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Preface

This book is about mathematical methods for optimization of dynamic stochastic
system and about the application of these methods to economic problems.

Most economic problems are dynamic. The economists who analyze these
problems study the current state of an economic system and ask how various
policies can be used to move the system from its present status to a future more
desirable state. The problem may be a macroeconomic one in which the state
of the economic systems is described with levels of unemployment and inflation
and the instruments are fiscal and monetary policy. It may be a microeconomic
problem in which the system is characterized by inventory, sales, and profit levels
and the policy variables are investment, production, and prices. It may be an
international commodity-stabilization problem in which the state variables are
levels of export revenues and inventories and the control variables are buffer-stock
sales or purchases.

Most economic problems are stochastic. There is uncertainty about the
present state of the system, uncertainty about the response of the system to policy
measures, and uncertainty about future events. For example, in macroeconomics
some time series are known to contain more noise than others. Also, policy makers
are uncertain about the magnitude and timing of responses to changes in tax rates,
government spending, and interest rates. In international commodity stabilization
there is uncertainty about the effects of price changes on consumption.

The methods presented in this book are tools to give the analyst a better
understanding of dynamic systems under uncertainty. The book begins with
deterministic dynamic systems and then adds various types of uncertainty until
it encompasses dynamic systems with uncertainty about (1) the present state of
the system, (2) the response of the system to policy measures, (3) the effects of
unseen future events which can be modeled as additive errors, and (4) errors in
measurement. In the beginning chapters, the book is more like a textbook, but
in the closing chapters it is more like a monograph because there is a relatively

viii



PREFACE IX

widespread agreement about methods of deterministic-model solution while there
is still considerable doubt about which of a number of competing methods of
stochastic control will prove to be superior.

As a textbook, this book provides a detailed derivation of the main results
in deterministic and stochastic control theory. It does this along with numerical
examples of each kind of analysis so that one can see exactly how the solutions to
such models are obtained on computers. Moreover, it provides the economist or
management scientist with an introduction to the kind of notation and mathematics
which is used in the copious engineering literature on the subject of control theory,
making access to that literature easier. Finally, it rederives some of the results in
the engineering literature with the explicit inclusion of the kinds of terms typical
of economic models.

As a monograph, this book reports on a project explicitly designed to transfer
some of the methodology of control theory from engineers to economists and to
apply that methodology to economic problems to see whether it sheds additional
light on those problems. The project has been funded by the National Science
Foundation and has involved two engineers, Edison Tse and Yaakov Bar-Shalom,
and two economists, Fred Norman and the author. Fred and | decided at an
early stage in the project that we could best learn from Edison and Yaakov if we
programmed their algorithm ourselves. This involved rederiving all the results
and then making two separate codings of the algorithm (one by each of us).
This procedure enabled us to understand and check both the algorithm and the
computer codes.

The principal application is to a macroeconomic stabilization problem which
included all the kinds of uncertainty described above. The procedures are enabling
us to determine the effects of various kinds of uncertainty on policy levels.

Some readers of this book may find themselves disturbed by the fact that
the derivations are given in such detail. This is in contrast with many books
in econometrics and mathematical economics, where a theorem is stated and
the proof is developed in a terse fashion. However, in contrast to econometrics
and mathematical economics, control theory is still a relatively new area of
concentration in economics. As a result the notation is not familiar, and the
mathematical operations are different from those commonly used by economists.
Therefore the derivations included in this book are spelled out in detail either
in the text or in appendixes. Readers who are already familiar with the usual
control-theory notation and mathematical operations may find parts of the text
moving much too slowly for their taste, but the liberal relegation of derivations to
appendixes should make the book read more smoothly for these researchers.



PREFACE X

The economist who is willing to learn the notation and style of control
theory will find the investment well repaid. The effort will make it easier to
understand the wealth of results contained in such journdBES Transactions
on Automatic Control, Automatica, and theJournal of Economic Dynamics
and Control and in conference proceedings like those from the annual IEEE
Conference on Decision and Control.

It seems likely that the adaptive-control algorithm developed in Chapters 9
and 10 may eventually be superseded by more efficient algorithms. Thus although
one can question the value of learning the notation and operations which are
particularly associated with it, many of the operations contained in it are common
to a variety of adaptive-control algorithms and much of the notation is common to
the larger field of control theory.

Not only the derivations but also the numerical examples given in the book are
spelled out in considerable detail. The reason for this is that numerical methods
are basic to the development of the work in this field and the existence of some
thoroughly documented numerical examples will enhance the development and
debugging of new algorithms and codes and the improvement in the efficiency of
existing algorithms and codes.

The reader who is interested in a shorter and less detailed discussion of some
of the subjects covered in this book is referred to Kendrick (1980).

In addition to Edison Tse, Yaakov Bar-Shalom, and Fred Norman, | am
grateful to Bo Hyun Kang and Jorge Rizo-Patron, for their help in preparing
some of the materials which constitute this book. | am also indebted to Peggy
Mills, for her excellent work as administrative assistant and secretary, and to the
National Science Foundation for support of this work under grants SOC 72-05254
and SOC 76-11187. Michael Intriligator, Stephen Turnovsky, Homa Motamen,
Mohamed Rismanchian, and Ed Hewett read an earlier draft and provided many
helpful comments. Michael Athans provided hospitality in the Laboratory for
Information and Decision Sciences and access to the Air Force Geophysical
Laboratory Computational Facilities during a year on leave at M.I.T. Connie
Kirkland helped with the final typing and reproduction of the manuscript and
Susan Lane assisted in the typing. | am grateful to both of them for their help
in a tedious task.

Most of all | should like to thank my wife, Gail, for her warm support, even
while the demands of her own career were great, and to thank my children, Ann
and Colin, for adding so much to the joy and spontaneity in my life.

David Kendrick



Preface to the Second Edition

| have wanted for some years to maRechastic Control for Economic Models
available on the Internet. Therefore, a few years ago | asked McGraw-Hill Book
Company, who published the first edition of the book, to return the copyright to
me. They graciously did so.

The original book had been typed on a typewriter so there was no electronic
version available to be posted on the Internet. Therefore, | ask Rimas
Maliukevicius, the President of VTEX Ltd. in Vilnius, Lithuania if that firm would
retype the book in LaTex. Rimas agreed to do so and asked his colleague, Vytas
Statulevicius, to design the book and oversee the project.

My plan was to make substantial changes to the content of the book before
posting it on the Internet as a second edition. However, it now appears that will
take longer than | had expected, so this second edition is identical to the original
book except for editing to make corrections (see Appendix U).

Since the book is now in an electronic form | have assigned it a version number
as well as an edition number. This will permit small changes as necessary while
keeping the same edition number but changing the version number.

| would like to thank Hans Amman, Greg de Coster, Enrique Garcilazo, Pedro
Gomis, Paula Hernandez-Verme, Haibo Huang, Chun Yau Kwok, Younghan
Kwun, Josef Matulka, Yue Piyu, Marco Tucci and Felipe Vila for helpful
comments on the first edition of the book. Also, thanks to my long-time
collaborator, Hans Amman, for encouraging me to prepare an electronic version
of the book and helping me along the way with many technical matters. Finally,
thanks to Rimas Maliukevicius, Vytas Statulevicius and the staff at VTEX for
preparing the electronic version. However, | alone am responsible for the final
version of the book since | have made modifications in the content and style while
taking account of the suggestions from those listed above.

David Kendrick
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Chapter 1

| ntroduction

Many problems in economics are naturally formulated as dynamic models, in
which control or policy variables are used to move a system over time from a less
desirable to a more desirable position. One example is short-run macroeconomic
problems. The controls are monetary and fiscal policy, the dynamic system is a
macroeconometric model, and the desired position is low levels of inflation and
unemployment. Another example is the problem of the firm. Here the controls are
pricing and production levels, the dynamic system is a model of production and
sales, and the desired position is high levels of profits.

Economists and engineers have been applying control theory to economic
problems since the early works of Tuﬁi(ﬁl%:i), Phillips (1954, 1957), Simon
(1956), and Theil [(1957). These pioneers were followed by a sprinkling
of studies in the 1960s by Holt (1962), Fisher (1962), Zellner (1966), and
Dobell and Ho(1967) and by many studies in the early 1970s by Chow!(1970),
Kendrick and Taylor [(1970), Prescott (1971, 1972), Livesey (1971), Pindyck
(1972,11973ab), Shupp (1972), MacRae (1972), Athans (1972), Aoki|(1973),
Norman and Norman (19773), and many others. This work has been characterized
by the solution of increasingly larger deterministic models and by movements into
stochastic control theory.

Surveys of this literature have been published by Arfow (1968), Dobell (1969),
Athans and Kendrick (1974), Intriligator (1975), end Kendrick (1976). There are
also a number of books on control theory and economics, including /Chow (1975),
Aoki (1976), and Pitchford and Turnovsky (1977). Some of the books on control
theory are Athans and Falb (1966), Aoki (1967), and Bryson and Ho(1969).

1A list of references appears after the appendixes.



CHAPTER 1. INTRODUCTION 2

This book covers deterministic control, passive-learning stochastic control,
and active-learning stochastic control. The methods differ in their treatment of
uncertainty. All uncertainty is ignored in deterministic control theory. In passive-
learning stochastic control the effects of uncertainty on the system are considered,
but there is no effort to choose the control so that learning about the uncertainty
is enhanced. In active-learning stochastic control, also called adaptive control or
dual control, the control is chosen with a view toward both (1) reaching the desired
states at present and (2) reducing uncertainty through learning, permitting easier
attainment of desired states in the future. Part One is devoted to deterministic
control, Part Two to passive-learning stochastic control, and Part Three to active-
learning stochastic control.



Part |

Deter ministic Control



Chapter 2

Quadratic Linear Problems

Deterministic problems are control problems in which there is no uncertainty.
Most economic control problems which have been posed and solved to date are
of this variety. Deterministic problems fall into two major groups: (1) quadratic
problems and (2) general nonlinear problems. This chapter is devoted to quadratic
linear problems, and the next chapter discusses general nonlinear problems.

Quadratic linear problems (QLP) are problems in which the criterion function
is quadratic and the system equations are linear. In continuous-time problems the
criterion is an integral over time, and the system equations are linear differential
equations. In discrete-time problems the criterion is a summation over time, and
the system equations are difference equations. Discussion in this book is confined
to discrete-time models since they lend themselves naturally to the computational
approach used here. For a discussion of continuous- and discrete-time models
together the reader is referred to Bryson and/Ho (1969).

As one progresses from deterministic, to passive-learning stochastic, to active-
learning stochastic control methods, the size of the numerical models rapidly
declines. For example, deterministic control models now commonly include
hundreds of equations, passive-learning stochastic control models usually have
tens of equations, and active-learning stochastic control models have fewer than
ten equations. This pattern results from the increasing computational complexity
inherent in the treatment of uncertainty.

This chapter begins with the statement of the quadratic linear problem as the
minimization of a quadratic form subject to a set of first-order linear difference
equations. Then two types of common quadratic linear problems which are not
exactly in this form are introduced, and the method of converting them into this
form is given. The first of these problems is the quadratic linear tracking problem,

4



CHAPTER 2. QUADRATIC LINEAR PROBLEMS 5

in which the goal is to cause the state and control variables to follow desired paths
as closely as possible. The second problem is a quadratic linear problem with
nth-order rather than first-order difference equations.

Following the problem statement in Sec.12.1, the solution method is described
in Sec[2.R. The solution method used here is the dynamic-programming approach
rather than the maximum-principle method since dynamic programming lends
itself well to generalization to stochastic control methods. Finally the chapter
closes with a short discussion of the feedback rules used to represent the solutions
to quadratic linear problems.

2.1 Problem Statement

In control-theory problems the variables are separated into two groups: state
variablesx and control variablesi. State variables describe the state of the
economic system at any point in time, and control variables represent the
policy variables, which can be chosen. For example, in macroeconomic control
models the state variables are typically levels of inflation and unemployment,
as well as levels of consumption, investment, and gross national product. The
control variables in these problems are levels of government taxation, government
expenditure, and open-market purchases of bonds.

Also since control models are dynamic models, initial conditions are normally
specified, and at times terminal conditions are also given. These are conditions on
the state variables.

With this nomenclature in mind one can write the quadratic linear control
problem as (the prime on a vector indicates transposition)

Find (uk)é\;iol

to minimize the criterion

N-1
J = %X’NWNXN—ngvaqL Z (%X;kakth;cxqux;Fkuk+%u;Akuk+)\;uk)
k=0
(2.1)
subject to the system equations
Xpr1 = Apxp +Brug +¢, fork=0,1,...,N -1 (2.2)

and the initial conditions
Xp given (2.3)
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where

x; = State vector for period with n elements,

u, = control vector for period: with m elements,
W, = n x n positive definite symmetric matrix,
w;, = n-element vector,

F,. = n x m matrix,

A, = m x m positive definite symmetric matrix,
Ar = m-element vector,

A, = n x n matrix,

B, = n x m matrix,

¢, = n-element vector.

Also the notation

(ur) iy
means the set of control vectors from period zero through péyied1, that is,
(up, up, uy,...,uy_1). PeriodN is the terminal period of the model.

Thus the problem is to find the time paths for thecontrol variables for the
time periods frond to NV — 1 to minimize the quadratic forni (2.1) while starting
at the initial conditions[(213) and following the difference equation|(2.2).

Most quadratic linear control models in economics are not exactly in the form
of (2.1) to [2.8), but they can be easily transformed into that form. For example,
the quadratic linear tracking model used!by Pindyck (1973a) and (Chow! (1975)
uses a form of the criterion differing fromh_(2.1). Also the model in_Pindyck
(1973a) hasith-order difference equations rather than first-order equations of the
form (2.2). Sincel(2]1) td (213) constitute a general form, we shall use them as the
basis for computation algorithms and show what transformations are required on
each class of quadratic linear problems to bring them into this form.

Quadratic Linear Tracking Problems

The criterion function in these problems is of the form

J = xy —xk Wiy — x}]
N-1
+ 33 (e =< Wi b — xf] + [we — uf A [w — uff]) (2.4)
k=0

where
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xj" = desired vector for state vector in peribd
ul’ = desired vector for control vector in peridgd
ij = positive definite symmetric penalty matrix on deviations of state
variable from desired paths,
A = positive definite symmetric penalty matrix on control variables for
deviations from desired paths.

Normally the matrice3V# andA# are diagonal.

The equivalence of (2.4) to the criterion in the original problém](2.1) can be
seen by expanding (2.4). The results are given in Table 2.1, which shows the nota-
tional equivalence between (2.1) ahd {2.4). The constant term which results from
the expansion of (214) is not shown in the table since it does not affect the solution
and can be dropped from the optimization problem.

Table 2.1 Notational equivalence for quadratic linear problems

Equation[(2.1) Equation(2.4) Equation [(2.11) Equation (2.4)
Wy W% F, 0

Wy —Wﬁxﬁ Ak A?f(

W, wi Ap —Afuf

Wy —fof

One example of the application of quadratic linear tracking problems to
economics is Pindyck (19172, 1973a). The state variabtecludes consumption,
nonresidential investment, residential investment, the price level, unemployment,
and short- and long-term interest rates. The control variable includes government
expenditures, taxes, and the money supply. Desired paths for both the state
variable and the control variables are includedkfisandu]’, respectively. The
diagonal elements of the matric8 ;" and A} are used not only to represent
different levels of desirability of tracking the targets but also to equivalence
relative magnitudes of the different variables.

'For other examples of quadratic linear control (but not necessarily tracking problems)
the reader is referred to Tustin (1953), Bogaard and Theil (1959), |van Eijk and Sandee
(1959), | Holt (196R), Theil | (1964, 1965), Erickson, Leondes, and Nbrton (1970), Sandblom
(1970), Thalberg | (1971a,b), Parvani (1972), Frieoman (1972), Erickson and Norton (1973),
Tinsley, Craine, and Havenner_(1974), Shupp_(1976a).| You (1975), Kaul and|Raol (1975),
Fischer and Uebe (19175) , and Oudet (1976).
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L agged State and Control Variables

For many economic problems the difference equations which represent the
econometric model cannot be written as a set of first-order difference equations
but must be written as second- and higher-order difference equations. The
procedure for converting second-order difference equations in states and controls
is given here. The procedure for higher-order equations is analogous.

Consider an econometric model with second-order lags in control and state
variables

Xpi1 = AoXp + Aixp_1 + Boug + Brug (2.5)
Then define two new vectors
Yk = Xg—1 (2.6)
and
Vi = U1 (2.7)
and rewrite[(2.b) as
Xp41 = AoXg + A1yr + Boug + Byvy, (2.8)

Next define the augmented state vedpas

X
zy = { y ] (2.9)
v k
and rewrite[(2.6) and_(2.7) as
Yk+1 = Xk (2.10)
and
Vik+1 = U (2.11)

Then Eqs.[(Z2I8)[(2.10), and(2]111) can be written as

X AO A1 B1 X B[)
y = I 0 0 y| + 0 |u (2.12)
vi]e, L0 0o of[v], |1

or as
Zpg1 = Azk + Buk (213)
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with
Ay, A, B, By
A=| 1 0 0 and B=| 0 (2.14)
0 0 0 I

Equation [2.1IB) is then a first-order linear difference equation in the augmented
state vector.

An example of this can be found in_Pindyck (1973a). The original state
vector included 0 elements, and the augmented state vector incl2glegements
[seel Pindyckl(1973a, p. 97)]. For example, the augmented state vector includes
not only prices but also lagged prices and not only unemployment rates but also
lagged unemployment rates and unemployment rates lagged two periods.

It can be argued that for computational reasons it is unwise to contrert
order difference equations of the forfn_(2.5) into augmented systems of first-
order equations of the forrh (2J13). Norman and Jung (1977) have compared the
computational efficiency of the two approaches and have concluded that in certain
cases it is better not to transform the equations into augmented systems of first-
order difference equations.

A slightly different kind of problem occurs in many economic models. The
difference equations are written as

Xpr1 = Axy + Bugyg (2.15)

i.e., the control vector is naty, as in EQ.[(ZR), buti;, ;. While it may be true that
there are some economic problems in which there is an important and immediate
effect of the control variable on the state variables, usually the choice of control
is actually made at least one time period before it has an affect. For example, the
simple multiplier-acceleration model

Y, = Cv+ 1+ Gy
Ce = a+bY; (2.16)
I, = G(Yk - qu)

whereY = gross national product; = consumption/ = investment, reduces to
Vi =BYe 1 +7Gr+9 (2.17)

with
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However, government expenditures is not actually the decision or control variable
since in fact the decision variable is appropriations made by the Congress or
obligations made by the administration. Both these variables lead expenditure
by at least one quarter. Therefore it is common to add to a model like_ Eql (2.17)
another relationship like

Gry1 = Ok (2.18)

whereO,, stands for government obligations. Then substitution of Eq. {2.18) into

Eq. (217) yields
Ve = BYr1 + 70k + 9 (2.19)

and this model is in the same form as the system equdtioh (2.2).

For models which truly have the simultaneous form of [Eq. (2.15) the reader
is referred ta_ Chow! (1975). The derivations in that book are made for system
equations of the form{2.15). Although the difference between HQgs.](2.15)
and [2.2) may be viewed as simply a matter of labels, in the stochastic control
context when one is dealing with the real timing of events and the arrival of
information, the matter may be more than just one of labels.

This concludes the demonstration of how a variety of types of quadratic linear
economic control models can be reduced to the fdrml (2.1) fd (2.3). Next the
problem [[2.1) to[(Z]3) will be solved by the method of dynamic programming to
obtain the feedback-control solution.

2.2 Solution Method

The crucial notion from dynamic programm?n'g that of the optimal cost-to-go.
Since the idea is more simply thought of in space than in time, a spatial example
is used here; later the method will be applied in time.

Consider an aircraft flying from New York to London. Different routes are
flown each time the Atlantic is crossed because of the constantly shifting wind and
weather patterns. Next consider flights on two different days when the weather is
exactly the same in the eastern half of the crossing but different in the western
half. Now suppose that on these two days the plane flies different routes over the
western half of the Atlantic but ends up at the same point just as it begins to cross
the eastern half. One can ask: Will the plane fly the same route the rest of the
way into London on the two different days? Since the weather is the same in the

2See Intriligator (1971, chap. 13), for a discussion of dynamic-programming methods.
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eastern half on the two days, there is no reason not to use the same route for the
rest of the way into London.

This is the basic idea of dynamic programming, i.e., that from a given point
the route the rest of the way home to the finish will be the same no matter how
one happened to get to that point. Also since the route is the same from that point
the rest of the way home, the cost-to-go from that point to London is the same
no matter how one arrived at the point. It is called dpimal cost-to-go since
it is the minimum-cost route for the rest of the trip. It is written in symbols as
J*(xx), wherex, is a vector giving the coordinates of a point in space &)
is the cost of going from the poirt, to London. The elements of the vectgrin
this example could be the longitude and latitude of the point in the middle of the
ocean.

The next idea is that one can associate vathry point in the Atlantic a
minimum-cost path to London and an associated optimal cost-to-go. If one had
this information available on a chart, one could simply look on the chart and say
that at a given latitude and longitude one should set the rudder of the aircraft in a
certain position in order to arrive at London with minimum cost. This idea gives
rise to the notation of a feedback rule of the form

u, = Gpx;, + gk (220)

where

x; = state vector giving location of aircraft at plakte

u,, = control vector consisting of settings for ailerons and rudder
G, = matrix of coefficients

g, = vector of coefficients

so the feedback rule(2.20) says that when the plane is in a posijtjdhe various
controls should be set in the positiong. Of course the problem is finding the
elements ofG; andg, — but that is what dynamic programming is all abBut.

For the problems in this book the primary dimension is not space but time.
So the feedback rule indéxchanges from plack to time k. Then the feedback
rule (2.20) is interpreted as “given that the economy is in statat timek, the
best policy to take is the set of policies in the vectgy. For example, in a
commodity-stabilization problem the state veckowould include elements for

3For a full discussion of dynamic programming see Bellman (1957) and Bellman and Dreyfus
(1962).
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price and buffer-stock level, and the control would include an element for buffer-
stock sales (or purchases). Then the feedbackrulel (2.20) would be interpreted as
“given that the price and stocks axg, the amount, should be sold (or bought)

by the stabilization scheme manag&s”.

The feedback rule[(2.20) is generally nonlinear, rather than linear as in
Eq. (2.20), but for an important class of problems, namely the quadratic linear
problems that are the subject of this chapter, the feedback rule is linear. Also,
the cost-to-go for this class of problems is a quadratic function of the state of the
system at timé

T*(xx) = J*(k) = 5% KX, + pixs + v (2.21)

whereK,, is ann x n matrix which is called the Riccati matrip,. is ann-element
vector andy, is a scalar term. In words this equation says that when the system is
in the statex, at timek, the optimal cost-to-go is a quadratic function of that state.
To return momentarily to the New York-to-London flight example, Eq. (2.21) can
be interpreted as saying that the cost to go from pgjnin the middle of the
Atlantic is a quadratic function of the latitude and longitude at that point. It seems
more reasonable to say that the cost-to-go would be some function of the entire
path fromx; to London, but that imot what Eq. [2.211) implies. Instead it states
that the optimal cost-to-go from poigf, to London can be written as a quadratic
function of the coordinates of that single point.

To derive the optimal feedback rule for the probléml(2.1) tol (2.3) one begins
at the terminal time and works backward toward the initial time. So if the optimal
cost-to-go at timé: is defined by Eq(2.21), the optimal cost-to-go at tiviean
be written as

J*(xn) = J*(N) = 3xyKyxy + pyxn + vy (2.22)
From Eq. [2.1) the cost which are incurred in the terminal peNoare
%X’NWNXN + Wiyxy (2.23)
so by comparison of Eq4.(Z]22) and (2.25) one obtains
Ky =Wy (2.24)
PN = Wy (2.25)

“For an application of control methods to commodity stabilization see
Kim, Goreux, and Kendrick (1975).
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VNZO

Equations[(Z2.24) and (Z.25) provide the terminal values for a set of difference

equations which are used to determlig andp,. for all time periods. In fact the

information inK; andpy, is like price information in thaW 5 andw y provide

information about the value of having the economic systems in statat time

N. Later it will become apparent how the difference equatiords sndp (which

are called thdriccati equations) are used to transmit this price information from

the last period backward in time to the initial period. TKe’'s andp;’s will in

turn be used to compute tiig, andg, components of the feedback rule {2.20).
The optimal cost-to-go for perialY is given in Eq.[(2.22). Now one can begin

working backward in time to get the optimal cost-to-go in perod- 1, that is,

J*(N — 1) = IEI]};I,I}{J*(N) + LNfl(XNfla uN,l)} (226)
whereLy_; is the cost-function term in Eq.(2.1) for peridd — 1, that is, from

Eqg. (2.1),

Ly_i(xy-1,uny_1) = %XINAWNAXNA + Wy 1Xn_1 + Xy Fyoiun_g
1./ i
+ §uN71AN,1uN,1 + )\NfluNfl (227)

Equation [(2.26) embodies an important notion from dynamic programming. It
says that the optimal cost-to-go at timé — 1 will be the minimum over the
control at timeN — 1 of the optimal cost-to-go at statey in time /N and the cost
incurred in time periodV — 1, thatis,L y_.

So in the airplane example the optimal cost-to-go from posior 1 in the
Atlantic will be the minimum over the available controls at titve- 1 of the cost
incurred in periodV — 1 plus the optimal cost-to-go in period.

