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1. GENERAL NOTATION AND ABBREVIATIONS

s:=wvorv=:s...denoting expression v by symbol s.

tff stands for if and only if.

Sets and mappings:

N,Z,R,C ... natural numbers, integers, real and com-
plex numbers, respectively.
Zy:={0,1,...,N — 1} ...residuals modulo N € N.
R* ... the set of all non-negative real numbers.
exp X ...class of all subsets of the set X.
card M . ..cardinality of a set M.
()T :R — R* ... mapping defined as ()T = max(0, ).
(a,b), [a,b], (a,b], [a,]) ...intervals on real line.
J(a,b) = {z| min(a,b) < z < max(a,b)}
Ja,b] = {z| min(a,b) <z < max(a,b)}.
flA) ={y € Y|y = f(x),z € A C X} ...range
(image) of set A under mapping f: X = Y.
FH(B):={r € X|f(z) € B} C X ...inverse image
of set B C Y under mapping f: X — Y.
T4 ...indicator function of set A C X:
1 forze A

La(=) = 0 otherwise
A T ...increasing or non-decreasing sequence of num-
bers or sets.
An | ... decreasing or non-increasing sequence of num-
bers or sets.

T A=, A; ... union of a family of sets which
are pairwise disjoint.
A°:= X — A ...complement of set A C X in X where
X is a priori known from the context.
A:=lminf,_ o An = UZO=1 ﬂ;’in Aj .. .inferior limit
of a sequence of sets.
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A = limsup,,_, . An = 0, UjZ,, A; .. .superior
limit of a sequence of sets.

A=limpe An if A=A, clearly

Apt Aimplies limy, 0o Ap = UZO=1 A,, and

Anl Aimplies limp 00 An = [oe, An.

Vectors and matrices:

® = [71,...,2,]7 ...vector of numbers (by default
column vector if not stated otherwise).

x+h:=[x1+h,...,5n+h]", heC

®y = [xtl,...,xtk]T € T where t = [tl,...,tk]T =
Nf t;€{1,...,n} fori=1,... k.

2(1) =[x, ..., Tic1, Tit1,. - .,xn]T forany 1 <1 < n.
f(x) = f(z1,...,2n), de :=dz,...do,.

0,0, %1 ...vector of n zero entries.

A, Apixn = [aij] = [A(1,7)] ... matrix of size m x n.
R(A):={y|y = Ax} ... range space of matrix oper-

ator A.
N(A):={x| A=z = 0} ...null space (kernel) of matrix
operator A.

AT :=[a;] ... matrix transpose.
A* :=[aj;] ... matrix adjoint.
I, I,:=1I,x,=1[6i]...identity matrix of order n.
det A ...determinant of a square matrix A.
0, 0,,xn . ..zero matrix of size m X n.
Tr1 0 N 0
0 Tr2 N 0
diag(x) := . ...diagonal ma-
0 0 .. Tn
trix.
A(1,:) := [ai1,...,ain] ...1-th row of matrix A using
MATLAB style.
A 5) == [a1y,...,am;]7 ... j-th column of matrix A

using MATLAB style.
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A:=1[ri;...;Tm] = [$1,...,8n] ...Torming matrix A
row-by-row or columnwise using MATLAB style.

A >0 (or A > 0)...positively (semi)definite (non-
negatively definite) matrix.

(e,y) == >0, x5 = y"x ...scalar (inner) product
of vectors @ and y.

llz|| == /> |zi]? = (=, &) ...Euclidean norm of

vector @®.

Random variables and random vectors:

X ...random variable.

X := [X1,..., Xx]T ... (veal) random vector, index-
ing conventions listed above for number vectors are
adopted accordingly.

p= ux := EX ...expectation of random variable X.
po= py = EX = [EX,,...,EX,]7 ... expectation of
random vector X.

02 = 0% :=varX = E|X —EX|? = E|X|? - |EX]* >
0 ...variance of random variable X.

oxy :=cov(X,Y) =E(X -EX)(Y-EY)=EXY —
(EX)(EY) ...covariance of random variables X and
Y.

Yx := varX := [cov(X;, X;)] = E(X -EX)(X—EX)T =
EXXT—(EX)(EX)T ... variance matrix of random vec-
tor X.

Txr = cov(X,Y) := [cov(X;,Y;)] = BE(X — EX)(Y —
EY)T = EXYT — (EX)(EY)T ... covariance matrix of
X and Y.

