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1. General notation and abbreviationss := v or v =: s . . . denoting expression v by symbol s.i� stands for if and only if .Sets and mappings:� N;Z;R;C . . . natural numbers, integers, real and om-plex numbers, respetively.� ZN := f0; 1; : : : ;N � 1g . . . residuals modulo N 2 N.� R+ . . . the set of all non-negative real numbers.� expX . . . lass of all subsets of the set X.� ardM . . . ardinality of a set M .� (�)+ :R! R+ . . .mapping de�ned as (x)+ = max(0; x).� (a; b), [a; b℄, (a; b℄, [a; b) . . . intervals on real line.� I(a; b) = fx j min(a; b) < x < max(a; b)gI[a; b℄ = fx j min(a; b) � x � max(a; b)g.� f(A) := fy 2 Y j y = f(x); x 2 A � Xg . . . range(image) of set A under mapping f : X ! Y .� f�1(B) := fx 2 X j f(x) 2 Bg � X . . . inverse imageof set B � Y under mapping f : X ! Y .� IA . . . indiator funtion of set A � X:IA(x) = (1 for x 2 A0 otherwise .� An " . . . inreasing or non-dereasing sequene of num-bers or sets.� An # . . . dereasing or non-inreasing sequene of num-bers or sets.� Pni=1 Ai := Sni=1 Ai . . . union of a family of sets whihare pairwise disjoint.� A := X�A . . . omplement of set A � X in X whereX is a priori known from the ontext.� A := lim infn!1 An := S1n=1T1j=n Aj . . . inferior limitof a sequene of sets.2



� A := lim supn!1 An := T1n=1S1j=n Aj . . . superiorlimit of a sequene of sets.� A = limn!1 An i� A = A, learlyAn " A implies limn!1 An = S1n=1 An andAn # A implies limn!1 An = T1n=1 An.Vetors and matries:� x := [x1; : : : ; xn℄T . . . vetor of numbers (by defaultolumn vetor if not stated otherwise).� x+ h := [x1 + h; : : : ; xn + h℄T ; h 2 C .� xt := [xt1 ; : : : ; xtk ℄T 2 C k where t = [t1; : : : ; tk℄T 2Nk, ti 2 f1; : : : ; ng for i = 1; : : : ; k.� x(i) := [x1; : : : ; xi�1; xi+1; : : : ; xn℄T for any 1 � i � n.� f(x) := f(x1; : : : ; xn); dx := dx1 : : : dxn.� 0;0n�1 . . . vetor of n zero entries.� A, Am�n := [aij℄ = [A(i; j)℄ . . .matrix of size m� n.� R(A) := fy jy = Axg . . . range spae of matrix oper-ator A.� N (A) := fx jAx = 0g . . . null spae (kernel) of matrixoperator A.� AT := [aji℄ . . .matrix transpose.� A� := [�aji℄ . . .matrix adjoint.� I, In := In�n = [Æij℄ . . . identity matrix of order n.� detA . . . determinant of a square matrix A.� 0, 0m�n . . . zero matrix of size m � n.� diag(x) := 26664 x1 0 : : : 00 x2 : : : 0...0 0 : : : xn 37775 . . . diagonal ma-trix.� A(i; :) := [ai1; : : : ; ain℄ . . . i-th row of matrix A usingMATLAB style.� A(:; j) := [a1j ; : : : ; amj ℄T . . . j-th olumn of matrix Ausing MATLAB style.3



� A := [r1; : : : ; rm℄ = [s1; : : : ; sn℄ . . . forming matrix Arow-by-row or olumnwise using MATLAB style.� A > 0 (or A � 0) . . . positively (semi)de�nite (non-negatively de�nite) matrix.� hx;yi := Pni=1 xi�yi = y�x . . . salar (inner) produtof vetors x and y.� kxk := pPni=1jxij2 = phx;xi . . . Eulidean norm ofvetor x.Random variables and random vetors:� X . . . random variable.� X := [X1; : : : ;Xn℄T . . . (real) random vetor, index-ing onventions listed above for number vetors areadopted aordingly.� � := �X := EX . . . expetation of random variable X.� � := �X := EX:= [EX1; : : : ;EXn℄T . . . expetation ofrandom vetor X.� �2 := �2X := varX := EjX�EXj2 = EjXj2�jEXj2 �0 . . . variane of random variable X.� �XY := ov(X;Y ) := E(X�EX)(Y �EY ) = EXY �(EX)(EY ) . . . ovariane of random variables X andY .� �X := varX:= [ov(Xi;Xj)℄ = E(X�EX)(X�EX)T =EXXT�(EX)(EX)T . . . variane matrix of random ve-tor X.� �XY := ov(X;Y) := [ov(Xi; Yj)℄ = E(X� EX)(Y�EY)T = EXYT � (EX)(EY)T . . . ovariane matrix ofXand Y.It holds:� varX = ov(X;X).� ov(Y;X) = ov(X;Y ).� ov(Pr Xr;Ps Ys) = PrPs ov(Xr; Ys) and henein partiular: 4



