008).

Mitochondrie je organela vyskytující se v eukaryotických buňkách. Svou velikostí odpovídá přibližně velikosti bakterie. Mitochondrie patří mezi semiautonomní organy, protože má vlastní genom (mitochondriální DNA a RNA) a translační aparát (ribozomy). To potvrzuje teorii endosymbiózy, která předpokládá, že mitochondrie byla dříve samostatnou prokaryotní buňkou, která ale následně splynula s hostitelskou buňkou (Henchcliffe & Beal, 2008).

10.5.6.1 Struktura mitochondrií

Mitochondrie má dvě membrány (vnitřní a vnější). Vnitřní membrána má větší povrch než vnější, a proto vytváří uvnitř mitochondrie zřasení, tzv. kristy. Vnitřní membrána obsahuje velké množství enzymů a přenašečů proteinové povahy. Uvnitř mitochondrie se nachází matrix (Obr. 17), kde probíhá několik dějů: citrátový cyklus, β-oxidace mastných kyselin, část syntézy močoviny, začátek a konec syntézy hemu.
Mitochondrie je biochemickou elektrárnou buňky, protože oxidativní degradací živin vytváří většinu molekul ATP potřebných pro funkci buňky (oxidativní fosforylace).

Mitochondrie nehrají klíčovou roli pouze v transportu elektronů a fosforylací, ale jsou také významné jako zdroj volných radikálů. Mitochondrie jsou zapojeny i do procesu homeostázy vápníku a do regulace buněčné smrti (Obr. 18). Narušená funkce mitochondrií byla zjištěna u velkého množství pacientů s PD, proto se předpokládá, že by mohla mít vliv na vznik této choroby. Bylo zjištěno, že aktivita komplexu I, což je hlavní komponenta elektronového transportního řetězce, je snížená v substantia nigra a mozkové kůře předního laloku osob s PD. V podjednotkách komplexu I bylo také detekováno zvýšené oxidativní poškození a redukovaný elektronový transport. Tyto abnormality jsou předpokladem vyšší citlivosti buněk vůči apoptóze a přispívají k zániku a dysfunkci buněk během PD. Metabolické abnormality v souladu s mitochondriálními dysfunkcemi vedou ke zvýšenému oxidativnímu stresu. Oxidace poškozuje lipidy, proteiny i nukleové kyseliny (DNA). Rovněž snižuje hladinu antioxidantu glutathionu. Glutathion je tripeptid složený z aminokyselin glutaminu, cysteiny a glycinu, nacházející se v buňkách živočichů, rostlin i bakterií. Tyto informace naznačují spojení mezi působením oxidativního stresu a vznikem Lewyho tělísek, které jsou charakteristické pro PD, protože oxidativní působení indukuje hromadění α-synukleinu (Henchcliffe & Beal, 2008).
Obr. 18: Zapojení mitochondrií do buněčných procesů

Mitochondrie hrají stěžejní roli v procesu apoptózy buňky. Mitochondriální uvolnění cytochromu c a dalších pro-apoptických faktorů (př. AIF) do cytoplazmy spustí kaskádu pochodů vedoucí k buněčné smrti. (Zdroj: Henchcliffe & Beal, 2008)

10.5.6.2 Geny sdružené s Parkinsonovou chorobou

V souvislosti s PD bylo zjištěno, že produkty některých s PD sdružených genů (Obr. 19, Tab. 1) mají významný vliv na mitochondriální morfologii, funkce a oxidativní stres.
α-synuklein je protein, který se velmi často vyskytuje v Lewyho těliscích. Mutace v genu α-synukleinu (známého jako PARK1) vede ke vzniku autozomálně dominantní PD. Přesné funkce α-synukleinu nejsou úplně známy, ale předpokládá, že existuje reciproký vztah mezi aktivitou proteinu a mitochondriálními funkcemi. Mutace v genu Parkin (známého jako PARK2) vede ke vzniku autozomálně recesivní familiární PD a ke vzniku juvenilní PD, která se objevuje do 20. roku věku (typická oblast výskytu je Japonsko) (Henchcliffe & Beal, 2008).

