LECTURE 5

Introduction to Econometrics

Hypothesis testing

October 18, 2016
ON TODAY’S LECTURE

▶ We are going to discuss how hypotheses about coefficients can be tested in regression models

▶ We will explain what significance of coefficients means

▶ We will learn how to read regression output

▶ Readings for this week:
 ▶ Studenmund, Chapter 5.1 - 5.4
 ▶ Wooldridge, Chapter 4
QUESTIONS WE ASK

- What conclusions can we draw from our regression?
- What can we learn about the real world from a sample?
- Is it likely that our results could have been obtained by chance?
- If our theory is correct, what are the odds that this particular outcome would have been observed?
HYPOTHESIS TESTING

- We cannot prove that a given hypothesis is “correct” using hypothesis testing

- All that can be done is to state that a particular sample conforms to a particular hypothesis

- We can often reject a given hypothesis with a certain degree of confidence

- In such a case, we conclude that it is very unlikely the sample result would have been observed if the hypothesized theory were correct
Null and Alternative Hypotheses

- First step in hypothesis testing: state explicitly the hypothesis to be tested

- *Null hypothesis*: statement of the range of values of the regression coefficient that would be expected to occur if the researcher’s theory were *not* correct

- *Alternative hypothesis*: specification of the range of values of the coefficient that would be expected to occur if the researcher’s theory were correct

- In other words: we define the null hypothesis as the result we do not expect
Null and Alternative Hypotheses

- **Notation:**
 - H_0 ... null hypothesis
 - H_A ... alternative hypothesis

- **Examples:**
 - **One-sided test**
 - $H_0 : \beta \leq 0$
 - $H_A : \beta > 0$
 - **Two-sided test**
 - $H_0 : \beta = 0$
 - $H_A : \beta \neq 0$
TYPE I AND TYPE II ERRORS

- It would be unrealistic to think that conclusions drawn from regression analysis will always be right

- There are two types of errors we can make
 - Type I: We reject a true null hypothesis
 - Type II: We do not reject a false null hypothesis

- Example:
 - $H_0 : \beta = 0$
 - $H_A : \beta \neq 0$

 - Type I error: it holds that $\beta = 0$, we conclude that $\beta \neq 0$
 - Type II error: it holds that $\beta \neq 0$, we conclude that $\beta = 0$
Type I and Type II Errors

- **Example:**

 - H_0: The defendant is innocent
 - H_A: The defendant is guilty

 - Type I error = Sending an innocent person to jail
 - Type II error = Freeing a guilty person

- Obviously, lowering the probability of Type I error means increasing the probability of Type II error.

- In hypothesis testing, we focus on Type I error and we ensure that its probability is not unreasonably large.
DECISION RULE

1. Calculate sample statistic

2. Compare sample statistic with the *critical value* (from the statistical tables)

▶ The critical value divides the range of possible values of the statistic into two regions: *acceptance region* and *rejection region*

 ▶ If the sample statistic falls into the rejection region, we reject H_0

 ▶ If the sample statistic falls into the acceptance region, we do not reject H_0

▶ The idea is that if the value of the coefficient does not support H_0, the sample statistic should fall into the rejection region
One-sided rejection region

- $H_0: \beta \leq 0$ vs $H_A: \beta > 0$

- Distribution of $\hat{\beta}$:
TWO-SIDED REJECTION REGION

- $H_0: \beta = 0$ vs $H_A: \beta \neq 0$

- Distribution of $\hat{\beta}$:

![Diagram showing two-sided rejection region with shaded rejection regions and dashed lines indicating acceptance and rejection regions. The probability of Type I error is shown.]
THE \textit{t-test}

- We use t-test to test hypothesis about individual regression slope coefficients.

- Test of more than one coefficient at a time (joint hypotheses) are typically done with the F-test (see next lecture).

- The t-test is appropriate to use when the stochastic error term is normally distributed and when the variance of that distribution is unknown.
 - These are the usual assumptions in regression analyses.