� var(X+Y ) = varX+ov(X;Y )+ov(Y;X)+varY =varX + 2ov(X;Y ) + varY .� ov(X;X) = varX.� ov(Y;X) = ov(X;Y)T implies:� varX= (varX)T . . . variane matrix Xis symmet-rial.� Given number vetors a and , and matries B and Dof ompatible sizes thenov(a+BX;+DY) = ov(BX;DY)= B ov(X;Y)DT+X=Y� var(a +BX) = ov(a+ BX;a+ BX) = ov(BX;BX)= B var(X)BT + a = 0, B = bT� 0 � var(bTX) = bTvarXb implies:� varX� 0 . . .variane matrix is non-negativelypositive and onsequently it has non-negative eigenvalues �i and its square root matrix � 12X having eigenvalues � 12i may be onstruted suh that:� �X = � 12X � 12X .� ov(PrXr;PsYs) = PrPs ov(Xr;Ys) and henein partiular:� var(X+Y) = varX+ov(X;Y) + ov(Y;X) + varY=varX+ 2ov(X;Y)+ varY.5



2. IntrodutionDe�nition 2.1. Random (stohasti) proess X is a nonemptyfamily (T 6= ;) of (real) random variables de�ned on the same prob-ability spae (
;A; P ). We write X := fXt j t 2 Tg or simply fXtg.Speial ases:T � R . . .ontinuous-time proess or random funtion.T � Z. . .disrete-time proess, random sequene or timeseries.Remark 2.2.� Indexing set T is usually ordered and interpreted as ontin-uous or disrete time interval. It may be also disordered, forexample oordinates of points on the plane (meteorology)or in 3-D spae (geophysis).� As Xt : 
 ! R is a (measurable) mapping for eah t 2 T ,the stohasti proess may be viewed as a mapping X :
� T ! R as well.De�nition 2.3. For �xed ! 2 
 we get funtion x : T ! R as anoutome of a random experiment: x(t) := Xt(!). This funtion isalled sample-path (trajetory, realization, observation) ofX.Remark 2.4. Figures 1.1{1.6 illustrate trajetories of various ran-dom proesses (time series). Later on formulation stohasti proessis related to the general ase with any T in ontrast with the for-mulation time series whih assumes T =Zor sometimes T = N.De�nition 2.5. If X = fXtg is a time series where Xt, t 2 T , areall mutually independent and identially distributed withmean � and variane �2, we shall writeX � IID(�; �2)6



Example 2.6 (Examples of time series).(1) Sinusoid with random amplitude and phase (Fig. 1.1).(2) Binary proess of tossing a oin (f. Fig. 1.4 as well).(3) Random walk.(4) Branhing proess.De�nition 2.7 (Consistent system of distribution funtions of X).Let us denote T := ft j t = [t1; t2; : : : ; tn℄ 2 Tn, ti 6= tj, for i 6= j,n 2 Ng. For eah t 2 T of any size n 2 N let Ft(x) be the jointdistribution funtion of the marginal random vetor Xt being se-leted from the stohasti proess X = fXtgt2T at time instantst1; t2; : : : ; tn. The system fFtgt2T desribes ompletely the sto-hasti behaviour of X and is alled onsistent system of distri-bution funtions of X (f. the next theorem).Theorem 2.8. The system fFtgt2T of de�nition 2.7 is alled on-sistent beause the following two onsisteny onditions hold for eahx = [x1; x2; : : : ; xn℄T 2 Rn and n 2 N :(i) Ftp(xp) = Ft(x) for any permutation p of indies f1; 2; : : : ; ng.(ii) limxi!1 Ft(x) = Ft(x1; : : : ; xi�1;1; xi+1; : : : ; xn) =:=: Ft(i)(x(i)) for any i 2 f1; 2; : : : ; ng.Theorem 2.9 (Kolmogorov's theorem). Given T and T as of def-inition 2.7, let F := fFtgt2T be a onsistent system of distributionfuntions. Then there exists a stohasti proess fXtgt2T de�nedon a suitable probability spae (
;A; P ) suh that F is its system ofdistribution funtions.Remark 2.10. Conditions (i) and (ii) of theorem 2.8 an be replaedby equivalent onditions formulated in terms of harateristi fun-tions �t(u) = E(exp(iuTXt)) = E(exp(iPnj=1 ujXtj )), u 2 Rn,whih are assoiated with the distribution funtions Ft:(i') �tp(up) = �t(u) for any permutation p of indies f1; 2; : : : ; ng.(ii') limui!0 �t(u) = �t(u1; : : : ; ui�1; 0; ui+1; : : : ; un) =:=: �t(i)(u(i)) for any i 2 f1; 2; : : : ; ng.7