Závěrem lze říci, že narušené mitochondriální funkce a zvýšený oxidativní stres se vyskytují ve zvýšeném množství u osob s PD. Produkty genů spojených s PD ovlivňují mitochondriální funkce a mitochondriální aktivita může být ovlivněna některými přírodními látkami, proto se v současné době vyvíjejí nové léčebné terapie za využití koenzymu Q10, které mají za cíl ovlivnit mitochondriální funkce a oxidativní stres a tím pozitivně stimulovat vývoj PD (Henchcliffe & Beal, 2008).
<table>
<thead>
<tr>
<th>Gen</th>
<th>Funkce produktu genu</th>
<th>Pozorování</th>
</tr>
</thead>
</table>
| α-synuklein (PARK1) | Neobjasněna | - **Divoký typ proteinu**: redukce mitochondriální funkce, zvýšení oxidativního stresu, genová exprese MPTP vedoucí ke vzniku abnormální mitochondrie, genová exprese vedoucí ke spojení s mitochondriální membránou a uvolnění cytochromu c nebo volných radikálů
| | | - **Mutace**: abnormální mitochondrie, poškození mitochondriální DNA (u myší), zvýšené uvolnění cytochromu c a větší počet markerů oxidativního stresu |
| *Parkin* (PARK2) | Ubiquitin E3 ligáza | - **Divoký typ proteinu**: zapojený do mitochondriální biogeneze a replikace mitochondriální DNA
| | | - **Mutace**: abnormální mitochondrie, zvýšená citlivost k oxidativnímu stresu (u *D. melanogaster*), redukovaná aktivita komplexu I a IV (u myší a člověka), zvýšení oxidativního stresu (u myší) |
| PINK1 (PARK6) | Serinthreoninová kináza | - **Divoký typ proteinu**: redukce uvolnění cytochromu c, redukce apoptóze (v buněčné kultuře), genová exprese podporující mitochondriální štěpení
| | | - **Mutace**: abnormální mitochondrie, zvýšená citlivost k oxidativnímu stresu (u *D. melanogaster*), redukovaná aktivita komplexu I a zvýšení oxidativního stresu |
| DJ-1 (PARK7) | Chaperon | - **Mutace**: zvýšení citlivosti k rotenonu, parakvatu a peroxidu vodíku (u *D. melanogaster*), zvýšená citlivost k oxidativnímu stresu (u myší) |
| LRRK2 (PARK8) | Serinthreoninová kináza | - Kinázová aktivita ovlivňuje mitochondriální funkce |

Tab. 1: Účast genů asociovaných s PD na vzniku mitochondriálních dysfunkcí a vzniku oxidativního stresu. (Zdroj: Henchcliffe & Beal, 2008)
10.5.7 Vliv serotoninu na výskyt deprese u PD

Velmi častá je u Parkinsonovy choroby koincidence demence a deprese. Přestože jsou nejběžnější symptomy PD spojeny s motorickým systémem, dochází i k změnám psychickým (deprese a demence). Dlouhodobá deprese je jedním z prvotních příznaků výskytu PD a postihuje zhruba 40% pacientů.

Serotonin (Obr. 20) je biologicky aktivní látka obsažená v krevních destičkách, v buňkách gastrointestinálního traktu a v menší míře i v centrálním nervovém systému. Obzvláštní význam má jako neurotransmiter, neboť ovlivňuje serotoninergní systém, tvořený soustavou neuronů v prodloužené můží, mostu, středním mozku a mezimozku. Tento systém si udržuje za normálního stavu optimální hladinu serotoninu vlastní syntézou z jeho biochemických prekurzorů. Nedostatek serotoninu způsobuje snížení přenosu nervových vzruchů, změnu nálady a celkovou depresi. Rozmanitost oblastí působení serotoninu je zapříčiněna faktem, že 5-HT ovlivňuje aktivitu a interakce řady neurotransmiterů (URL 27).

Obr. 20: Chemická struktura serotoninu (5-hydroxytryptamin neboli 5-HT).
(Zdroj: URL 27)
V těle se serotonin syntetizuje působením různých enzymů z aminokyseliny L-tryptofanu podle následujícího schématu (URL 28):

![Schéma syntézy serotoninu](url)

Serotonin přijatý v potravě neproniká do nervových cest centrálního nervového systému, neboť neprostoupí stěnou oddělující krevní řečiště od mozku. Avšak tryptofan a jeho metabolit 5-hydroxytryptofan (5-HTP) do mozku proniknou. Tyto aminokyseliny mohou být podávány jako doplňkové živiny a zajišťovat tak zvýšení hladiny serotoninu v mozku, působí tedy jako serotoninergní látky (URL 27).

