
Real-Time Scheduling

Scheduling of Reactive Systems

[Some parts of this lecture are based on a real-time systems course
of Colin Perkins

http://csperkins.org/teaching/rtes/index.html]

1



Reminder of Basic Notions

I Jobs are executed on processors and need resources

I Parameters of jobs
I temporal:

I release time – ri
I execution time – ei
I absolute deadline – di
I derived params: relative deadline (Di), response time, ...

I functional:
I laxity type: hard vs soft
I preemptability

I interconnection
I precedence constraints (independence)

I resource
I what resources and when are used by the job

I Tasks = sets of jobs

2



Reminder of Basic Notions

I Schedule assigns, in every time instant, processors and
resources to jobs

I valid schedule = correct (common sense)

I Feasible schedule = valid and all hard real-time tasks meet
deadlines

I Set of jobs is schedulable if there is a feasible schedule for it

I Scheduling algorithm computes a schedule for a set of jobs

I Scheduling algorithm is optimal if it always produces a feasible
schedule whenever such a schedule exists, and if a cost function
is given, minimizes the cost

We have considered scheduling of individual jobs

3



Scheduling Reactive Systems

From this point on we concentrate on reactive systems
i.e. systems that run for unlimited amount of time

Recall that a task is a set of related jobs that jointly provide
some system function.

I We consider various types of tasks
I Periodic
I Aperiodic
I Sporadic

I Differ in execution time patterns for jobs in the tasks

I Must be modeled differently
I Differing scheduling algorithms
I Differing impact on system performance
I Differing constraints on scheduling

4



Periodic Tasks

I A set of jobs that are executed repeatedly at regular time
intervals can be modeled as a periodic task

Time
Ji,1

ri,1

Ji,2

ri,2

Ji,3

ri,3

Ji,4

ri,4

· · ·
ϕi

I Each periodic task Ti is a sequence of jobs
Ji,1, Ji,2, . . . Ji,n, . . .

I The phase ϕi of a task Ti is the release time ri,1 of the first
job Ji,1 in the task Ti ;
tasks are in phase if their phases are equal

I The period pi of a task Ti is the minimum length of all time
intervals between release times of consecutive jobs in Ti

I The execution time ei of a task Ti is the maximum execution
time of all jobs in Ti

I The relative deadline Di is relative deadline of all jobs in Ti

(The period and execution time of every periodic task in the system are
known with reasonable accuracy at all times)

5



Periodic Tasks – Notation

The 4-tuple Ti = (ϕi ,pi ,ei ,Di) refers to a periodic task Ti with phase
ϕi , period pi , execution time ei , and relative deadline Di

For example: jobs of T1 = (1,10,3,6) are
I released at times 1, 11, 21, . . .,
I execute for 3 time units,
I have to be finished in 6 time units (the first by 7, the second by 17, ...)

Default phase of Ti is ϕi = 0 and default relative deadline is di = pi

T2 = (10,3,6) satisfies ϕ = 0, pi = 10, ei = 3, Di = 6, i.e. jobs of T2 are
I released at times 0, 10, 20, . . .,
I execute for 3 time units,
I have to be finished in 6 time units (the first by 6, the second by 16, ...)

T3 = (10,3) satisfies ϕ = 0, pi = 10, ei = 3, Di = 10, i.e. jobs of T3 are
I released at times 0, 10, 20, . . .,
I execute for 3 time units,
I have to be finished in 10 time units (the first by 10, the second by 20, ...)

6



Periodic Tasks – Hyperperiod

The hyper-period H of a set of periodic tasks is the least
common multiple of their periods
This is the time instant after which the pattern of job release/execution times
starts to repeat

0 5 10 15 20 25 30

H H

7



Aperiodic and Sporadic Tasks

I Many real-time systems are required to respond to
external events

I The tasks resulting from such events are sporadic and
aperiodic tasks

I Sporadic tasks – hard deadlines of jobs
e.g. autopilot on/off in aircraft

I Aperiodic tasks – soft deadlines of jobs
e.g. sensitivity adjustment of radar surveilance system

I Inter-arrival times between consecutive jobs are identically
and independently distributed according to a probability
distribution A(x)

I Execution times of jobs are identically and independently
distributed according to a probability distribution B(x)

I In the case of sporadic tasks, the usual goal is to decide,
whether a newly released job can be feasibly scheduled with
the remaining jobs in the system

I In the case of aperiodic tasks, the usual goal is to minimize the
average response time 8



