system_dependent('setprintcolorchoice', -1) ; ; ; ; ; ; disp(get(0, 'Echo')) off set(0, 'Echo', 'off') set(0, 'Format', 'short') set(0, 'FormatSpacing', 'loose') feature('EightyColumns', 0); system_dependent('TabCompletion', 100); U=[1 2 -2;2 -1 3;1 3 2] U = 1 2 -2 2 -1 3 1 3 2 V=[-5 6 -1;9 -10 2;2 5 9] V = -5 6 -1 9 -10 2 2 5 9 P=inv(U)*V P = 1.0000 -2.0000 -1.0000 -1.0000 3.0000 2.0000 2.0000 -1.0000 2.0000 format rational P P = 1 -2 -1 -1 3 2 2 -1 2 U= [1 2 0 0;0 1 1 0; 1 0 0 -1; 1 1 -1 1] U = 1 2 0 0 0 1 1 0 1 0 0 -1 1 1 -1 1 U= U.' U = 1 0 1 1 2 1 0 1 0 1 0 -1 0 0 -1 1 V= [2 3 2 2; 2 3 4 3; 0 -1 0 1; 0 0 1 -1; V= [2 3 2 2; 2 3 4 3; 0 -1 0 1; 0 0 1 -1] V = 2 3 2 2 2 3 4 3 0 -1 0 1 0 0 1 -1 P =inv(U)*V P = 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 U=[1 2;2 -3] U = 1 2 2 -3 A=[-1 3;1 2] A = -1 3 1 2 V=U*A V = 1 7 -5 0 u=[1 2 0;3 1 2; 2 1 3]; a=[-1 1 -2;0 1 1;1 -1 1]; v=u*a v = -1 3 0 -1 2 -3 1 0 0 V=[1 1+i 0;2-i 0 2i;0 1 2+i] V = 1 1 + 1i 0 2 - 1i 0 0 + 2i 0 1 2 + 1i A=[-1+i 1-2i -2-i; 4+3i -8-3i -3+9i;-2+i 3-3i -3-3i] A = -1 + 1i 1 - 2i -2 - 1i 4 + 3i -8 - 3i -3 + 9i -2 + 1i 3 - 3i -3 - 3i U=V*inv(A) U = -3 - 3i 1 + 1i 1 + 4i -7 + 1i 2 - * 5 + 2i 5 - * 2 - 2i 3 + 3i % Symbolicky vypocet alg. a geom. nasobnosti clear all load diagmat2 A A = 2 1 1 2 1 -2 -1 0 -2 syms x solve(x^3-x^2-5*x-3) ans = [ 3] [ -1] [ -1] eval(solve(x^3-x^2-5*x-3)) ans = 3 -1 -1 poly(sym(A)) ans = x^3-x^2-5*x-3 eval(solve(poly(sym(A))) ??? eval(solve(poly(sym(A))) | Error: ")" expected, "end of line" found. eval(solve(poly(sym(A)))) ans = 3 -1 -1 rank(sym(A)) ans = 3 help rank RANK Matrix rank. RANK(A) provides an estimate of the number of linearly independent rows or columns of a matrix A. RANK(A,tol) is the number of singular values of A that are larger than tol. RANK(A) uses the default tol = max(size(A)) * norm(A) * eps. Overloaded methods help sym/rank.m diary off