10.5.8 Lékařský výzkum léčby Parkinsonovy choroby

Vědecké znalosti o fungování mozku neustále narůstají. Někteří odborníci jsou přesvědčeni, že je možno Parkinsonovu chorobu a další neurodegenerativní onemocnění plně vyléčit. Nejspornější výzkum probíhá ve Spojených státech amerických a týká se použití embryonálních kmenových buněk, což jsou dosud nerozlišené buňky pocházející z embryí starých jen několik dní. Předpokládá se, že tyto buňky, ze kterých teoreticky může vzniknout libovolná tkáň, bude možné použít pro náhradu buněk poškozených během vývoje Parkinsonovy choroby (URL 24).

Další testy a studie probíhají na Saint Louis University, kde kolektiv pracovníků zjistil, že roli v ničení neuronů hraje dopamin, který se ale odlišuje od dopaminu, který tyto buňky tvoří. Jedná se o molekulu dopaminu, která se v průběhu své metabolické cesty mění. Dopamin je přeměněn na vysoce toxickou látku, která se nazývá DOPAL (3,4-dihydroxyfenylacetaldheyd). Ověřování hypotézy probíhalo třemi různými způsoby (ve zkumavce, v tkáňové kultuře a na zvířecím modulu) se ukázalo, že právě tato látká je
molekulou, která způsobuje, že α-synuklein začíná tvořit shluky. α-synuklein je látka, která se podílí na iniciaci Parkinsonovy choroby. Běžně se nachází v celém mozku, ale u některých lidí se postupně začíná shlukovat.

Sled událostí vedoucích k zániku neuronů:

![Chemická struktura dopaminu (DA) a DOPALu](image)

Při metabolických dějích se z dopaminu (DA) stává meziprodukt 3,4-dihydroxyfenylacetaldehyd (DOPAL)

![Chemická reakce DOPALu s proteiny](image)

DOPAL reaguje s proteiny a je pro dopaminergní buňky toxický.

Tento objev je významný z hlediska toho, že je to první objev, který popisuje působení přirozeného vedlejšího produktu dopaminu na protein α-synuklein. Produkt způsobuje, že molekuly α-synukleinu se začnou agregovat a vytvářejí pro buňky smrtící shluky.

Tato teorie je podporována zjištěními týkajícími se úlohy genu pro samčí pohlaví. Samcům, kterým jejich gen Sry zapíná v mozku tyrosin hydroxylázu, mají v substantia nigra ve srovnání se samičími asi o pětinu více neuronů produkujících dopamin. Pokud je tedy tato teorie o škodlivosti dopaminu platná, tak více neuronů produkujících dopamin v mozku by samce teoreticky mělo vystavět vyšším riziku vzniku Parkinsonovy choroby. A statistické poznatky tuto teorii potvrzují – u mužů je riziko vzniku choroby 1,5krát vyšší než u žen (URL 23).
11. Hypertenze a cerebrovaskulární poruchy

Čevní mozkové příhody (CMP) jsou hlavním projevem cerebrovaskulárního onemocnění. CMP rozeznáváme ischemické (př. mozkový infarkt) a hemoragické (krvácivé). U mozkového infarktu jde o vznik ischemického a posléze nekrotického ložiska, kdy dochází k zastavení krevního zásobení v dané oblasti. Zastavení krevního zásobení je obvykle způsobeno arteriosklerotickým procesem s uzávěrem tepny nebo trombózou nebo je spojeno se vznikem embolie (Dufek, 2003).

U mozkové hemoragie je nejčastější příčinou hypertenzní krvácení Dále to může být arterio-venózní (AV) malformace, angiomy, amyloidní angiopatie, nebo krvácení do již existujících lézi (nádory, ischemie) (Dufek, 2003).
11.1 Vaskulární demence

Vaskulární demence je druhou nejčastější příčinou demence po Alzheimrově nemoci ve Spojených státech amerických i v Evropě a vůbec nejčastější v některých částech Asie. Rozsíření vaskulární demence je v západních zemích 1,5% a kolem 2,2% v Japonsku. Výskyt je 9krát vyšší u lidí, kteří prodělali CMP. Častěji jsou postiženi muži.

Jedná se o nemoc, která má velkou skupinu syndromů vznikajících odlišnými vaskulárními mechanizmy. V roce 1969 bylo prokázáno, že hypertenze je příčinou nebo alespoň se vyskytuje přibližně u poloviny případů (Dufek, 2003).