Substitution of Eqs[(2.22) and (2]27) into Hg. (2.26) then yields

J(N—-1) = glvinl(éxgvKNxN + phyxy + 3xy  WyoiXno

+ Wy 1 Xy_1 + Xy Fyoiun g
+ %ugv_1AN—111N—1 +Ay_juy_1) (2.28)

Furthermore, the&y in Eq. [Z.Z8) can be written in terms &fy_; anduy_; by
using the system equations (2.2), i.e.,

xy = An_1Xy_1 +By_juy_1 +ceng (2.29)
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Then substitution of EqQL{Z.29) into E@.(Z128) and collection of like terms yields
J(N-1) = %{I{(%X,Nflq)Nflfol + %U'N,l@zvqllzvq
+ Xy Oy qun -1+ Py 1 Xno1+Oy_jun 1 +1y-1) (2.30)

by = AV KyAy_ 1+ Wy,
Oy = BYy_KyBy_i +Ayn

Yy = Ay KyBy_1+Fy

on1 = Ay (Kyeny.1+py)+Wy
On1 = By (Kyen_1+pn)+An:
NN-1 = %CIN_lKNCN—l +Pyen1

Next the minimization fomy_; in Eq. (2.30) is performed to yield the first-
order condition

(2.31)

ulel@Nfl + XlellI’Nfl + 0?\#1 =0 (232)
or
@,]\77111]\7_1 + lI’INleN_l + 0N—1 =0

This first-order condition can then be solved foy_; in terms ofx_; to obtain
the feedback rule for period — 1, that is,

uy_1 =Gy Xy +8N1 (2.33)

where

Gy 1=—(0y_) ' ¥y, and gy 1 =—(Oy_) 'Oy (2.34)

This is the feedback rule for periad — 1; however, one needs the feedback rule
for a general period, not just for the next-to-last perio — 1. To accomplish

this look back at Eq[{2.26), which gives the optimal cost-to-go for pehiod 1.

One can use the optimal cost-to-go for perfgd- 2 to obtain the feedback rule

for period N — 2 and then see whether the results can be generalized to period
k. The optimal cost-to-go for period — 2 can then be written, by analogy to

Eq. (2.26), as

J* (N —2)=min{J"(N — 1)+ Ly_o(Xxn_2,uy_2)} (2.35)

uny-—2
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The second part of Eq._(Z2135) is obtained simply by inspecting[Eq. (2.1) for the
cost terms which are appropriate to perivd- 2

I ! l
Ly_s(xn_2,un_2) = 35Xy oWnr_oXn_o + Wiy oXn_2 + Xy sFrn_ouy_s
2
1.7 l
+ §uN72AN,2uN,2 + )‘N72uN*2 (236)

but the first term in EqL(2.35) is slightly more difficult to obtain.

Equation [(2.3D) gives an expression 6§ ,, but it includes terms in both
xy_1 anduy_;. If one is to state the optimal cost-to-go strictly as a function
of the statex_;, thenuy_; must be substituted out. Since this can be done by
using the feedback rule(2.33), substitution of Eq. (2.33) info (2.30) and collection
of like terms yields

J(N-1)= %X'N,lKNAXNA + Py 1 XN-1+UN-1 (2.37)

where
Ky 1=®y1+Gy_ Oy 1Gyn 1 +2¥y Gy (2.38)
pPyv-1 = (Ono1 + Gy 1 On1)gnvo1 + Gy 1 Ov_1 + dns (2.39)

Un1 = =501 (O 1) On 1 + v

The matrixK and the vectop have been used in Eq. (Z137) just as they were in
the optimal cost-to-go term fof* (V) in Eq. (2.22).

Next Egs. [(2.36) and (2.B7) can be substituted into Eg. [2.35) to obtain an
expression for the optimal cost-to-go at tifve— 2 in terms ofxy 1, Xy _», and
uy_2. Thenxy_; can be substituted out of this expression by using the system
equations[(2]2). This leaves the optimal cost-to-go as a functionyaof and
uy_» only. Then the first-order condition is obtained by taking the derivative with
respect taiy », and the resulting set of equations is solvedd@r , in terms of
xn_2. This provides the feedback rule for peridgd— 2

uy_2 =Gy oXy 2 +8N_2 (2.40)
where

Gyoo=—(Oy_,) '¥y , and gy »=—(0)y_,) 'Oy (2.41)
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with
by o = AV LKy 1Ay 2+ Wy,
Oy_, = By Ky 1Byo+Ayn_,
Yy = Ay Ky 1Byo+Fyo
On_2 = Ay Ky ev_o+ Ay oPrvo1 + W
On_o, = By Ky ey o+ By ,pyvo1 + Av_o
NN—2 = %C'N_QKNACNJ + PN-1CN-2
Then exactly as was done for peridd— 1 the optimal cost-to-go for period
N — 2 as a function of the statey_, alone can be obtained by substituting the
feedback rule[{2.40) back into the expression for the cost-to-go in termg of
anduy_,. This procedure yields

(2.42)

J(N —2) = %XIN_QKN—QXN—Z + Py_oXN_2 + Un_2 (2.43)
where
Ky o=@y 52+ Gy yOn 2Gy 5 +2¥y 2Gy (2.44)
Py = (Tno+ Gy ,On 2)gy 2+ Gy ,0n 2+ dn 2 (2.45)
Un—2 = =30 (O o) 'On o + v

The feedback rule for periods—1 andN —2 have now been obtained; comparing
Egs. [2.38) and({2.40) shows them both to be of the form

u; = Gexp + gk (246)
with
G, =—(0,)'¥, and g, =—(0})7'6, (2.47)

So Eq.[(2.46) is the optimal feedback rule for the probleml (2.1) 10 (2.3). Also by
comparing Eqgs.[(2.44) anf (2145) with Eds. (2.38) dnd (2.39) one can write the
Riccati equations for the problem as

K, = &) + G,0,Gy, + 29, G, (2.48)

Pr = (Pr + G,O))gr + G0, + &y, (2.49)
v = —%02(@%)710].; + N
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with
®, = ALK 1Ap+ Wy
®k = B%Kk_HBk—i‘Ak
‘I’k = A;CKk—i-lBk_'_Fk
o = ALK, ik + DPit1) + Wi
0r = BL(KLiiCk+ Pr+1) + A
Mk = %CZKHle—i—PZHCk

In summary, then, the optimal control problem (2.1) fo (2.3) is solved by
beginning with the terminal conditions (2]24) ahd (2.25)r andpy and then
integrating the Riccati equatioris (2148) and (2.49) backward in time. WitKthe
andp, computed for all time periods, th@, andg for each time period can be
calculated with Eq[{Z.47). These in turn are used in the feedbacKTulé (2.46). First
the initial conditionx, in Eq. (2.3) is used in the feedback rule (2.46) to compute
uy. Thenu, andx, are used in the system equations](2.2) to calcuwaterhen
x; IS used in the feedback rule to calculaige The calculations proceed in this
fashion until all thex,,’s andu,,’s have been obtained.

For comparability to other texts and to increase the intuitive nature of the
solution slightly it is worthwhile to define the feedback matrices and the Riccati
equations in terms of the original matrices of the problemi (2.1) td (2.3), i.e., in
terms of A, B, ¢, W, and A instead of in terms of the intermediate matrix
and vector element®, ©, ¥, ¢, 0, andn. This can be accomplished by
substituting the intermediate results in Eds. (2.50) into the feedback matrices
defined in Eq.[(2.47) and the Riccati equations (R.48) and|(2.49), yielding the
feedback rule

(2.50)

w, = GpXp + gk (2.51)
where
Gk = _[B;Kk-l-lBk + A;]_I[F;C + B;ch-l—lAk:]
gr = —[BiKenBi+ A;c]il[B;c(KkJrlck +prr1) + ] (2.52)

with the Riccati equations

K, = W,+A K 1A
— [Fr + ALK 1By)[B, KB + AL
[BLKi 1Ay + F] (2.53)
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Pr = AL(KppiCr + Pri1) + Wi
— [A}K 1By + Fi[BiKe By + AY]

B}, (Kk1Ck + Prs1) + k] (2.54)
and with terminal conditions
Ky =Wy (2.55)
and
PN = Wn (2.56)

The difference-equation nature of the Riccati equations is much clearer in
Egs. [258) and[(2.54) than it was in Egs._(2.48) and {2.49). It is also
apparent how the equations can be integrated backward in time from the terminal
conditions [[2.55) and{2.56). Furthermore these equations indicate how the
pricelike information in théW, w, A, and elements in the criterion function

is integrated backward in time in the Riccati equations and then used @ émel

g elements of the feedback rule as the solution is brought forward in time using
the feedback rule and the system equations.

Comparability to results for the quadratic linear problem published in other
texts and articles can be obtained by using the fact that the cross term in the
criterion x'Fu is frequently not used and that the constant term in the system
equationsc,, is usually omitted. When botR andc are set to zero, the results
stated above can be considerably simplified. Also, for comparability of the results
above to those derived for quadratic linear tracking problems it is necessary to use
the national equivalence given in Tablel2.1.



Chapter 3

General Nonlinear Models

The previous chapter dealt with the restricted case of deterministic models with
quadratic criterion functions and linear system equations. In this chapter the
deterministic assumption is maintained, but the quadratic linear assumptions
are dropped. Thus both the criterion function and the system equations can
take general nonlinear forms. If the model is written in continuous time,
the criterion will be an integral over time and the system equations will be
differential equations. If the model is written in discrete time, the criterion will
be a summation over time periods and the system equations will be difference
equations. Since the basic approach used throughout this book is one of numerical
solution of the models, and since continuous-time problems are transformed into
discrete-time problems when they are solved on digital computers, only discrete-
time problems are discussed hére.

This chapter begins with a statement of the general nonlinear problems in
Sec[312 This is followed by a discussion of approximation methods for solving
the problem. The approximation methods use a second-order approximation of
the criterion function and a first-order approximation of the system equations.
The approximation problem is then in the form of the quadratic linear problems

1For a discussion of continuous-time problems see Miller (1979), Intriligator (1971), or
Pitchford and Turnovsky (19%7).

2Examples of the application of nonlinear control theory to economic problems in-
clude |Livesey [(1971| 19¥8), Cheng and Wan_(1972), Shupp (1972), Norman and Norman
(1973), LFitzgerald, Johnston, and Bayes (1973), Holbrook (1973,| 1974, 1975), Woodside
(1973), | Friedman and Howrey (1973), Healey and Summers |(1974), Sandblom (1975), Fair
(1974, 11976, 1978a,b), Rouzier (1974), Healey and Medina (1975), Gupta et _al.| (1975),
Craine, Havenner, and Tinsley (1976), Ando, Norman, and Palash|(1978), Athans| et al. (1975),
Palash|(1977), and Klein (1979).

19
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discussed in the previous chapter. The approximation QLP is then solved
iteratively until the results converge.

While this approximation method may be adequate for solving some nonlinear
optimization problems, convergence may be too slow. Therefore it is common to
solve this class of problems with one of a variety of gradient methods. These
methods commonly employ the maximum principle and then use iterative means
to satisfy the optimality conditions. Basically, they integrate costate equations
backward in time and state equations forward in time to satisfy these conditions
and then check to see whether the derivative of the hamiltonian with respect to
the control variable has gone to zero. If it has not, the controls are moved in the
direction of the gradient and the costate and state equations are integrated again.
This procedure is repeated until the derivative is close enough to zero. These
gradient methods are discussed in $ed. 3.3.

Even these gradient methods are inadequate to solve many economic opti-
mization problems. Many economic models are very large, containing hundreds
of nonlinear equations. To solve these problems on computers where the high-
speed memory is limited, the sparsity of the model is exploited. Since not every
variable enters every equation, it is not necessary to store large matrices fully;
only the nonzero elements need be stored and manipulated. An introduction to
this topic will be provided in Se€._3.4.

3.1 Problem Statement
The problem is to find the vector of control variabiesin each time period
(wp)py = (o, ur, U, ..., uy_1)

which will minimize the criterion function

N-1

J = LN(XN) + Z Lk(xk,uk) (31)

k=0
where

x;, = vector of state variables,
u;, = vector of control variables,
L, = scalar function.
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The last period, period/, is separated from the other time periods to simplify
the specification of terminal conditions. Also the criterion function is assumed
to be additive over time. This assumption is not essential, but its use greatly
simplifies the analysis. In Chalp. 2 the functidnswere assumed to be quadratic
forms; here they will remain general nonlinear forms.

The criterion function[(3]1) is minimized subject to the system equations

ka:fk(xk,uk), k:(),l,,N—l (32)

and the initial conditions
Xo = given (3.3)

wheref is a vector-valued function. The system equations are written in explicit
form; i.e., the variablex; ., is an explicit function ofx, and u;. Some
econometric models are developed in implicit form; i.e., the system equations
are written in the form

gk (Xk+1, Xk, uk) =0 (3.4)

For a discussion of computational methods which are specific to such problems
see Drud|(1976).

The problem [(3]1) to[(313) can be solved by a variety of methods. A
discussion of a quadratic linear approximation method is given next, followed
by an elaboration of gradient methods.

3.2 Quadratic Linear Approximation Method

The problem[(3]1) td (313) can be approximated by a second-order expansion of
the criterion function and a first-order expansion of the system equﬁtid'mre
resulting approximation problem can be solved using the quadratic linear problem
methods discussed in the previous chapter. This procedure can be iterated, the
equations being expanded each time around the solution obtained on the previous
iteration. The iterations are continued until satisfactory convergence is obtained.

First consider a second-order expansion of the criterion function. This
expansion is done about a dﬁth

(Xok+1, uok)év;)l

3The method described here is like Garbade (1975a,b, chap. 2).
4A lowercase is used to denote the nominal path, and 0 is used to denote the period zero.
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which is chosen as close to the expected optimal path as possible. This second-
order expansion of the criterion function is writtefi as

J = L;N[XN - XON] + %[XN - XON], Lxx,N[XN - XoN]
N-1
' ' X — Xok
+ kz::o[ka Luk] [ U — Uy ]

Lxx Lxu - 0.
+ Ulxe — X g — )] [ Doc L ] [ N~ ] (3.5)
ux uu k 0

whereL,, is the vector of the derivatives of the functi@dnwith respect to each
element in the vectat at timek, that is,

0Ly
0T},
Ly, = : (3.5a)
0Ly,
0T,
with z;, theith element im vectorx,. Also, L, is the vector of the derivatives
of the functionL with respect to each element in the veaiicat timek, that is,
OLy
Ouqp

Ly = : (3.5b)
0L,
Ok
with u;, theith element in then vectoru,. Also Ly is the matrix of second

derivatives of the functioi., with respect to the elements in the vectqr

%Ly, 02 Ly,
8$1k8$1k o 8$1k8$nk
e (3.5¢)
%Ly, 02 Ly,
8.’L‘nk8$1k o 8.’L‘nk8$nk

SThis notation differs from the convention of treating gradient vectors as row vectors. Thus
the usual notation would treat, for example,n as a row vector and the transpose shown in Eq.
(33) would not be necessary. Departure from that convention was adopted hereaslovibetors
can be treated as column vectors unless an explicit transpose is given, in which case they are row
vectors.
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L., is the matrix of cross partial derivatives of the functibp with respect to
the elements of the vectoxs andu,,

O*Ly 0%Ly,
8x1k8u1k 8x1k8umk
Lk = | oveeeeee e L, (3.50)
O*Ly 0%Ly,
8xnk8u1k o 8xnk8umk

andL,  is the matrix of second derivatives of the functibpwith respect to the
elements in the vectar,

0% L, 0% Ly,
OuO0uyy, Ou1 O
Luu,k B (359)
0% L, 0% Ly,
Bumkaulk o aumkaumk

The approximate criteriof (3.5) is minimized subject to first-order expansion
of the system equations around the path

N-1

(Xo,k+15 Uok ) —p

that is

Xg+1 = fk + ka[Xk — Xok] +fuk[uk — uok] /C = 0, 1, .. .,N -1

(3.6)
wheref}, is the vector-valued system equations evaluated on the path

(Xok+1, uok)év;ll

f. is the matrix of first-order derivatives of each of the functigisn f, with
respect to each of the variableg, in x;,

Ofi O0f
1\
ka e (36&)
(£’ ofe . Ofi
01,
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andf,; is the matrix of first-order derivatives of each of the functigpn f;, with
respect to each of the variableg, in u,

o of
1\
fu = : = (3.6b)
(Fie) of .. Ok
Bulk Gumk

Thus the notation
fur [Xk - Xolc]

in Eq. (3.6) does not represent a matrix of derivatives evaluated at the point
X — X, DUt the matrix of derivativeg,, evaluated ak,, multiplied by the vector
Xk — Xok-

The approximation problend (3.5) ard (B.6) is the same form as the quadratic
linear problem[(Z]1) and(2.2) discussed in the previous chapter. The equivalence
between the matrices of these two problems is given in Table 3.1.

Thus the problem(315) and (3.6) with the initial conditién {3.3) is solved to
obtain the optimal path

(XZ—H: HZ);CV:_OI
using the algorithm of the previous chapter. Then the iteration procedure is used
to obtain a new nominal path

N-1
(Xo,k+1; uok)k:[)
in the following manner. Let

(X0 k41> UE) ko

Table 3.1: Equivalence of the arrays in QLP and the approximation QLP

QLP Approximation QLP QLP Approximation QLP
(2.1)([2.2) (3.5)(3.6) 2.3)(2.2) [(3.5](36)

WN Lxx,N Ak Luu,k

WN Lun — Ly yXon Ak Lug — Ly p ok — L Xok
W, Lk Ay 9

W, Lk — Ll 1 Xok — Lxuplor | By fur

F L,k Ci — (fxxXok + FurUor)
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be the nominal path about which the expansion is done optthigeration. Then

UZ,JIZI = afu, —up] +uyy (3.7)
whereq is the step size. So the new nominal control path on itergtiegn1
will be the same as the path on the previous iteration plus some fractdithe
difference between the nominal path and the optimal path. The choicecanh
of course be critical. If it is chosen too small, the iteration proceeds too slowly,
and if it is chosen too large, the iterations may jump back and forth across the
optimal path. In the next section on gradient methods several other methods of
choosing both the direction in which to change the control between iterations and
the distance to move it will be discussed. Omég" has been computed from Eq.
B.1), it can be used in the original nonlinear system equations (3.2) to compute
the impliedxfo’,jl. The iteration is then repeated using this new nominal path.

3.3 Gradient Methods

Gradient methods are iterative optimization methods in which the control
variables are moved in the gradient (downhill) direction at each iteration. The
control is changed at each iteration until the gradient is sufficiently close to zero
and the optimal solution is obtained at that point. This type of algorithm is
most easily understood by writing the first-order conditions for the optimization
problem and showing how they are satisfied.

The problem is to minimize

N—-1
J = LN(XN) + Z Lk(xk,uk) (3-1’)
k=0
subject to
Xkg4+1 = fk(Xk, llk) (3-2)
Xy = given (3-3)

For this problem we construct the hamiltoni&h. by appending the system
equations to the criterion function with a lagrangian (or costate) varialite
each time period as

Hk = Lk(Xk, uk) + )\;H_lfk(xk, llk) (38)



CHAPTER 3. GENERAL NONLINEAR MODELS 26

Then the first-order conditions can be statddl as
Systems (or state) equations:

Xk+1 :fk(xk,uk) kZO,l,...,N—l (39)
Costate equations:
Ar=—Lg—f, A0 k=1,2,...,N—1 (3.10)

Optimality conditions:

Huyr = Lo + £, 601 =0 k=0,1,...,N—1 (3.11)
Terminal conditions:
AN - LXN (312)
Initial conditions:
X = given (3.13)

whereLyy, Ly, fx:, andf,, are defined in Eqsl(3.5a}, (3154), (3.6a), and (3.6b),
respectively. Alsa\, is a vector withn elements and; is a vector withm

elements which is defined by Eq. (3.11).
The first-order condition$ (3.9) t6 (3]12) are then met in an iterative fashion.
First a nominal set of control variables for iteratipa= 0 is chosen

(uf)iy

Then the control variables and the initial conditions (B.13) are used to integrate
the system Eq[(3.9) forward in time. That is, andx, are used in Eq.[(3]9) to
calculatex;. Thenx; andu, are used to calculate,, etc. Finally at terminal time

N, xy is obtained and is used in turn in the terminal conditlon (13.12) to determine
AN.

Next the costate equations are integrated backward in time from p&Trimd
period 1 to obtain\ y throughX,. At this point all the first-order conditions are
satisfied except the optimality conditidn (3.11), and even these may be satisfied.
To check thisH,; is calculated for all time periods using the nominal control

(uf)iy

6See Kendrick and Taylor (1971) and Bryson and Ho (1969, chap. 7, secs. 7 and 8).
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and the states and costates calculated from them in the manner described above. If
all the elements in the vect#f,,;, are sufficiently close to zero for all time periods,
the problem is solved, but this will ordinarily not be the case.

Thus the problem is to move the controls in such a direction that the optimality
conditions are more likely to be met on the next iteration. This is where the
gradient procedure is employed. First a decision is made to move the control in
the direction of the gradieril ,;, from the control values of iteratiomto obtain
the control values at iteratign+ 1

"' =u} —aH, k=0,1,....N—1 (3.14)
whereq is the distance to move in the gradient direction. (In practice the control
is usually moved not in the gradient direction but in tbenjugate gradient
direction.m So thedirection of movement is known but thdistance is not known.
However,a is usually chosen by doing a one-dimensional search in the gradient
(or conjugate-gradient) direction until the hamiltonidp is minimized. A variety
of line-search methods are in use, including those due to Shanno (1977) and to Gill
et al. (19706).

Once the new nominal control has been determined ffom](3.14), the process is
repeated again beginning with the system [Eq.1(3.9). The iterations are continued
until the optimality conditions are satisfied to the desired accuracy.

3.4 Special Problems

The algorithm described in Sec. B.3 is sufficient to solve many economic models,
but it does not address a number of difficulties arising from efforts to solve
certain classes of dynamic economic optimization problems, e.g., accuracy and
roundoff errors, large model size, and presence of inequality constraints on state
variables. This section provides a brief discussion of each of these issues and
gives references to more extensive discussions.

"This is the procedure which was used by Kendrick and Taylor (1970). For a description
see| Lasdon, Mitter, and Warren _(1967), and Fletcher and Reeves (1964). For other gradient
methods see Polack and Ribiére (1969), Perry (1976), Davidon|(1959), Fletcher and Powell
(1963), and computer codes which embody several of these methods, namely MINOS, by
Murtagh and Saunders (1977), and LSGRG, by Mantell and Lasdon|(1977).



CHAPTER 3. GENERAL NONLINEAR MODELS 28

3.4.1 Accuracy and Roundoff Errors

Many large econometric models are not defined in the explicit form of the system
equations

Xk4+1 = fk(Xk, llk) (3-2”)
but in an implicit form
gk (Xk41, Xg, ug) =0 (3-4")

Therefore it is necessary to solve the set of simultaneous equdtioff} é8ehch

step in the solution of the optimization problem. Since Hg. ([Bmay contain
several hundred equations, this is no simple task. Furthermore, if the numerical
methods employed are not sufficiently accurate, the derivatiligswhich are

used in the algorithm will be off and the search for the optimum will be made in
the wrong directio,

342 LargeModd Size

A large econometric model may have 300 to 500 state equations. Thus the matrix
f.. may have as many as 250,000 elements. If a problem has 10 time periods,
2.5 million words of memory will be required to store tlig, matrices alone.

Of course it is also necessary to stégg, Hyx, Luk, andLy,. Thus the storage
requirements will easily surpass several million words of core storage. Even the
largest of today’s computers will be strained to the limit by such large high-
speed-memory requirements. Therefore, it is necessary to exploit the fact that
the matrixf,, will have only a relatively small number of elements that are not
zero; i.e., the matrix will be very sparse. Computer codes have been constructed
to store and manipulate only the nonzero elements of the matrices. Examples
of this class of codes are MINOS, by Murtagh and Saunders (1977), LSGRG, by
Mantell and Lasdon (1977), and CONOPT, by Drud and Meetaltiss beyond

the scope of this book to discuss sparsity techniques, but a clear discussion is
available in Drud/(1976).

8For a discussion of this problem see Ando. Norman. and Palash| (1978).

9The Drud and Meeraus code is not yet fully documented, but a call for problems and the
addresses of the authors are given in A. Drud and A. Meedaton. Dynam. Control, 2(1):
133-4(1980).
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3.4.3 Inequality Constraintson State Variables

The method described in the previous section is adequate if there are constraints
on control variables but not on state variables since the linear search can be
halted when a constraint is reached. However, when there are constraints on
state variables or on combinations of state and control variables, that method
is not adequate. Instead the generalized reduced gradient (GRG) methods are
employec@ Fortunately they are embodied in a number of computer codes,
including the three mentioned above.

0For a discussion see Diud (1976, sec. 6.3).



Chapter 4

Example of Deterministic Control

This chapter employs a small macroeconomic model to demonstrate how
an economic-stabilization problem can be cast into the deterministic control
framework and how that framework may alter one’s thinking about the problem. A
small quarterly macroeconomic model of the United States economy is developed,
estimated, and converted into the format used by control theorists. A criterion
function is then specified for this model.

4.1 System Equations

The body of a control-theory macroeconometric model, called the system
equations, constitutes the set of difference equations which describe the evolution
of the economy over time. In this section the simplest multiplier-accelerator model
is presented, estimated, and converted into control-theory format.