It holds:

varX = cov(X, X).
cov(Y, X) = cov(X,Y).
COV(ZT XT7 Zs YVS) =

in particular:

> > cov(Xr,Y,) and hence
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var(X 4+Y) = varX +cov(X,Y) +cov(Y, X )+ varY =
varX + 2cov(X,Y) + varY.
cov(X,X) = varX.
cov(Y,X) = cov(X, V)T implies:
varX = (varX)? ... variance matrix X is symmet-
rical.
Given number vectors a and ¢, and matrices B and DD
of compatible sizes then
cov(a+BX,e4+DY) = cov(BX,DY) = Beov(X,V) DT

UX=Y
var(a + BX) = cov(a + BX,a + BX) = cov(BX, BX)
= Bvar(X)BT

Ja=0 B=>5T

0 < var(b™X) = b varX b implies:
varX > 0 ...variance matrix is non-negatively
positive and consequently it has non-negative eigen

1
values A; and its square root matrix X3 having eigen
L
values A7 may be constructed such that:
L1
Tx =33 8.
cov(D, X2 Vo) = > > cov(X,,Y.) and hence

in particular:
var(X+Y) = varX + cov(X,Y) 4+ cov(Y,X) 4+ varY¥ =
varX + 2cov(X,Y)+ varY.



2. INTRODUCTION

Definition 2.1. Random (stochastic) process X is a nonempty
family (T # 0) of (real) random variables defined on the same prob-
ability space (22, 4, P). We write X := {X, |t € T} or simply {X,}.
Special cases:

T C R ...continuous-time process or random function.

T C 7Z ...discrete-time process, random sequence or time
series.

Remark 2.2.

o Indexing set 7' is usually ordered and interpreted as contin-
uous or discrete time interval. It may be also disordered, for
example coordinates of points on the plane (meteorology)
or in 3-D space (geophysics).

o As X;:Q — Ris a (measurable) mapping for each t € T
the stochastic process may be viewed as a mapping X :

Qx T — R as well.

Definition 2.3. For fixed w €  we get function  : T'— R as an
outcome of a random experiment: z(t) := X;(w). This function is
called sample-path (trajectory, realization, observation) of
X.

Remark 2.4. Figures 1.1-1.6 illustrate trajectories of various ran-
dom processes (time series). Later on formulation stochastic process
is related to the general case with any T in contrast with the for-
mulation time series which assumes T' = 7 or sometimes T' = N.

Definition 2.5. If X = {X;} is a time series where X, t € T, are
all mutually independent and identically distributed with
mean u and variance o2, we shall write

X ~ IID(p, 0%)



Example 2.6 (Examples of time series).

(1) Sinusoid with random amplitude and phase (Fig. 1.1).
(2) Binary process of tossing a coin (cf. Fig. 1.4 as well).
(3) Random walk.

(4) Branching process.

Definition 2.7 (Consistent system of distribution functions of X).
Let us denote T := {¢|t = [t1,¢2,...,tn] € T", t; # t;, for 1 # 7,
n € N}. For each ¢t € T of any size n € N let F¢(«) be the joint
distribution function of the marginal random vector X being se-
lected from the stochastic process X = {X;}:er at time instants
t1,62,...,tn. The system {Ft}tcs describes completely the sto-
chastic behaviour of X and is called consistent system of distri-
bution functions of X (cf. the next theorem).

Theorem 2.8. The system {F¢}ier of definttion 2.7 is called con-
sistent because the following two consistency conditions hold for each
= [xl,xQ,...,xn]T ceR"andn €N :
(i) Fip(2p) = Fi(x) for any permutation p of indices{1,2,...,n}.
(11) hmml_wo Ft(ZB) = F‘t(CL‘l7 oy Ti—1,003 Lidly e ey :L‘n) =:

=: Fyy(2(1)) for any i € {1,2,...,n}.

Theorem 2.9 (Kolmogorov’s theorem). Given T and T as of def-
inition 2.7, let F := {Ft}ico be a consistent system of distribution
functions. Then there exists a stochastic process {X;}ier defined
on a suitable probability space (Q2, A, P) such that F is its system of
distribution functions.

Remark 2.10. Conditions (i) and (ii) of theorem 2.8 can be replaced
by equivalent conditions formulated in terms of characteristic func-
tions ®;(u) = E(exp(iu’X;)) = E(exp(i Z?:l u; X)), w € R”,
which are associated with the distribution functions Fj:

(") ®t,(up) = ®i(u) for any permutation p of indices {1,2,...,n}.