Scheduling – Classification of Algorithms

I Static vs Dynamic
I Static – decisions based on fixed parameters assigned to

tasks/jobs before their activation
I Dynamic – decisions based on dynamic parameters that

may change during computation
I Off-line vs Online

I Off-line – sched. algorithm is executed on the whole task
set before activation

I Online – schedule is updated at runtime every time a new
task enters the system

I Optimal vs Heuristic
I Optimal – algorithm computes a feasible schedule and

minimizes cost of soft real-time jobs
I Heuristic – algorithm is guided by heuristic function; tends

towards optimal schedule, may not give one

9



Scheduling – Clock-Driven

I Decisions about what jobs execute when are made at specific
time instants

I these instants are chosen before the system begins
execution

I Usually regularly spaced, implemented using a periodic
timer interrupt

I Scheduler awakes after each interrupt, schedules jobs to
execute for the next period, then blocks itself until the next
interrupt
E.g. the helicopter example with the interrupt every 1/180 th of a
second

I Typically in clock-driven systems:
I All parameters of the real-time jobs are fixed and known
I A schedule of the jobs is computed off-line and is stored for

use at runtime; thus scheduling overhead at run-time can
be minimized

I Simple and straight-forward, not flexible

10



Scheduling – Priority-Driven

I Assign priorities to jobs, based on some algorithm
I Make scheduling decisions based on the priorities, when events

such as releases and job completions occur
I Priority scheduling algorithms are event-driven
I Jobs are placed in one or more queues; at each event, the

ready job with the highest priority is executed
(The assignment of jobs to priority queues, along with rules such as
whether preemption is allowed, completely defines a priority-driven alg.)

I Priority-driven algs. make locally optimal scheduling decisions
I Locally optimal scheduling is often not globally optimal
I Priority-driven algorithms never intentionally leave idle

processors
I Typically in priority-driven systems:

I Some parameters do not have to be fixed or known
I A schedule is computed online; usually results in larger

scheduling overhead as opposed to clock-driven scheduling
I Flexible – easy to add/remove tasks or modify parameters

11



Clock-Driven & Priority-Driven Example

T1 T2 T3
pi 3 5 10
ei 1 2 1

Clock-Driven:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

· · ·

· · ·

· · ·

Priority-driven: T1 � T2 � T3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

12



Real-Time Scheduling

Scheduling of Reactive Systems

Clock-Driven Scheduling

13



Current Assumptions

I Fixed number, n, of periodic tasks T1, . . . ,Tn
I Parameters of periodic tasks are known a priori

I Execution time ei,k of each job Ji,k in a task Ti is fixed
I For a job Ji,k in a task Ti we have

I ri,1 = ϕi
I ri,k = ri,k−1 + pi

I We allow aperiodic jobs
I assume that the system maintains a single queue for

aperiodic jobs
I Whenever the processor is available for aperiodic jobs, the

job at the head of this queue is executed
I We treat sporadic jobs later

14



Static, Clock-Driven Scheduler

I Construct a static schedule offline
I The schedule specifies exactly when each job executes
I The amount of time allocated to every job is equal to its

execution time
I The schedule repeats each hyperperiod

i.e. it suffices to compute the schedule up to hyperperiod
I Can use complex algorithms offline

I Runtime of scheduling algorithm is not relevant
I Can compute a schedule that optimizes some

characteristics of the system
e.g. a schedule where the idle periods are nearly periodic (useful
to accommodate aperiodic jobs)

15



Example

T1 = (4,1), T2 = (5,1.8), T3 = (20,1), T4 = (20,2)

Hyperperiod H = 20

0 4 8 12 16 20 24

Aper.

T1

T2

T3

T4

16



Implementation of Static Scheduler

I Store pre-computed schedule as a table
I Each entry (tk ,T(tk )) gives

I a decision time tk
I scheduling decision T(tk ) which is either a task to be

executed, or idle (denoted by I)
I The system creates all tasks that are to be executed:

I Allocates memory for the code and data
I Brings the code into memory

I Scheduler sets the hardware timer to interrupt at the first
decision time t0 = 0

I On receipt of an interrupt at tk :
I Scheduler sets the timer interrupt to tk+1
I If previous task overrunning, handle failure
I If T(tk ) = I and aperiodic job waiting, start executing it
I Otherwise, start executing the next job in T(tk )

17



Example

T1 = (4,1), T2 = (5,1.8), T3 = (20,1), T4 = (20,2)

Hyperperiod H = 20

0 4 8 12 16 20 24

Aper.

