LECTURE 11

Introduction to Econometrics

Autocorrelation

November 29, 2016
ON PREVIOUS LECTURES

- We discussed the specification of a regression equation

- **Specification** consists of choosing:
 1. correct independent variables
 2. correct functional form
 3. correct form of the stochastic error term

- We talked about the choice of independent variables and their functional form

- We started to talk about the form of the error term - we discussed heteroskedasticity
ON TODAY’S LECTURE

▶ We will finish the discussion of the form of the error term by talking about **autocorrelation** (or **serial correlation**)

▶ We will learn

▶ what is the nature of the problem

▶ what are its consequences

▶ how it is diagnosed

▶ what are the remedies available
Nature of Autocorrelation

- Observations of the error term are correlated with each other
 \[\text{Cov}(\varepsilon_i, \varepsilon_j) \neq 0 \quad , \quad i \neq j \]

- Violation of one of the classical assumptions

- Can exist in any data in which the order of the observations has some meaning - most frequently in time-series data

- Particular form of autocorrelation - AR(p) process:
 \[\varepsilon_t = \rho_1 \varepsilon_{t-1} + \rho_2 \varepsilon_{t-2} + \ldots + \rho_p \varepsilon_{t-p} + u_t \]

 - \(u_t \) is a classical (not autocorrelated) error term
 - \(\rho_k \) are autocorrelation coefficients (between -1 and 1)
EXAMPLES OF PURE AUTOCORRELATION

- Distribution of the error term has autocorrelation nature
- First order autocorrelation

\[\varepsilon_t = \rho_1 \varepsilon_{t-1} + u_t \]

- positive serial correlation: \(\rho_1 \) is positive
- negative serial correlation: \(\rho_1 \) is negative
- no serial correlation: \(\rho_1 \) is zero
- positive autocorrelation very common in time series data
- e.g.: a shock to GDP persists for more than one period

- Seasonal autocorrelation (in quarterly data)

\[\varepsilon_t = \rho_4 \varepsilon_{t-4} + u_t \]
EXAMPLES OF IMPURE AUTOCORRELATION

▶ Autocorrelation caused by specification error in the equation:
 ▶ omitted variable
 ▶ incorrect functional form

▶ How can misspecification cause autocorrelation in the error term?
 ▶ Recall that the error term includes the omitted variables, nonlinearities, measurement error, and the classical error term.
 ▶ If we omit a serially correlated variable, it is included in the error term, causing the autocorrelation problem.

▶ Impure autocorrelation can be corrected by better choice of specification (as opposed to pure autocorrelation).
AUTOCORRELATION
CONSEQUENCES OF AUTOCORRELATION

1. Estimated coefficients ($\hat{\beta}$) remain unbiased and consistent

2. Standard errors of coefficients ($s.e.(\hat{\beta})$) are biased (inference is incorrect)
 - serially correlated error term causes the dependent variable to fluctuate in a way that the OLS estimation procedure attributes to the independent variable
 - Serial correlation typically makes OLS underestimate the standard errors of coefficients
 - therefore we find t scores that are incorrectly too high

⇒ The same consequences as for the heteroskedasticity
Durbin-Watson Test for Autocorrelation

- Used to determine if there is a first-order serial correlation by examining the residuals of the equation

- Assumptions (criteria for using this test):
 - The regression includes the intercept
 - If autocorrelation is present, it is of $AR(1)$ type:
 \[\varepsilon_t = \rho \varepsilon_{t-1} + u_t \]
 - The regression does not include a lagged dependent variable
Durbin-Watson Test for Autocorrelation

- Durbin-Watson d statistic (for T observations):

$$d = \frac{\sum_{t=2}^{T} (e_t - e_{t-1})^2}{\sum_{t=1}^{T} e_t^2} \approx 2(1 - \hat{\rho})$$

where $\hat{\rho}$ is the autocorrelation coefficient

- Values:
 1. Extreme positive serial correlation: $d \approx 0$
 2. Extreme negative serial correlation: $d \approx 4$
 3. No serial correlation: $d \approx 2$
 USING THE DURBIN-WATSON TEST