(i{1’) lmao; 50 @e(u) = Pe(ur, ..., uim1, 0, tig1, ... un) =t

=: Oy (u(7)) for any ¢ € {1,2,...,n}.
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Definition 2.11. We call a stochastic process normal or gaussian
if every distribution function Fy of its consistent system (¢t € T) is a
joint distribution function of normally distributed marginal random
vector X;.

Now we are about to introduce moment functions as analogies
to the expectation and variance matrix of a random vector, which
may be considered as a special case of a stochastic process with
finite index set T'= {1,2,...,n}.

Definition 2.12. Given stochastic processes X = {X:}:er and
Y = {Yi}ier, both on the same probability space, we define 1-st
and 2-nd moment functions as follows.
(1) mean of X: px : T — R by ux(t) := EX; provided that
the expectations exist for all ¢t € T
(2) autocovariance function of X: vx : T'x T — R by
vx(r, s) := cov(X,, X.) provided that the covariances exist
for all r,s € T.
(3) variance of X: 0% : T — RY by o%(¢) := cov(X,, X)) =
vx (¢, t) provided the variances exist for all ¢t € T
(4) autocorrelation function of X: px : T xT — [—-1,1] by

(g 0
px(rs) im | Vit VIRV s) #
0 otherwise,

provided that the correlations exist for all r, s € T'.
(5) cross-covariance function of X and Y:
vxv : T'xT — R by vxy(r,s) := cov(X,,Y.) provided
that the covariances exist for all r,s € T
(6) cross-correlation function of X and Y-
pxy : T xT —[-1,1] by
Yxy{ns
per(rns) = | Ve for VXV (s ) #0
0

otherwise,
provided that the correlations exist for all r, s € T'.
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Theorem 2.13. Given stochastic process X := {X|t € T} such
that B|X:|* < co for allt € T, then pux(-), v2(-,-) and px(-,-) ewist
as well. In such a case we say that X has finite second moments.

Definition 2.14. Time series X := {X; |t € Z} is called strictly
stationary if each distribution function from its consistent system
{Ft}ier, is shift-invariant (time-invariant): Fy(-) = Fiqn(-) for each
tcTand heZ.

Definition 2.15. Time series X := {X; |t € Z} is called (weakly)
stationary if the following three conditions are fulfilled:

(1) X has finite second moments.

(2) vx(r,s) =7vx(r+h,s+h) for each r,s,h € Z.

(3) px () = px is a constant function.
If only the first two are valid then X is called covariance station-
ary.

Remark 2.16.

(1) Clearly (2) implies with r = s that the variance function
of a stationary time series is a constant function as well:
o2() = o%.

(2) If (3) holds, then vx(r,s) = EX,X. — (EX,)(EX.) =
EX, X — p2 implies that (2) is equivalent (and might be
thus substituted) with the condition: EX, X, = EX, 4 n X341
for each r,s,h € Z. We see altogether that all first and
second moments are shift-invariant with weak stationar-
ity. That is why weak stationarity is sometimes denoted as
2-nd order stationarity.

Remark 2.17. Clearly condition (2) of definition 2.15 may be sub-
stituted be a modified condition
(2’) v=(r, s) depends only on the difference of arguments r — s.

That 1s why we can introduce autocovariance and autocorrelation
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function of a stationary time series as a function of one argument
only:
vx(h) :=vx(t+ h,t)
_yx(t+ht)  vx(h)

px(h) = px(t+h,t) = p—— 7 (0) (2.1)

o]

o% = vx(t,t) = vx(0)
where ¢, h € 7, are arbitrary.

Theorem 2.18. Fuvery strictly stationary time series with finite
second moments is stationary.

Example 2.19.
In general stationarity does not imply strict stationarity (counter-
example)

Theorem 2.20. Fuvery stationary gaussian time series is strictly
stationary.

Definition 2.21. Time series X = {X:} is called white noise with

62 forr=s

mean p and variance o°, if px(t) = pand yx (r, s) = o
0 otherwise

We write

X ~ WN(u,a2).‘

Stationary time series which is not white noise, is sometimes called
coloured noise.

Remark 2.22. 1t 1s straightforward to verify the following implica-
tions:

X~ ]]D(u,a2) => X~ WN(u,cr2) = X is stationary.

Observe that neither of inverse implications holds in general (cf.
example 2.19).
10



Example 2.23.