11.2 Hypertenze a kognitivní funkce

Doporučované hodnoty krevního tlaku jsou ≤ 120 Torr systoly a 80 Torr diastoly. Dlouho dobu je známo, že hypertenze pozměňuje strukturu cév, ovlivňuje krevní oběh a cěvní perfuzi (perfuze je průtok tekutiny určitým prostředím). Cerebrovaskulární změny velmi často předpovídají počátek změn v oblasti kognitivních funkcí (Veglio et al., 2008).

Některé změny kognitivních funkcí jsou spojeny se zvyšujícím se věkem, tudíž jsou považovány za běžný proces. Ačkoli zůstává otázkou, jak hluboký pokles kognitivních funkcí můžeme ještě považovat za normální a kde začínají patologické změny vedoucí k demenci typu Alzheimerovské demence. Pacienta pouze s mírným poklesem kognitivních funkcí (MCI) je poměrně těžké rozpoznat, protože má pouze poškozenou paměťovou stránku kognitivních funkcí, ale jinak je bez dalších omezení v běžných denních aktivitách a bez poškození ostatních složek kognitivních funkcí (Veglio et al., 2008).

Role hypertenze v patogenezi kognitivních funkcí, jako je MCI, VD nebo AD, se stává stále více zkoumanou oblastí. Hypertenze a demence jsou běžné potůže u starších osob ve věku 65 let a více. Výskyt demence v populaci osob nad 65 let je odhadován okolo 8%, u hypertenze činí už 65% (Kearney et al., 2005; Fratiglioni et al., 2000). Alzheimerova choroba je nejběžnější formou demence, následovaná vaskulární demencí. Dlouhodobé zvýšení krevního tlaku, které začíná již ve středním věku, může vést také ke vzniku aterosklerózy a ztuhlosti cév ve vyšším věku. Nebezpečnost aterosklerózy se zvyšuje s věkem a projevuje se zvýšeným systolickým a sníženým diastolickým tlakem. Cěvní změny vedoucí k hypertenzi mohou indukovat chronickou nebo krátkodobou hypoperfuzi, ischemii nebo hypoxii, u kterých je podezření, že jsou jedním z mechanismů.
kedemů ke vzniku cerebrovaskulární poruch a demence. Všechny tyto okolnosti mohou vyústit v destabilizaci neuronů a synapsí a ke vzniku neurodegenerativních onemocnění.

Mozek je hlavním orgánem, který je ovlivňován vysokým krevním tlakem, kdy změny odehrající se v důsledku hypertenze mohou vyústit ve vzniku mrtvice. Hypertenze způsobuje velké množství progresivních změn v cerebrálním krevním toku. Zvýšený krevní tlak může accelerovat procesy vedoucí ke vzniku aterosklerotických změn a poškozovat cerebrální autoregulaci. Chronické nebo i epizodní ischemické poruchy v oblastech mozků nejen mozkové mrtvice, ale i změny neuronů a gliových buněk se projevují specifickými změnami, které zahrnují poškození pozorností a výkonných funkcí nebo zpomalení motorických funkcí. Dlouhodobá hypertenze je zapojená do vzniku a progrese poškození kognitivních funkcí a vzniku demence související s věkem (Veglio et al., 2008).

11.3 Léčba hypertenze

Léčba hypertenze slouží primárně jako prevence. Léky, používané se k léčbě hypertenze, působí proti cerebrovaskulárním onemocněním, ale ovlivňují také kognitivní funkce. Přesto je potřeba zjistit, jaká je hodnota optima krevního tlaku, který je ve starším věku vyžadován k udržení kognitivních funkcí (Veglio et al., 2008).

Léčba hypertenze snižuje výskyt mrtvice o 40% a snižuje riziko opakovaného výskytu mrtvice o 28% (Aronow & Frishman, 2004). V roce 2000 trpěla hypertenzí více než jedna čtvrtina dospělé populace na světě a očekává se, že v roce 2025 to bude již 29% dospělé populace na světě (Kearney et al., 2005). V současné době 24,3 miliónů osob trpí určitou formou demence a v celosvětovém měřítku každý rok přibude dalších 4,6 milionů nových případů. Protože dochází neustále ke stárnutí populace, počet osob s nějakou formou demence bude neustále narůstat. Do roku 2040 se očekává přes 81 milionů osob s určitou formou demence (Ferri et al., 2005).
12. Ateroskleróza