De�nition 2.11. We all a stohasti proess normal or gaussianif every distribution funtion Ft of its onsistent system (t 2 T) is ajoint distribution funtion of normally distributed marginal randomvetor Xt.Now we are about to introdue moment funtions as analogiesto the expetation and variane matrix of a random vetor, whihmay be onsidered as a speial ase of a stohasti proess with�nite index set T = f1; 2; : : : ; ng.De�nition 2.12. Given stohasti proesses X = fXtgt2T andY = fYtgt2T , both on the same probability spae, we de�ne 1-stand 2-nd moment funtions as follows.(1) mean of X: �X : T ! R by �X (t) := EXt provided thatthe expetations exist for all t 2 T .(2) autoovariane funtion of X: X : T � T ! R byX(r; s) := ov(Xr;Xs) provided that the ovarianes existfor all r; s 2 T .(3) variane of X: �2X : T ! R+ by �2X(t) := ov(Xt;Xt) =X(t; t) provided the varianes exist for all t 2 T .(4) autoorrelation funtion of X: �X : T �T ! [�1; 1℄ by�X(r; s) := 8<: X (r;s)pX (r;r)pX (s;s) for pX(r; r)pX(s; s) 6= 00 otherwise;provided that the orrelations exist for all r; s 2 T .(5) ross-ovariane funtion of X and Y :XY : T � T ! R by XY (r; s) := ov(Xr; Ys) providedthat the ovarianes exist for all r; s 2 T .(6) ross-orrelation funtion of X and Y :�XY : T � T ! [�1; 1℄ by�XY (r; s) :=8<: XY (r;s)pX (r;r)pY (s;s) for pX(r; r)pY (s; s) 6= 00 otherwise;provided that the orrelations exist for all r; s 2 T .8



Theorem 2.13. Given stohasti proess X := fXt j t 2 Tg suhthat EjXtj2 <1 for all t 2 T , then �X(�), x(�; �) and �X(�; �) existas well. In suh a ase we say that X has �nite seond moments.De�nition 2.14. Time series X := fXt j t 2Zg is alled stritlystationary if eah distribution funtion from its onsistent systemfFtgt2T, is shift-invariant (time-invariant): Ft(�) � Ft+h(�) for eaht 2 T and h 2Z.De�nition 2.15. Time series X := fXt j t 2Zg is alled (weakly)stationary if the following three onditions are ful�lled:(1) X has �nite seond moments.(2) X(r; s) = X(r + h; s+ h) for eah r; s; h 2Z.(3) �X(�) � �X is a onstant funtion.If only the �rst two are valid then X is alled ovariane station-ary.Remark 2.16.(1) Clearly (2) implies with r = s that the variane funtionof a stationary time series is a onstant funtion as well:�2x(�) � �2X .(2) If (3) holds, then X(r; s) = EXrXs � (EXr)(EXs) =EXrXs � �2x implies that (2) is equivalent (and might bethus substituted) with the ondition: EXrXs = EXr+hXs+hfor eah r; s; h 2 Z. We see altogether that all �rst andseond moments are shift-invariant with weak stationar-ity. That is why weak stationarity is sometimes denoted as2-nd order stationarity.Remark 2.17. Clearly ondition (2) of de�nition 2.15 may be sub-stituted be a modi�ed ondition(2') x(r; s) depends only on the di�erene of arguments r� s.That is why we an introdue autoovariane and autoorrelation9



funtion of a stationary time series as a funtion of one argumentonly: X(h) := X(t+ h; t)�X(h) := �X(t+ h; t) = X(t+ h; t)�X�X = X(h)X(0)�2X = X(t; t) = X(0) (2.1)where t; h 2Zare arbitrary.Theorem 2.18. Every stritly stationary time series with �niteseond moments is stationary.Example 2.19.In general stationarity does not imply strit stationarity (ounter-example)Theorem 2.20. Every stationary gaussian time series is stritlystationary.De�nition 2.21. Time series X = fXtg is alled white noisewithmean � and variane �2, if �X(t) � � and X(r; s) = (�2 for r = s0 otherwise :We write X �WN (�; �2):Stationary time series whih is not white noise, is sometimes alledoloured noise.Remark 2.22. It is straightforward to verify the following implia-tions:X � IID(�; �2) ) X �WN (�; �2) ) X is stationary:Observe that neither of inverse impliations holds in general (f.example 2.19). 10