T1

T2

T3

T4

tk 0.0 1.0 2.0 3.8 4.0 5.0 6.0 · · ·

T(tk ) T1 T3 T2 I T1 I T4 · · ·

18



Implementation of Static Scheduler

Input: the table (tk ,T(tk )) for k = 0,1, . . . ,n − 1
Task SCHEDULER:

set the number of decisions i := 0 and table entry k := 0;
set the timer to expire at t0;
do forever:

accept timer interrupt;
if an aperiodic job is executing, preempt it;
current task T := T(tk );
increment i by 1;
compute the next table entry k = i mod n;
set the timer to expire at bi/nc ∗ H + tk ;
if the current task T = I,

execute the job at the head of the aperiodic queue;
else

let the task T execute;
sleep;

end do.
End SCHEDULER

19



Frame Based Scheduling

I Arbitrary table-driven cyclic schedules flexible, but
inefficient

I Relies on accurate timer interrupts, based on execution
times of tasks

I High scheduling overhead
I Easier to implement if a structure is imposed

I Make scheduling decisions at periodic intervals (frames) of
length f

I Execute a fixed list of jobs within each frame;
no preemption within frames

I Require phase of each periodic task to be a non-negative
integer multiple of the frame size
i.e. ϕi = k · f for some integer k

How to choose the size of frames? How to compute
a schedule?
To simplify further development, assume that the phase of each task is zero
and choose frame sizes inN

20



Frame Based Scheduling – Frame Size

0. Necessary condition for avoiding preemption of jobs is

f ≥ max
i

ei

(i.e. we want each job to have a chance to finish within a frame)

1. To minimize the number of entries in the cyclic schedule, the
hyper-period should be an integer multiple of the frame size, i.e.

bpi/fc − pi/f = 0

for some task Ti .

2. To allow scheduler to check that jobs complete by their deadline,
at least one frame should lie between release time of a job and
its deadline, i.e.

2 ∗ f − gcd(pi , f) ≤ Di

for all tasks Ti

Example: T1 = (4,1.0), T2 = (5,1.8), T3 = (20,1.0), T4 = (20,2.0)
Then f ∈N satisfies 0.–2. iff f = 2.

21



Frame Based Scheduling – Frame Size – Example

Example 1
T1 = (4,1.0), T2 = (5,1.8), T3 = (20,1.0), T4 = (20,2.0)
Then f ∈N satisfies 0.–2. iff f = 2.

With f = 2 is schedulable:

22



Frame Based Scheduling – Job Slices

I Sometimes a system cannot meet all three frame size
constraints simultaneously (and even if it meets the
constraints, no non-preemptive schedule is feasible)

I Can be solved by partitioning a job with large execution
time into slices with shorter execution times
This, in effect, allows preemption of the large job

To construct a schedule, we have to make three kinds of design
decisions (that cannot be taken independently):
I Choose a frame size based on constraints
I Partition jobs into slices
I Place slices into frames

23



Frame Based Scheduling – Job Slices – Example

I Consider T1 = (4,1), T2 = (5,2,7), T3 = (20,5)
I Cannot satisfy constraints: 1. ⇒ f ≥ 5 but 3. ⇒ f ≤ 4
I Solve by splitting T3 into T3,1 = (20,1), T3,2 = (20,3), and

T3,3 = (20,1)
(Other splits exist)

I Result can be scheduled with f = 4

Assuming that preemption is allowed in arbitrary places, jobs
are independent and there are no resource contentions, there
is a (pseudo)polynomial time algorithm which
I chooses an appropriate frame size f
I partitions jobs into slices
I places slices into frames

(whiteb.)

24



Frame Based Scheduling – Algorithm

I Compute all frame sizes satisfying conditions 1. and 2.
(not necessarily 0.)

I For every frame size f construct a network flow graph:
(the number of frames in one hyperperiod is F)

I Vertices:
I a vertex for each job Ji
I a vertex for each frame j where j = 1, . . . ,F
I source and sink

I Edges:
I from Ji to j of capacity f if Ji can be scheduled in the frame j
I from source to Ji of capacity ei
I from every frame to sink of capacity f

Theorem 2
Max flow assigned to every edge from source to Ji is ei

iff
the jobs can be partitioned into slices and the slices placed into
frames so that the resulting schedule is feasible. The flows
assigned to edges of the form (Ji , j) determine the schedule.

25



Frame Based Scheduling – Network Flow Example

The example with
T1 = (4,1), T2 = (5,2,7),
T3 = (20,5) and f = 4

Note that

T2 has four jobs J2,1, J2,2,
J2,3, J2,4 in one hyperper.