Ateroskleróza je ve většině civilizovaných zemí nejčastější příčinou úmrtí. Jedná se závažné degenerativní onemocnění, kdy dochází ke kornatění tepen koronárních, nebo mozkových. Probíhá dlouhodobě a je způsobené ukládáním tzv. aterogeních látek především lipidů, sacharidů, krevních buněk, fibrózní tkáně a vápníku ve stěnách tepen, kde dochází k patologickým změnám v intimě a medií (Obr. 21). Následně dochází ke změně průsvitu cévy, čímž vzniká nedostatečné prokrvení příslušné oblasti, kterou céva zásobuje. V místech, kde dochází k zúžení, je céva méně odolná na tlak a může vzniknout výduť neboli aneurysma. Aterosklerotický proces začíná už v mládí a probíhá po mnoha let.

Obr. 21: Aterosklerotická hmota, která postupně zužuje cévu (Zdroj: URL 29)

Nejčastěji postihuje břišní aortu, odstupy velkých arterií z aorty, věnčité tepny, karotidy, bazální cévy, nachází se v ledvinách a ve femorálních tepnách. Příčiny jsou multifaktoriální, ale za hlavní příčinu jsou považovány změny metabolismu tukových látek a jejich vysoká hladina v krvi tzv. *hyperlipoproteinemie* neboli vysoká hladina cholesterolu v krvi (Obr. 22). Dále se také jedná o poškození endotelu, které vyvolává vznik trombu.
Příčiny vzniku onemocnění

Příčin aterosklerózy je velké množství. Patří k nim rostoucí věk, kdy platí, čím déle žijeme, tím více se stěny cév opotřebovávají. Dalším významným faktorem je pohlaví, kdy muži jsou náchylnější ke vzniku aterosklerózy více než ženy. Je to proto, že ženy jsou proti civilizačním chorobám chráněny až do přechodu svými hormony, ale velkou roli hrají i genetické předpoklady. Pokud se zmiňuje věk v souvislosti s aterosklerózou, je nutné podotknout, že ženy jsou po přechodu náchylnější k onemocnění kardiovaskulárními chorobami než muži. Dalšími rizikovými faktory jsou arteriální hypertenze, kouření cigaret, obezita nebo cukrovka 1. typu i 2. typu.

12.2 Morfologické projevy a vývoj onemocnění

Morfologické projevy aterosklerózy rozděluje do 3. stupňů:

1. stupeň: Lipoidní proužky mají bělavě žlutou barvu a postihují intimu větších cév, především aortu.
3. stupeň: Ateromatózní vředy deformují stěnu cévy. Na postižených místech endotelu se druhotně vytváří trombóza. Ve třetím stupni dále dochází ke kalciifikaci, kdy v postižených částech tepny se ukládají soli vápníku a ložiska se kalciifikují (URL 32).

Obr. 23: Vývoj aterosklerózy – nejprve vznikají v důsledku zvýšeného ukládání cholesterolu tukové proužky. Jejich postupným zvětšováním a spojováním se vytvoří aterom. Aterom se rozrůstá, vytváří fibroaterom a ten zablokuje průtok krve cévou. (Zdroj: URL 33)

12.3 Komplikace

Jak bylo zmíněno výše, komplikace u aterosklerózy souvisí se zužováním nebo náhlým uzávěrem cév a místem, kde se tomuto děje. Tyto komplikace jsou současně i klinickými projevy. Dlouhodobým zužováním vzniká angina pectoris, při náhlém uzávěru vzniká infarkt myokardu. Příznaky infarktu myokardu jsou dušnost, nevolnost, zrychlený puls, poruchy rytmičnosti srdce. U aterosklerózy aorty (Obr. 24) může vzniknout

Obr. 24: Zobrazení nemocné cévy v srucí, která je zúžená a zkornatělá
A – věnčitá tepna
B - ateroskleróza
(Zdroj: URL 34)

Co se týče mozku, dlouhodobým zužováním cév se zdánlivě nic neděje, protože mozek vyžívají 4 cévy, které postačují na zásobení mozk ů kyslíkem. Při náhlém uzavření sraženinou, případně rychlým transportem této sraženiny do mozku, vznikne klasická ischemická čevní mozková příhoda, která může vést až k doživotním následkům (ochrnutí, ztráta citlivosti části těla, ztráta řeči). Ateroskleróza mozkových tepen způsobuje i krvácení do mozk nebo trombózu. Při zasažení tepen dolních končetin se vytváří ischemická choroba dolních končetin. U ledvin je ateroskleróza spojena s nefrosklerózou a zánikem glomerulů. Následně dochází ke zhoršení renálních funkcí a objevuje se hypertenze (URL 32).
12.3.1 Rizikový faktor: zvýšené vylučování albuminu močí