- The t-test accounts for differences in the units of measurement of the variables.
The t-test

- Consider the model

\[y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon \]

- Suppose we want to test \((b \text{ is some constant}) \)

\[H_0 : \beta_1 = b \quad \text{vs} \quad H_A : \beta_1 \neq b \]

- We know that

\[\hat{\beta}_1 \sim N(\beta_1, \text{Var}(\hat{\beta}_1)) \quad \Rightarrow \quad \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\text{Var}(\hat{\beta}_1)}} \sim N(0, 1) \]
The \(t \)-test

- Problem: \(\text{Var}(\hat{\beta}_1) \) depends on the variance of error term \(\sigma^2 \), which is unobservable and therefore unknown

- It has to be estimated as

\[
\hat{\sigma}^2 := s^2 = \frac{\mathbf{e}'\mathbf{e}}{n-k},
\]

\(k \) is the number of regression coefficients (here \(k = 3 \))
\(\mathbf{e} \) is the vector of residuals

- We denote standard error of \(\hat{\beta}_1 \) (sample counterpart of standard deviation \(\sigma_{\hat{\beta}_1} \)) as \(s.e. \left(\hat{\beta}_1 \right) \)
THE \textit{t}-TEST

\begin{itemize}
 \item We define the \textit{t}-statistic
 \[t := \frac{\widehat{\beta}_1 - \beta_1}{ \text{s.e.} (\widehat{\beta}_1) } \sim t_{n-k} \]
 where $\widehat{\beta}_1$ is the estimated coefficient and β_1 is the value of the coefficient that is stated in our hypothesis
 \item This statistic depends only on the estimate $\widehat{\beta}_1$, our hypothesis about β_1, and it has a known distribution
\end{itemize}
TWO-SIDED t-TEST

- Our hypothesis is
 \[H_0 : \beta_1 = b \quad \text{vs} \quad H_A : \beta_1 \neq b \]

- Hence, our t-statistic is
 \[t = \frac{\hat{\beta}_1 - b}{s.e. \left(\hat{\beta}_1 \right)} \]

 - where $\hat{\beta}_1$ is the estimated regression coefficient of β_1
 - b is the constant from our null hypothesis
 - $s.e. \left(\hat{\beta}_1 \right)$ is the estimated standard error of $\hat{\beta}_1$
TWO-SIDED t-TEST

How to determine the *critical value* for this test statistic?

- The critical value is the value that distinguishes the acceptance region from the rejection region

1. We set the probability of Type I error
 - Let’s set the Type I. error to 5%
 - We say the *p*-value of the test is 5% or that we have a test at 95% confidence level

2. We find the critical values in the statistical tables: $t_{n-k,0.975}$ and $t_{n-k,0.025}$
 - The critical value depends on the chosen level of Type I error and $n - k$
 - Note that $t_{n-k,0.975} = -t_{n-k,0.025}$
Two-sided t-test

- We reject H_0 if $|t| > t_{n-k,0.975}$
One-sided t-test

- Suppose our hypothesis is

 \[H_0 : \beta_1 \leq b \quad \text{vs} \quad H_A : \beta_1 > b \]

- Our t-statistic still is

 \[t = \frac{\hat{\beta}_1 - b}{\text{s.e.}(\hat{\beta}_1)} \]

- We set the probability of Type I error to 5%
- We compare our statistic to the critical value \(t_{n-k,0.95} \)
One-sided t-test

- We reject H_0 if $t > t_{n-k,0.95}$
Significance of the Coefficient

- The most common test performed in regression is

\[H_0 : \beta = 0 \quad \text{vs} \quad H_A : \beta \neq 0 \]

with the \(t \)-statistic

\[t = \frac{\hat{\beta}}{\text{s.e.} (\hat{\beta})} \sim t_{n-k} \]

- If we reject \(H_0 : \beta = 0 \), we say the coefficient \(\beta \) is significant

- This \(t \)-statistic is displayed in most regression outputs
THE p-VALUE

- Classical approach to hypothesis testing: first choose the significance level, then test the hypothesis at the given level of significance (e.g. 5%)
 - However, there is no "correct" significance level.