Example 2.23.(1) LetXt(!) := A(!) os(�t)+B(!) sin(�t), t 2Z, � 2 [��;�℄,ov(A;B) = 0, EA = EB = 0, �2A = �2B = 1. Then fXtg isa stationary time series.(2) Let Xt := Zt + �Zt�1, fZtg � WN (0; �2), t 2 Z, � 2 R.Then fXtg is a stationary time series.(3) Let Xt := (Yt for even tYt + 1 for odd t , t 2 Z, where fYtg is astationary time series. Then fXtg is a time series whih isovariane stationary but not stationary.(4) The random walk fStgt2Z from example 2.6(3) is neitherstationary nor ovariane stationary.Remark 2.24 (Multivariate Time Series).One an introdue the onept of m-dimensional time series(m 2 N) following the analogy with the univariate ase (m = 1):X:= fXt j t 2 Tg where Xt = [Xt;1; : : : ;Xt;m℄T are m-dimensionalrandom vetors on the same probability spae (
;A;P ). We obtainunivariate partial time series, vetor mean funtion and matrix au-toovariane/autoorrelation funtions:Xi := fXt;i j t 2 Tg . . . i-th partial time series.�X (t) := [�1(t); : : : ; �m(t)℄T where �i(t) := EXt;i = �Xi (t).X (r; s) := �X (r; s) := [ov(Xr;i;Xs;j)℄i;j = [ij(r; s)℄i;j whereij(r; s) := XiXj (r; s) is learly just the ross-ovariane funtionof partial time series Xi and Xj.�X (r; s) := [�(Xr;i;Xs;j)℄i;j = [�ij(r; s)℄i;j where�ij(r; s) := �XiXj (r; s) is ross-orrelation funtion of partial timeseries Xi and Xj.The m-dimensional stationarity is to be established quite inanalogy to de�nition 2.15 (see also remarks 2.16 and 2.17) simplyassuming �nite seond moments for all partial time series in (1) andsubstituting X for X in (2) and �X for �X in (3).11



It is an easy exerise to prove the following statement:Xis stationary i� the following two onditions are ful�lled:(a) Eah partial time series Xi (i = 1; : : : ;m) is stationary.(b) X (r; s) = X (r + h; s+ h) for eah r; s; h 2Z.Clearly the following relationships hold:�X (r; s) = � ij(r; s)pi(r; r)pj(s; s)� in the general aseand �X (h) = � ij(h)pi(0)pj(0)� in the stationary ase:where i := ii is autoovariane funtion of i-th partial time series.De�nition 2.25. A bivariate funtion f : T � T ! R, T 6= ;, issaid to be symmetri or non-negatively de�nite if eah squarematrix [f(ti; tj)℄ij of any size n 2 N has the respetive propertyfor any hoie of t := [t1; : : : ; tn℄ 2 Tn , i.e. all suh matries aresymmetri or non-negatively de�nite.A univariate funtion g : Z! R is said to be symmetri ornon-negatively de�nite if the bivariate funtion f : Z�Z! Rde�ned by f(r; s) := g(r�s) is symmetri or non-negatively de�nite.Lemma 2.26. Let f and g be funtions as of de�nition 2.25. Thenf (or g) is symmetri i� f(s; r) = f(r; s) holds for any r; s 2 T (org(�t) = g(t) holds for any t 2Z).Lemma 2.27. The sum of two symmetri (or non-negatively def-inite) funtions, whih are both bivariate or univariate and de�nedon the same domain, is a symmetri (or non-negatively de�nite)funtion as well. 12