Jedním z nejnověji objevených rizikových faktorů, který může předpovídat možnost vzniku kardiovaskulární událostí, je zvýšené vylučování albuminu močí (UAE). Zvýšené vylučování albuminu močí je také spojeno s vyšší úmrtností jedinců s diabetem, kdy výrazně způsobuje pokles funkce ledvin. Při léčbě hypertenze pokles ve vylučování albuminu, vede k menšímu počtu kardiovaskulárních událostí. Změna normoalbuminurie k mikroalbuminurii je popisována jako mírný vzestup exkrece albuminu do moči, kdy jeho odpad je menší než 300 mg/den. Mikroalbuminurie často značí onemocnění ledvin (Solbu et al., 2008). V populaci trpící diabetes mellitus je úmrtnost na kardiovaskulární onemocnění velmi vysoká (Yokoyama et al., 2008).

UAE je spojeno s tzv. metabolickým syndromem (Solbu et al., 2008). Metabolický syndrom (neboli Syndrom X, neboli Reavenův syndrom) je komplex poruch a onemocnění mezi které patří inzulinová rezistence (nedostatečná citlivost buněk na inzulín, kterého je dostatečné množství, ale buňky na něj nereaguji, takže nemůžou využít krevní cukr k tvorbě energie; většinou předstupeň vzniku cukrovky), hypertenze, hypertriglyceridémie (zvýšená hladina triglyceridů) (URL 35). Je prokázáno, že spojení mezi UAE a metabolickým syndromem je větší mužů než u žen (Solbu et al., 2008).

12.4 Prevence a terapie

Nejdůležitější složkou terapie je prevence a zdravý životní styl. Doporučuje se odstranit rizikové faktory jako je obezita, nedostatek pohybu nebo kouření. Dieta se doporučuje s omezením tuku, snížení hladiny cholesterolu v krvi, zvýšit přísun vlákniny, kvalitních proteinů a vitamínů, především vitamíny E a C.

Farmakologicky se využívá vazodilatační léčba, angioplastika, která slouží k rozšíření cévy. Dále se přistupuje k chirurgickým zákrokům – k odstranění trombu, který způsobuje ischemii, nebo přemostění neprůchodné cévy – bypass (URL 32).
Závěr

Ve své diplomové práci jsem uspořádala současné informace týkající se fyziologických procesů stárnutí. Zároveň se má práce zaměřují na problematiku patofyziologických procesů a to především neurodegenerativních chorob, které se objevují především v pozdním věku.

Stárnutí je proces, který nejsme schopni v současné době zastavit. Přestože otázka délky života i potenciální nesmrtelnosti je již velmi dlouhou dobu v popředí zájmu jak odborníků, tak i široké veřejnosti, stále nebyla plně pochopena podstata postupné ztráty fyziologických funkcí organismu, které nakonec vyústí v ztrátu fyzického i duševního výkonnosti a končí úmrtím jedince. Existuje řada teorií stárnutí, které jsou založeny na odlišných východiscích, ale žádnou z nich nelze považovat za plně přesnou podsttu pro všechny říkající organismy.

Patofyziologické procesy, které se objevují u organismu, obvykle způsobují zrychlení procesu stárnutí. Velmi často se u osob s vyšším věkovým věkem vyskytují neurodegenerativní onemocnění, která jsou jednou z častých přičin úmrtí. Představují širokou skupinu chorob, které postihují centrální a periferní nervový systém. Mezi nejčastější patří Alzheimerova a Parkinsonova choroba, které se projevují progresivně ztrátou funkcí. Tyto onemocnění současně medicína není schopna plně vyléčit, může pouze zmírňovat jejich průběh.

V posledním desetiletí výzkum v oblasti stárnutí a neurodegenerativních chorob zaznamenal výrazný pokrok. Geneticke a biologické modely představují nové možnosti terapie a prevence. Co se týče neurodegenerativních onemocnění, objevují se léčebné postupy, které by již mohly postihovat samotnou podstatu těchto vážných chorob. U výzkumu stárnutí byla objevena řada přípravků a metod, které byly schopny prodloužit život modelových organismů a které by mohly být potenciálně účinné i na člověka. Přesto nyní nemůžeme žádný z nich považovat za „elixír života“.