1. Estimate the equation by OLS, save the residuals

2. Calculate the d statistic

3. Determine the sample size T and the number of explanatory variables (excluding the intercept!) k'

4. Find the upper critical value d_{U} and the lower critical value d_{L} for T and k' in statistical tables

5. Evaluate the test as one-sided or two-sided (see next slides)
One-sided Durbin-Watson test

- For cases when we consider only positive serial correlation as an option

- Hypothesis:

 $H_0 : \rho \leq 0$ (no positive serial correlation)

 $H_A : \rho > 0$ (positive serial correlation)

- Decision rule:

 - if $d < d_L$ reject H_0

 - if $d > d_U$ do not reject H_0

 - if $d_L \leq d \leq d_U$ inconclusive
Durbin-Watson critical values for one-sided test

Panel A
One Tail

Reject

\[\rho = 0 \]

Uncertain

Fail to Reject

\[\rho = 0 \]

\[d_L \]

2

\[d_U \]

4
Two-sided Durbin-Watson Test

- For cases when we consider both signs of serial correlation

- Hypothesis:

 \[H_0 : \rho = 0 \quad \text{(no serial correlation)} \]
 \[H_A : \rho \neq 0 \quad \text{(serial correlation)} \]

- Decision rule:

 - if \(d < d_L \) reject \(H_0 \)
 - if \(d > 4 - d_L \) reject \(H_0 \)
 - if \(d > d_U \) do not reject \(H_0 \)
 - if \(d < 4 - d_U \) do not reject \(H_0 \)
 - otherwise inconclusive
Durbin-Watson critical values for two-sided test
EXAMPLE

- Estimating housing prices in the UK
- Quarterly time series data on prices of a representative house in UK (in £)
- Explanatory variable: GDP (in billions of £)
- Time span: 1975 Q1 - 2011 Q2
- All series are seasonally adjusted and in real prices (i.e. adjusted for inflation)
Example

Model 1: OLS, using observations 1975:1-2011:2 (T = 146)
Dependent variable: house_price

<table>
<thead>
<tr>
<th></th>
<th>coefficient</th>
<th>std. error</th>
<th>t-ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>const</td>
<td>-38409.8</td>
<td>6675.01</td>
<td>-5.754</td>
<td>5.04e-08 ***</td>
</tr>
<tr>
<td>gdp</td>
<td>737.065</td>
<td>31.4846</td>
<td>23.41</td>
<td>6.09e-51 ***</td>
</tr>
</tbody>
</table>

Mean dependent var 113072.8
S.D. dependent var 43254.80

Sum squared resid 5.65e+10
S.E. of regression 19799.38

R-squared 0.791921
Adjusted R-squared 0.790476

F(1, 144) 548.0434
P-value(F) 6.09e-51

Log-likelihood -1650.595
Akaike criterion 3305.191

Schwarz criterion 3311.158
Hannan-Quinn 3307.615

rho 0.984890
Durbin-Watson 0.023930
EXAMPLE

- We test for positive serial correlation:

 \[H_0 : \rho \leq 0 \text{ (no positive serial correlation)} \]
 \[H_A : \rho > 0 \text{ (positive serial correlation)} \]

- One-sided DW critical values at 95% confidence for \(T = 146 \) and \(k' = 1 \) are:

 \[d_L = 1.72 \quad \text{and} \quad d_U = 1.74 \]

- Decision rule:
 - if \(d < 1.72 \) reject \(H_0 \)
 - if \(d > 1.74 \) do not reject \(H_0 \)
 - if \(1.72 \leq d \leq 1.74 \) inconclusive

- Since \(d = 0.02 < 1.72 \), we reject the null hypothesis of no positive serial correlation
ALTERNATIVE APPROACH TO AUTOCORRELATION TESTING

