Shortest paths in graphs
Remarks from previous lectures:

- Path length in unweighted graph equals to edge count on the path
- Oriented distance ($\delta(u, v)$) between vertices u, v equals to the length of the shortest path from u to v
- In an oriented graph, distance between two vertices need not to be symmetrical ($\delta(u, v) \neq \delta(v, u)$ in general)

Figure: In this case $\delta(u, v) \neq \delta(v, u)$.

![Diagram](image-url)
Distance in weighted graph

In real-world applications, graph edges are weighted – e.g., distances between cities, latency of network links.

Definition

Path length in weighted graph equals to sum of edge weights along the path.

- Distance between vertices is defined as the length of the shortest path between them.
- Negative-weight cycle potentially allows some or all distances in the graph to be any negative number.

By definition, the shortest paths do not contain any nonnegative-weight cycle.
The triangle inequality holds for a graph if and only if

\[\delta(u, w) \leq \delta(u, v) + \delta(v, w) \]

The triangle inequality does not hold in general, a graph of the shortest (not direct) distances between cities is the real-world example in which the inequality holds.
Dijkstra’s algorithm

- Well-known algorithm for finding single-source shortest paths.
- Solves the problem for both directed and undirected graphs.
- Computes shortest paths from single source vertex to all others.
- Requires non-negative weights of all edges (not only cycles).
- Linear space complexity.
- Time complexity depends on chosen data structure.
Dijkstra’s algorithm

- Denote source vertex as \(s \).
- For each vertex \(v \) in a graph, \(d[v] \) equals to length the shortest path from \(s \) to \(v \) found so far.
 - Initially, \(d[s] = 0 \) for source vertex and \(d[v] = \infty \) for the others.
 - Upon completion, \(d[v] \) equals to length of the shortest path in the graph if it exists, or \(\infty \) otherwise.
- \(p[v] \) stores the direct predecessor of vertex \(v \) on the shortest path from \(s \) found so far.
 - Initially, \(p[v] \) is undefined for all vertices except \(s \).
 - Upon completion, the shortest path to \(v \) is the sequence \(s, p[...p[v]...], ... p[p[v]], p[v], v \).
Dijkstra’s algorithm

- Vertices are split into two disjoint sets:
 - S contains exactly those vertices, for which the shortest paths has already been computed and stored in $d[v]$.
 - Q contains all other vertices.

- The vertices of set Q are stored in a priority queue.
 - The vertex with the lowest value of $d[u]$ has the highest priority. The $d[u]$ already stores length of the shortest path to u.

- Following steps are taken in each iteration:
 - Remove the vertex u from the queue head.
 - Move the vertex u from Q to S.
 - Relax all edges (u, v) going out from u to any v in Q:
 - $w(u, v)$ denotes weight of the edge (u, v).
Dijkstra’s algorithm – example

Figure: Vertices in the set S are marked blue. Content of the priority queue is depicted to the right of the graph (head on top).
Dijkstra’s algorithm – animations & illustrations

- Animation on an example graph

- Commented computation
 - http://www.youtube.com/watch?v=8Ls1RqHCOPw

- Computation allowing to input your own graph
 - http://www.cse.yorku.ca/~aaw/HFHuang/DijkstraStart.html

- Illustration of a computation
 - http://www.animal.ahrgr.de/showAnimationDetails.php3?lang=en&anim=16
Dijkstra’s algorithm – time complexity

Let’s denote $n = |V|$, $m = |E|$.

- Initialization is linear w. r. t. number of vertices.
- Each edge is traversed exactly once or twice (in case of oriented graph).
- Main loop is run n-times, hence
- there are n delete operations on the priority queue.
- Complexity of the delete operations depends on chosen data structure:
 - **Array, vertex list** – deletion can be done in linear time, complexity of the whole algorithm is therefore in $\mathcal{O}(n^2 + m)$.
 - **Binary heap** – deletion requires $\mathcal{O}(\log(n))$ time. Moreover, each edge relaxation may require heap update ($\mathcal{O}(\log(n))$, overall complexity is in $\mathcal{O}((n + m)\log(n))$).
 - **Fibonacci’s heap** – complexity of the deletion is the same as in the case of binary heap, however update on relaxation runs in constant time – overall complexity is in $\mathcal{O}(m + n\log(n))$.

http://en.wikipedia.org/wiki/Fibonacci_heap
Link-state routing protocols make use of the Dijkstra’s algorithm.

- Each active element broadcasts its neighbors list periodically.
- Neighbors list are forwarded through the network to all active elements.
- Each active element calculates a shortest paths tree to all other AEs independently.
- Risk of loops in routing tables.

OSPF and IS-IS are the most widespread link-state protocols. They both use the Dijkstra’s algorithm.
Floyd-Warshall’s algorithm

- Computes shortest paths between each pair of vertices.
- The algorithm works with negative-weight edges correctly, however, negative-weight cycles may lead to incorrect solution.
- The shortest (so far) known distance between any two vertices is being improved gradually.
- In each step, a set of vertices which may lie on the shortest paths is defined.
- Each iteration introduces a new vertex into this set.
- In each one of n iterations, shortest paths between all n^2 pairs of vertices are updated. The time complexity therefore equals to $O(n^3)$.
- The space complexity is $O(n^2)$.
Floyd-Warshall’s algorithm

- Let the vertices be numbered as $1 \ldots n$.
- At first, only single-edge paths are considered. Afterwards, the algorithm searches for paths traversing through vertex 1. Subsequently, paths using vertices 1 and 2, etc.
- Between any pair of vertices u, v, a shortest path using vertices $1 \ldots k$ is known in $(k + 1)^{th}$ iteration.
- There are two possibilities for the shortest path (which uses vertices $1 \ldots k + 1$) between these two vertices:
 - It uses only the $1 \ldots k$ vertices.
 - It traverses vertices $1 \ldots k$ from u to vertex $k + 1$ and then ends in v.
- Upon completion, shortest paths using all vertices in the graph are computed.
Floyd-Warshall’s algorithm – an example

Figure: Vertices which may be used for shortest paths are highlighted. Shortest paths computed so far are stored in the matrix.
Floyd-Warshall’s algorithm can be easily applied in distributed environment – among autonomous units, which communicate only through message sending

- Each vertex computes shortest paths to all other graph vertices
- Initially, only path to neighbours is known
- Similarly to the sequential case, each iteration adds single vertex which can be included in the paths
- Added vertex broadcasts its distances table to all other vertices in each iteration
- The other vertices update their distances and shortest paths according to the received table
Distributed Floyd-Warshall’s algorithm

- It is crucial for correctness of the algorithm that all vertices choose the same vertex in each iteration.

- Algorithm is inefficient in terms of transferred data amount. If $d[v] = \infty$ holds for selected vertex v in any vertex, its paths are not updated at all, hence it does not need to receive any distance tables in the current iteration.

- Before broadcasting distance table, vertices may signal to each other, which of them should receive the table ⇒ Toueg’s algorithm.

- Further information:
Exercises

1. Calculate shortest paths in the graph below using Dijkstra’s and Floyd-Warshall’s algorithm.

2. Propose an implementation of the Floyd-Warshall’s algorithm (Toueg’s algorithm). Consider, that vertices can transmit messages only along graph edges (broadcasting is implemented by forwarding).
Why doesn’t Dijkstra’s algorithm work correctly on graphs with negative-weight edges? What are the possible outcomes when it is run on such graph?