(1) Let Xy(w) := A(w) cos(8t)+B(w)sin(bt), t € Z,0 € [—m, 7],
cov(A,B)=0, EA=EB =0, ¢4 = 5 = 1. Then {X;} is
a stationary time series.

(2) Let X¢ := Z¢ 4+ 0Z1, {Z:} ~ WN(0,6°), t € Z,8 € R.
Then {X:} is a stationary time series.

(3) Let X, := Yi for even t, t € Z, where {Y:} is a
Y;+1 foroddt
stationary time series. Then {X;} is a time series which is
covariance stationary but not stationary.
(4) The random walk {S:}icz from example 2.6(3) is neither

stationary nor covariance stationary.

Remark 2.24 (Multivariate Time Series).

One can introduce the concept of m-dimensional time series
(m € N) following the analogy with the univariate case (m = 1):

X = {X,|t € T} where X, = [X;1,...,X:,m]" are m-dimensional
random vectors on the same probability space (£2,.4, P). We obtain
univariate partial time series, vector mean function and matrix au-
tocovariance/autocorrelation functions:

X ={X::|t €T} ... i-th partial time series.

px(t) == [pa(t), ..., um(t)]T where ;(t) := EXy i = px, ().

x(r, s) := Xx(r, s) 1= [cov(Xpi, Xs,5)]i,; = [vii(r, 8)]i,; where
Yii(r, 8) == vx,x;(r,s) is clearly just the cross-covariance function
of partial time series X; and Xj.

px(r, ) := [p(Xri, X 5)lij = [pij(r, s)]i ; where

pij(r,s) := px,x,(r,s) is cross-correlation function of partial time

series X; and Xj.

The m-dimensional stationarity is to be established quite in
analogy to definition 2.15 (see also remarks 2.16 and 2.17) simply
assuming finite second moments for all partial time series in (1) and
substituting vyx for yx in (2) and px for px in (3).
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It 1s an easy exercise to prove the following statement:
X 1s stationary iff the following two conditions are fulfilled:

(a) Each partial time series X; (i = 1,...,m) is stationary.

(b) vx(r,s) =x(r+h,s+h) for each r,s,h € Z.

Clearly the following relationships hold:

Vig (Tv S) :
px(r, s) = [ :| in the general case
V ’W(n 7") V 7](57 S)
and
vij (h) : :
px(h) = [7 in the stationary case.
vV ’Yi(o) V' Vi (0)
where v; := =;; 1s autocovariance function of ¢-th partial time series.

Definition 2.25. A bivariate function f : T x T = R, T # 0, is
said to be symmetric or non-negatively definite if each square
matrix [f(¢;,t5)]i; of any size n € N has the respective property
for any choice of ¢ := [t1,...,tn] € T™ | i.e. all such matrices are
symmetric or non-negatively definite.

A univariate function g : Z — R is said to be symmetric or
non-negatively definite if the bivariate function f: Z x Z - R
defined by f(r, s) := g(r—s) is symmetric or non-negatively definite.

Lemma 2.26. Let f and g be functions as of definition 2.25. Then
f (or g) is symmetric iff f(s,r) = f(r,s) holds for anyr,s € T (or
g(—t) = g(t) holds for any t € Z).

Lemma 2.27. The sum of two symmetric (or non-negatively def-
inite) functions, which are both bivariate or univariate and defined
on the same domain, is a symmetric (or non-negatively definite)
function as well.
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Theorem 2.28 (Autocovarinace and autocorrelation function prop-
erties).

Let X := {X:|t € T} be a stochastic process with the autocovari-
ance function vx(-,) [ autocorrelation function px(-,-) |. Then the
following holds:

(1) 7x(t,6) > 0
[ px(t,t) = 1 if yx(t,t) = 0% (t) # 0, or = 0 otherwise |

forallt €T.

(2) Trx(r 9)| < VAT VARG [ lox(r )l <1 ] for al
rosefT.

(3) vx [px ] is a symmetric and non-negatively definite func-
tion.

Corollary 2.29 (for stationary time series).
Let X := {X¢|t € Z} be a stationary time series with the autoco-
variance function vx(-) [ autocorrelation function px(-) J. Then the
following holds:
(1) vx(0) >0
[px(0) =1 if vx(0) = 0% #0, or =0 otherwise ].
(@) Trx(W) < 1x(0) [ lox(h)| <17 for all h € 7.
(3") vx [px ] is a symmetric and non-negatively definite func-
tion.

