
See: http://www.ies.co.jp/math/java/trig/graphFourier/graphFourier.html 

 

 

Example: a simple Fourier series 

We now use the formulae above to give a Fourier series expansion of a very simple function. 

Consider a sawtooth function (as depicted in the figure): 

 

 

In this case, the Fourier coefficients are given by 

 

And therefore: 

 
 

 

In general: 

 

 



A Fourier series is an expansion of a periodic function in terms of an infinite sum of sines 

and cosines. Fourier series make use of the orthogonality relationships of the sine and cosine 

functions. The computation and study of Fourier series is known as harmonic analysis and is 

extremely useful as a way to break up an arbitrary periodic function into a set of simple terms 

that can be plugged in, solved individually, and then recombined to obtain the solution to the 

original problem or an approximation to it to whatever accuracy is desired or practical. 

Examples of successive approximations to common functions using Fourier series are 

illustrated above.  

In particular, since the superposition principle holds for solutions of a linear homogeneous 

ordinary differential equation, if such an equation can be solved in the case of a single 

sinusoid, the solution for an arbitrary function is immediately available by expressing the 

original function as a Fourier series and then plugging in the solution for each sinusoidal 

component. In some special cases where the Fourier series can be summed in closed form, 

this technique can even yield analytic solutions.  

Any set of functions that form a complete orthogonal system have a corresponding 

generalized Fourier series analogous to the Fourier series. For example, using orthogonality of 

the roots of a Bessel function of the first kind gives a so-called Fourier-Bessel series.  

The computation of the (usual) Fourier series is based on the integral identities  

 (1) 

 (2) 

 (3) 

 (4) 

 (5) 

for , where is the Kronecker delta.  

Using the method for a generalized Fourier series, the usual Fourier series involving sines and 

cosines is obtained by taking and . Since these functions form a 

complete orthogonal system over , the Fourier series of a function is given by  

 
(6) 

where  

 
(7) 

 
(8) 

 
(9) 



and , 2, 3, .... Note that the coefficient of the constant term has been written in a special 

form compared to the general form for a generalized Fourier series in order to preserve 

symmetry with the definitions of and .  

A Fourier series converges to the function (equal to the original function at points of 

continuity or to the average of the two limits at points of discontinuity)  

 

(10) 

if the function satisfies so-called Dirichlet conditions.  

 

As a result, near points of discontinuity, a "ringing" known as the Gibbs phenomenon, 

illustrated above, can occur.  

For a function periodic on an interval instead of , a simple change of 

variables can be used to transform the interval of integration from to . Let  

 
(11) 

 
(12) 

Solving for gives , and plugging this in gives  

 
(13) 

Therefore,  

 
(14) 

 
(15) 



 
(16) 

Similarly, the function is instead defined on the interval , the above equations simply 

become  

 
(17) 

 
(18) 

 
(19) 

In fact, for periodic with period , any interval can be used, with the choice 

being one of convenience or personal preference (Arfken 1985, p. 769).  

The coefficients for Fourier series expansions of a few common functions are given in Beyer 

(1987, pp. 411-412) and Byerly (1959, p. 51). One of the most common functions usually 

analyzed by this technique is the square wave. The Fourier series for a few common functions 

are summarized in the table below.  

function  Fourier series 

Fourier series--sawtooth wave   

Fourier series--square wave   

Fourier series--triangle wave   

If a function is even so that , then is odd. (This follows since is 

odd and an even function times an odd function is an odd function.) Therefore, for all . 

Similarly, if a function is odd so that , then is odd. (This follows 

since is even and an even function times an odd function is an odd function.) 

Therefore, for all .  

The notion of a Fourier series can also be extended to complex coefficients. Consider a real-

valued function . Write  

 
(20) 

Now examine  

 
(21) 

 
(22) 

 
(23) 



 
(24) 

 (25) 

so  

 
(26) 

The coefficients can be expressed in terms of those in the Fourier series  

 
 

(27) 

 

 

(28) 

 (29) 

 

 

(30) 

For a function periodic in , these become  

 
(31) 

 
(32) 

These equations are the basis for the extremely important Fourier transform, which is 

obtained by transforming from a discrete variable to a continuous one as the length .  

SEE ALSO: Complete Set of Functions, Dirichlet Fourier Series Conditions, Fourier-Bessel 

Series, Fourier Cosine Series, Fourier-Legendre Series, Fourier Series--Power, Fourier Series-

-Sawtooth Wave, Fourier Series--Semicircle, Fourier Series--Square Wave, Fourier Series--

Triangle Wave, Fourier Sine Series, Fourier Transform, Generalized Fourier Series, Gibbs 

Phenomenon, Harmonic Addition Theorem, Harmonic Analysis, Lacunary Fourier Series, 

Lebesgue Constants, Power Spectrum, Riesz-Fischer Theorem, Simple Harmonic Motion, 

Superposition Principle  
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Maple code: 

 
Four:=proc(N,f) 
local x,a,b,n,i,xxx,M; 
a:=(f,n)->1/Pi*evalf(Int(f(x)*cos(n*x),x=-Pi..Pi)); 
b:=(f,n)->1/Pi*evalf(Int(f(x)*sin(n*x),x=-Pi..Pi)); 
if N mod 2 = 1 then 
    M:=(N-1)/2; 
    xxx:=a(f,0)/2+sum(a(f,i)*cos(i*x)+b(f,i)*sin(i*x),i=1..M); 
  else 
    M:=(N-2)/2; 
    
xxx:=a(f,0)/2+sum(a(f,i)*cos(i*x)+b(f,i)*sin(i*x),i=1..M)+a(f,
N/2)*cos(N/2*x); 
  fi; 
unapply(xxx,x) 
end; 

 

 

example: 

 
Four(5,exp)(z); 

 

11.54873936/Pi-3.676077913*cos(z)+3.676077910*sin(z)+1.470431167*cos(2.*z)-

2.940862328*sin(2.*z) 