The only job of T3 released
in one hyperper. can be
placed into any frame

26



Frame Based Scheduling – Cyclic Executive

I Modify previous table-driven scheduler to be frame based
I Table that drives the scheduler has F entries, where

F = H/f
I The k -th entry L(k ) lists the names of the job slices that are

to be scheduled in frame k (L(k ) is called scheduling block)
I Each job slice is implemented by a procedure

I Cyclic executive executed by the clock interrupt that
signals the start of a frame:

I If an aperiodic job is executing, preempts it; if a periodic
overruns, handles the overrun

I Determines the appropriate scheduling block for this frame
I Executes the jobs in the scheduling block
I Executes jobs from the head of the aperiodic job queue for

the remainder of the frame
I Less overhead than pure table driven cyclic scheduler,

since only interrupted on frame boundaries, rather than on
each job

27



Scheduling Aperiodic Jobs

So far, aperiodic jobs scheduled in the background after all jobs
with hard deadlines
This may unnecessarily delay aperiodic jobs

Note: There is no advantage in completing periodic jobs early
Ideally, finish periodic jobs by their respective deadlines.

Slack Stealing:
I Slack time in a frame = the time left in the frame after all

(remaining) slices execute
I Schedule aperiodic jobs ahead of periodic in the slack time of

periodic jobs
I The cyclic executive keeps track of the slack time left in

each frame as the aperiodic jobs execute, preempts them
with periodic jobs when there is no more slack

I As long as there is slack remaining in a frame and the
aperiodic jobs queue is non-empty, the executive executes
aperiodic jobs, otherwise executes periodic

I Reduces resp. time for aper. jobs, but requires accurate timers
28



Example

Assume that the aperiodic queue is never empty.

Aperiodic at the ends of frames:

0 4 8 12 16 20 24

Aper.

T1

T2

T3

T4

Slack stealing:

0 4 8 12 16 20 24

Aper.

T1

T2

T3

T4

29



Slack Stealing – cont.

Sl. S.

Standard

Rel. aper.

Period.

30



Frame Based Scheduling – Sporadic Jobs
Let us allow sporadic jobs
i.e. hard real-time jobs whose release and exec. times are not known a priori

The scheduler determines whether to accept a sporadic job when it
arrives (and its parameters become known)

I Perform acceptance test to check whether the new sporadic job
can be feasibly scheduled with all the jobs (periodic and
sporadic) in the system at that time
Acceptance check done at the beginning of the next frame; has to keep
execution times of the parts of sporadic jobs that have already executed

I If there is sufficient slack time in the frames before the new job’s
deadline, the new sporadic job is accepted; otherwise, rejected

I Among themselves, sporadic jobs scheduled according to EDF
This is optimal for sporadic jobs

Note: rejection is often better than missing deadline
e.g. a robotic arm taking defective parts off a conveyor belt: if the arm cannot
meet deadline, the belt may be slowed down or stopped

31



I S1(17,4.5) released at 3 with abs. deadline 17 and execution time 4.5;
acceptance test at 4; must be scheduled in frames 2,3,4; total slack in
these frames is 4, i.e. rejected

I S2(29,4) released at 5 with abs. deadline 29 and exec. time 4; acc. test
at 8; total slack in frames 3-7 is 5.5, i.e. accepted

I S3(22,1.5) released at 11 with abs. deadline 22 and exec. time 1.5;
acc. test at 12;
2 units of slack in frames 4,5 as S3 will be executed ahead of the
remaining parts of S2 by EDF – check whether there will be enough
slack for the remaining parts of S2, accepted

I S4(44,5.0) is rejected (only 4.5 slack left)
32



Handling Overruns

Overruns may happen due to failures
e.g. unexpectedly large data over which the system operates, hardware
failures, etc.