K prodloužení života společnosti jako celku bude nutná ještě celá řada studií a proto je potenciální nesmrtelnost nejspíše otázkou velmi vzdálené budoucnosti.
<table>
<thead>
<tr>
<th>Zkratka</th>
<th>Význam</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-HT</td>
<td>5-hydroxytryptamin</td>
</tr>
<tr>
<td>5-HTP</td>
<td>5-hydroxytryptofan</td>
</tr>
<tr>
<td>α2M</td>
<td>α2 makroglobulin</td>
</tr>
<tr>
<td>Aβ</td>
<td>amyloid β peptid</td>
</tr>
<tr>
<td>AD</td>
<td>Alzheimerova choroba</td>
</tr>
<tr>
<td>AIF</td>
<td>iniciující faktor apoptózi (apoptosis-initiating factor)</td>
</tr>
<tr>
<td>ApoE</td>
<td>alipoprotein E</td>
</tr>
<tr>
<td>ALS</td>
<td>amyotrofická laterální skleróza</td>
</tr>
<tr>
<td>APP</td>
<td>amyloidový prekurzorový protein</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosintrifosfát</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>CAG</td>
<td>triplet cytosin-adenin-guanin</td>
</tr>
<tr>
<td>CMP</td>
<td>cévní mozkové příhody</td>
</tr>
<tr>
<td>CNS</td>
<td>centrální nervová soustava</td>
</tr>
<tr>
<td>CoQ10</td>
<td>koenzym Q10</td>
</tr>
<tr>
<td>CT</td>
<td>počítačová tomografie</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonukleová kyselina</td>
</tr>
<tr>
<td>DOPAL</td>
<td>3,4 – dihydroxyfenylacetaldehyd</td>
</tr>
<tr>
<td>ESC</td>
<td>embryonální kmenové buňky</td>
</tr>
<tr>
<td>GABA</td>
<td>kyselina γ – aminomáselná</td>
</tr>
<tr>
<td>HD</td>
<td>Huntingtonova chorea</td>
</tr>
<tr>
<td>HDAC</td>
<td>histonová deacetylása</td>
</tr>
<tr>
<td>HSF-1</td>
<td>transkripciální faktor tepelného šoku 1 (heat-shock factor 1)</td>
</tr>
<tr>
<td>HTRA2</td>
<td>high temperature requirement protein A2</td>
</tr>
<tr>
<td>IGF1</td>
<td>inzulinu podobný růstový faktor (insulin/insulin-like growth factor 1)</td>
</tr>
<tr>
<td>IIS</td>
<td>signální cesty IGF1 (insulin/insulin-like growth factor 1 signalling)</td>
</tr>
<tr>
<td>LBM</td>
<td>hmotnost těla bez tuků (lean body mass)</td>
</tr>
<tr>
<td>LRRK2</td>
<td>leucine-rich repeat kinase 2</td>
</tr>
<tr>
<td>MCI</td>
<td>mírné poškození kognitivních funkcí (mild cognitive impairment)</td>
</tr>
<tr>
<td>MPP+</td>
<td>1-methyl-4-fenylpiridinium</td>
</tr>
<tr>
<td>MPTP</td>
<td>1-methyl-4-fenyl-1,2,3,6 tetrahydropyridin</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>MR</td>
<td>magnetická rezonance</td>
</tr>
<tr>
<td>mRNA</td>
<td>informační ribonukleová kyselina</td>
</tr>
<tr>
<td>mtDNA</td>
<td>mitochondriální deoxyribonukleová kyselina</td>
</tr>
<tr>
<td>ND</td>
<td>neurodegenerativní (onemocnění)</td>
</tr>
<tr>
<td>OP</td>
<td>prekurzory oligodendrocytů</td>
</tr>
<tr>
<td>PD</td>
<td>Parkinsonova choroba</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonukleová kyselina</td>
</tr>
<tr>
<td>ROS</td>
<td>volné kyslíkové radikály</td>
</tr>
<tr>
<td>TOR</td>
<td>target of rapamycin</td>
</tr>
<tr>
<td>UAE</td>
<td>vylučování albuminu moči (urinary albumin-excretion)</td>
</tr>
<tr>
<td>VD</td>
<td>vaskulární demence</td>
</tr>
<tr>
<td>WS</td>
<td>Wernerův syndrom</td>
</tr>
</tbody>
</table>
Použitá literatura