The simple multiplier-accelerator model is written as

Cr, = a+DbY; (4.1)
I, = e+ f(Yy—Yi) (4.2)
Y, = Cp+ 1, + G, (4.3)

where

C'y, = consumption

I, = investment

Y, = gross national product

G = government spending
a, b, e, f = coefficients

30
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In order to fit this model to the data, it is necessary to be somewhat more precise
in the definition of each variable; let

(', = total personal consumption expenditures, 1958 dollars (GC58)

I}, = gross private domestic investment, 1958 dollars (GP158)

Y, = gross national product, 1958 dollars, less net exports of goods and
services, 1958 dollars (YN GNP58— GNET58)

G\ = total government purchases of goods and services, 1958 dollars
(GGE58)

In particular, data from the National Bureau of Economic Research time-series
data bank for the period 1947-11 to 1973-Il were used. Fitting Hqgsl (4.1)and (4.2)
by ordinary least squares then yields

R?>=.99
C, = —145 + .67Y, DWW — 15 (4.4)
(2.84) (.005)
and ,
R* = 17
Iy, = 737 4+ 1.53(Y, —Ye 1) DIV — 17 (4.5)

(2.58) (:34)

The fit is adequate for the consumption function, but the Durbin-Watson statistic is
too low. Also, the explanatory power of the investment equation and the Durbin-
Watson statistic are too low.

One can obtain a model which retains most of the simplicity of Eqgs| (4.1)
to (4.3) while mitigating the problems above by using a partial-adjustment model.
Also the acceleratof (4.2) is rewritten to make investment a function of changes
in consumption instead of changes in GNP. The latter change is made in order
to reduce the length of lags in the control model and thereby reduce the size of
the model, which is used later in the book for adaptive-control experiments. The
resulting model can be written

C: = a+bYy (4.6)
Cr = Cra+7(Cr —Crr) (4.7)
Iy = e+ f(Cy — Cr) (4.8)
I, = L1 +0(I; — I 1) (4.9)
Ye = Cpt 1o+ Gy (4.10)

where
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C} = desired consumption
I} = desired investment
~ = partial adjustment coefficient for investment
0 = partial adjustment coefficient for consumption

The model [(4.6) to[(4.10) can be rewritten to eliminate the unobservable
variables by substituting Ed. (4.6) into EG. (4.7) and Eg.|(4.8) into [Edl (4.9), to
obtain

Ck = (1 - 'Y)Ck—l + ’)/bYk + va (411)

and
Ii=(1-0)I; 1 +0fCy—0fCy 1+ 0e (4.12)

Then the national-income identity (4]10) can be substituted intd Eql (4.11) and the
resulting model written as

Cr =ap+ aly + axCr_1 + a3Gy (4.13)
I, = Bo + BiCk + B2Ck—1 + B3lj—1 (4.14)
where
va b -7y

(&) (6]

:1—71) al:a3:1—7b :1—7b
Bo = e fr=—B=0f Bs=1-10
The structural form of Eqsl_(4.113) arid (4.14) can be written as

Cr —anly — axCly 3Gy —ap =€
—B1Ck + Iy — B2Ch—1 — B3l —Bo =€ (4.15)

with the spacing used to emphasize thatenters the first equation but not the
second and;_; enters the second equation but not the first. Then[Eg.](4.15) can
be written in the usual econometric notation as

By, + 'k, = Gy (4.16)
Cr-1
o _ | Ck R R /o _ ~ | Ew
N [ I ] X = len Wherevk = 1forall k U, = [ Eok
Vg

(4.17)
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Table 4.1: Common notation in econometrics and in control-theory textbooks

Symbol Use in econometrics Use in control theory
Vectors

y Endogenous variables Observation variables

x Predetermined variables State variables

u Error terms Control variables

v Error terms Not used
Matrices

B Endogenous-variable coeffi- Control-variable coefficients

cients in structural form
r Predetermined-variable coef- Not used

ficients in structural form

Predetermined-variable coef- Not used
ficients in reduced form

B:[B:H @12]:[ 1 —a1]
Ba1 Boz —5 1

- Y1 Y2 N3 Y4 —az 0 —az —ap

r=\. == 7/ = 4.18

[721 Vo2 V23 T4 l—@ —Bs 0 —50] (4.18)

In Eq. (4.16) the hat over the variables has been used to distinguish the notation
commonly used in econometrics textbooks from the notation used in control-
theory textbooks. Table_4.1 provides a comparison of some of the common

notation used in these two fields.
The reduced form of Eq._(4.1L6) can then be written

Vi = Xy, + Vi (4.19)
where

o oS — N S5—1nx o 11 712 T13 T4
II=-B~'l v, = B7lu, II =
To1 T2 To3 T4

The identification of the mode[ (4.15) can be checked with the help of the
following variables}

G = number of endogenous variables in model
G* = number of endogenous variables appearingtinequation
GAA =G -G~

1See Kmenta (1971, pp. 539-546).
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K = number of predetermined variables in model

K* = number of predetermined variables appearingtinequation

K* =K - K*

With these definitions, an equation is said to satisfy the order condition for
identifiability if

K*>G* -1 (4.20)

For the model[(4.15) 7 = 2 and K = 4. Also for the first equatioli® = 2,
since both endogenous variables appear in that equation. On the other hand,
K* = 3, since, from Eq.[(4.18)],_, does not appear in the first equation. Thus
the inequality[(4.20) becomes

K-K* = K*>G*-1
4-3 = 1>2-1 (4.21)
1 =1

When, as in this case, the inequality holds as an equality, the equation is said to
be exactly identified.

Similarly for the second equation ih (4]11%)> = 2 and K* = 3, since from
Eq. (4.18),G, does not enter the equation. Thus the inequdlify (4.20) holds as an
equality for the second equation, and it is also exactly identified.

When all the equations of the model are exactly identified, the ordinary
(unrestricted) least-squares estimates are consistent estimatesndd. tHehese
estimates will also be equivalent to maximum-likelihood estimates and will
possess the properties of asymptotic efficiency and asymptotic norﬁwality.

The reduced-form equations (4119) were estimated by ordinary least squares
on the TROLL system at M.1.T. for the period 1947-I1 through 1969-I, to oltain

R? = 998
C, = 1.014C,_; + .002I,_, — .004G, — 1.312 DIV — 2.19
(.016) (.047) (.031) (1.52)
(4.22)
R? = 938
I, = .093Cy,_; + .753[,_; — .100G, + .448 DIV — 1.6
(.023) (.068) (.044) (2.164)
(4.23)

As can be seen from quick examination, this model has some characteristics
which make it something less than the perfect model for conducting stabilization

2See Kmenta (1971, p. 551).
3These data are listed in Appendik S.
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experiments. First, the coefficient in the first equatiorCgn; of 1.014 gives the
model an explosive character. Second, the small coefficieGt,af —.004 in the

same equation renders government policy very weak in affecting consumption.
Also the predominant effect of government spending on private consumption (as
on investment in the second equation) is a “crowding out” effect. Thus increases
in government spending result in decreases in both consumption and investment.
This effect is of course not of significant magnitude in the consumption equation
but is significant in the investment equation.

While these characteristics make it somewhat undesirable for stabilization
experiments, the model in Eqd._(4122) and (#.23) has the virtue of being
derived and estimated in a straightforward manner from the Keynesian textbook
model which is widely taught in freshman economics textbooks. Also, as will
become apparent in Chap. 12, in the experiments with active-learning stochastic
control the model is rich enough to begin to provide some insights into the
relative magnitudes involved. The consumption path proves to be uninteresting,
but the investment path shows considerable realism in the stochastic control
experiment@

Before the model(4.22) and_(4123) is written in control-theory notation, it is
convenient to define government spending as equal to government obligations the
previous quarter

Gry1 = O = government obligations (4.24)

Then by using Eqgs[ (4.22) and (4123) the model can be written as the systems
equations of a control model

X1 = AXk + Buk +c (425)

where
Xk:l%f] uk:[Ok]

1.014 002 —.004 ~1.312
A‘l 093 .753] B_l—.mo] C_[ .448]

Also the initial state variable for the model is
| 460.1
X0 =1 1131

4For a more interesting example of deterministic control see Pindyck (1973a). A smaller model
is used here so that it can also be used for stochastic control in later chapters.
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where the first element corresponds to private-consumption expenditures and the
second element to gross private domestic investment in billions of 1958 dollars
for 1969-I.

4.2 TheCriterion Function

The criterion function is written to minimize the deviation of control- and state-
variable paths from desired paths

1 . 5
J = §[XN—XN] WN[XN—XN]
1 = I /
+ 5 Z {[Xk - ik] Wk[Xk — }Nik] + [uk - flk] Ak[uk — flk]}(426)
k=0
where

x = desired state vector
u = desired control vector

W = matrix of weights on state-variable deviations from desired paths
A = matrix of weights on control-variable deviations from desired paths

There has been considerable debate about the desirability of using quadratic
rather than more general nonlinear functional forms for the criterion in macroeco-
nomic problem& The arguments for using quadratic functions are:

Computational simplicity. Since the first-order conditions for quadratic linear
problems are linear, solution methods for solving such problems can
be highly efficient.

Ease of explanation. It is likely that it will be easier to discuss desired paths and
relative weights in quadratic penalty functions with politicians than to
discuss general nonlinear utility functions.

The arguments against using the quadratic are:

Accuracy. The quadratic does not capture the true nature of political preferences.
Symmetric nature. Symmetric penalties about a given point are not desit@ble.

5See for example Palash (1977) and related commenits by [Shupp (1977) and| Livesey (1977).
6See Friedman (1972), however, for an asymmetric quadratic penalty function.
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For the problem at hand, the quadratic formulation has been adopted. The
pathsx anda were chosen by assuming desired growth rate§®opercent per
qguarter. The initial conditions for these desired paths are the actual data for the
economy for 1969-I, that is,

460.1
113.1

i, = [1.0075)"[153.644] k=0,1,...,N—1

X, = [1.0075]’“[ ] k=0,1,...,N

The weighting matrices are chosen to represent the decision makers’ pref-
erences over the desired paths. For example, when unemployment levels and
inflation rates are among the state variables, relatively higher penalties may be
assigned to one or the other to represent political prefer@qéw) the weights
can be used to represent the fact that politicians may care much more about devi-
ations of the economy from desired paths in some quarters than in others [see Fair
(1978&,b)]. For example, the penalty matrices may be

100 0 10
Wy = l 0 100] Wk—[o 1]wherel~c_1,2,...,N_1

Ay = [1]

In this scheme the politician card90 times as much about deviations of
the economy from its desired path in the last quarter (say the quarter before an
election) than in other quarters.

The solution to this problem is given in Taljle14.2.

Table 4.2: Solution to a macro control problem
States
1 2 3 4 5 6 7
C  464.8 469.6 474.5 479.4 484.4 489.5 494.6
I 1128 112.9 113.4 114.2 115.3 116.7 118.3
Controls
0 1 2 3 4 5 6
O 1564 156.8 157.2 157.4 157.2 156.7 155.6

"For a discussion and application of this procedure to a larger model see Pindyck (1973a).
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Chapter 5

Additive Uncertainty

5.1 Uncertainty in economic problems

Uncertainty is pervasive in dynamic economic problems, but it is frequently
ignored for three reasons:

1. Itis assumed that the effect of the uncertainty in the economic system under
study is small enough to have no noticeable affect on the outcome.

2. Itis conjectured that even if the uncertainty were considered, the resulting
optimal policy would not be different.

3. Itisthought that the incorporation of uncertainty into the analysis will make
the problem intractable.

Now consider in turn each of these reasons for ignoring uncertainty. First
comes the argument that its effects are small and thus can be ignored. This
may be true. However, one does not know about this until uncertainty is
systematically incorporated into the analysis and the system is analyzed both
with and without the uncertainty. In some cases this analysis can be done by
comparing terms in mathematical expressions. In other cases it is necessary to
compare numerical results since analytical mathematics is insufficient. It emerges
from those numerical results that in some casesl#geee of uncertainty matters.

For example if variances are sufficiently small, there is no significant effect on the
solution.

Second, the case is put forward that even when the uncertainty is considered
in posing the problem, its effects do not appear in optimality conditions. This

39
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is the classic case of certainty equivalence, in which a deterministic problem is
equivalent to the stochastic problem. This occurs in special cases of economic
problems under uncertainty, particularly when the uncertainty can be modeled in
an additive fashion. The latter part of this chapter is devoted to a discussion of the
circumstances under which certainty equivalence holds. However, there are many
economic problems where certainty equivalence does not hold.

Finally, it is thought that the incorporation of uncertainty into the analysis will
make it intractable. This is unfortunately sometimes true, but even in these cases it
is frequently possible to obtaepproximate numerical solutions. These methods
are relatively new to economics, and it is not yet known whether the quality of the
approximation is sufficiently good. However, this knowledge will come in due
course as experimentation with the methods increases. Approximation methods
are used in the last part of this book on active-learning control problems. Whether
or not approximation is necessary depends on how the uncertainty is modeled.

5.2 Methodsof Modeling Uncertainty

Uncertainty in economic problems can be separated into two broad classes:
uncertainty in the economic system and uncertainty in the measurement of the
system. Although most work with economics of uncertainty has been with the
first type, econometricians are returning increasingly to work on measurement
erro

Uncertainty in the system is commonly modeled in one of two ways: additive
error terms and parameter uncertainty. Additive error (or noise) terms is the most
common treatment of uncertainty. Cases of this type can usually be treated with
the certainty-equivalence procedures discussed later in this chapter. Parameter
uncertainty is more difficult to treat since certainty-equivalence methods do
not apply. However, procedures are available for analyzing this problem.
Furthermore, they are sufficiently simple in computational terms to be applicable
to large models involving hundreds of equations. This is the subject of Chap. 6.

When the uncertainty is in the parameters, it can be modeled with two kinds of
assumptions. The simplest assumption is that the parameters are in fact constant
but that theestimates of the parameters are unknown and stochastic. This case is
analyzed later in this book. The alternative is that the parameters are themselves
stochastic, a more difficult problem. Methods for analyzing this problem are

1See for example Geraci (1976).
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discussed in this book, but no numerical examples of this type are Bi\]’drns
completes the discussion of uncertainty in the system equations and leaves only
the uncertainty in the measurement relations.

In engineering applications of control-theory measurement errors on various
physical devices such as radar are used in the analysis. Since these devices are
used to measure state variables, the existence of measurement error means that
the states are not known exactly but are estimated. Thus the engineering models
include estimates of the mean and covariance of the state vector. These notions are
also being adopted in economics. Certainly measurements of economic systems
are also noisy, so it is reasonable to assume that although the state variables are
not known exactly, estimates of their means and covariances can be made. The
models used in the last chapters of this book will include measurement errors.

The various kinds of uncertainty require different methods of analysis. One
of the most important differences in the treatment of uncertainty is the distinction
between passive and active learning.

5.3 Learning: Passiveand Active

Passive learning is a familiar concept in economics, though the term has not
been widely useB. It refers to the fact that new data are collected in each
time period and are periodically used to reestimate the parameters in economic
models. When measurement errors are present, this concept can be extended to
include reestimation of the state of the system at each period after data have been
collected.

In contrast, active learning not only includes the idea of reestimation but also
the notion that the existence of future measurement should be considered when
choosing the control variables. That is, one should take account of the fact that
changes in a control variable at timevill affect the yield of information in future
time periods. Stated another way, perturbations to the system today will provide
more accurate estimation of state variables and parameters in future time periods.
Furthermore, the more accurate estimates will permit better control of the system
in subsequent periods.

An example from guidance systems will serve to illustrate this point. The
control theorist Karl Astrom and his colleagues have used stochastic control

2For a discussion of this problem see also Sarris and Athans|(1973).
3See Rausser (1978) for a more complete discussion of active- and passive-learning stochastic
control.
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methods for developing a control system for large oil tankers. Whenever a tanker
takes on or discharges crude oil, the response of the ship to changes in the wheel
setting is different. With a passive-learning scheme the ship pulls away from the
dock and the system reestimates the response parameters every few minutes as the
ship is maneuvered out of the harbor. With an active-learning scheme the control
system perturbates the controls on purpose to learn faster about the response of
the ship to different control settings.

In order to make these concepts somewhat precise it is useful to set out the
scheme proposed hy Bar-Shalom ang Tse (1976b) and to distinguish between
various types of control schemes. In order to do this some additional notation
must be developed. Recall the notation

x; = State vector in period
u, = control vector in period:

and consider a model with system equations
Xk+1:fk(xk7uk7€k) k:()a]-aaN_]- (51)

where§; is the vector of process noise terms at tile Further, as discussed
above, assume that measurements are taken on the state of the system and that
there is error in these measurements; i.e.,

Yk:hk(xkaCk) k:(),l,...,N (52)

wherey, is the measurement vector agg is the measurement error (noise).
Next define variables which represent the collection of state and control variables,
respectively, for all the time periods in the model

XYV =(x)), U= (u)))

Also define the set of all observations between period 1 and perasd
Yk = (YJ);CZI

Next the notation
k
M* = (hy(x;. ¢))}y
is used to represent the knowledge that a measurement is made. Note the
distinction betweenlY and M. Y represents the actual measurement, Mut
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represents the knowledge that a measurement will be made without specifying
what the actual measurement will be.
Finally the notation

Sk = P (xo, ()50, (¢;)E)

is used to represent the probability distribution of the initial state vector, the
system error terms, and the measurement error term. A subset of these data

8" =P(x, (&);%)

is defined for use in the definition of one kind of control policy.

With this notation in mind the following breakdown of control policies made
by Bar-Shalom and Tse (1976b) can be stated. First comes the open-loop policy,
which ignores all measurement relationships, i.e.,

ult = g, (S) k=0,1,...,N—1

Next comes feedback (or passive-learning) policy, which uses the measurement
relations through period, that is,

uf =g (Y UM MF S k=0,1,...,N—1

This policy makes use of both the actual measuremémtnd the knowledge that
measurements are made through pet#odFinally there is the closed-loop (or
active-learning) policy

wt =g (YR UL MY SN kg =0,1,...,N—1

which not only uses the state observation through péribdt also takes account
of the fact that the system will be measured in future time periods, i.e\Mfor!
andsS™-1,

In practice this means that in choosing the control under a passive-learning
scheme one ignores the future covariances of the states and parameters while
under an active-learning scheme one considers the impact of the present choice
of control on the future covariances of states and controls. The idea is not that
one can use actual future measurements (since they are not available) but can
anticipate that present perturbations of the controls will improve the accuracy of
future estimates as represented by the covariance matrices for future states and
controls.
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This completes the introductory material for the remainder of the book on
stochastic control as well as the introductory material for Part Two, which is on
passive-learning stochastic control. Now a discussion of the first kind of passive-
learning stochastic control, namely additive uncertainty, will be given. This will
be followed in Chap[]6 by a discussion of an algorithm for the treatment of
multiplicative uncertainty.

54 AdditiveError Terms

The most common form of uncertainty in economic models is an additive error
term, i.e., a random error term is added to the system equations so that they
become

X1 = fe(Xk, ug) + & (5.3)

whereg,, is a vector of additive error terms. Furthermore it is assumed that the
error terms (1) have zero mean, (2) have the covari&)ceand (3) are serially
uncorrelated,; i.e.,

E{&} =0 E{&é1}=Qu E{£§§,%} =0 (5.4)

The mean-zero assumption is not crucial since the nonzero mean can be added
into thef;, function. Also the serial-correlation assumption is not crucial since it
can be treated by augmenting the state equalﬁons.

The criterion function is no longer deterministic but is an expectation taken
over the random quantities. Thus the problem is to fimg);_," to minimize

J=FE{C} = E{LN(XN) + i:l Lk(xk,uk)} (5.5)

k=0

subjectto Eqs[(5]3) and(5.4) and given initial conditirpor the state variables.

If L is quadratic and is linear, the certainty-equivalence conditions hold and
the results of Simon (1956) and Theil (1957) can be applied. This means that the
expected value of the random components can be taken and the problem solved
as a deterministic model. Alternatively, whénis not quadratic, the postponed-
linear-approximation method of Ashley (1976) can be ap;ﬁied.

“Correlated error terms in control problems are discussed in_Pagan (1975).
SFor a generalization of this result to adaptive-control problems see Ashley (1979).
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Also for the general case wheh is not quadratic andf is not lin-
ear, approximation methods are available. For example, see Athans (1972).
An application of this approach to macroeconomic stabilization problems is
given in | Garbade! (1975a) and to a commodity-stabilization problem is given
in Kim, Goreux, and Kendrick (1975). The latter is a cocoa-market stabilization
study@

As with most approximation methods a Taylor expansion is made around a
nominal path. It is customary to choose the nominal path by taking expectations
of all random variables and solving the resulting deterministic problem. In
the cocoa-market stabilization problem the resulting deterministic nonlinear
control problem was solved using the differential dynamic-programming method
of Jacobson and Mayne (1970). In contrast, Garbade used the quadratic linear
approximation method discussed in Chap. 3. These procedures yield a nominal
path

(Xo k1, uo,k)g:_ol

Next a second-order Taylor expansion of the criterion funcfion (5.5) and a first-
order expansion of the system equatidnsl(5.3) are made along the nominal path,
as described in Selc. 3.2. Finally, the resulting quadratic linear control problem is
solved. This yields a feedback rule of the form

Up = Uy + Gk[Xk — Xok] + gk (56)

One merit of this procedure is that the quadratic approximation in the criterion
functions works like a tracking problem in the sense that the problem is solved
to minimize some weighted sum of terms[iy, — x,;] and[u;, — u,] for all .

Thus the quality of the approximation is enhanced by the fact that the criterion
works to keep the optimal path for both the controls and states close to the
nominal paths about which the approximation is made. When this method is used
for stabilization problems, the effect of this is to stabilize about the certainty-
equivalence path. In some cases this may not be desitable.

8For other applications of control theory to models with additive error terms see, for microeco-
nomics, Kendrick, Rao, and Wells (1970), a water-pollution control problem; for macroeconomics
(1) United States Economy, Pindyck and Roberts (1974), Chow (1972), Brito and! Hester (1974),
and.Gordon|(1974); (2) United Kingdom Economy, Bray (1974, 1975)land_Wall and Westcott
(1974,.1975); (3) theoretical models, Kareken, Muench, and Wallace |(1973), Phelps and Taylor
(1977), and _Sargent and Wallace (1975).

’See| Denham| (1964) for an alternative procedure for choosing the nominal path with
consideration of the uncertainty.



Chapter 6

Multiplicative Uncertainty

If all uncertainty in economic problems could be treated as additive uncertainty,
the method of the previous chapter could be applied; however, many economic
problems of interest include multiplicative uncertainty. Consider, for example,
agricultural problems. The total output is represented as the yield of the crop
per acre times the number of acres planted. But since the yield is a random
variable, multiplicative uncertainty occurs because the acreage is a state or control
variable and the yield multiplies the acreage. Or consider policy choice in
macroeconomic models. Since the coefficients in these models are estimated, they
should be treated as random variables and once again multiplicative uncertainty is
introduced.

The optimal control problem with multiplicative uncertainty is stated in the
next section. Then dynamic-programming methods are used to derive the optimal
control just as was done in Chdp. 2 for deterministic problems. As in Chap. 2,
the analysis is restricted to problems with quadratic criterion functions and linear
system equations. Unlike Chap. 2, however, an expectations operator is introduced
into the criterion function. Therefore special attention is paid in this chapter to
methods of taking expectations of products of matrices. The chapter closes with a
brief discussion of methods of updating the estimates of the unknown parameters.

6.1 Statement of the Problem

The system equations for the problem are written exactly as they were in[Chap. 5
with an additive error term except that the parameters are considered to be

46
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stochastic rather than fixed. Thus the system equations are written
Xk+1:Aka+Bkuk+Ck—|—€k kZO,l,,N—l (61)

where
&, = vector of additive noise terms in periéd

with
Xo = given

Means and covariance for the parameters are assumed to be known:
Means:

F{a;;} foralli,j
E{b;;} foralli,j (6.2)
E{c;} forally

where
E = the expectation operator

Covariances:

cov(a;a,) foralli,j, x,1
(bijbey) foralli, g, x,1

iC forall 7, 5

cov(cicj) orallz, j (6.3)

cov(a;;by) foralli, j, x,1

cov(a;;c,) foralli, j,

cov(b;c,) foralli, j,

The elements in Eq[(8.3) are the familiar covariance matrices obtained when
estimating equations with econometrics packages. For example, consider the
coefficients in the first row of the matriX as the coefficients of a single equation.
Then the first element in Ed. (6.3) becomes

cov(ayjay,) forall j, k

which is the familiar¥ matrix for the coefficients of a single equation, in this case
¥4 since itis for the first equation. Of course in the first element of[Eq] (6.3) there
is a matrix like this for each equation, namély, X,,, etc., and then there are

also off-diagonal matrices which provide the covariance between the coefficients
of each equation with every other equation. These matrices are obtained when one
is performing simultaneous-equation estimation.
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Next consider the criterion function for the problem. It is the expected value of
a quadratic function; i.e., the problem is to find the conttalg); ' to minimize

J = E{LN(XN) + Nf Lis(xs, uk)} (6.4)

k=0

where E is the expectations operator. The functidng and L, are the same
guadratic functions as in Chdpg. 2

Ly(xn) = %X,NWNXN + WXy (6.5)
and
Li(xp,up) = 3%, Wixy, + wixy, + X Froup + 2up Aguy, + Auy
ko= 0,1,...,N—1 (6.6)
where

N = last time period,
k = all other time periods,
x = state vector,
u = control vector,
W, A, F = matrices,
w, A = vectors.

So in summary, the problem is to minimize the criterion functionl(6.4) subject to
the system equations (6.1) and the initial conditions.