Theorem 2.30. Given a functionv(-,-) : TxT =R for~(): Z —
R ) which is symmetric and non-negatively definite, then there exists
a gaussian stochastic process (or stationary gaussian time series) X
having autocovariance function yx = ~.

Corollary 2.31. Properties (1) and (2) (or (1°) and (2°)) are direct
consequence of the property (3) (or (3’)).

Corollary 2.32. Given two stochastic processes (stationary time
series) X and Y with autocovariance functions vx and vy, then
there exists a stochastic process (stationary time series) Z, even
gaussian, such that vz = vx + vy
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Theorem 2.33.

1 forh=0
A function p(h) := < r  for h = £1 can be an autocorrelation func-
0 for|h|>1

tion of a suitable stationary time series X iff |r| < % In such a
case one possible choice is the time series X of example (2) in 2.23:

Xii=Zo40Zi1, {Z} ~ WN(0,0%), t € Z, with 6 = £

1—4r2

2r °
Definition 2.34 (Estimates of moment functions).

Let @ = [z1,...,25] be n samples (zy = X¢(w) for ¢t =1,...,n) of
a stationary time series with mean u, variance ¢“, autocovariance
function ~(-) and autocorrelation function p(-). Their estimates are
computed as follows:

o= %Z;;l x; ...estimate of y;

S0 = £ (g — )y — ), 0<h < n— 1,

F(h) :=5(=h), —(n —1) < h < 0 (by symmetry 2.29(3’) and 2.26);
...estimate of v(h);

52 := 7(0) ...estimate of the variance;

p(h) := %%)17 —(n—1)<h<n-—1 (see eq. (2.1))

...estimate of the autocorrelation function in the case of 5(0) # 0,
otherwise p(h) := 0.

Theorem 2.35. Let X :=[X1,..., Xx] be the random subvector in
X assoctated with sample vector ®. Then both the matriz

7(0) (1) ... Fn-1)
P Blim g, =| 7MW 30 G2
R o

which is an estimate of the variance matriz varX, and the matrix

R, = % which is an estimate of the correlation matriz p(X), are
symmetric and non-negatively definite.
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White noise WN(O,1)
T T T

3
2 i
1 l l
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Gaussian white noise WN(0, 1)
Autocorrelation function of white noise WN(O,1)
1.2 T T T T T T
1% -
0.8 - -
0.6 - -
0.4 | 4
0.2 - -
of7ao047m0 1o TT 2 %um 20 4oy oase o8 400°%8 "]
02, 5 10 s 20 25 30 35 20 5 50

Autocorrelation function of gaussian white noise WN(0, 1)
Remark 2.36.

(1) The estimate J(h) is not unbiased (E5(h) # v(h)) because
we divide the sample sum by n and not by the number of
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degrees of freedom n — 1 — h. Let us observe that theorem
2.35 does not hold for the unbiased estimate (matrix f‘n
looses the natural property of non-negative positiveness).
Anyway, the estimate ¥(h) is asymptotically unbiased
in the sense that E¥(h) — v(h) with n — co. Morover it
is consistent in the quadratic mean in the sense that
E[F(R) — v(R)|* — 0 with n — oo, where the convergence
is even faster than with the unbiased estimate.
The estimate is reliable only for n > 50 and h < 7.
From the algebraic point of view J(h) may be written in
the form of a dot product ¥(h) = %(:co, @) where
xp:=[0,...,0,z1 —[4,...,zn — [,0,...,0]. Thus xq repre-

N—— N——

h n—1—h

sents the original sample vector (padded with n — 1 zeros)
and x5 its copy shifted by h.
Clearly ||®o|* = ||&x|* = Z;l=1|x]—ﬁ|2. From the Schwarz
inequality we have |{(#q,®r)| < ||®o]|* resulting in [F(k)| <
%||:130||2 = %(:co, o) = ¥(0). Hence we see that the esti-
mate of the autocorrelation function preserves its natural
property |p(h)| < 1.
In view of (3) the estimate p(h) may be interpreted geo-
metrically as a cosine of the angle between the original and
shifted copy of @9 which is a measure of their linear de-
pendence (similarity): zero means ortogonality (full linear
independence=no correlations between them), +1 means
linear dependence (full correlation: one of them is obtained
as scalar multiple of the latter).
Trend is indicated by correlations at great lags implying
small decay of vy(h) with A — oco. Periodic component is
reflected by oscillatory behaviour of F(h) with the basic
period of that component, or mixture of them if there is
more than one such periodic component.
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