12. Dufek, M. Cerebrovaskulární onemocnění ve stáří. *Neurologie pro praxi*, 2003, 1, s. 14-20

38. Stefánsson, H. The science of ageing and anti-ageing. EMBO Reports, July 2005, 6, p. S1–S3

41. Veglio, F., Paglieri, C., Rabbia, F., Bisbocci, D., Bergui, M., Cerrato, P. Hypertension and cerebrovascular damage. Atherosclerosis, December 2008, 205, p. 331-341

Internetové zdroje

URL 1: Terry Devitt; University of Wisconsin-Madison; The Biomarkers of Aging; © 1999; [2009-11-20].
Dostupné na World Wide Web: <http://www.news.wisc.edu/385>

URL 2: Wikipedia; Gerontologie; © 2009; [2009-11-20].

Dostupné na World Wide Web: < http://cs.wikipedia.org/wiki/Progerie>

URL 4: Vrtiška Ondřej; Týden.cz; Nobelova cena za medicínu: Proč buňky (ne)stárnou?; © 2009; [2009-11-25].

Dostupné na World Wide Web: <http://cs.wikipedia.org/wiki/Apopt%C3%B3za>

URL 7: Josef Pazdera; Osel.cz; Alzheimerova choroba; © 2005; [2010-01-28].
Dostupné na World Wide Web:

URL 8: Wikipedia; Myelin; © 2009; [cit. 2009-10-02].
Dostupné na World Wide Web:
<http://cs.wikipedia.org/wiki/Myelinov%C3%A1_pochva>

URL 9: Wikipedia; Oligodendrocyt; © 2009; [cit. 2009-10-02].
URL 10: Chapter Rewiew; The Biological Basis of Behavior; © 1995-2002; [cit. 2009-10-05].
Dostupné na World Wide Web:
<http://cwx.prenhall.com/bookbind/pubbooks/morris5/medialib/images/F02_01.jpg>

URL 11: University of Aarhus; Department of molecular biology; Laboratory of Cellular Ageing - Modulating cellular ageing process; © 2009; [2009-11-20].

URL 12: Vlasta Stancová; Inovace.cz; Nízkokalorická strava zpomaluje stárnutí; © 2007; [2009-11-16].

URL 13: Nature.com; Rapamycin: an antifungal, immunosuppressive and anticancer agent; © 2009; [cit. 2009-09-29].
Dostupné na World Wide Web:
<http://www.nature.com/nrmicro/journal/v5/n1/images/nrmicro1578-i1.jpg>

URL 14: Cerebrum; Kognitivní funkce; © 2009; [cit. 2009-09-29].
Dostupné na World Wide Web:

URL 15: Wikipedia; Koenzym Q10; ©2009; [cit. 2009-09-30].

URL 16: Nutris.net; Aktuality; © 2007-2009; [cit. 2009-09-30].
Dostupné na World Wide Web: <http://www.nutris.net/_images/aktuality_koenzym.png>

URL 17: Centrum neurologické péče s.r.o.; Neurodegenerativní onemocnění a abnormní pohyby; © 2003; [cit. 2009-09-23].
URL 27: Wikipedia; Serotonin; © 2009; [2009-11-1].

Dostupné na World Wide Web:

URL 29: Inovace.cz; Nová metoda v boji proti infarktu či mozkové mrtvici; © 2007; [cit. 2009-09-24].
Dostupné na World Wide Web: <drberlanga.com/images/aterosclerosis.JPG>

URL 30: Vitalia.cz; Hodný a zlý cholesterol; © 2009; [cit. 2009-09-24].
Dostupné na World Wide Web: <i.iinfo.cz/rs2/698/cholesterol-818.jpg>

URL 31: Jiří Štefánek; Medicína, nemoci, studium na 1. LF UK; Ateroskleróza; © 2008; [cit. 2009-09-24].
Dostupné na World Wide Web: <http://www.stefajir.cz/?q=ateroskleroza>

URL 32: Interna; Ateroskleróza; © 2004; [cit. 2009-09-24].
Dostupné na World Wide Web:

URL 33: Pfizer Czech Republic; Příčiny nemoci; © 2004-2009; [cit. 2009-09-24].

URL 34: Nemocnice Na Homolce; Kardiochirurgie – Nejčastější onemocnění a operace srdce; © 2009; [cit. 2009-09-24].

URL 35: Obezita.cz; Metabolický syndrom; © 2008; [2009-10-30].