The problem is solved by using dynamic-programming methods and working
backward in timél First the problem is solved for periadl and then for period
N — 1. This leads to the solution for the general period

1The derivation here follows the procedure of Farison. Graham, and Shelton (1967) and Aoki
(1967, pp. 44-47). Related algorithms have been developed by Bar-Shalom and Sivan (1969),
Curry (1969)/ Tse and Athans (1972) and Ku and Athans (1973). Yaakov Bar-Shalom provided
private communications that helped in developing the derivations used here. Also a few elements
from [Tse, Bar-Shalom, and Meier (1973) and Bar-Shalom, Tse, and Larsonl (1974) have been
used. For a similar derivation see_Chow (1975, chap. 10). For an alternative treatment of
multiplicative uncertainty see Turnovsky (1975, 1977).
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6.2 Period N

It is useful to introduce notation for the cost-to-go, keeping in mind that it is
usually written as the cost-to-go when one\is— j periods from the end. Thus
the deterministic cost-to-gd — j periods from the terminal period is written as

N-1

Cij = LN(XN) + Z Lk(Xk, uk) (67)

k=j

ThusCy_; is the cost-to-go withV — j periods to go. With this notatio@', is
the cost-to-go with zero periods remaining, arid is the cost-to-go with allv
periods remaining, i.e.,

CO = LN(XN) (68)
and
N-1
Cn = Ln(xn) + Y Li(xk, ug) (6.9)
k=0

The expected cost-to-gb is defined in the same manner as the random cost-to-
goC
Jy = E{Cy} = expected cost-to-go for fulV periods

Jn_j = E{Cy_;} = exp cost-to-go at perioglwith N — j periods remaining
Jo = E{Cy} = expected cost-to-go for terminal period

Finally, J* is defined as theptimal expected cost-to-go. It is written in an
elaborate manner for the general perigd- ;j as

T ;=min E{---min E{min E{Cy_; | P¥'} | P¥ 2} ... |27} (6.10)

where?’ = (x;, ;) is the mean and covariance of the unknown elements. The
expectations are nested in EQ.(6.10). That is, the inside expectation in the nested
expressions is

min E{Cy_; | P*7'} (6.11)

This expression means the minimum over the control variables in the next to last
period of the expectation of the term in the braces. Recall that since no control

is chosen in the last period, the control in the next-to-last period is the final set

of control variables chosen for the problem. The terms in the braces are the cost-
to-go N — j periods from the end conditional on the informati®?—' being
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available. The informatior?’ is defined as the means and covariances of the
parameters at tim¢. The symbols/* and C' have indices which indicate the
number of periods remaining; all other symbols likand? have subscripts and
superscripts indicating the period in which the action occurs. Thus in a problem
with eight time period€’; means the cost-to-go with two periods remaining, i.e.,
the cost-to-go at periodl (Cy ¢ = Cs ¢ = Cs).

Returning to the entire nested expression (6.10), one sees that each agntrol
must be chosen with the information available only through tjmi€éor example,
u3 is chosen with the means and covariances available in pgyiathile ug has
the advantage of being chosen three periods later when better estimates of the
means and covariances will be available.

If the general expressioh (6]10) is specialized to zero periods to go, i.e., to the
last period, it becomes

Ji = E{Cy | PV} (6.12)
Substitution of Eq.[(6]8) into Eq.{6.112) yields
Ji = E{Ly(xy) | PY '} (6.13)

When Eq.[[6.5) is used, this becomes
Te = E{%X’NWNXN n w;VxN} (6.14)

The information variablé®” ~! is dropped here in order to simplify the notation.
Then the expectation in Eq.(6]14) can be taken to yield

To = sxXnE{Wy}xy + E{wy}'xy (6.15)

This expression gives the optimal cost-to-go with no periods remaining.

Next recall from Chapl.]2 that it was assumed for the deterministic problem
that the optimal cost-to-go is a quadratic function of the state of the system. That
assumption is used here, and the expected cost-to-go with zero periods to go is
written as

Jy =vn 4+ Pyxy + sxyKyxy (6.16)
where the scalar, the vectorp, and the matrixK are the parameters of
the quadratic function. These parameters are determined recursively in the
optimization procedure described in the remainder of this chapter.

Then comparing Eqs[{6.115) arld (6.16), one obtains the terminal conditions
for the Riccati equations, namely

KN = E{WN} == WN PN = E{WN} = Wy VN = 0 (617)
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This completes the discussion for peridd Consider next the period before the
last one, namely perioy — 1.

6.3 Period N — 1

Recall from Chapl]2 the discussion of the dynamic-programming principle of
optimality, which states that the optimal cost-to-go wkh- j periods remaining
will equal the minimum over the choice of the control at tijnaf the cost incurred
during period; plus the optimal cost-to-go withl — j — 1 periods remaining, i.e.,

’]]tf—j - H&ln E{Lj(xj7 uj) + J]tf—j_1 | :pj} (6.18)

Equation [[6.1B) can be used to obtain the optimal cost-to-go in péfiedl.
For this case it is written with = N — 1 as

Ji—v-y = min E{Ly_1(xy—_1, uy-1) + Iy vy [PV
or as
Jf = min E{LN—I(XN—IauN—I) + J())k | fPN_l} (619)

N-1

Thus the optimal cost-to-go with one period remaining is the minimum over the
control at timeN — 1 of the expected value of the sum of the cost incurred in
period N — 1 and the optimal cost-to-go with zero periods remaining. Both these
terms have already been developed. The cost in each period in Eqg. (6.6), and the
optimal cost-to-go with zero periods remaining is in Eq. (6.14). Substituting these
two expressions into Eq. (6.119) yields

* : 1./ ! 1.1 !
Ji = min E{EXNWNXN + WXy + 53Xy WN_1Xy_1 + Wy Xno1
! 1.,/ !
+ XN_1FN—1uN—1 + §uN_1AN_1uN_1 + )\N_luN_l} (620)

The logical steps to follow, as shown in EG.(6.20), are to take the expected
value and then to find the minimum ovex;, ;. However, it is helpful to write the
entire expression in terms &fy_; anduy _; by using the systems equatiohs {6.1)
to substitute out the  terms. Before doing so, however, we shall review the
steps that remain:

1. Substituting the system equations into the optimal cost-to-go expression
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2. Applying the expectations operator

3. Applying the minimization operator

4. Obtaining the feedback rule from the first-order conditions
5.

Substituting the feedback rule back into the optimal cost-to-go in order to
obtain the Riccati recursions.

These are the same steps used in Chap. 2 expect for the application of the
expectations operator in step 2.

The substitution of the system equatiohs {6.1) into Eq. {6.20) and the use of
the Nth-period Riccati equation§ (6]17) yields the optimal cost-to-go entirely in
terms ofxy_; anduy_;

* . 1! / / /
J = 11111\1,111 E{§XN1¢N1XN1 + Py Xy 1 +uy Py Xy

1.7 ! 1 ¢!
+ouy_ Oy jun 1 +uy 1 On 1+ 58N 1 Qrv1€n1

+wh_1En 1+ Xy Ty 1€y 1+ uy Ty 1€y 1 +nn 1 | fPNl}

(6.21)
where
Sy = Wy +Ay  KyvAn,
dnv1 = Ay (Kyey_i1+pn) +Wyy
Uy, = Fyoi+Ay_KyBy_y
On_1 = Ay_1+By KyBy_;
On_1 = By_(Kncy_1+Ppn)+An_1
QN—I - KN (622)

wy 1 = Kyey 1 +py

YTy, = Ay Ky

v, = By Ky

NN-1 = %C/N,lKNCNA +Pyeyn -1

Next we perform the expectations and minimization operations in[EqQ.|(6.20).
Taking the expectation in Ed.(6.21) yields

Jio= min|gxy  E{®y }xy 0+ B{oy 1} xy o1+ uy  B{®y 1} 3y

1
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+ %UINAE{@NA}UNA +uy  E{Oy 1} + %E{&VAQN’IEN*I}
+ E{nn_1} (6.23)

The expected value of the additive error tegns assumed to be zero, so all terms
involving only the expected value are dropped. In contrast, the covariance of
the noise term is not zero, and so the term involving it remains. Since the state
variablesx, are assumed to be observed without error, they are a deterministic
guantity. Also the control variablas, are deterministic. This leaves expectations
of matrices and vectors in Eq.(6]123). From Eq. (6.22) some of these expectations
are of products of matrices. They are rather complicated, and a full explanation of
this process will be given in Sec. 6.5.

Now the minimization operation in Ed.(6]23) can be performed. This yields
the first-order condition

E{\I’lNil}XN,I + E{G)'Nfl}uN,l + E{ON,I} =0 (624)
The feedback rule can then be obtained from Eq. (6.24) as

uy-_1 = GR;?IXNfl + g}rv,l (625)

where
G;rvf1 = _(E{GINA})_I(E{‘I’INA}) g;rVq = _(E{GINA})_I(E{ON—l})
(6.26)

The feedback rulé_(6.25) and (6126) provides the optimality condition sought for
period N — 1. It is instructive to compare it with the feedback rule for period
N —1in the deterministic problem, Eq$§.(2133) ahd (2.34). The rules are identical
except that theG' andg' feedback gain matrix and vector are now products of
expectations of matrices.

In order to be able to evalua@' andg’ one must calculate the Riccati matrix
and vectorK andp, and to do that one needs a recursion in these elements. This
recursion is obtained by substituting the feedback tule {6.25) back into the optimal
cost-to-go expressiof (6.23) in order to eliminate ; and to be able to write the
optimal cost-to-go entirely in terms afy_;. This substitution yields the optimal
cost-to-go

J = %X'N_IKN,IXN,I + Py XN+ UN 1 (6.27)

where

Ky = E{®y.}-E{¥y }(E{Oy })  (E{TyN_1})
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pyvo1 = E{on} — BE{¥y }(E{Oy_1}) ' E{Oy_1} (6.28)
vno1 = —5(E{On_1})'E{On_1} ' E{On_1}
+ 5 E{&x 1 Qv 1€n o} + E{nni}

In order to see the recursive nature of these Riccati equations it is necessary to
rewrite them in terms of the original parameters of the problem. This can be done
by substituting Eq.[{6.22) into Ed. (6]28) to obtain

Ky = Wy +E{Ay_ KyAx_ 1} — (Fyo1+ E{Ay_KyBy_1})
x (Ay1+ B{By_KyBy 1}) (E{By_ KyAy 1} +Fy )
(6.29)
pv-1 = E{Ay_Kycy 1} + E{Ay_1}Pyv+WNn_1
— [Fy 1+ B{Ay_ KyBy 1} + [Ax 1 + B{Byy_ KyBy 1}
x [E{By_Knycy 1} + E{By_1}'Py + An_1]

The Riccati equation foK is seen to be a difference equation with values of
K on the right-hand side anl{ y_; on the left-hand side. Since the terminal
condition for this equation

KN - WN

was obtained in Eql(6.17), one can evaluKtg_; by using Eq.[(6.29). This

is sometimes callebackward integration since the integration occurs backward

in time. In fact, the reader may recall from Chap. 2 that this is how quadratic
linear control problems are solved. First the Riccati equations are integrated
backward in time, and the feedback-gain matriG¥sandg’ can be computed

so that the system equations and the feedback rule can be used in tandem as they
are integrated forward in time frosy, to find the optimal paths for the states and
controls. Also thep equation in Eq.[(6.29) can be integrated backward by using
the terminal conditions for botK andp in Eq. (6.1T)

Ky =Wy Py = Wy

The v equation in Eq.[(6.28) is not evaluated here since it does not affect the
optimal control path but only the optimal cost-to-go.

The optimal control problem has now been solved by dynamic programming
for periodsN and N — 1. The process can now be repeated for peridvds 2,
N — 3, etc. Itis not necessary to show this here since the basic structure of the
solution is already present. The derivations will not be given, and the feedback
and Riccati equations for the typical peribavill simply be stated.
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6.4 Period k

The optimal feedback rule for periddis, from Eq. [6.25b),
. = Gx; + g} (6.30)
where, from Eq.(6.26),
Gl =—(E{®&)T(E{¥,}) el =—(E{®,})T'E{6:}  (6:31)
where from Eq.[(6.22),
E{®.} = F;+ E{A.K;1B;}
E{®} = A+ E{B.Ky11B} (6.32)
E{6,} = E{B,Kiiici} + E{By}pri1 + A
Also the Riccati equations can be written using Eq. (6.28) as
Ki = E{®}— E{®}(E{O}) (E{¥;})
P = E{¢i} - E{\I’k}(E{G)k})ilE{ok} (6.33)
where from Eq.[(6.22),
E{®.} = W + F{A/ K\ 1A}
E{¢r} = E{AKpricr} + E{A} Pri1 + wy
or, in terms of the original matrices of the problem, by using EQ.(6.29), as

K, = Wi+ E{A.K1Ar) — [Fy + E{A/ K1 By)]
x [A} + E{B} K1 By} [E{B} Ky 1A} + F

Pr = E{A;.;Kk+lck} + E{Ak}'pk_H + Wy — [Fk + E{A;ch-HBk}]
x [A}, + B{B;Ky1 By} [E{B;Kiiicr}
+ E{Bi} Prs1 + Ak (6.34)

In summary the problem is solved by using the terminal conditibns [6.17) in
Eq. (6.33) to integrate the Riccati equations backward in time. The@Gthand
gl elements can be computed for all time periods. Next the initial condition on the
statesxq, is used in the feedback rule (6130) to compuge Thenu, andx, are
used in the system equatiofis (6.1) to computeThenx; is used in the feedback
rule to getu;. In this manner the system equations are integrated forward in time
and the optimal controls and states are calculated for all time periods.
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6.5 Expected Valuesof Matrix Products

One loose end remains to be cleared up. This is the method for calculating the
expected value of matrix vector products.
Consider the general case
E{A'KB} (6.35)

where A, K, andB are all matrices. Théd andB matrices are assumed to be
random, and thd matrix is assumed to be deterministic. Af and/orB is a
vector, the method suggested here is somewhat simplified. Define the matrix

D =A'KB

so that
E{D} = E{A'KB}
and consider a single elementln namelyd;;. Then

wherea; is theith column ofA andb; is thejth column ofB. From the resultin
AppendixB the expectation in Eq. (6136) can be written as

E{d;;} = (F{a;}) KE{b;} + tr[KZyp o, (6.37)
where

Sb,a, = E{[b; — E{b;}][a; — E{a;}]'}
is the covariance matrix for thigh column of B and theith column of A and
tr[-] is the trace operator, i.e., the sum of the diagonal elements of the matrix in
the brackets. While Eq[{6.B7) is the form of this expectations operator which

is commonly used in displaying mathematical results, it is not the most efficient
form to use in compute%Observe that EqL{6.B6) can be written and rewritten as

E{dy} = E{alKb,} = E{Z 0y (Z /gsrbrj> } (6.38)

Where}" is an ordinary summation sign (not a covariance matrix) apd is
the element in theth row andrth column of the matriX. Continuing from

Eq. (6.38), one obtains

By} = B[S Sty | = X5 Bloakats} = 55 i Euats}

2 This procedure was suggested to the author by Fred Norman.
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Thus
E{dzj} = Z Z ksr[(Easi)(Ebrj) + COV(CLsibm’)] (639)

gives the form desired. The advantage of using EQ.16.39) instead of EJ. (6.37) is
that it is not necessary to store the mafil ., and to compute th&X: product
and take its trace. Only the scalar elemetga,;b, ;) are necessary.

This completes the discussion of the methods for obtaining the control of each
time period, since the expectations evaluations discussed here can be coupled with
the Riccati equations, feedback law, and system equations discussed[in Sec. 6.4.
Before ending the chapter, however, it is useful to describe briefly two methods of
passive-learning stochastic control.

6.6 Methodsof Passive-Learning
Stochastic Control

Methods of stochastic control include a procedure for choosing the control at
each time period and a procedure for updating parameter estimates at each time
period. The differences in the names for the procedures depend on the method
for choosing the control at each time period. For example, if the control at each
time period is chosen while ignoring the uncertainty in the parameters, the method
is calledsequential certainty equivalence, update certainty equivalence [Rausser
(2978)], orheuristic certainty equivalence [Norman (1976)]. In contrast, if the
control is chosen at each time period using the multiplicative uncertainty, the
method is calle@pen-loop feedback 3

3|Rausser (1978) distinguishes between open-loop feedback and sequential stochastic control.
In sequential stochastic control in his nomenclature the derivation of the control rule is based on the
assumption that future observations will be made but they will not be used to adapt the probability
distribution of the parameters. He classifies as open-loop feedback studies thosel of Aaki (1967),
Bar-Shalom and Sivan (1969), Curry (1969), Ku and Athans (1973), and Tse and|Athans (1972).
He classifies as sequential stochastic control the studles of Rausser and Ereebairn (1974), Zellner
(1971)) Chowl(1975, chap. 10), and Prescott (1971).



Chapter 7

Example of Passive-L earning
Stochastic Control

7.1 TheProblem

This chapter contains the solution of a two-period, one-unknown-parameter
problem used by MacRae (1972)e., find (ug, u;) to minimize

(Lo, 1,
J=FE Z(iqu—l—iruk_l)
k=1

subject to
Tpyr =axy +bug +c+ & k=0,1

with z, given. Alsd
&~ N(0,Q) by ~ N (4, Egl\)o)

i.e., both¢&, and b, are assumed to be normally distributed with means and
variances as indicated.
Consider the case with

N=2 qg=1 r=1 a=.7

1 This chapter has been written with an eye toward its use in debugging computer programs.
For this reason, the calculations are presented in considerable detail with all intermediate results
explicitly shown.

2 This notation means thd, is a normally distributed random variable with mean zero and
covariance Q.

E 23?0 is the variance ob. The reason for this elaborate notation is given in subsequent
chapters.

58
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p=—5 =5 ¢=35 Q@=.2 =0

This corresponds to thg; : 7) = (5 : 5) case in Table 2 of MacRae (1972)
with N = 2. She solves only for the first-period control. In contrast, sample
calculations will be presented here for a single Monte Carlo run in which the
optimal policy for both period 0 and period 1 are calculdted.

Begin by solving the open-loop-feedback problem from pekidmiperiodNE

7.2 TheOptimal Control for Period 0

The solution to the open-loop-feedback problem is given in Eq.16.30), i.e.,
u, = Glx;, + gl (7.1)
where, from Eq[(6.31),

G = —(E{O}}) " (E{ T4}

gl = —(E{0L}) " (E{0.}) (7.2

with, from Eq. [6.3R),

E{®y} = A4+ E{B,Ky, B}
E{¥;} = Fp+ E{A KBy} (7.3)
FE{6,} = F{B.Kiiic}+ F{Bi}'Pri1+ A

Also, theK andp recursions are defined in Ed._(6.33) as

Ki = B{®} - E{®:}(E{O}) (E{¥:}) Ky=Wy
pr = E{g} - E{¥,}(E{©})"'E{6:} pn=wn (7.4)

“For other examples of the applications of passive-learning stochastic control meth-
ods to economic problems with multiplicative random variables see [Fisher |(1962),
Zellner and Geisel | (1968), Burger, Kalish 1ll, and Babb__(1971), Henderson and Turnovsky
(1972), | Bowman and Laporte (1972), Chow (1973), Turnovsky (1973,11974,| 1975 1977),
Kendrick (1973), | Aoki 1(1974a,b),| _Cooper and Fischer_(1975), _Shupp (1976b,c), and
Walsh and Cruz (1975).

5 The results are of course a function of the particular random quantities generated. However,
the calculations are done here for a single set of random quantities to show how the calculations
are performed.
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with, from Eq. (6.3R),
E{®,} = W;+ F{A. K, 1A.}
FE{¢r} = E{AKipice} + E{Ar} pri1+ Wi (7.5)

Also compare the criterion function for this problem with the criteria for the
quaderatic linear probleni(2.1) to obtain

wr=0 A,=0 (7.6)
For the problem at hand

Ak:a:.7 Bk:ub:—.5 Ck:C:3.5

and X

In order to obtain the solutiom;, one can work backward through the
relationships above, obtaining Ed.(7.5), then Eqg.1(7.4), then [Eq. (7.3), then
Eq. (7.2), and finally Eq[(711). Begin with E{. (I7.5)

E®, =W, + E{A'K,A} (7.9)
Then from Egs.[(7]4) an@{4.7) we halde = W, = 1, and from Eq.[(6.39)

E{A'Ky;A} = K,[(Ea)(FEa)+ cov(aa)]
= Ky[a* + cov(a)] = Kya®

= (1)(.7)* = .49
So Eq. [7.9) becomes
E{®} =1+ .49 = 1.49 (7.10)
Also, from Eq. [Z.5),
E{¢:} = E{A'Ksc} + E{A}'ps + w (7.11)

and from Eq.[(6.39)

FE{A'Kyc} = Ky[E{a}E{c}) + cov(ac)]
Ks(ac+0) = Ksac
= (1)(.7)(3.5) = 2.45 (7.12)
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Also,
E{A}'p; = ap
but
P2 =Wy from Eq. (7.4)
0  from Eq. (7.6)
and so
E{A}ps = (7)(0) = 0 (7.13)
Finally, from Eq. [Z.B),
wi =0 (7.14)
Then from Eqs.[{7.11) td (7.14)
E{¢} =245+ 0+0=245 (7.15)

This completes the evaluation of Ef. (7.5).
In order to evaluate Eq._(7.4) it is necessary first to evaluate the elements in
Eq. (Z.3). Begin withF{©,}

From Eq. [6.3B)
E{B'KyB} = K[y + cov(bd)]
= (D)[(=.5)(=.5)+.5] =.75 (7.17)

Then using Eqs[{7.17) and (¥.7) in Elq. (4.16) yields
E{®}=1+.75=175

Therefore,
(E{©:})" = 5714 (7.18)

The next elementin Eq._(4.3) is
E{¥,} = F, + E{A’K;B} (7.19)
Then, from Eq.[(6.39),

E{A'K,B} = K,[(Ea)(Eb) + cov(ab)]
= (D[(.7)(=.5)+0] =-.35 (7.20)
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Using Eqs.[(7.20) and(4.7) in(7J19) yields
E{®,} =0—.35=—.35 (7.21)
The last element in E(.(1.3) is
E{0,} = E{B'Kyc} + E{B}'ps + A, (7.22)
From Eq.[(6.3D)
E{B'Kyc} = Ksupe + cov(be)] = (1)[(—.5)(3.5) + 0] = —=1.75  (7.23)
From Egs.[(7.}4) and (7.6)
E{B}'p; = myw2 = (—.5)(0) =0 (7.24)

From Eq. [(7.6)
A =0 (7.25)

Therefore, substitution of Eq$. (7123) fo (7.25) in Eq. (7.22) yields
E{6,} = -1.75+0+0=—1.75 (7.26)
This completes the evaluation of EQ.(7.3). Now Eqg.](7.4) can be evaluated
K, = E{®} - B{®}(E{©:})" (E{¥.}) (7.27)
Substitution of Eqs[(7.10), (7.R1), aid (4.18) into Eq. (I7.27) yields
K; = 1.49 — (—.35)(.5714)(—.35) = 1.42
Also from Eq. [7.4)
pi=E{¢} — B{,}(E{©,})'F{6,) (7.28)
Substitution of Eqs.[(7.15), (7.21)), (7118), ahd (¥.26) into Eq. {7.28) yields
p1 = 2.45 — (—.35)(.5714)(=1.75) = 2.1

This completes the evaluation of EqS.(7.4) andl(7.3) and leaves only[Egs. (7.2)
and [7.1).

TheG' andg' elements of the feedback rule([7.1) can now be evaluated with
Eq. (Z2). Begin withG'. Calculation ofu; is not necessary, but calculation of
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up is. Therefore, from Eq[{7.1G+) rather thanG! needs to be calculated. From

Eq. (Z.2)

G) = —(E{®}) (E{T,})’ (7.29)
From Eq. [(7.B)
E{©} = A, + E{B'K,B} (7.30)
From Eq. [6.3B)
E{B'K\B} = K;[upuy + cov(bb)]
1.42[(=.5)(=.5) + .5] = 1.065 (7.31)

Then substitution of EqL(7.81) into Eq.(7130) and using Eq] (7.7) yields
E{©y} =1+1.065 = 2.065

lherefore, .
E{O,)) 1= —— = 484 7.32
(E{®0}) 2.065 8 (7.32)

From Eq. [Z.B)

E{®,) = F,+ E{A'K,B}
= 0+ Ki|apy + cov(ab)]
1.42[(.7)(=.5) + 0] = —.497 (7.33)

Finally, substitution of Eqs[(7.82) anld (7133) into (7.29) yields
G} = —(.484)(—.497) = .2405 (7.34)
Next evaluateg) with Eq. (7.2):
g) = —(E{©0}) 'E{60} (7.35)

The inversg E{®,})~! was calculated in Eq[(7.B2), and so oy}, remains.
To obtain it use Eq[(713)

E{eo} = E{B,K1C} + E{B},pl + AO
K [ppe + cov(be)] + b1 + Ao
= 1.42[(-.5)(3.5) + 0] + (—.5)(2.1) + 0 = —3.535  (7.36)
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Then substitution of Eqs._(7.32) arid (4.36) into Eqg. (7.35) yields

gh = —(.484)(—3.535) = 1.712 (7.37)

This completes the evaluation of Ef. (7.2).
Finally, u, can be evaluated with Eq.(7.1) using Eqs. (V.34) &and|7.37) as

u, = Gixo + g} = (:2405)(0) + 1.712 = 1.712

This results checks with thg : ) = (5 : 5) case withV = 2 in MacRae|(1972,
table 2, p. 446).
In summary the calculations for the optimal period O control yield the

following results:

Period 2 1 0

K 1.0 1.42

p 0 2.10

Gf 2.40

gl 1.712

uOrr 1.712
Finally, set

u) = udf =1.712

7.3 Projections of Means and Covariances to Pe-
riod 1

In order to perform the calculations for the projections and the optimal control for
period 1, it is necessary to use some results from appendixes which are developed
along with Chap[_10. It is therefore recommended that the reader proceed to
Chaps[ 8 td 10 and then return to these calculations.