▶ Suppose we suspect the stochastic error term to be $AR(p)$

$$\varepsilon_t = \rho_1 \varepsilon_{t-1} + \rho_2 \varepsilon_{t-2} + \ldots + \rho_p \varepsilon_{t-p} + u_t$$

▶ Since OLS is consistent even under autocorrelation, the residuals are consistent estimates of the stochastic error term

▶ Hence, it is sufficient to:

1. Estimate the original model by OLS, save the residuals e_t
2. Regress $e_t = \rho_1 e_{t-1} + \rho_2 e_{t-2} + \ldots + \rho_p e_{t-p} + u_t$
3. Test if $\rho_1 = \rho_2 = \ldots = \rho_p = 0$ using the standard F-test
Model 1: OLS, using observations 1975:1-2011:2 (T = 146)
Dependent variable: house_price

<table>
<thead>
<tr>
<th></th>
<th>coefficient</th>
<th>std. error</th>
<th>t-ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>const</td>
<td>-38409.8</td>
<td>6675.01</td>
<td>-5.754</td>
<td>5.04e-08 ***</td>
</tr>
<tr>
<td>gdp</td>
<td>737.065</td>
<td>31.4846</td>
<td>23.41</td>
<td>6.09e-51 ***</td>
</tr>
</tbody>
</table>

Mean dependent var 113072.8 S.D. dependent var 43254.80
Sum squared resid 5.65e+10 S.E. of regression 19799.38
R-squared 0.791921 Adjusted R-squared 0.790476
F(1, 144) 548.0434 P-value(F) 6.09e-51
Log-likelihood -1650.595 Akaike criterion 3305.191
Schwarz criterion 3311.158 Hannan-Quinn 3307.615
rho 0.984890 Durbin-Watson 0.023930
Dependent variable: e

<table>
<thead>
<tr>
<th></th>
<th>coefficient</th>
<th>std. error</th>
<th>t-ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>1.75237</td>
<td>0.0843401</td>
<td>20.78</td>
<td>2.53e-44 ***</td>
</tr>
<tr>
<td>e_2</td>
<td>-1.05900</td>
<td>0.168179</td>
<td>-6.297</td>
<td>3.79e-09 ***</td>
</tr>
<tr>
<td>e_3</td>
<td>0.477195</td>
<td>0.168362</td>
<td>2.834</td>
<td>0.0053 ***</td>
</tr>
<tr>
<td>e_4</td>
<td>-0.190822</td>
<td>0.0848111</td>
<td>-2.250</td>
<td>0.0260 **</td>
</tr>
</tbody>
</table>

Mean dependent var -443.8153 S.D. dependent var 19823.71
Sum squared resid 7.22e+08 S.E. of regression 2287.633
R-squared 0.986973 Adjusted R-squared 0.986690
F(4, 138) 2613.852 P-value(F) 5.8e-129
Log-likelihood -1297.869 Akaike criterion 2603.739
Schwarz criterion 2615.562 Hannan-Quinn 2608.543
rho 0.006283 Durbin-Watson 1.967108
Remedy: White robust standard errors

- Note that autocorrelation does not lead to inconsistent estimates, only to incorrect inference - similar to heteroskedasticity problem
- We can keep the estimated coefficients, and only adjust the standard errors
- The White robust standard errors solve not only heteroskedasticity, but also serial correlation
- Note also that all derived results hold if the assumption $\text{Cov}(x, \varepsilon) = 0$ is not violated
 - First make sure the specification of the model is correct, only then try to correct for the form of an error term!
SUMMARY

▶ Autocorrelation does not lead to inconsistent estimates, but it makes the inference wrong (estimated coefficients are correct, but their standard errors are not)

▶ It can be diagnosed using
 ▶ Durbin-Watson test
 ▶ Analysis of residuals

▶ It can be remedied by
 ▶ White robust standard errors

▶ Readings:
 ▶ Studenmund, Chapter 9
 ▶ Wooldridge, Chapter 12