- Or we can ask a more informative question:
 - What is the smallest significance level at which the null hypothesis would still be rejected?
 - This level of significance is known as the p-value.
 - Remember that the significance level describes the probability of type I. error. The smaller the p-value, the smaller the probability of rejecting the true null hypothesis (the bigger the confidence the null hypothesis is indeed correctly rejected).
 - The p-value for $H_0 : \beta = 0$ is displayed in most regression outputs
EXAMPLE

- Let us study the impact of years of education on wages:

 \[wage = \beta_0 + \beta_1 \text{education} + \beta_2 \text{experience} + \varepsilon \]

- Output from Gretl:

 Model 3: OLS, using observations 1-526
 Dependent variable: wage

<table>
<thead>
<tr>
<th></th>
<th>coefficient</th>
<th>std. error</th>
<th>t-ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>const</td>
<td>-3.39054</td>
<td>0.766566</td>
<td>-4.423</td>
<td>1.18e-05 ***</td>
</tr>
<tr>
<td>educ</td>
<td>0.644272</td>
<td>0.0538061</td>
<td>11.97</td>
<td>2.28e-29 ***</td>
</tr>
<tr>
<td>exper</td>
<td>0.0700954</td>
<td>0.0109776</td>
<td>6.385</td>
<td>3.78e-10 ***</td>
</tr>
</tbody>
</table>

 Mean dependent var 5.896103 S.D. dependent var 3.693086
 Sum squared resid 5548.160 S.E. of regression 3.257044
 R-squared 0.225162 Adjusted R-squared 0.222199
 F(2, 523) 75.98998 P-value(F) 1.07e-29
 Log-likelihood -1365.969 Akaike criterion 2737.937
 Schwarz criterion 2750.733 Hannan-Quinn 2742.948
CONFIDENCE INTERVAL

- A 95% confidence interval of β is an interval centered around $\hat{\beta}$ such that β falls into this interval with probability 95%

$$P \left(\hat{\beta} - c < \beta < \hat{\beta} + c \right) =$$

$$= P \left(\frac{-c}{s.e. (\hat{\beta})} < \frac{\hat{\beta} - \beta}{s.e. (\hat{\beta})} < \frac{c}{s.e. (\hat{\beta})} \right) = 0.95$$

- Since $\frac{\hat{\beta} - \beta}{s.e. (\hat{\beta})} \sim t_{n-k}$, we derive the confidence interval:

$$\hat{\beta} \pm t_{n-k,0.975} \cdot s.e. (\hat{\beta})$$
CONFIDENCE INTERVAL

- Output from Gretl (wage regression):

```
Model 3: OLS, using observations 1-526
Dependent variable: wage

<table>
<thead>
<tr>
<th></th>
<th>coefficient</th>
<th>std. error</th>
<th>t-ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>const</td>
<td>-3.39054</td>
<td>0.766566</td>
<td>-4.423</td>
<td>1.18e-05  ***</td>
</tr>
<tr>
<td>educ</td>
<td>0.644272</td>
<td>0.0538061</td>
<td>11.97</td>
<td>2.28e-29  ***</td>
</tr>
<tr>
<td>exper</td>
<td>0.0700954</td>
<td>0.0109776</td>
<td>6.385</td>
<td>3.78e-10  ***</td>
</tr>
</tbody>
</table>
```

Mean dependent var 5.896103 S.D. dependent var 3.693086
Sum squared resid 5548.160 S.E. of regression 3.257044
R-squared 0.225162 Adjusted R-squared 0.222199
F(2, 523) 75.98998 P-value(F) 1.07e-29
Log-likelihood -1365.969 Akaike criterion 2737.937
Schwarz criterion 2750.733 Hannan-Quinn 2742.948

- Confidence interval for coefficient on education:

\[\hat{\beta} \pm t_{n-k,0.975} \cdot \text{s.e.}(\hat{\beta}) = 0.644 \pm 1.960 \cdot 0.054 \]

\[\hat{\beta} \in [0.538; 0.750] \text{ with 95% probability} \]
SUMMARY

▶ We discussed the principle of hypothesis testing
▶ We derived the t-statistic
▶ We defined the concept of the p-value
▶ We explained what significance of a coefficient means
▶ We observed a regression output on an example