The method employed in the remainder of this chapter is the same as that
outlined in AppendixX_O for the sequential certainty-equivalence method, except
for step 2, which is replaced by the computation of the open-loop feedback policy,
as has been done above.

The steps in the method of Appendix O follow.



CHAPTER 7. EXAMPLE OF PASSIVE-LEARNING CONTROL 65

Step 1 Generate the random vectors for the system n§issnd the measurement
noise¢;. Since there is no measurement noise in this problem, only the system
noise¢; must be generated. In doing this the covaria@Qce .2 is used to generate

50 =.3 and 61 = .43

The solution will of course differ for each set of random-noise terms. These values
are used only as an example.

Step 2 Solve for the open-loop feedback control for period 0 as in[Sek. 7.2.
Step 3 Obtain the actual value of the state vector with

X = Ax0+Bu$+c+€o
= (7)(0) + (=.5)(1.712) + 3.5+ .3 = 2.944

and of the measurement vector with
y1 = Hx; + ¢ = (1)(2.944) + 0 = 2.944

Note thatA, B andc are functions of the vectd of the subset of coefficients in
these matrices which are treated as uncertain. @ kiector is defined and used in
Eq. (10.7) and_(1019) and is not the same astthised in Eq.[(7.36).

Step 4 Getx, |, andé, o by using [M.8) and{MDB) of AppendixM
}A(l|0 = A0(0AO|0)}ACO\O + Bo(éo‘o)ug + Ck (éo‘o) + Z eitr(aQES"’(‘)) (738)
1eX

and X X
01‘0 - D00|0 (739)

Sincex{ = 0 andD = 1, Egs. [(Z.3B) and (7.39) become

X0 = (7)(0) + (=.5)(1.712) 4+ 3.5 + 0 = 2.644
é1|o = éo|0 =-.5
Step 5 GetXy,; by using Egs.[(M.16) td (M.19) and the fact thag; = 2‘3"5 =

0, that is,
=100 (f) +Q
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where
£y, = Z eiXoap + Z e;ul bl + Z eich
= Xgp29 + ulbg + co
= (0)(0) + (1.712)(1) + 0 = 1.712
Therefore,
1 = (1.712)(.5)(1.712) + .2 = 1.465 + .2 = 1.665 (7.40)
From Eq. [(M.18)
% = DX (f5,) = (1)(.5)(1.712) = .856 (7.41)
From Eq. (M.19)
X0 =DED + Gy = (1)(5)(1) + 0= 5 (7.42)

Step 6 Use Eqgs.[(K17) td(K.19) along with the results in Es. (I7.40) 10 {7.40) to
getX,, thatis,
)fﬁ = 1\0 )1(|}[() IS 'H 21|0

where, from Eq.[(KI5),
S; = HySF5H) + R = (1)(1.665)(1) + 0 = 1.665

SO tha@
1‘1 = 1.665 — (1.665)(1)(1.665)~"(1)(1.665) = 0

Then, from Eq.[(K.18),
E1|1 = 21\0 21|0HIS 'H E1|0
= .856 — (.856)(1)(1.665)~ (1)(1.665) =0
And from Eg. [KI9)
21|1 = 21\0 21|0HIS 'H 21|0
= .5 —(.86)(1)(1.665)" (1)(.856) = .06

6 With no measurement error in the problem that state covariance returns to zero after each
measurement.
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Step 7 Update the meaR, |, andém by using Eqgs.[(N]7) and (N.8)

Xy = Xy + 2}1(\)(()1_1118171(}’1 —Hi%y)0)
= 2.644 + (1.665)(1)(1.665) *(2.944 — (1)2.644) = 2.944

and
élll - élIO + E%HQSII(YI —Hixy))
= —.5+(.856)(1)(1.665)""(2.944 — 2.644) = —.346
In summary the results for time periodsind1 are as follows:
Period 0[0 110 11
X 0 2.644 2.944
0 —.9 —.5 —.346
yoxx 0 1.665 0
30 0 .856 0
300 5 5 .06
and
Period 0 1
xOtF 0 2.944
uflt 1712

Similarly the summary results for periods 1 and 2 are:

Period 11 2|1 2|2
X 2.944 4.997 5.179
(7] —.346 —.346 —.296
yxx 0 .359 0
PILES 0 .098 0
300 .06 .060 .033
and
Period 1 2

xOM 2,944 5.179
u® 1,630
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So the optimal OLF control values are
uw =1.712  uf' =1.630
and the total criterion value is

JOLE — 90 .54
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If a man will begin with uncertainties, he shall end with
doubts; but if he will be content to begin with doubts,
he shall end in certainties.

Francis Bacon

The Advancement of Learning
Book I, Chapter V, Section 8
1605



Chapter 8

Overview

Active-learning stochastic control has also been called adaptive control or dual
control. The name “dual” emphasizes the double role that the choice of control
plays in active-learning stochastic control. On the one hand, the control is
chosen to guide the system in a desired direction. On the other hand, it is
chosen to decrease the uncertainty about the system’s response. This would
seem to imply that there were two elements in the criterion function, one for
performance and one for learning. Not so! There is only one elemerexbeted
performance. However, minimization of the expected cost includes a trade-off
between performance and learning. If the system’s parameters are not well known,
a choice of control in periog which detracts from present performance but which
yields improved parameter estimates in later periods may result in overall better
performance in the time periods covered by the model.

Thus active-learning stochastic control is sometimes characterized by the idea
that the controls will be used in the earlier time periods to perturb the system so
as to improve parameter estimates and thereby permit better performance in later
time periods. Of course one expects to observe the perturbations being done in
such a manner that they will improve estimates of the crucial parameters, i.e., of
the parameters which most affect the performance. This contrasts with the present
procedure used in large econometric models of the United States economy, in
which the constant terms in equations are frequently updated and modified. In
fact it may not be these terms but terms which are multiplied by the states or by
the controls which are most important and which deserve the special updating
attention.

A political analog can be drawn to active-learning stochastic control. A slate
of officers from a party enters office prepared to improve the performance of the

71
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economy. They realize that they do not know exactly how the economy will
respond to their policies, so they try small changes in various policies in the early
guarters of their term in office. Then with improved estimates so obtained they
do a better job of directing the economy in the waning quarters of the term while
they are running for reelection. Of course this is a long way from current political
practice. Even the idea that an administration might “perturb” the economy
to improve the knowledge of its response to stimulation is worrisome to many
people. Of course it is also of concern that policy actions are taken when officials
are highly uncertain about the response of the economy. One example of this is
the uncertainty associated with the lag in response of the economy to changes in
monetary policy. Some economists feel that the response comes within one or
two quarters, and others argue that the response may take six or eight quarters. If
policies are chosen with the belief that the short response time holds when in fact
the long response time holds, the effects on the economy may be most unfortunate.

This chapter includes a discussion of one of the algorithms that has been
proposed for adaptive control, the algorithm lof Tse, Bar-Shalom, and/Meier
(1973). The description occupies most of this chapter and is followed by detailed
descriptions of the nonlinear and linear versions of the algorithm in Chhps. 9 and
[I0. The applications of the algorithm are given in Chaps. 11 ahd 12.

Since this chapter is an overview, some notation and concepts are not
explained in great detail, the purpose being to survey the forest before plunging in
among the trees.

This is not the only adaptive-control algorithm which has been applied to eco-
nomic problems. Some of the other studies are those by Prescott (1967, 1971),
MacRael(1972, 1975), Rausser and Freebairn (1974), Abel (1975) using the Chow
(1975) algorithm, Upadhyay (1975) using the Deshpande, Upadhyay, and Lainoitis
(1973) algorithm, Sarris and Athans (1973), and Taylor (1973,/1974). Also earlier
results from the use of the Tse, Bar-Shalom, and Meier algorithm are reported in
Kendrick (1979). As yet is no clear ranking of these various algorithms; their
relative performance appears to be problem-specific |[see Norman (1976), and
Bar-Shalom and Tse (1976a)].

The chapter begins with a statement of the problem, followed by a discussion
of the Monte Carlo procedure used with the algorithm. The algorithm is then
described in three sections. The closing section of the chapter provides a brief
description of the relationship of this algorithm to some of the others which have
been proposed.
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8.1 Problem Statement

Recall from previous discussion that the notatignrepresents the expected cost-
to-go with N periods remaining and th&ty is the random cost-to-go withv
periods remaining. The subscript on these two elements represented the number
of periods to go. In contrast, the time subscripts on all other variables represented
the period in which the variable occurs. For example is the cost in theVth

period andc y is the state variable in th€th period. With this notation in mind the
problem can be stated as one of find{mg )2 ;' to minimize the cost functional

Iy = E{Cn} (8.1)

where N
CN = LN(XN) + Z Lk(Xk, llk) (82)

k=0

It is useful to further dividd.,. into three components

Lk(Xk, uk) = l/k(Xk) + wk(xk, uk) + Qﬁk(uk)

since at a large stage it will be desirable to drop all terms in the criterion which do
not include the control variables.
The system equations are written with an additive-noise term as

X1 = fe(Xk, ug) + & (8.3)

whereg, is the additive-noise term. Next a new element is introduced, namely the
measurement relationship

Vi = hp(xg) + Ck (8.4)
where

y: = measurement vector
h = measurement functions
¢ = measurement-noise terms

Equation [(8.4) represents the fact that the state variables may be measured not
exactly but with error. AlImost all economic statistics are acknowledged to include
measurement error although this fact is rarely introduced into the analysis. Here
it will be included. Equation[{8]4) can also be used to represent the fact that
although the state variables cannot be observed directly, other variables which are
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a function of the state variables can be observed. For example, it may be that we
cannot observe the money stock directly but we can observe some components of
it which can be used to estimate what the money stock is. Equéation (8.4) even
raises the possibility of multiple measurements on each state variable, i.e., there
may be several variables which are observable and which are functions of a state
variable while the state variable itself cannot be measured directly.

Next consider the statistical properties of random elements in the problem

E{xo} =%po  cov(xo) = Sy
E{¢} =0 cov(Cr) = Ry

It is assumed thats, and the system- and measurement-noise terms are
independent gaussian vectors with the statistics shown in[EqG. (8.5). One bit of
new notation is introduced in Ed. (8.5) nameély,. This means the covariance

of the state vector at time zero as estimated with data through time zero. Later,
notation of the forn®, ;. will be used to represent a covariance matrix at time

k + 1 as projected with data available at tirfhe

As a result of assuming that the state vector is measured with error, it is no
longer true thak is known perfectly; instead estimates of the mean of the state
variablesx and of the covariance of the state vec¥bcan be made.

In summary the problem is to select the controls to minimize the criferia (8.1)
and [(8.2) subject to the system equatidnsl (8.3), the measurement equations (8.4),
and the statistic$ (8.5).

A flowchart outlining the main procedures for solving this problem is given
in Fig.[8.1. The algorithm may be thought of as consisting of three nested do
loops. Alternatively, one can think of the problem as consisting of three parts:
a Monte Carlo procedure containing a dynamic optimization problem, which in
turn contains a static optimization problem.

The outside do loop with the indexis the Monte Carlo do loop. In each
Monte Carlo run, as discussed in the next section, all the required random terms
for the problem are generated at the outset. Then the problem is solved for these
manifestations of the random elements. The Monte Carlo loop is repeated as many
times as required to establish the statistical reliability of the comparisons of the
adaptive-control method with other methods.

The second do loop is the time-period courterThe problem is solved for
N time periods. This is the middle loop, or the dynamic optimization problem
shown in FigL8.1L. Atthe beginning of this loop in each time pefitide certainty-
equivalence (CE) problem for the remaining time periods is solved and the control
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Stop
p=1
Y
Genenate random No
terms
\
=]
\ Yes
uf =uCE No Is
k k k> N?
k=k+1
7=
A
Update means and
covariances
Evaiuate Determine new Is
cost-to-go T the search
. B Uk completed?
T puy) for the search

> r=r4+]

Figure 8.1: Flowchart of an adaptive-control algorithm;= Monte Carlo run
counterk = time-period counter; = search-iteration counter.
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is set equal ta{". This procedure is described in SEC]8.3. The control variable
is then modified iteratively in the third, or inside, do loop until the optimal control
for periodk is found.

This third do loop, shown at the bottom of F[g.18.1, is the static optimization
problem. In each pass through this loop the approximate cost-to-ga\Wvithk
periods remaining is evaluated. If the optimal control has been found, the search is
halted; otherwise a new search value is chosen for the control and the evaluation is
repeated. As described in SEc.8.4, this search may be either a gradient procedure
or a grid search.

Once the optimal control for periddhas been found in the bottom loop, that
control is applied to the system along with the random elements. New states in
the periodk + 1 are obtained, and the estimates of the mean and covariance of the
state are updated to periadt 1, as described in Selc. 8.5.

8.2 TheMonte Carlo Procedure

At this stage of the research on stochastic control methods in economics there is
substantial interest in comparing various methods and algorithms. For example,
there is a comparison in Chdp.]12 of deterministic, passive-learning stochastic,
and active-learning stochastic control applied to a small econometric model of the
United States economy.

When comparing stochastic control procedures it is necessary to make
repeated trials with different samples of the random variables. For the problem
at hand there are three groups of random variables:

1. The initial state variables,
2. The system-equation noise ter§s
3. The measurement-equation noise te¢ms

The n random elements ix, are obtained from a Monte Carlo generator
which is provided the initial state-variable covariarkg,. In a similar manner
then x N system-equation noise terréig (k = 0,1,..., N — 1) are obtained by
using the covarianc€,, and ther x N measurement error terms are obtained by
using the covariancR;. Heren is the dimension of the state vectoyandr is
the dimension of the measurement vegtor
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This completes the first (or outermost) of the three do loops. The second do
loop runs over the index of time perioélslits initiation is discussed next.

8.3 TheAdaptive-Control Problem: Initiation

The solution method begins with setting the time-period couhter zero. In
economics it is common to label the first time period as petiodhile in parts
of control theory period is used. The control convention is followed here. A
review of Fig.[8.1 shows that the search-iteration counter is initializedol at
this stage.

The initialization of the search is done at this stage; i.e., it is necessary to
choose a valuaj, for £ = 0 andr = 1, that isuj, with which to begin the search
for the optimal control. This is done by solving the certainty-equivalence problem
for periodsk through/NV to obtain

N-1
(X?ED u;'jE)jZO
Then the control is set ag, = u§*.
This completes the initialization and clears the way for the beginning of the

search for the optimal control in the third do loop.

8.4 Search for the Optimal Control in Period &

A final glance at Fig._8]1 shows that this third do loop consists of an iteration on
the counterr while searching for the optimal control with the approximate cost-
to-go evaluated in each iteration. Figlirel8.2 provides a more detailed description
of this part of the algorithm. It also reveals that there is still a fourth nested do
loop, which did not appear in Fig._ 8.1 but which is shown in the more detailed
breakdown of FigL812. This fourth do loop is used to project the covariances to
period V.

The basic method used here is to calculate the optimal cost-to-go which
corresponds to the search value of the contrpfor each iterationr until the
optimal controlu; for period% has been found. The search method may be a
gradient procedure or a grid search.

At each iteration in the search it is necessary to evaluate the cost-to-go, but
since the problem is nonlinear, the cost-to-go is extremely difficult to evaluate
[see  Aoki (19617)]. Therefore an approximate cost-to-go is obtained by using a
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Figure 8.2: Flowchart of the search faf; 7 = search-iteration counter.
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second-order expansion of both the criterion and the system equations about a
nominal path.

The nominal path is obtained in two steps. First the valuefgr, is obtained
by using the current search value of the contrpland a second-order expansion
of the system equations. This step is shown in the second box down on the left-
hand side of Fid. 812. Then this valuexaf, , (reallyx;.,, Since itis a projection
of £ + 1 using data from period) is used as the initial condition for certainty-
equivalence problem from peridd+ 1 through N. This provides the nominal
path

(Xo,j+1 Woj)j i1

about which the expansions can then be done. This step is shown in the third box
down on the left-hand side of Fig.8.2.

The approximate optimal cost-to-go can then be written as a function of the
following elements:

u;, = search value of control for periddat iterationr

(Xo,j+1, uoj)j.vgkil = nominal paths for the state and control variables

X1, = covariance of state variables at tirhet- 1 as projected
with data available at timg

(Q));Zs,, = covariance of system-equation noise terms
(X)) /5441 = post-observation covariance matrix for all future times
periods

Also, all terms in the approximate optimal cost-to-go which do not depend on the
search value of the control are dropped; the notation used for this is

k
Jd,ka

which is the approximate optimal cost-to-go once terms which are not dependent
onuj, have been dropped.
Thus the general form of the function can be written as

Jon-k = H&in fug, (X041, uoj)jy;/cila Xk1lks (Qj);y;kila (Ej\j);v;/clﬂ) (8.6)

For better understanding it is useful to divide EQ. [8.6) into three components
[Bar-Shalom and Tse (1976a)], called ttieter ministic, cautionary, andprobing
terms. They are written in general functional form as

Jin k= Hlllin(JD’N*’“ +Jon-k+ JIpN_k) (8.7)
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where
Jpn-x = deterministic component f(uj, (Xo,+1,Uo;) ) 71) (8.8)
Jon—r = cautionary term= f (X1, (Q]’);‘V:_lirl) (8.9)
Jpn-k = probing term= f((2;;)}54 ) (8.10)

The deterministic component is a function of only the search value of the control
and the nominal path. It contains no covariance terms.

The cautionary component is a function®f , ,;, which is the covariance of
the state variable at time + 1 as projected with data available at tirhe This
represents the uncertainty in the response of the system to a control applied at
time k£ before the state of the system can be observed again atkimd and a
new control applied to bring the system back onto the desired path. The name
“cautionary” comes from the fact that such uncertainty normally biases the choice
of the control variable in a conservative direction since one is uncertain about the
magnitudes of the response to expect. This component is also a function of the
covariance of the system equation error terms. This does not necessarily fit well
into a component called cautionary. Thus it shows that the separation into these
particular three components is somewhat arbitrary. Perhaps it would be better to
separate these terms into yet a fourth component.

The probing component is a function of the covariance mairiy for all
future time periods. This is the uncertainty associated with the state vector at
each time period after the measurement has been taken at that time period and the
covariance matrix has been updated. Since probing or perturbation of the system
early in time will tend to reduce the uncertainty and to make the elements of these
matrices smaller later, this term is called the probing term.

Now return to FigL8.2. The next step, shown in the fourth box down on the
left-hand side of the figure, is to compute the Riccati matrisesAnalogous to
the Riccati matrices in the deterministic and multiplicative-uncertainty problems,
there are also Riccati matrices in this problem. They can be computed for all
future time periods by integrating backward from terminal conditions.

Next, since the nominal path is known, the deterministic component of the
approximate cost-to-go can be computed. Also, the part of the cautionary term
involving X1, can be computed at this stage since that matrix is available. It
was computed in the step shown in the second box from the top on the left along
with the projected mean of the state variaklg ;.

Next we enter the fourth of the nested do loops, which projects the covariance
matricesY;; forward all the way to period and uses these terms to compute the
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probing component. Also the part of the cautionary component which invQlyes
is computed in this loop.

Once the do loop has been completed, the total approximate cost-to-go can be
obtained by adding the three components. This is then used to determine whether
or not the search is complete.

If the search is a grid search and the veaigrconsists of a single control,
the problem reduces to a line search. This is the method used in the example in
Chap[1R. The approximate cost-to-go is evaluated at many points on the interval
between the highest and lowest likely values for the controls. The search value
of the control which yields the lowest cost-to-go is then chosen as the optimal
control.

With a gradient technique the third loop is used as the procedure for evaluating
the function at each iteration. The gradient method then proceeds until satisfactory
convergence has been obtained.

It is useful to note the computational complexity of the problem at this
stage. The iterations in the search for the optimal control require the backward
integration of the Riccati equations and the forward integration of the covariance
equations at each step. The search must in turn be carried out for each time
period of the problem in the second of the nested do loops. Furthermore, the
entire problem must be solved for each of the Monte Carlo runs. This means that
only a fairly limited number of Monte Carlo runs can be made for even small
econometric models.

Return now to the search in Fig. B.2. If the search is not completed, the
iteration counter is increased and the evaluation of the cost-to-go is repeated. If
the search is completed, the update procedure is entered in the concluding phase
of the solution of the adaptive-control problem.

8.5 TheUpdate

Once the search is completed and the optimal contfdlor periodk has been
obtained, this control is used along with the additive-noise terms in[EQ. (8.3) to
obtainx, ;. The vectorx;,; is used in turn in the measurement relationship
Eq. (8.4) along with the measurement error term toyget. The measurementis
used to obtain updated estimates of the mean and covariance of the state vector at
time k+1 using data obtained through peribd- 1, that is,x;, 1 /x+1 andX; x41.
This is shown on the right-hand side of Hig.]8.1.

Next the time-period indek is increased by and a test is made to see whether
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all N periods have been completed. If not, the certainty-equivalence control for
the new time period is computed and the search is made again.Nf pdéiriods

have been completed, the Monte Carlo run counter is increasédbg a test is

made to see whether the desired number of Monte Carlo runs has been completed.

8.6 Other Algorithms

As discussed in the introduction to this chapter, a variety of other algorithms are
available for solving active-learning stochastic control problems, but very little
work on comparison of algorithms has been done.

It is beyond the scope of this book to provide a detailed comparison of the
various algorithms, but a brief comparison to three other algorithms is provided,
namely those of Norman (1976), MacRae (1975),/.and Chow (1975, Chap. 10).

Norman’s algorithm is like the algorithm described above except that a couple
of simplifications are adopted: (1) he assumes that there is no measurement error,
and (2) he employs a first-order rather than a second-order expansion of the cost-
to-go function (hence the name first-order dual control).

MacRae also uses the assumption of no measurement noise. TRUBEIX
used in Chapl_10 of this book consists of one compongff, instead of four
components.

With this assumption MacRae derives an updating rule for the inverse of the
covariance matrix of the form

I =T (8.11)

This same type of relationship can be derived by assuming (in the notation of
Chap[10) thaD = I, H = I, ¥** = 0, andR = 0, that is, by assuming that
the parameters of the problem are constant over time and that the state variables
can be measured exactly. Then Hq. (10.60) can be substituted info EqJ (10.69) to
obtain a relationship like Eq.(8.111).

In MacRae’s algorithm the update relationship (8.11) is appended to the crite-
rion function with lagrangian variables, and the resulting function is minimized.

Chow'’s algorithm also relies on the assumption of perfect measurement of the
state vector, but it is more general than the algorithm used in this book in at least
one way. Chow’s development includes cross terms from different time periods.
Another difference is in the path about which the second-order approximation is
made. In the Tse, Bar-Shalom, and Meier algorithm this path is chosen anew at
each iteration in the search path; in Chow’s algorithm it is selected before the
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search is begun and not altered during the search. Finally in the development of
the algorithm Chow takes the expectation first and then performs the second-order
expansion while Tse, Bar-Shalom, and Meier reverse these steps.

This completes the brief review of other algorithms and the survey of the
adaptive-control algorithm used in this book. The next two chapters include
a detailed development of the nonlinear algorithm and the application of this
algorithm to a quadratic linear control problem with unknown parameters. The
reader who is more interested in the application of stochastic control to economics
than in the algorithms may prefer to skip to Chapl 12, which includes an
application to a small econometric model to the United States economy.



Chapter 9

Nonlinear Active-L earning
Stochastic Control

with

Bo Hyun Kang

9.1 Introduction

This chapter provides a detailed description and derivation of the algorithm of
Tse, Bar-Shalom, and Meier (19‘&)1: also extends that algorithm to cover cases
where (1) a constant term is given explicitly in the systems equations and (2) the
criterion function includes a cross termstrandu.

9.2 Problem Statement

The problem is to sele® ™ ! = (u;);—," to minimize the cost functional

Iy = E{Cn} (9.1)

where N
CN = LN(XN) + Z Lk(Xk, uk) (92)

k=0

where the expectatio’{-} is taken over all random variables. The subscripts
denote the time period. It will be convenient at times to divide the cost function

1 See als0 Bar-Shalom, Tse, and Larson (1974).

84
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into three component functions, one including only terms,ianother including
only terms inu, and a third including cross termsxnandu, that is,

Ly (xp, ug) = v (X) g + wi(Xp, ug) + ¢p(ug) (9.3)
The cost functional is to be minimized subject to the system equations
Xpr1 = fp(xp,ug) + & k=0,1,...,N—1 (9.4)
and the measurement equations
Vi =hp(xp)+¢ k=1,...,N (9.5)

where

x = n-element state vector,
u = m-element control vector,
y = r-element observation vector.

It is assumed thak, and (&, x11)p-, are independent gaussian vectors with

statistics X
E{Xo} = Xo‘o COV(X()) = 20‘0

E{&} =0 cov(é) = Qi (9.6)
E{¢} =0 cov(Ce) = Ry

As discussed in Chapl 5, we seek a control whichdesed-loop rather than a
feedback control [see Bar-Shalom and Tse (1976b)], the distinction being that the
feedback control depends only on past measurements and random variables while
the closed-loop control includes some consideration of future measurements and
random variables. In fact the control used here is of the form

w, = u, (Y5, UM Oy, D, VL QYL RY) (9.7)
where

Yi=(y)ie, U=l QV'=(Q),  RY=(R)L,
and whereCy is the cost functionalD is the systems dynamick;(-) for
k=0,1,...,N -1, andX"V ! = (Ej)j.v;kl, whereX,, is an estimate ok at
k based oY * andU*~! and(X;),' ;' is a projection ofs for future time periods
based orY*, U¥~!, and the statistical description of the future measurements. So

the control depends on the estimated state-variable covariance matrix &t time
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and on projections of this same matrix which take account of the fact that system
noises will be increasing the variance but also that future measurements can be
used to decrease the variance of the state vector. Also, it is assumed h&pe that
andR are known for all future time periods.