Ways to handle overruns:
I Abort the overrun job at the beginning of the next frame;

log the failure; recover later
e.g. control law computation of a robust digital controller

I Preempt the overrun job and finish it as an aperiodic job
use this when aborting job would cause “costly” inconsistencies

I Let the overrun job finish – start of the next frame and the
execution jobs scheduled for this frame are delayed

This may cause other jobs to be delayed
depends on application

33



Cloc-drive Scheduling: Conclusions

Advantages:
I Conceptual simplicity

I Complex dependencies, communication delays, and
resource contention among jobs can be considered when
constructing the static schedule

I Entire schedule in a static table
I No concurrency control or synchronization needed

I Easy to validate, test and certify
Disadvantages:
I Inflexible

I If any parameter changes, the schedule must be usually
recomputed
Best suited for systems which are rarely modified (e.g. controllers)

I Parameters of the jobs must be fixed
As opposed to most priority-driven schedulers

34



Real-Time Scheduling

Scheduling of Reactive Systems

Priority-Driven Scheduling

35



Current Assumptions

I Single processor
I Fixed number, n, of independent periodic tasks

i.e. there is no dependency relation among jobs
I Jobs can be preempted at any time and never suspend

themselves
I No aperiodic and sporadic jobs
I No resource contentions

Moreover, unless otherwise stated, we assume that
I Scheduling decisions take place precisely at

I release of a job
I completion of a job

(and nowhere else)

I Context switch overhead is negligibly small
i.e. assumed to be zero

I There is an unlimited number of priority levels
36



Fixed-Priority vs Dynamic-Priority Algorithms
A priority-driven scheduler is on-line
i.e. it does not precompute a schedule of the tasks

I It assigns priorities to jobs after they are released and places the
jobs in a ready job queue in the priority order
with the highest priority jobs at the head of the queue

I At each scheduling decision time, the scheduler updates the
ready job queue and then schedules and executes the job at the
head of the queue
i.e. one of the jobs with the highest priority

Fixed-priority = all jobs in a task are assigned the same priority

Dynamic-priority = jobs in a task may be assigned different priorities

Note: In our case, a priority assigned to a job does not change. There are
job-level dynamic priority algorithms that vary priorities of individual jobs – we
won’t consider such algorithms.

37



Fixed-priority Algorithms – Rate Monotonic
Best known fixed-priority algorithm is rate monotonic (RM) scheduling
that assigns priorities to tasks based on their periods
I The shorter the period, the higher the priority
I The rate is the inverse of the period, so jobs with higher rate

have higher priority

RM is very widely studied and used

Example 3
T1 = (4,1), T2 = (5,2), T3 = (20,5)
with rates 1/4, 1/5, 1/20, respectively

The priorities: T1 � T2 � T3

0 4 8 12 16 20

T3

T2

T1

38



Fixed-priority Algorithms – Deadline Monotonic

The deadline monotonic (DM) algorithm assigns priorities to
tasks based on their relative deadlines
I the shorter the deadline, the higher the priority

Observation: When relative deadline of every task matches its
period, then RM and DM give the same results

Proposition 1
When the relative deadlines are arbitrary
I DM can sometimes produce a feasible schedule in cases

where RM cannot
I If tasks are in phase, RM always fails when DM fails

39



Rate Monotonic vs Deadline Monotonic

T1 = (50,50,25,100), T2 = (0,62.5,10,20), T3 = (0,125,25,50)

Priorities: T2 � T3 � T1

DM is optimal:

50 100 150 200 250

0 62.5 125 187.5 250

0 125 250

20 82.5 145 207.5

50 175

T3

T2

T1

RM is not optimal:

50 100 150 200 250

0 62.5 125 187.5 250

0 125 250

20 82.5 145 207.5

50 175

T3

T2

T1

40



Dynamic-priority Algorithms

Best known is earliest deadline first (EDF) that assigns
priorities based on current deadlines
I At the time of a scheduling decision, the job queue is

ordered by earliest deadline

Another one is the least slack time (LST)
I The job queue is ordered by least slack time

Recall that the slack time of a job Ji at time t is equal to di − t − x where x is
the remaining computation time of Ji at time t

Comments:
I There is also a strict LST which reassigns priorities to jobs whenever

their slacks change relative to each other – won’t consider
I Standard “non real-time” algorithms such as FIFO and LIFO are also

dynamic-priority algorithms

We focus on EDF here, leave some LST for homework
41



EDF – Example

T1 = (2,1) and T2 = (5,2.5)

0 1 2 3 4 5 6 7 8 9 10

T2

T1

Note that the processor is 100% “utilized”, not surprising :-)

42



Performance of Non Real-Time Algorithms

Standard non real-time algorithms, such as FIFO and LIFO,
may lead to many missed deadlines
Consider the example: T1 = (2,1) and T2 = (5,2.5)

43



Summary of Algorithms

In what follows we consider

Dynamic-priority algorithms: EDF
Fixed-priority algorithms: RM and DM

We consider the following questions:
I Are the algorithms optimal?
I How to efficiently (or even online) test for schedulability?

44