Theorem 2.28 (Autoovarinae and autoorrelation funtion prop-erties).Let X := fXt j t 2 Tg be a stohasti proess with the autoovari-ane funtion X(�; �) [ autoorrelation funtion �X(�; �) ℄. Then thefollowing holds:(1) X(t; t) � 0[ �X(t; t) = 1 if X(t; t) = �2X(t) 6= 0, or = 0 otherwise ℄for all t 2 T .(2) jX(r; s)j �pX(r; r)pX(s; s) [ j�X(r; s)j � 1 ℄ for allr; s 2 T .(3) X [ �X ℄ is a symmetri and non-negatively de�nite fun-tion.Corollary 2.29 (for stationary time series).Let X := fXt j t 2 Zg be a stationary time series with the autoo-variane funtion X(�) [ autoorrelation funtion �X(�) ℄. Then thefollowing holds:(1') X(0) � 0[ �X(0) = 1 if X(0) = �2X 6= 0, or = 0 otherwise ℄.(2') jX(h)j � X(0) [ j�X(h)j � 1 ℄ for all h 2Z.(3') X [ �X ℄ is a symmetri and non-negatively de�nite fun-tion.Theorem 2.30. Given a funtion (�; �) : T�T ! R(or (�) :Z!R) whih is symmetri and non-negatively de�nite, then there existsa gaussian stohasti proess (or stationary gaussian time series)Xhaving autoovariane funtion X = .Corollary 2.31. Properties (1) and (2) (or (1') and (2')) are diretonsequene of the property (3) (or (3')).Corollary 2.32. Given two stohasti proesses (stationary timeseries) X and Y with autoovariane funtions X and Y , thenthere exists a stohasti proess (stationary time series) Z, evengaussian, suh that Z = X + Y .13



Theorem 2.33.A funtion �(h) :=8><>:1 for h = 0r for h = �10 for jhj > 1 an be an autoorrelation fun-tion of a suitable stationary time series X i� jrj � 12 . In suh aase one possible hoie is the time series X of example (2) in 2.23:Xt := Zt + �Zt�1, fZtg �WN (0; �2), t 2Z, with � = 1�p1�4r22r .De�nition 2.34 (Estimates of moment funtions).Let x = [x1; : : : ; xn℄ be n samples (xt = Xt(!) for t = 1; : : : ; n) ofa stationary time series with mean �, variane �2, autoovarianefuntion (�) and autoorrelation funtion �(�). Their estimates areomputed as follows:b� := 1n Pnj=1 xj . . . estimate of �;b(h) := 1nPn�hj=1 (xj+h � b�)(xj � b�), 0 � h � n� 1,b(h) := b(�h), �(n� 1) � h < 0 (by symmetry 2.29(3') and 2.26);. . . estimate of (h);b�2 := b(0) . . . estimate of the variane;b�(h) := b(h)b(0) , �(n� 1) � h � n� 1 (see eq. (2.1)). . . estimate of the autoorrelation funtion in the ase of b(0) 6= 0,otherwise b�(h) := 0.Theorem 2.35. LetX:= [X1; : : : ;Xn℄ be the random subvetor inX assoiated with sample vetor x. Then both the matrixb�n := [b(i� j)℄i;j = 2664 b(0) b(1) : : : b(n� 1)b(1) b(0) : : : b(n� 2): : : : : : : : : : : : : : : : : : : : : : : : : :b(n� 1) b(n� 2) : : : b(0) 3775whih is an estimate of the variane matrix varX, and the matrixbRn := b�nb(0) whih is an estimate of the orrelation matrix �(X), aresymmetri and non-negatively de�nite.14
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degrees of freedom n� 1� h. Let us observe that theorem2.35 does not hold for the unbiased estimate (matrix b�nlooses the natural property of non-negative positiveness).Anyway, the estimate b(h) is asymptotially unbiasedin the sense that Eb(h) ! (h) with n ! 1. Morover itis onsistent in the quadrati mean in the sense thatEjb(h)� (h)j2 ! 0 with n ! 1, where the onvergeneis even faster than with the unbiased estimate.(2) The estimate is reliable only for n > 50 and h < n4 .(3) From the algebrai point of view b(h) may be written inthe form of a dot produt b(h) = 1n hx0;xhi wherexh := [0; : : : ; 0| {z }h ; x1� b�; : : : ; xn� b�; 0; : : : ; 0| {z }n�1�h ℄. Thus x0 repre-sents the original sample vetor (padded with n� 1 zeros)and xh its opy shifted by h.Clearly kx0k2 = kxhk2 =Pnj=1jxj�b�j2. From the Shwarzinequality we have jhx0;xhij � kx0k2 resulting in jb(h)j �1nkx0k2 = 1n hx0;x0i = b(0). Hene we see that the esti-mate of the autoorrelation funtion preserves its naturalproperty jb�(h)j � 1.(4) In view of (3) the estimate b�(h) may be interpreted geo-metrially as a osine of the angle between the original andshifted opy of x0 whih is a measure of their linear de-pendene (similarity): zero means ortogonality (full linearindependene=no orrelations between them), �1 meanslinear dependene (full orrelation: one of them is obtainedas salar multiple of the latter).(5) Trend is indiated by orrelations at great lags implyingsmall deay of (h) with h ! 1. Periodi omponent isreeted by osillatory behaviour of b(h) with the basiperiod of that omponent, or mixture of them if there ismore than one suh periodi omponent.16