The dual-control method used here is said to be a wide-sense method in that it
employs the first and second momeftandX in computing the optimal control.
Higher moments are ignored.

9.3 Dynamic Programming Problem and Search
Method

As stated in Eq[(6.18), the dynamic-programming problem at tinsgo findu,
to minimize the expected cost-to-go, i.e.,

Ty, = min B{ Ly(xp, we) + Jy_,y | YF, U (9.8)
ug

The first problem then is to describe the search method over the apace

Since the search for the optimal contng] is initiated from the certainty-
equivalence controhi{®, it is necessary first to solve the certainty-equivalence
problem.

Repeated values af, are chosen, and the cost-to-go is evaluated for each
set of control values. I, is a scalar quantity, a line search is appropriate;
in Tse and Bar-Shalom (1973) a quadratic fit method is used 5 a vector,
more general gradient or grid-search methods can be used. However, the function
J%x «(u;) may have multiple local optima. Therefore, if gradient methods are
used, they should be given multiple starting points. Because of the presence of
local optima, Kendrick (1979) employed both a quasi-Newton gradient method
and a grid-search technine.

9.4 Computingthe Approximate Cost-to-Go

In order to evaluate Eq[(9.8), an approximate cost-to-go must be computed,
and this requires a nominal path on which the second-order Taylor expansion of
Jx_k—1 can be evaluated.

2 The gradient technique used was ZXMIN from the IMSL Library (1974).
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Choosing the Nominal Path

The nominal path igxfy;, u§®)V !, that is, the certainty-equivalence path of
values which minimize the cost functional from tirhe- 1 to N with all random
variables set to their mean values. In order to solve the problem one must have
the valuex, ., as an initial condition. This value is obtained by using the current
search value afi, to obtain an estimate, ., |, of the state attimé+1 as projected

with data available at time. In order to do this, consider the system equation (9.4)

X1 = fe(Xk, ug) + & (9.9)

and expand it to second order abayt,, the current estimate of the state, arjd
the current search value af,. This yields (see Appendix]A for derivation)

Xpp1 A fp(Xppw, uy) + [fi] (x5 — ’A‘k\k]

+ [ful[ur — uf] + 5 Z [k — Xk T [ Xk — K]
+ = Ze k—uk [uk—uk]

+ Z [w — up] Xk — Xepe] + &k (9.10)

Taking the expected value of Eq. (9.10) with data through pefti@d setting
u;, = ug, since we wish to fing; |, conditional onu; = uy, yields

}A(k+1|k ~ fk(}zk‘k, 11;) + %E{Z [Xk — Xk\k] f [Xk — Xk|k]} (911)

In AppendixB it is shown that the expected value of a quadratic form is
F{x'Ax} = xAx + tr[AX] (9.12)

wherex = F{x} andX¥ = cov(x). The application of this result to Eq.(9]111)
yields
}A(]H_l‘k = fx(f(kUc; u;) + % Zeitr[fixﬁm] (913)
SinceE{Xk} = }A(k“g and2k|k = E{[Xk — fck‘k][xk — }Aik‘k],} .
Therefore, given the current statistics an namely (X, %), and the
current search value of the contre}, one can use Eq._(9.113) to obtain, .,
next period’s state as estimated with data available through period
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As indicated above,., ;| then provides the initial condition for the certainty-
equivalence problem to find a nominal path from periéds 1 to N. If the
resulting certainty-equivalence problem is a quadratic linear problem, the Riccati
method can be used. If the problem is a general nonlinear problem, a gradient
method like the conjugate gradient used by Kendrick and Taylor (1970) or a
variable-metric algorithm used by Norman and Norman (1973) can be used. Now
define the nominal path &, 1, uoj)ﬁ;il and set it equal to the certainty-

equivalence pattx{F,, uf®) ! .

Second-Order Expansion of the Optimal Cost-to-Go
Following Eq. [6.10) the optimal cost-to-go at peribd- 1 can be written as

IN_p1 = minE{- >

Up41

min E{min E{Cy_, | PV '} | PV 2} ... PFF1} (9.14)

uy-_2
where
N—1
Cnokor = Ln(xn) + D Lj(x),uy) (9.15)
j=k+1

P¥ = (X Zijre)

A second-order expansion of Ef]. (9.15) about the nominal path is then
On-k1=Cont1+ACN 1 (9.16)

whereC, y_—1 is the zeroth-order term in the expansion ahd'y_;_, is the
first- and second-order terms. Then

N-1

Contm1 = Ln(%on) + D Lj(X05, uyy) (9.17)

j=k+1
and
ACN_t—1 = Lyx0xy + %6X,NLN’XX6XN
+ Ni:l (Lg-xéxj + %5x;-Lj7XX5xj + 0%;L;j xu0u;

j=k+1
+ L}, 0u; + 10u)L; ,,0u,) (9.18)
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whereL yx, Ljx, andL;, are the gradients afltly xx, L xx, Lj xu, andL; ,, are
the hessians evaluatedaty, x,;, andu,; and

6X]' = Xj — Xoj 6U.j = U.j — uoj

Substitution of Eqs.[{9.16) td (9.118) into EG.(9.14) then yields an approximate
optimal cost-to-go of the form

IN_ko1 = Tonpo1 F ATy (9.19)

where
Jon—r—1 = ConN-k-1 (9.20)
AJjy_g1 = puin E{-- - nin E{ACy | P¥71} - PR (9.22)

Here the motivation for dividing* into zeroth-order terms and first- and second-
order terms becomes apparent. The expectation of the zeroth-order term is simply
itself since it contains no random variables but only the nominal-path variables.
The first- and second-order terms now constitute a separate optimization problem
with a quadratic criterion. This criterion is minimized subject to system equations,
which are constituted from the expansion of the original system equations. This
can be obtained by rewriting Eq.(9110) in perturbation form as

(5Xk+1 = f 5Xk + f 511k

+Ze (36x)£L,.0%), + 0%, £y Ouy, + Lou £ ouy)
=1

+ & (9.22)

where all the derivatives are evaluated on the nominal path and are for period
unless otherwise noted. In EQ. (9.22)s the number of state variables.

Now Egs. [9.211) and (9.22) constitute a problem with a quadratic criterion and
guadratic system equations. It is assumed that the solution to this problem can be
represented up to second-order terms by the quadratic form

AJY gy = gk + E{Pp 0% + %5X2+1K1c+15xk+1 | ?Hl} (9.23)

where g, p, and K are parameters to be determined below. Equafion](9.23)
embodies the important observation that the approximate optimal cost-to-go is
a quadratic function of the current state of the system.

In the following section the recursion equations for the parametgrsandK
will be derived, and it will be demonstrated that the assumed quadratic[forn (9.23)
is correct.
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Solution of the Perturbation Problem for J3_._,

In Eq. (9.8) the optimal cost-to-go was written as

In_j = H}li_nE{Lj(Xj: u;) + Iy | Y/, U (9.24)
Expanding Eq.[(9.24) to second order around the pajh u,;) yields

Ty = min B{L;(x,j, ;) + Ly0%; + §6%LyxX; + 0% Licu O,

du;

+ L8, + 300 Luudu; + T3y, o+ AT, | Y, U
Removal of the constant terms provides
J;;fj — Lj (Xoj7 lloj) — J:,ijfl = I?I}JI]E{L;(sX] + %5X9LXX6X]'

+ 60X Ly, 0u; + L, 0u; + %5u}Luu5uj
+AT | YU (9.25)

Substitution of the optimal cost-to-go for the perturbation probdeuy;_;_, from

Eq. (9.23) yields
ATy =Ty =T, = r(rslinE{L;éxj + 16X Ly 0X; + 0%, Ly 01
u;
+ L}, 0u; + 560 Ly,0u,
+ E{9j+1 + Pj110%; 41

+50% 1 Kjy10%;41 | ij+1} ‘ fpj} (9.26)
The expression above indicates the method that Bar-Shalom, Tse, and Larson
(1974) use to demonstrate that the solution to the quadratic quadratic-perturbation
control problem can be written as a quadratic form (9.23). No proof as such is
stated, but a partial proof is given by the method of induction. It is assumed in
Eq. (9.26) that the optimal cost-to-go for the perturbation problem for pgriot
is a quadratic form, and it is then shown that the optimal cost-to-go in pégriod
will also be a quadratic form. The demonstration could thus be converted into
a proof by showing that the optimal cost-to-go at the final time (pehNgds a
quadratic form. It then follows through the induction that this holds for all other
time periods.
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To proceed with the demonstration (and with the derivation of the recursions
for g, p, andK) it is necessary to transform Ef.(9126) so that it is a function of
0x; only and not oféx;,; anddu;. The method of removing these last two sets
of terms is to use the second-order expansion of the system equations (9.22) to
eliminatedx; ., and then to find the optimal control rule fén; as a function of
0x; in order to eliminate thedu;’s.

Substitution of Eq.[(9.22) into Ed. (9.26) yields

Ay ; = r(rsl&n{L;éxj + 30X/ Ly 0% 4 0Ly, du,
J
+ L, 0u; + 30u;Lyudu; + gjp

+ E{p;+1 lfxéX] + fuéuj + Z ei (%6X;f;xdxj
=1
jxu jiuu

+ 6X’-fi 611]' + %611’-fi 611j) + £J]

+ 3 le6Xj + f.0u; + > € (%6X}fixéxj + 0x/f, 0u;
i=1
/
+ %5u;ffm5u]) + E]] Kj+1
X [fx6Xj + fuéu; + ) ei(%éx;fixéxj + 0xf] bu;

=1

+ Lot 0u,) + 5]-] ‘ U’j“} ‘ Pi } 9.27)
All derivatives, namelL,, Ly, Lyy, Ly, Lyu, fx, £2,, fu, £y, andf , are for
time periodj.
Now define
Hj = Lj(X]', U.j) =+ p;-+1fj (928)
so that

Hx - Lx + fylcpj+l Hu = LLl + f1,1pj+1

Hix = Lixx + Z[(ei),ij]fj{x Huyu = Ly + Z[(ei)lpjﬂ]fiu (9.29)

=1 =1

Hyy = Lygu + Z[(ei),pj-i-l]f)icu

=1
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Then simplify Eq. [9.2]7) by substituting Eq.(9129) into it and by dropping terms
which are higher than second order. The result is

AJy; = min E{H,0x; + H,0u; + 10 Hyxdx;
+ 0xjHyu0u; + $0u;Hyu0u; + g0
+E{ 50X/ £, K 1 £e0%; + 0x K i fudu; + 00K 1 fuduy
5K g | P 97) (9.30)
In order to simplify Eq.[(9.30) further define

g_(xx = Hxx"‘f;chj-i—lfx g{ux = Hux"‘flllKj-l—lfx g{uu = Huu"‘flllKj—l—lfu
(9.31)
Then taking the expectation ov@f*! and substituting Eq[{9.81) into E@. (9.30)
yields
AJy_; = min E{H0x; + H,du; + ;.1

+ %5x}9{xx(5xj + 5X;-U-Cxu5uj

+ 30 Huubu; + SEK 1€ | P (9.32)
Taking expectations ove®’ and again using the trace operator discussed in
AppendiXB yields

AJ]*Q?]- = I(Isll}]HE{H;((s}A(ﬂj + H'uéuj + gj+1

+ 300 Huuu; + Fr[Ho ;)] + 30K, 1Q;1} (9.33)

where .
0%;); = E{ox; | P’}
%5 = E{10x; — 6%,;][0x; — 0%;,]" | P}
Q, = E{¢¢, | P}
since

E{g} =0

The minimization operation in Eq._(9.1833) transforms it into

H, + 0%} ;Hxu + 00 Hyy = 0 (9.34)

il
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or
Su; = —H I 0%, + Hy} (9.35)

u

which is the optimal perturbation control rule.
Substitution of Eq.[(9.35) into EqL(9.32) and dropping the minimization
operator results in
ATy ; = B{HGSx — HI\90,0%, — HICH,
+ i1+ %5X}%XX6Xj
- 6x}9{xu9{;j%;u6ﬁj‘j - 6x}foufH;jHu
+ %[(Hlu + 5ﬁ;|jj{xu)g{;&]}Cuu[}(;}x(g{;uéﬁj\j + Hu)]
+ 1K 8 | P } (9.36)
Next define
Asxe = Hop Hpa Houx (9.37)
Then substitute Eq. (9.B7) into Ef. (9.36) and collect terms to obtain
Ay ; = E{gj+1 — IH, H o Hy + (Hyx — HuH o Hu) 0%, + %6x}9{xxéxj
— OX Aux O + 50K Ax 0% + 56K € | P } (9.38)
Removal of the constant terms from the expectation leaves (also #§jpg—=
:}(UX)
AJy ;= g — sHHH + 50K, 11Q]
+ B{[Hy — H HoiH|'0%; + 0% Hondx, | 27}
— ééﬁguﬂxxé}tm (9.39)
Now recall from the discussion of the trace operator in Appendlix B that

E{0x); , Axx0%; | P/} = 8%} A% + tr[Axx 2] (9.40)

3l 41
Solving Eq. [(9.4D) for thedx’Adx term and substituting the result back into
Eq. (9.39) yields
AJy_; = g — 3 H I Ha + 560K 10 Q) + AxEy]
+ B{(Hy — H, H ot Ho)'0%; + 10X, Hoxx; | P/
— LE{6x[Axxbx; | P7} (9.41)
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or
ATy ;= g;+ E{p;ox; + $0x/K;0x; | P} (9.42)
where
9i = g1 — sHLH G Hy + 260[Ki Q) + Axx 5] (9.43)
p; = H, — 3, H . H, (9.44)
and
K; = Hyx — Axx (9.45)

Expression[(9.42), which gives the approximate optimal cost-to-go atjtifoe

the perturbation problem, is a quadratic function of the state of the system at
time j. Thus the induction has shown that if the approximate optimal cost-to-go
attimej-+1 is quadratic, it will also be quadratic at tinieAlso expressions (9.43)

to (9.45) provide the recursions gnp, andK which were sought.

Slightly different expressions of the recursions @np, and K are given
iniBar-Shalom, Tse, and Larson (1974) and in Tse, Bar-Shalom, and Meier (1973).
Since both sets of results will be used in this book, Appeadix C shows the equiv-
alence of the two sets of recursions.

Partial Solution of the ¢ Recursion

Expressions[(9.42) td_(9.45) provide a method of calculating the perturbation
approximate cost-to-go, i.e., the approximate cost-to-go for the first- and second-
order terms in the Taylor expansion. These terms can be added to the zeroth-order
term in the expansion to get the full approximate cost-to-go. However, before
doing that it is useful to partially solve the difference equationgfan order to
provide a clear separation of the stochastic terms from the nonstochastic terms in
it.

In order to solve Eq[(9.43) define

Aj = $H, H Hy (9.46)
and
Bj = %tr[KjJrle + AXXE]-U] (947)

so that Eq.[(9.43) can be written as



CHAPTER 9. NONLINEAR ACTIVE-LEARNING CONTROL 95

Then solve Eq.[{9.48) by working backward from perigd
gn-1 =9y — An_1+ Bn_y (9.49)

gn-2=9gn-1— AN 2+ By 2 (9.50)
Then substitute EqL.{9.49) into E§.{9.50) to obtain

gN—2 = gN —An_1+Bn_1 —Anx_9+ By

N-1 N-1
= gy — Z Aj+ Z B; (9.51)
j=N-2 j=N-2
or in general
N-1 N-1
gNvk=9v— Y, A+ > B (9.52)
j=N—k j=N—k

so theg difference equation has been solved for bothArend theB; however, it
was desired only to solve it partially for tHe term. Therefore we define

V=V —A4 v =0 (9.53)
or
YW1 =N —ANx1 (9.54)
N2 =In-1 —An2=9v —An_1 — Ay (9.55)
or in general
N-1 -1
IN—k = TN — Z Aj=-— Z Aj (9.56)
j=N-k J=N-k
Substitution of Eq.[(9.36) into Ed. (9.52) yields
N-1
Nk =9N+IN-k+ Y. B; (9.57)
j=N—k

Then the use of the fact that, = 0 (from Appendix ) and substitution of the
definition of B in Eq. (9.4T) back into Eq[(9.57) results in

1 N—-1
IN—k = YN—k T 3 Z tr[Kj_HQj + AXXEJ-U] (9.58)
j=N-—k
or
1 N-1
Ok+1 = Vet1 + 3 > K Q) + Axx X)) (9.59)
j=kt1
where

Ye = Ve+1 — %H, ch]'f*l Hu,k) (960)

u uu,k
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9.5 Obtaining a Deterministic Approximation for
the Cost-to-Go

Substitution of Eq.[(9.89) into the perturbation cost-to-go expresision| (9.23) yields

) 1 N1
AJy_ 1 = Vi1 + 2 Z tr[KHle + AXXEN]
j=k+1

+ E{pfrg“éxkﬂ + %6X;+1K1~:+16Xk+1 | fpkﬂ} (9.61)
Expression[(9.61) then provides the optimal perturbation cost-to-go (the first- and

second-order terms in Taylor expansion). Next this term is added to the zeroth-
order term[(9.20). So substitution of E¢s.(9.61) dnd (9.20) into[Eq.](9.19) yields

N-1

. 1
In_p—1 = Con—k—1+ Vrs1+ 3 Z tr[K11Q) 4 Axx 2]
j=k+1

+ E{p;g+15Xk+1 + 50% 1 Kip10xp41 | fpkﬂ} (9.62)

which is the approximate optimal cost-to-go at period 1.
Substitution of Eq.[(9.62) into Eq[ (9.8) provides the optimal cost-to-go at
periodk,

In_p = I{llikn E{Lk(xk, ui) + CoNk—1 + Vet1

1 N—-1
+t3 Y K1 Q) 4 Axx Tyl
j=k+1

+ E{P;c+15xk+1 + 50%) 1 Kp 110541 | THI} ‘ Tk} (9.63)

Next use the result that

E{E{p;€+15xk+1 + %5X;€+1Kk+15){k+1 | ':P]H—l} | ':Pk}
= E{p;chl(SXkJrl + %5X2+1K1¢+15X1¢+1 | ?k} (9.64)
i.e., sinceP*+! > Pk the expression reduces to one taken over the smaller set.

Then
E{p} 10%s11 | P*} = Pl E{0%11 | P*} =0 (9.65)
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and
E{%5XZ+1Kk+15Xk+1 | Tk} = 50X oKt 10X g1 + S0k 1 D1 jp]
= %tr[Kk+12k+1‘k] (966)

sincedx; 1, = 0 from Eq. [9.65). Substituting the results of Eqs. (9.64) to (9.66)
into Eq. (9.68) and taking the expectation over the remaining terms yields

IN . = H&in{[/k (%%, ug) + CoN—k—1 + Vit1

1 N-1
t3 zk: ltr[KjJrle + Axx 3j5] + %tr[KHlEka]} (9.67)
j=k+
The reader may recall that a search is made over valuag iof order to find
minimum of the function[{9.67). Next we substitute Hq.{9.3) into E£q. (9.67).
Sincey, does not depend oa,, we can drop this term, leaving only the terms
which are dependent an, in Eq. (9.3), i.e.,

J;,N—k = H,llikn{wk(xka uy) + or(ag) + Conog—1 + Vit1

1 N-1
+ 5 tr[Kp 1 Sgpe] + 3 > tr[K;Qy + -Axxzﬂj]} (9.68)
j=k+1
whereJ; _; is the optimal cost-to-go, which is dependentign
The expressiori (9.68) can then be used in the search to find the best choice of
uy, at periodk. An alternative formulation of EQ[{9.68) which is used less in the
further development in this book is

J;,ka = rrlllin{wk(xk, uy) + or(ug) + Jon—k—1 + Ves1}

+ %tr{(zmuk — Zp1je+1) Kip1 + Ly xx 2 v v

N-1
+ D My By + (B — Ej+1|j+1)Kj+1]} (9.69)
j=k+1
This expression could be used in the search, since[Eq.] (9.69) is equivalent to
Eq. (9.68f The derivation of Eq.{9.89) from EJ.{9J68) is given in Apperidix E.
In order to evaluate eithdr (9168) &r (9.69) one needs the valu@s;qf =, ;.
The next section outlines the method used to project these covariance matrices.

3 Expression[[3.89) is the same as the cost-to-go_in_Tse, Bar-Shalom, and Meier (1973).
Expression[(9.88) is the same as the cost-to-go in Bar-Shalom, Tse, and Larson (1974).
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9.6 Projection of Covariance Matrices

When projections of economic data are made to compute both future means and
variances, one ordinarily finds a rapidly growing variance so that the confidence
which can be attached to predictions in the distant future is sharply limited. The
same phenomenon would occur here except for the fact that it is assumed that
future measurements will be made. So the dynamics and the system-equation
noise cause the variance to increase and the measurements cause the variance to
decrease. Also the noise in the measurement equation modifies the ability of the
measurements to decrease the variance.

These notions are embodied in the mathematical model in the distinction
between

Ek+1|k = E{[ch+1 - fik+1|k][xk+1 - fik+1|k]/ | Yk} (9-70)
and
2k+1\k+1 = E{[ch+1 - ?A(k+1\lc+1][xk+1 - fik+1|k+1]l | Yk“} (9-71)
where
X1k = E{xe 11 | YF}
and

Xppt1ph1 = E{Xpq1 | YEHY for YR = (yﬂ')?:l

That is, X, is the covariance matrix in period + 1 calculated from
observations through peridd andX;;+ is the covariance matrix in period
k + 1 as calculated with observations through period 1.

Consider first the method of obtainig, , ;. To do so one can use the system
equations[(9]4), make a second-order expansion of them as in_Ed. (9.10), and set
u;, = uj, to obtain

Xpp1 A B (R, ug) + B [xe — X
+ 5 2 @ [xk — Xl T [xk — Xipe] + & (9.72)

)

Also, the mean-value tersy, ., was obtained earlier in Eq. (9/13) as

X1k A B [Xppe, up] + 3 Z e'trlfl, D] (9.73)
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Then using Eqs[(9.72) and (9173), we have

Xpp1 — Xppie = Ex[Xk — Xu] + 5 Z [ — Rpe) Fose [ Xk — Xiofe]

The use of Eq.[(9.74) in Ed. (9.I70) yields
Sk = E{Xrs1 — Regae] Krer — K] }
E{fi[xi — Xl [xpx — Xepp] £}

; iE{ [2 ey — el B X — gkk]]

x lzj: el [;k — Rppe) TL [xx — f‘kk]] }
Pl + 5[ eutinmul| [S e |

1}9.75)

since the other cross terms are equal to zero after expectations are taken. Next
Eqg. (9.75) can be rewritten as

Sipe = S+ 50D ee! B{{(xk — i) e (xi — Xuy1)]
(]
X [(xx — Xppr) e (xi — i)'}
!
+Q+1 [Z e'tr[fl, Xy] ] [Z ejtr[fixzkk]]
J

-3 [Z ejtr[fix2k|k]] lz eitr[fchEkk]] (9.76)

Using the result derived in Appendix F that
E[(x'Ax)(x'Bx)] = 2tr[AXBX] + tr[AX]tr[BX]

— 3 { [Ze Xp — Xpjk] o [Xk — R ] [Z e/ tr[f], S i)

2

one obtairt
13> e B{[(xk — Rupp) T (X — Kigie)|[(x6 — Rg) Tl (36 — %))}

g

4 This result is given in Athans, Wishner, and Bertolini (1968, eq. (48)).
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=3 Z Ze e]'tr fz Ek\k Ek\k 1 Z Z e e]'tr f Ek|k]tr[f]x2k|k] (977)

Substitution of Eq.[(9.77) into E.(9]76) yields

Seaip = Bl + Qe+ 3D eel tr[fl, Syl Sk (9.78)

g

This expression propagates the covariance one period forward through the system
equations.

The next step is to devise an expressiondhy, ;. based on a knowledge
of 3.1 and on the covariance of the measurement nBige,. This is done by
applying the method of the Kalman filter to the measurement equatidn (9.5)

Yi = hp(xk) + Ce (9.79)
A first-order Taylor expansion of this equation is
Vi = h(Xox) + hy i [x5 — X0] + Ci (9.80)
or

5yk = hxykéxk + Cx (981)
and the(k + 1)th-period version of Eq[{9.81) is

OVi+1 = hy py10X441 + Crpr (9.82)

At the time when the measurement relationship (9.82) is used, the covariance
matrix for dxy 1,

Sk = B{Xet1 — Reul e — Zegapl | Y (9.83)

is known from Eq.[(9.78) above, and the covariance matrixXfqx is given asR.

In Appendix[D the Kalman filter for a linear observation equation like
Eq. (9.82) is derived following the method given.in Bryson and Ho (1969). The
notational equivalence between the appendix and (9.82) andl (9.83) is given
in Table[9.1. The result obtained in Appendikx D@s(D.41) is

-1
1 o . .
¥ =M — [Mh/]|h,Mh! + R + 3 > > e'e’tr[hi, Mhl, M]| [h,M]

i J
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Table 9.1: Notational equivalence
Eq. (D.17)  Eqsl(9.82) and (9.83)
z=Hx+v 0yrr = hygp10%01 + Crgr

z OVt
H orh, hy 11
X 0Xp+1
v Crt1

M = cov(x) Bpiip = cov(0xp41 | YF)
¥ = cov(x | 2)Bpiijps1 = cov(0xyq1 | YFT)
R =cov(v) R =cov({ks1)

so the equivalent result for Eq§. (9182)[to (9.83) is
Ek+1|k+1 = [I - Vk+1hx,k+1]2k+1|k (9.84)
where

!
Vir1 = Bppphy g X
—1

o1 Sk g + R + 53D e'eltr(hy, Sepphlo Ziiae) | (9.85)

L

Expressiond(9.84) and (9185) provide a means of determiijng.; from
Y1k, and Eq. [(9.78) can be used to determBg,,, from X,,. These
expressions taken together enable one to make a projection of the state covariance
matrix which takes into account (1) the process noise, (2) the measurement noise,
and (3) the fact of future measurements.

Examination of Eq[(9.78) shows that the greater the premeasurement state and
the state covariancE; the greater the premeasurement state covariznce,
in the next period. Also Eq[{9.84) shows that the postmeasurement covariance
matrix in the next periodC; ;41 Will be the same as the premeasurement
covarianceX; ., except that it is decreased by the teNh,. Of courseh,
is determined by the nature of the measurement functignin turn depends
inversely on the measurement-noise covaridR¢@as shown in Eq[(9.85). Thus
the largerR the smaller the decrease in the state-covariance matrix by the
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measurement process. Also the larger the premeasurement covaigngethe
less effective the measurement in reducing the state covariance.

So Eqs.[[9.78)[(9.84), and (J185) can be used to prefegf) ., beginning
from X;,. These covariance matrices can be used in Egs.](9.6B) ot (9.69), along
with other terms which are already known, in order to compute the approximate
cost-to-go associated with each choice of the control varaple the search to
find thatu, which provides the minimum cost-to-go. This then completes the
discussion of what is done in each time period to find the contydo apply at
that period.

9.7 Summary of the Search for the Optimal Control
in Period £

In brief summary, the method is to do a searchugrby evaluating the cost-to-

go. [Eq. [9.68)] for each choice af, and then selecting that value af which
minimizes the cost-to-go. The evaluation of Hg. (9.68) requires (1) the solution
of the certainty-equivalence problem about a path beginning &pm (which is
obtained by applying the current search valuapto the process equations), (2)

the evaluation of matrices of partial derivatives along that certainty-equivalence
path, and (3) the projection of the covariance matrigedor all future time
periods. Since all three of the steps must be repeated each time a search value
of u; is chosen, the evaluation of Ed. (9.68) for eaghis a computationally
expensive process.

After this control has been chosen, it is applied and the new state is
determined with the passage of time and the effect of the control. Then an
estimate is made of the mean and covariance of the new state of the system,
and the search for the optimal control for the next period is begun. The next
section provides a discussion of the procedureufmfating the estimates of the
mean and covariance of the system. This is to be distinguished from the process
of projecting the covariance matrix: for all time periods. The first process
will be called updating and the second process will be referred to as projecting.
Tse, Bar-Shalom, and Meier (1973) use the same Kalman filter approach for both
updating and projectin@; however, that need not necessarily be done. Since
the projection must be done as many times as there are search steps in each time
period while the updating is done only each time period, more sophisticated and
time-consuming methods for each estimation may be used for updating than for
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projecting.

9.8 Updatingthe Covariance Matrix

Here the second-order Kalman filter method is used for both updating and
projection. This method is outlined in Appendix D. The results of this appendix
provide the mean and covariance of state conditional on the measurement, i.e.,
Egs. [D.39) and (D.41). Writing these expressions in the notation of the present
problem provides

Xipie+1 = E{Xps1 | Yo}
= X1k + Ve [Yerr — Do g Xeq ] (9.86)
Sieatper = = Vigihy o [ B (9.87)

whereV,,, is defined in Eq.[(9.85) and, from E{.(9.13),

X1 = £ (Reje 1) + 3D €' tr[ £y Siix] (9.88)

)

with uj, the optimal control from the search in peribd

9.9 Summary of the Algorithm

The algorithm begins at periddwith estimates of the meaxy,;, and covariance

3k given. A search is then begun to find the optimal contrplto be used

in periodk. For each trial choice ofi;, the optimal cost-to-go function (9.68) is

evaluated, and this process is continued until satisfactory convergence is obtained.
The evaluation of EqI(9.68) involves the steps discussed i Séc. 9.7. After the

controluj, has been chosen, it is applied to the system and the process is moved

one step forward in time. Then a new measyyés taken, and updated estimates

of the mean and covariance of the state are calculated. Then the search process

for the best control for that period is begun.



Chapter 10

Quadratic Linear Active-Learning

Stochastic Control
with
Bo Hyun Kang

10.1 Introduction

This chapter applies the algorithm of Chap. 9 to the special case of a problem
with a quadratic criterion function and linear system equations. It also provides
a detailed derivation and explication of the results in Tse and Bar-Shalom (1973)
and extends those results to (1) criterion functions which include a term in the
product of state and control variables, (2) system equations in which there is an
explicit constant term, and (3) contraiswhich are a vector rather than a scalar.

10.2 Problem Statement

10.2.1 Original System

The problem is to find the values of control variables in a set of linear system
equations which will minimize the expected value of a quadratic criterion function
when the parameters of the system equations are unknown. Also, the state
variables are observed not directly but through a noisy measurement process. This
problem can be written as follows:

Selectu™ ! = (u)i-;' to minimize the cost functional

104
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N-1
J = E{LN(XN) + Z Lk(Xk, uk)} (101)
k=0
where
LN(XN) = %[XN — }NCN]IWN[XN - }EN] (102)
Ly (Xk, uk) = Vk(Xk) + wk(xk, uk) + gbk(uk) (103)
l/k(Xk) = %[Xk — }NCk]IWk[Xk - ik] (104)
wi(xp, wp) =[x — %) Feluy, — 0] (10.5)
or(up) = 2wy — ) Agluy — 0y (10.6)
subject to a discrete-time linear system
Xpe1 = Fu(xp, up) + vy
= Ak(Ok)xk + Bk(Ok)uk + Ck (Gk) + Vi
k=0,1,...,N—1 (10.7)

(The matrixA is a function of the subset of the uncertain coefficient8 imhich
come from that matrix. The same applieB@ndc.)

and the measurement equations

where

x, = State vector-n vector,

u;, = control vector—m vector,

x; = desired path for state vectem vector,
1, = desired path for control vector,

W, = penalty matrix on state variable deviations from desired path n),
F; = penalty on state control variable deviations from desired pathm),
A, = penalty on control-variable deviations from desired gathx m),
0, = s vector containing a subset of the coefficientinB, andc,

A, (6,) = state-vector coefficient matrix. x n),

B, (6,) = control-vector coefficient matrig: x m),

cx(0;) = constant-coefficient vectgrn x 1),

H,.(6,,) = measurement-coefficient matrix x n),
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v = Ssystem nois¢n x 1),
wj;, = measurement noige x 1),
yr = measurement vector x 1).

The state vectorx is not directly observed but is indirectly measured
throughy. Also, it is assumed that the random coefficiettsay follow a first-
order Markov process

Orr1 = DO + 1y (10.9)

whereDy, is a known matrix and,, is a random vectofs x 1).
The vectorsv, w, 1, xy, and @, are assumed to be mutually independent
normally distributed random vectors with known mean and covariance

xo ~ N(Xo,Z§%) 0y~ N(6, %)  vi~ N(0,Qs)
with 3%*, 389 Q,, R,, andT’;, positive semidefinite. Also it is assumed that the
unknown parameters enter linearlyAn B andc.

Note that the covariance matiixin Eq. (10.10) is not the same as thenatrix
used earlier in Eq[{6.21).

10.2.2 Augmented System

One approach to solving this problem is to treat the random parameters as
additional state variablds. The state vectox is therefore augmented by the
parameter vectd? to create a new state vectar

Z, —

0: ] (10.11)

The control problem can then be stated as
N-1
Minimize J = E{LN(ZN) + Z Lk(Zk, uk)} (1012)
k=0
subject to the system equation
Zt1 = fk (Zk, llk) + fk (1013)

1 See Norman (1976) for a method of solving this problem without augmenting the state vector
for problems in which there is no measurement error.
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and the measurement equation

i = hi(zr) + Gk (10.14)
where
Wy | Xy —X
Ly(zy) = 3l(xn —%n)', 6} [ONH [—--J-V-é]-v--f-v-] (10.15)
Lk (Zk, llk) = UV (Zk) + Wi (Zk, llk) + gbk(uk) (1016)
v(z) = Sl — %), 0} [‘?3 ] [X’“;kx’“] (10.17)
wi(zp, ) = [(xx — 1), 0L H}’“] [wy — iy (10.18)
d)k(uk) = %[uk — flk]lAk [uk — flk] (1019)
*(z
fk (Zk, llk) e -—f——E_Z_Z_’_E_:_;_]

_ '__é_k_(_e_/s)_’f/_c_f_E&E?E)Ek_i_‘ik_(_‘?&)__] (10.20)

B D6, '
& = ;: l (10.21)
hy(ze) — '__P_I_k_(_giz)}ﬂc_l (10.22)
& = vtv)’“] (10.23)

Problems[{1011) td (10.10) arfld (10.11)[o (10.23) are equivalent; however, the

first is described as a linear quadratic problem with random coefficients and the

second as a nonlinear stochastic control problem. In fact the second problem is in
the same form as the nonlinear problem discussed in Chap. 9 since that problem
is nonlinear inx, u, andf. Therefore, the method of Chdg. 9 can now be applied

to the problem.

10.3 TheApproximate Optimal Cost-to-Go

Two approaches to evaluation of the approximate cost-to-go are discussed here.
The first is based on Eq.(9)69), and the second is based ol Eg. (9.68). Both
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approaches have been used in numerical exercises by the author. First the
approach of Eq.[(9.69) was programmed and debugged. Then at a later date
the programs were rewritten to use EQ. (9.68) since this approach offers the
opportunity of separating the criterion function into deterministic, cautionary, and
probing terms. Since in large part the same mathematics is needed to understand
the two approaches, both will be discussed here.

Using the first approach, the approximate cost-to-go conditional,dor the
augmented system can be written by using mg_@) as

Jan—rp = wi(zk, ug) + or(ug) + JoN—k—1 + Vet1

+ %U’{ [2k+1\k - 2k+1\k+1]Kk+1 + LNz 2NN

N-1

+ Z [sz,jzj\j + (EjJrllj - Ej+1|j+1)Kj+1}} (10.24)

j=k+1

where J, y_r—1 is the optimal cost-to-go obtained by solving the certainty-
equivalence problem for the unaugmented system along a nominafl path.
Expression[(10.24) can be further simplified by decomposing each term on the
right-hand side.

First, from Eq. [10.15),

Ly = i[xy — %y Wylxy — Xy] (10.25)
Therefore,
[ LN,xx i LN,XG ] [ WN i 0 ]
LN,ZZ = [[~====""" E- ——————— — -————-——:———-
Lyex + Lnge 0 0
and
Wy + 0 PRI Y WyZx, | Wysxe
el s el B = e e
o {0 ) Y NIV 0 . 0

and therefore,
tr[LN,zz2N|N] = tr[WNE)]if}TN] (1026)

2 Since Eq.[(10.24) is conditional on the choicewnf, the minimum ovem,; operation in

Eq. [9.69) is dropped.
3 Note in AppendiXE that this term is the same&sy 1.
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Next in order to evaluatd, x_j_1, it iS necessary to solve the certainty-
equivalence (CE) problem for the unaugmented system. This problem is to choose
a nominal control sequenca, ;) ", , which minimizes

j=k+1
JoN-k-1 = %[XO,N — XN Wy[xon — Xn]
N-1
+ 3 (30s — %I Wilxo — %]+ [x05 — %;]'F[u,; — )]
j=k+1
+ 3l — ) Ajlu,; — 1)) (10.27)
subject to

Xojt1 = Aj(0o;)%0; + B;(0o)00; +¢(0,5) j=k+1,...,N—1
Xoktl = Xktilk (10.28)

wheref, ;, j =k +1,...,N — 1, are generated by
0,1 =D;0,; 0ok =ik (10.29)

In this problem it is assumed that all parameters of the system equafion](10.28)
are known from EqL(10.29), and this is indicated by using the subscrgso, in

this particular CE problem the additive system noise terms and the measurement
noise terms are ignored.

The certainty-equivalence solution for the above is summarized as follows (the
derivation is given in AppendikIG). The tilde is used to indicatekhep, andn
parameters for the certainty-equivalence problem for the unaugmented system to
distinguish them from those for the augmented system.

The feedback rule for the optimal control is

u,; = Gjx,; +8; (10.30)
where
G; = —pi[F; + B/K; 1A (10.31)
and -
g = —1;[Bj(Kj11¢; + Dj1) — FjX; — Ay
with

pi = BK; B + Ay (10.32)

The recursions foK andp are [from Eqs.[{G]9) an@{G.10)]. The tilde symbol
is used in two different ways in this chapter. When it is used &waru it signifies
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desired paths of states and controls, respectively. When it is use@oaedp it
refers to the Riccati equations developed in Appendix G.

K, = AK; 1 A; - [AJK; 1B, + Fjlu,[F) + BJK; 11 A1+ W,

with -
Ky = Wy (10.33)
and
p; = —[AK; B, +Fjlu[Bi(K e +Pi1) — (Fi%; + Aji))]
+ Aj(Kjri€) + bjar) — (W% + Fjay)
with

f)N - —WN}NCN (1034)
Finally, the cost-to-go can be written as

o N—k—1 = % 1|kKk+1Xk+1\k + Doy 1 Xkt 1k + e (10.35)

The scalar here is from Eq.[(6.22) and is not the same as the vectdradditive
noise terms in the parameter evolution Eg. (1L0.9).

Substituting Eqs.[(10.18)[ (10J19), (10.26), ahd (10.35) into Eq. (110.24),
droppingn.1, which is independent of the choice af,, and usingy;.; = 0
(see AppendiklJ), we obtain

Jd,N—k = [Xk — }Ek]'F[uk — flk] + %[uk — ﬁk]'Ak[uk — flk]

1457 I ~ ~/ A~
+ 5 X1 Kbt 1Xb1 1k + Py 1 Xb1jk

+ %tr{[EkJrlk — Zpt1pe+1]Ker1 + WyETy

N-—1
+ D [HeyZy
j=k+1
+ (Bjy — 2j+1j+1)Kj+1]} (10.36)
where (see Appendix]H)

(10.37)
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K I _—IS—;.C—X——_E——K?;’:I_ 10 38
i - et (10.38
K> = K, (10.39)
K7 = [(f)K, + DK A

— [[(£)' K%, + D'KZB + [Sep,  bp] |pi[B'KX, A + F']

+ Zejplay  With K =0 (10.40)

in which (see AppendiK]ﬂ)
f5(k) = > eXpap(k)+ Y ei(uf)'by(k) + Y eicy(k) (10.41)
1€X 1€X 1€X
K?e = (f5)'[Kihfe + K;'(&D] + DI[K?Lfg + K?z1D]
— [[(f3) K7, + DIK?L]B + [Eeép?+1b’o]']u
x [B'[KX, f5 + KX, D] + Ze/p¥, by]
with K99 =0 (10.42)
wherep = [A + B K*B] ™.
Also see AppendiX | for the derivation of
pr = K;x,; + P (10.43)
Thus Eg. [10.36) provides one way of evaluating the approximate optimal cost-
to-go.
Alternatively, one may use a second approach to evaluation of the cost-to-

go in order to separate it into deterministic, cautionary, and probing terms, as
in Bar-Shalom and Tse (1976a). To do this, begin with Eg. (9.68) instead of

Eq. (9.69). Expression (9.68) is

Jin-k = I{llikn{wk (Zk, u) + O(ae) + Con—p—1 + Vet

1 N-1
+ Ky D] + 2 > K Qi + ‘Azzzﬂj]} (10.44)
=1

(The notationQ? is used for the covariance of the system-equation noise terms
for the augmented system.) This can be separated into three components as

Jin—k =min(Jp v+ Jon-r + Jpn-k) (10.45)

4 Expression[{I0.40) is similar to Tse and Bar-Shalom (1973, eq. (3.15)). Equafionl (10.40)
contains a term im, which should be added to the equation in_Tse and Bar-Shalom.
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where the deterministic component is

Jpn—k = Wi(zk, W) + dr(ug) + Conok—1 + Vit1 (10.46)

the cautionary component is

N-1

1
Jon—k = 5tr[Ke1 Deape] + 3 Y r[K;1Q] (10.47)
j=k+1
and the probing term is
1 M-t
JP,ka = = Z tr[.AZZE]'U] (1048)
j=k+1

Expression[(10.46) contains all the deterministic terms, and this is the rationale
for separating it from the stochastic terms in Eqs. (10.47) land (110.48). Increases
in control do not affecQ? in Eq. (10.4Y) but may increasg; ;. Therefore,
minimization of the cautionary component (10.47) usually requires selagtiag
as to decrease tfi€ weighting matrices and tig,, , ; term. In contrast, since the
elements of the matrices;; in Eq. (10.48) can in general be decreased through
use of more vigorous control levals,, this expression is called thpeobing term.

Expressiond(10.46) t6 (1048) define the cost components for the augmented
system. For both computational efficiency and insight into the nature of the
results, it is useful to write these components out in terms of the matrices which
are the parts of the augmented system. This is done in Appgndix Q. The results
are shown below for deterministic terms [from Eq. (Q.3)]

JD,ka - [Xk - ik]'Fk[uk — ﬁk] + %[uk — ﬁk]lAk[uk — ﬁk]
+ %[XO,N - }EN],WNI:XO,N - iN]
1 N—1 ., . ) , i
+ 5 2 (Bog = X Wilxo = %51+ [0 — %o, Fjluo, — 0]
j=k+1
+ [u,; — ' Aj[u, ; — 1)) (10.49)

cautionary terms [from Eq[. (@.8)]

Jon-k = tr(KF5 Tik) tr(KZi12zi1\k) + %tr(KZi1Ezil|k)
+5 2 (KT Q) + (K9, T)] (10.50)

j=k+1
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and probing terms [from Ed. (Q.[13)]

]' = XX XX XX
PNk = 2 > { tr([A'KFT B + Fu;[B'KFY, A + F')X77)
j=k+1
+ 2tr([B'KX A + F]'py [B'[K £ + K39, D]
+ Te;p*by|T7%)
+tr([D'KJY, + 5 KT, |B + [Seip*by] u;
x [B'[KS%,£5 + K37, D] + Ze;p*bj] =) }(10.51)

With these components in hand the algorithm can now be explained in detail.

10.4 Dual-Control Algorithm

A flowchart of the algorithm is provided in Fig._10.1. There are two major
sections: (1) the search on the left in the figure and (2) the update procedure
on the right. The purpose of the search is to determine the best control to use in
the current time period,, and the update procedures project the system forward
one time period and update the estimates of the means and covariances of both the
original states and the parameters. The means and covariances are

~

X

oxx Exe
Zpt1k+1 = | 4

] and Biyijps1 = l"é?);c_":'"io_e_ ]
k+1|k+1 fr [k

The search procedure is further outlined in [Eig. 10.2, which shows three trial
values of the controli;. In fact more trial values that this are generally used
before the search converges.

The trial valueuj, for the rth trial is used to project the mean and covariance
(Zk41k, Ze41)) Of the state of the system at time- 1 with measurements through
time k. These values are then used as the initial condition for the solution of
a deterministic optimization (certainty-equivalence) problem from time1 to
final time V. This problem is a quadratic linear approximation of the nonlinear
deterministic problem. The solution to this problem provides the nominal path
(2, uj ;)i 4., around which the approximate cost-to-gpcan be determined.

This procedure is repeated for eaghuntil the search algorithm converges,
at which time the optimal contral; for periodf is set equal to that search value
uj, which minimizes/,(uy).
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Initialize
k=0
\
Compute CE control u{® g“ B30 = Lienirers
T e oCE ik = Sreqirels
wnd setu, =, andk=k+1
\
Apply uj and get estimated
mean and covariance of
- state in period & + 1, that
15, Zp e 00 Zpy gy Use measurement y, .
and update the mean
2 sy ey and
covariance matrix
Y Ik +Nke+]
Solve CE problem with /‘\
24 4 112 s initial condition
and call this path the
nominal path
%
Apply measurement
noise and get
A measurement y, ,
Evaluate the dual cost:
1. Backward recursion in K \
2. Projection of Z and
computation of dual cost

»—*
Apply the control
Determine new u} No Yes u; =uj
with the search and the systems
algorithm noise §; to
gt 2y,

Figure 10.1: Flowchart of the algorithm.
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Associated
imate
Stateatk + ] Nominal path m:::’a
State at k Trial values . v 1w
Ofllz used (Q.,...I,.,.k), (lpl' ua/ ]]-kol L J, (ul)
: T —— e ]
in search
122,03 1%, ,
@, I ARk | 7, (0})
RNy (2,,,,,,}:,,“,)2/‘— FALT
I TN iz} -“:/mnl 5
> J (u3)

k k+1} N

Figure 10.2: Search procedure to determirie Setu; = {u] for 7 that gives
min.Jy(ug)}.

Then the update procedure is begun by uaijgand the system noisg;,
which is obtained from the random-number generator, to determine the state of
the systenz; ., at timek + 1 through the system equations (see Eig.110.3). The
state cannot be directly observed but is measured through the observed
The measurement,., is obtained from the measurement relation, where the
measurement noisk ,; is included. Then the measurement ; is used with the
Kalman filter to update the estimates of the mean and covariance of the augmented
statezyy1jx4+1 aNdXy 1 jt1-

These two procedures of a search iteration and then an update are repeated
for each time period until the final time period is reached. The cost of the dual-
control solution is then calculated for this single Monte Carlo run. A number of
Monte Carlo runs are then performed in order to obtain a distribution of the cost
associated with the use of the wide-sense dual-control strategy.

The algorithm is now outlined step by step. The algorithm outlined here is
based on the evaluation of the cost-to-go and its three components [n Eql (10.45).

At each time period there are three major steps in the algorithm:

1. Initialization

2. Search for the optimal contral;



CHAPTER 10. QUADRATIC LINEAR ACTIVE-LEARNING CONTROL116

State estimates State estimates
atk atk+1
Ty Yaei
ai# ko] xk‘llto l)
$ae1
a?
ok Lo &
k after System k+1 before Measurement k4 1jat
measurement noise measurement noise measurement

Figure 10.3: Monte Carlo and update procedures.

3. Updating the estimates of the states and parameters.

10.4.1 Initialization

The first step in the initialization is to compute the nominal value of the
parameters. If the parameters are constant, this simply means d&flinp
0,11 If they are not constant, it means using Eq. (10.29) to prdggtfor
j=k,...,N from ék,l‘k,l. Once this has been completed, it is necessary to
updateA;, B;, andc; forj =£,..., N.

Next the Riccati parameteﬁj andp; j =k+1,...,N are calculated by
using Eqgs.[(10.33) and (10.34).

Finally, it is necessary to choose a value of the contgolvith which to begin
the search for the optimal contraf. While this may be done in a variety of ways,
it is normally done by solving the certainty-equivalence problem for pekital
N and then settingi], for stepr = 1 in the search to the certainty-equivalence
solution for periodk as given by Eq.[(10.30).

10.4.2 Search for the Optimal Control
There are eight steps in this procedure:

1. Use the contrahj, to get the projected states and covariances in périot]
that is,ik+1‘k and2k+1‘k.
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2. Get the nominal path for period + 1 to N by solving the certainty-
equivalence problem using the component ofz,.,, as the initial
condition.

3. Compute the Riccati matric@?* andK?? for all periods.

4. Calculate the deterministic component of the cost-to-go for périadd
period V.

5. Calculate part of the cautionary component for petiod1.

6. Repeat the calculation of the following components for peribds 1
throughNV — 1:
a. Deterministic
b. Cautionary
c. Probing
d. Total cost-to-go

7. Choose a new contral, " in the search.

8. Repeat stepsthrough? until all the search points have been evaluated and
then select the control which yields the minimum total cost-to-go.

In greater detail the eight steps are as follows.

Step 1. Useuj in Egs. [9.7B) and[{9.78) to project the future stajg
and covarianceZ, ;. These results are specialized in Appendix M to the
componentx and @ of z for the linear problem and are given in Egs._(M.8)

and [M.9) as

}A(/H_”k = Akfck‘k + Bku; + Cr + Z eltr(agﬁzl’;) (1052)
1€X
and R X

01, = DO, (10.53)

Also the covariance terms are given in E{s.(M.16) T (M.19) as
5 [ ¥ (on)l ‘| (10 54)

k+lk = [5eex | 06 :
¥ X k1l
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with the component matrices
e = AYZEAL+ Akzk\k(fgk)l
+ f0k2k|kAl + f0k2k|k(fgk), + Qx
+> > e(e) ] aezk\kaezk\k + aozk\kao %% (10.55)

i€eX jeX
Ekﬂlk = DkzmkA' + D37 (5,) (10.56)

Also recall that theéfj, term is given as
f5. = > eXap + > e;(up)'by + Y eicy (10.58)

The initial conditions for Eqs.[{10.55) t6 (I0157) are normally set to be diffuse
priors, i.e., the diagonal elements Eﬁm and X7 are set to large numbers and

the other elements of these two matrices and the elemes’(‘pare set to zero.

Step 2. Obtain the nominal pathis, ;)N ., and(u, ;)Y by usingXy.,.x as
the initial state and solving the certainty-equivalence problem from péretto
period N. This also provides the initial value af], for the search, i.e. for = 1.
Thusu} = u{®.

Step 3. Compute the Riccati matricd§?* andK?® for periodsk + 1 to periodN.
(Recall thatk* = K was computed during the initialization stage.) For these
computations use the backward recursidns (10.40) [and (10.42). The datrix
can then be formed from the components by using[Eq. (1.0.38).

Step 4. Calculate the deterministic component of the approximate cost-to-go for
periodk and for periodV (but not for the periods in between) by using the first
through third terms on the right-hand side of Hq. (10.49).

Step 5. Calculate the cautionary component for periogl by using the first three
terms in Eq.[(10.50). This expression uses the te¥ms,; ;. They are available
from step 1. It also uses the ter&s , ;, which were calculated in step 3.

Step 6a: DETERMINISTIC COMPONENT For each periog = k+2,...,N — 1
evaluate the fourth through sixth terms in Hg. (10.49).

Step 6b: CAUTIONARY COMPONENT Use the fourth and fifth terms in

Eqg. (10.50).
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Step 6¢: PROBING COMPONENT Use the right-hand side of Eq._(10151). The
K11 matrices were calculated in step 3, but Bag; matrices must be calculated.

They are obtained by using EqB. (10.55)[fo0 (ID.57) toXet ; from X, ;.
ThenX;; can be obtained fro®;|;_; by using Eqs.[(K17) td{K19)

PRSTTRREE | S TN ; VTS i) & PR D St (10.59)

Eziukﬂ = (Eﬁukﬂ), = Eziuk[I - H$€+1S;+11Hk+127§iuk] (10.60)

S = B — B S Hien 330, (10.61)
where, from Eq.[(K.I5),

Sk+1 = Hep1 B8 Hi g + Rir (10.62)

Step 6d: ToTAL COSTTO-GO Sum the deterministic, cautionary, and probing
terms over the periods+ 1 to V.

Step 7. Choose a new contrai; ! for the grid search. In practice the total cost-
to-go in step 6 is evaluated at 20 to 30 points in the range where the optimal control
is expected to lie. This is used whap consists of a single control and when there

is concern that/,(u;) may have local optima. If local optima are not a concern,
gradient methods can be employed at this step to get the new caftrol

Step 8. Repeat steps 1 through 7 until all the search points have been evaluated
(for a grid-search technique) or until satisfactory convergence is obtained (for
gradient methods).

This concludes the eight steps in the search for the optimal caxjrat time
periodk. The final part of the algorithm is the updating, outlined next.

10.5 Updating State and Parameter Estimates

Once the optimal controh; has been determined, it is applied to the systems
equations[(10.13)(10.20), arid (10.21) to obtain the two componeants of

Zii1 = [ zzi ] (10.63)

where
Xkl = Aka + Bku’,; +ci + Vg (1064)



CHAPTER 10. QUADRATIC LINEAR ACTIVE-LEARNING CONTROL120

and
0.1 = DO, + 1y (10.65)

A Monte Carlo procedure is used to generate the random variahlesd 7
using the covarianceg, andI';, respectively.
Next the valuesx;,; and 6,,, are used in the measurement relation-

ship (10.14) with[(10.22) and (10123) to obtain the measurement vegctor

Xg41 Wit
=[H,. ;0] |F-——=-- -————-
Vi1 = [Hpgr ! ][0k+1 [ 0
or
Vir1 = Hep1Xe1 + Wi (10.66)

A Monte Carlo procedure is used to generate the random elemewis, inusing
the covarianc® ;. ;.

Finally the measurement vectgy., is used in the augmented Kalman filter
equations[(NJ7) and{N.8) to obtain updated estimates of the means of the initial
statesx and of the parametes

Xppakrr = Xerap + S ey St Ve — HepiXerae]  (10.67)
ék+1|k+1 = ék+1\k + E‘ZiukH2+1S;+11[yk+1 — Hj 1 Xpq6]  (10.68)

where
Sk = Hen 337 Hyy + R (10.69)

These estimates are then used as the starting values for the next time period.
The algorithm is then repeated for each time period until the last period is reached.

If one wishes to make comparisons across Monte Carlo run, the entire
multiperiod problem must be solved for each set of random elements obtained.
This is the procedure used in Chapl 12.



Chapter 11

Example:
The M acRae Problem

11.1 Introduction

Two examples are presented in this chapter and Chap. 12. The first is a problem
drawn from| MacRae! (1972), with a single state variable and a single control
variable. It was chosen both because it was simple enough to permit hand
calculations and because a variant of it was used in QHap. 7 to illustrate the
calculations used for passive-learning stochastic control. The calculations for
this problem are shown in considerable detail, both to enhance understanding
and to make them more useful for debugging computer programs. This same
problem was used by Bar-Shalom and Tise (1976a) to compare the performance
of a number of active-learning stochastic control algorithms.

The second problem is constructed from the small macroeconometric model
used in the deterministic example in Chiap. 4. Detailed calculations for the second
problem are not given; instead the focus is on the final results and their economic
implications.

11.2 Problem Statement: MacRae Problem

Find (ug, u1) to minimize

1 1
J = E[%qx% +5 > (qzp + ruz)] (11.1)
k=0

121
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subject to
Tptr1 = aTg+ bu + ¢ + g for k = 0,1 (112)
o = 0
MacRae uses a set of different parameter values. For this example, let
a = .7 b=-.5 c=3.5 o, = .2
qg = 1 r=1 op = .9 g =0.,=0
Only theb parameter is treated in an adaptive manner. The paramedgid: are
treated as though they were known perfectly.
In the notation used in the previous chapter the parameters of this problem are
as follows:
A =7 B=-5 c=3.5 Xg =0
}22 5(1:}20:0 ﬁ1:ﬁ0:0 éo‘():—f)
o= 0 Zfh=5 =0
Q - 2 W2:W1:W0:1 A1:A0:1
The only element inf is the single unknown parametér The desired

paths are set to zero. Since the problem assumes perfect observation, the initial
covariance ok is zero. Becausd andc are not functions o butB is, we have

Xg+1 = AXk + B(O)uk +cC+ €& (113)

Also, since it is assumed thke is unknown but constant, the parameter
equations[(1019) become
0p.1 = DO + 1y (114)

with D = 1. It assumed that
Tojp = 0 and o, =0
So, in the notation of Chap. 110,
nk ~ N(0,T;)  WwithT, =0
Since there is no measurement error, the measurement equation
vir = Hxp + wy, (11.5)

becomes
Wi~ N(Oa Rk)

R0 (11.6)

Vi = X + Wy with
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11.3 Calculation of the Cost-To-Go

The calculations performed here follow the description in 10.4.

11.3.1 [Initialization
(@) Initialize withk = 0.

(b) Generated, ; with Eq. (11.4). Since the parameter is assumed to be
constant, one has
0,;, = —5 Jj=1(0,1)

(c) ComputeK; andp; for j = 1,2 from (10.33) and{10.34)

K, = Wy=1
P = —Whx,=—(1)(0)=0 (11.7)
K1 = A,[I — KgBulB,]KgA + W1

where, from Eq._10.32,

pr=[A +BEKB] " = [1+ (—=5)(1)(=5)] =8

Therefore,

K = .7[1 — (1)(=.5)(.8)(—.5)](1)(.7) + 1 = 1.392

Also,
P = —AK,Bu[B'(Kyc+ po) — Ayt + A'(Kyc + po)
= —(DO)(=5)B){(=H)[(1)(3.5) + 0] = (1)(0)} + (.7)[(1)(3.5) + 0]
= 1.96 (11.8)
In summary,
k Ky Pk
2 1 0

1 1.392 1.96
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(d) Setu, = u{® as given by Eq._10.30
u = —po[B'(KiAxy+Kic+pi) — Aply] (11.9)
po = [Ag+BK Bl ' =1+ (—.5)(1.392)(—.5)]" =.742
Then, from Eq.[(11)9),

uy = —(.742){(=.5)[(1.392)(.7)(0) + (1.392)(3.5) + 1.96)] — (1)(0)} = 2.534

11.3.2 Search for Optimal Control

Search for the optimal control in periddas outlined in Sed._10.4. Those steps
are followed here.

Step 1. Apply uy to get the predicted stagg , ;| and its covariance, ;. Use

N | Xt
otk [ ék+1|k
and, from Eq.[(10.52),
Xyj0 = AXgpo + B(6oo)ug + ¢ + tr {agﬁzﬁ] (11.10)

SinceA is not a function 0, ag = 0. Alsou] = u{¥ = 2.534 from the
initialization above. Therefore,

%110 = (.7)(0) + (—.5)(2.534) + 3.5+ 0 = 2.233

Similarly, from Eq. [10.5B),
él\O == Déo|0 (1111)
and sincdD =1, R R
0110 = 6o =—.5
The covarianc&, | is obtained by using Eq.{10.54)
XX Exe

Xk = [ """"
EBX

(11.12)

3600 ] k+1]k

L
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where, from Eq.[({10.55),
1\0 = AEO\OAI + Azo\ofgol + f0020|0A, + f0020|0fgol + Qo
+r[agE5ap S + apSfhap Ty (11.13)
with, from Eq. (10.5B),
fgo = }20|0ag + ugbg + Co (1114)

Since A andc are not functions 08, ag andcg equal zero. Howeveb, is a
function of@ andbg = 1, so

£ =04 (2.534)(1) + 0 = 2.534
Therefore, Eq.(11.13) becomes

= (D(0)(7) + (.7)(0)(2.534) + (2.534)(0)(.7)
+(2.534)(.5)(2.534) + .2+ 0 = 3.410 (11.15)

Next to use EqL(10.56) to obtain

0% = DA+ DRSO
= (1)(0)(.7) + (1)(.5)(2.534) = 1.267 (11.16)

Finally, use Eq.[{10.57) to obtain
21‘0 = DEO‘OD’ +Ty=(1)(5)(1)+0=.5 (11.17)
In summary

Xip = 2233 Bpp=—5
o= 3410 xf¥=1261 X% =05

Step 2. Usex, o as the initial state and solve the certainty-equivalence problem for
period 1 to 2 by computing, ;)?_, and(u, ;)j_, using Eqs.[(10.30) and (10128).
From Eq. [10.30),

1].0,1 = —[,Ll[B(fK/QA}ACHO + R/QC + f)Q) — Alﬁl]

with gy, = [A; + B'K,B] " = [1+ (—.5)(1.0)(—.5)]' = .8 (11.18)
u, = —(8){(=.5)[(1)(.7)(2.233) + (1)(3.5) + 0] — (1)(0)} = 2.025
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and, from Eq.[(10.28),

Xo2 = AXjo+B(6,1)u,; +c¢
= (7)(2.233) + (—.5)(2.025) + 3.5 = 4.050  (11.19)

Therefore, the nominal path is

k Xo,k U, k
1 2233 2.025
2 4.050

Step 3. Compute K and K% for j = 1,2 by using the backward
recursions[(10.40) and (10142). Recall thgt* = K from Eq. [10.3D); therefore

it is not necessary to evaluate it sinﬁg was computed above.
First computeK ?* using Eq. [10.40)

K = 0 (11.20)
K = [f/Ky + D'KS|A
— [(£1'K5™ + D'KE*)B + (p3bo) | i [BKGA]

+ pias (11.21)
where, from Eq.[(10.43),
pX = KyXo5 + Py = (1)(4.050) 4 0 = 4.050 (11.22)
and, from Eq.[(10.41),
fo, = X,1a9 +u,1bg +co
= (2.233)(0) 4 (2.025)(1) + 0 = 2.025 (11.23)

and, from Eq.[(10.32),
pi = [A +BK,B] ' = [1 4 (—.5)(1.0)(—.5)] = (1.25) ' = .8
Then, Eq.[(I1.21) can be solved as

K* = [(2.025)(1) + (1)(0)](.7)
—{[(2.025)(1) + (1)(0)](—.5) + (4.050)(1)}.8(—=.5)(1)(.7)
+ (4.050)(0) = 2.268 (11.24)
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Next calculatdK?? from Eq. [10.4R) as
K% = 0 (11.25)
K = f£5/'[K¥f) + K3’D| + D'[K§*fy + KI°D|
—[(£5/K3* + D'KS*) B + pby| s
x [B'(K5*f3 + K3D) + pibg)
= (2.025)[(1)(2.025) + (0)(1)] + (1)[(0)(2.025) + (0)(1)]

—{[(2.025)(1) + (1)(0)](=-5) + (4.050)(1)}(8)
x{(=-5)[(1)(2.025) + (0)(1)] + (4.050)(1)} = —3.282

In summary, the Riccati matrices for the augmented problem are

P Ky KF™ KY? pf
1 1.392 2.268 —3.282
2 1.000 0 0 4.050

In order to show the breakdown for the cost-to-go into deterministic,
cautionary, and probing components, steps 4 through 6 from[Sed. 10.4 will be
used.

Step 4. Calculate the deterministic cost for peribdand periodN by using the
first through third terms on the right-hand side of Eqg. (110.49). Calling the sum of
these terms/%;_;, one obtains

Iphve = [k — K] Felup — @] + 3lup — 0] Aguy — ]
+%[X0,N - iN]'WN[Xo,N — Xn]
Jhy = 1(2.534-10)(1)(2.534 — 0)

+3(4.050 — 0)(1)(4.050 — 0) = 11.412 (11.26)
Step 5. Calculate the cautionary cost for peribd- 1 by using the first three terms
in Eq. (10.50)

JEH b (K, S0 ) + tr(KZLEW) + 3tr (K79, 2001)

C,N—-k — %
JEN = 3tr(KPE) + tr(KO2) + e (K 299) (11.27)
JEN = 3[(1.392)(3.410)] + (2.268)(1. 267) :[(—3.282)(.5)] = 4.426
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Step 6 Repeat stepSa through6d for time periods) = k£ + 1 throughj = N —1,

that is, fromj = 1 throughj = 1.

STEPG6a Calculate the future deterministic cost for peripdy evaluating the
fourth through sixth terms in Eq._(10149)(usifg= 0)

Tonok = 52 X0 — Xj|'W[xo,; — Xj] + [wo; — ;] Aj[u,; — 1)
Jhy = 5[(2.233)(1)(2.233) + (2.025)(1)(2.025)] = 4.543 (11.28)

STEPG6H Calculate the future cautionary cost for periply evaluating the fourth
and fifth terms in Eq[{10.50)

]' ! XX
Ten-w = §Z(tr[K2 Q1] —|—tr[ngI‘1])
7j=1
Jiy = 3[tr(1.0)(.2) + tr(0)(0)] = £(.2) + 0] = .100  (11.29)
STEPG6¢ Calculate the future probing cost for perigdy evaluating the right-

hand side of EqL(10.51). THE,,, matrices are available from step 3, but the
X ;); matrices must be computed. From Hg. (10.51)

Jpr = %tr([A'K’;xB]p,I[B KJ*A] 1|1)
+tr([B'KY*Al'w (B [K3f5, + K3°D] + p*by ) £7%)
+4tr([[D'KY* + £,"K3*| B + p*by|
x i [B'[K¥£5, + K3°D| + p*be| 2% (11.30)

All the matrices in Eq.[(11.30) except ti¥®;; terms have been computed
before. To obtain th&; ;'s use Eqs[{10.55) t¢ (10.67) to g}, fromX; _,;_,
and Egs.[(K.1I7) td(K.19) to g&t; ; from X;;;_;.

We needX;; in order to evaluate Eq[ (11130). This can be obtained by
using Eqgs.[(10.55) td_(10.57) to obtaliy |, from 3o, but this has already been
accomplished in step 1, with the result

Then, to obtairE% use Eq.[(10.59)

n=[I-%% 'S, THL T 10 (11.31)
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where, from Eq.[(10.62),

S, = H, )ff(c) "+ Ry
= (1)(3.410)(1) 4+ 0 = 3.410

Therefore,
S, ! =.293
and thus
1|1 = [1 — (3.410)(1)(.293)(1)](3.410) = 0
In this situation with no measurement error ddd= 1, the covariance of the

state variables reduces to zero after the new measurement is taken.
Next, use Eq.[(10.60) to obtain

E1|1 = E1|0[I HIS 'H, 1\0]
= 1.267[1 — (1)(.293)(1)(3.410)] =0 (11.32)

with the result thak9% also is zero after the measurement.
Finally, use Eq.[(10.61) to obtain

E1|1 = 21\0 E1|0HIIS 1leuo
= .5 —(1.267)(1)(.293)(1)(1.267) = .03 (11.33)

Also, with perfect measurement and a single unknown parameter there is a
substantial reduction in the uncertainty associated with the parafeterthis

case the variance of(the only element i) is reduced from .5 to .03 by a single
measurement. In summary, from the initial data, from the initialization, and this
step:

Jlk Xk bH pHI
0|0 0 0 500
1/0 3.410 1.267 .500
1)1 0 0 .030

Now Eg. [11.30) can be evaluated. Since 02l andzu1 are equal to zero,
it can be simplified substantially to

JpN = %tf(HD'KgX + fe’f{K%‘X]B + P’z‘be]
xpi [B[K¥S + K3PD| +pibe|20)  (11.34)
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Also, 5, 11, andp can be obtained from Eq§._(11123) and (11L.22), respectively,
giving
ey = 3tr([[(1)(0) + (2.025)(1)](—.5) + (4.050)(1)](.8)

{(=-5)[(1)(2.025) 4+ (0)(1)] + (4.050)(1)}(.03)) = .110

In summary, the deterministic component can be obtained from stepsté4 and
as
Jpn = JN + Jh v =11.412 4+ 4.543 = 15.955 (11.35)

The cautionary component is obtained from steps SGaras
Jon = JEN 4+ I8y = 4.426 + .1 = 4.526 (11.36)
Finally, the probing component is obtained from Eq. (1l1.34) in 6tegs

STEPGd The total cost-to-go conditional a is then obtained by summing the
three components, as in Ef.(10.45)

Jan—r(ur) = Jpn_i +Jon—k+ IpN_k (11.38)
or, foru = 2.534 at timek = 0,

Jan(2.534) = Jpn+Jon+ JpN
= 15.955+4.526 + .110
= 20.591

This completes the evaluation of the approximate cost-to-go for a single value of
the control, namely, = 2.534. As the search proceeds, the cost-to-go function
is evaluated at other values of the control.

11.4 The Search

The search is then carried out to find that value of the contifplwhich
minimizest,kE Table[11.1 and Fid. 11.1 give the results of the evaluation of the
deterministic, cautionary, and probing cost as well as the total cost for a number
of values of the contrahoﬁ
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Table 11.1: Evaluation of cost-to-go and its components for the MacRae problem

Control Deterministic Cautionary Probing Total
Uy JD,N JC,N JP,N Jd,N
1.17 17.201 1.197 496 18.894
1.28 17.005 1.434 423 18.863
1.32 16.935 1.525 400 18.860
1.37 16.869 1.616 .378 18.863
1.56 16.588 2.056 294 18.938
2.53 15.957 4.527 .108 20.593
24
22
Total

20

Cost-to-go

T Ty T T T T T

6F Cautionary

o - : Probing .
1 2 3

First-period control u,

Figure 11.1: Total cost-to-go and components of two-period MacRae problem.
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In Fig.[I1.1 the deterministic cost component is relatively large and has the
expected quadratic shape. The cautionary cost component rises with increases
in the control value; i.e., caution results in a smaller control value that the
deterministic component alone would imply. Finally, the probing cost component
falls with increases in the control value. Thus, caution and probing work in
opposite directions; however, the probing term is smaller and has a smaller slope.

By way of contrast and in order to emphasize that the funcfign,) may
have local minima, Fid.111.2 provides a plot similar to Fig. 11.1 but for a slightly
different problem. This problem is the same as the previous MacRae problem with
two exceptions: (1) all three of the parameters, andc are treated as unknown
rather than only (the initial variances of all three parameters are set at .5), and
(2) the model is solved for 10 time periods instead of 2 (the penalty ratjdaef
is kept at 1:1 for all time periods).

As Fig. shows, the probing cost component is nonconvex, and this
produces two local optima in the total cost-to-go. This situation was discovered
by accident. The author and Fred Norman were using this problem to debug their
separately programmed codes. Both obtained the local optimum around 5 and
concluded that the codes were debugged.

The author subsequently modified his code, solved the problem again, and
found the local optimum near 10. At first it seemed that there was an error in
the modified code, but subsequent analysis revealed the nonconvex shape of the
cost-to-go function.

For a discussion of this, see Kendrick (1978).
2See also Bar-Shalom and Tse (1976a, p. 331).
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Figure 11.2: Total cost-to-go and components for 10-period MacRae problem.
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Chapter 12

Example: A Macroeconomic Model
with M easurement Error

12.1 Introduction

In Chap[4 a small quarterly macroeconomic model of the United States economy
was used as an example of deterministic control. Here that model is converted
into a stochastic control model with measurement error and solved with the active-
learning algorithm of Cha._10.

Four sources of uncertainty are added to the model of Chap. 4:

1. An additive error (or noise) term in the system equations

2. An error term in the measurement equations

3. Uncertainty about initial conditions

4. Uncertainty about parameter values in the system equations

Of these four sources of uncertainty, the first is the most widely considered in
economic models. It was discussed as additive uncertainty in Chap. 5. The fourth
type of uncertainty, i.e., the parameter values, was discussed under multiplicative
uncertainty in Chap.16; however, the control was not chosen in an active-learning
manner. Uncertainty of types 2 and 3 are much less widely used in economic
models. There is a substantial literature in econometrics on measurement errors
[see Geraci (1976)], but this has not previously been systematically incorporated
into macroeconometric models to show the effect of measurement error on policy

134
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choice. A new start in this direction was made by Conrad (1977) and the model
of this chapter continues by including measurement error in a model with active
learning.

Since different economic time series are of greatly varying accuracy, the use
of measurement-error information provides a systematic way to take account of
this fact while choosing policy levels. For example, the uncertainty associated
with inventory investment data is much greater than that associated with aggregate
consumption data; so one would like to discount somewhat inventory investment
data relative to consumption data when making decisions about fiscal and
monetary policy. The procedures outlined in Chaps. 9aihd 10 provide a way to do
this.

Also, once one introduces measurement error, it becomes apparent that the
initial conditions of the model can no longer be treated as though they were known
with certainty. Instead one must take account of the fact that policy makers do not
know the present state of the economy exactly. However, economists frequently
have information about the degree of uncertainty attached to each element in a
state vector describing the economy. It is this information which is exhibited in
the application discussed in this chapter.

12.2 TheModd and Data

Recall from Eq.[(4.25) that the model can be written as

Xr11 = Axp +Bu, + ¢ (12.1)
where
X = l ?’f ] _ l C.O”S“mp“"”] u, = Oy — [obligatio]  (12.2)
& Investment
with
Al e[ e []
and

460.1
X0 = l 113.1 ] (12.4)
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Also from Eq. [4.2b) the criterion function is

J = %[XN—}NCN]IWN[XN—}EN]
+3 > ([xke — %i) Wi [xp — %p] + [up — ag)' Ag[ug — 1)) (12.5)
k=0

where

x = desired state vector,
u = desired control vector,

W = weights on state deviations,
A = weights on control deviations.

The pathsx and u were chosen by assuming desired growth rates7of
percent per quarter. The base for these desired paths are the actual data for 1969-I

460.1
113.1

Xp =

] iy = [153.644] (12.6)

The weighting matrices were chosen to give greater weights to state deviations in
the terminal year than in other years in order to model the fact that political leaders

care much more about the state of the economy in quarters just before elections
than in other quarters. Therefore, these matrices were set as

Wy = diag[100, 100] W, =diag[l,1] Ay =[1]
k= 0,1,...,N—1 (12.7)

Take stochastic version of the model is obtained by minimizing the expected value
of Eq. (12.5) subject to system equations

xo ~ N[Xoj0, E5j5]

Xpp1 = Axp +Bug +c+v 12.8
k+1 k k k Vi ~ N[O, Q] ( )
and measurement relations

where

v = system-equation noises,
W = measurement errors,
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H = measurement matrix,
y = measurement vector.

It is assumed here that the initialis known imperfectly and that its estimate is
normally distributed with mea,, and covariancéj(’)‘rg. The system-equation
noisev, and the measurement noise are both assumed to be normally distributed
and serially uncorrelated with means zero and covaria@casdR,, respectively.
Although it is not true that the error terms are uncorrelated, that assumption has
been used here for the sake of simplicity.

The diagonal elements of the covariance of the system-noise @rane the
square of the standard errors of the reduced-form equation errors. The diagonal
elements of this matrix are

Q = diag[9.61,18.92] (12.10)

The measurement-error covariariBewas estimated from the revisions data by
the procedure outlined in AppendiX R. The resulting matrix is

2.71 1.12}
1.12 2.78

Note that the variance of the measurement error for consumption is low relative
to its value ofx (2.71 on460.1 billion) while that of investment is relatively high
(2.78 on 113.1 billion). The algorithm described here takes account of this fact
and relies less heavily on the observed value of investmetitan the observed
value of consumptiony; in updating estimates of both states and parameters and
therefore in determining the control to be used in subsequent periods.

In the results reported here a single case of parameter uncertainty has been
considered. In this case all eight of the coefficientaiB, andc were learned.
As in Chap[ 1D, a parameter vecirconsisting of the uncertain parameters is
created and added to the initial state vectdo create a new state vectar The
state equations for the augmented model are

Xpr1 = A(Ok)xk + B(Gk)uk + c(Ok) + v (1212)
= DO, + n (12.13)

R = { (12.11)

Or+1

whereD is assumed to be an identity matrix andis assumed to have both
mean and covariance equal to zero (to model the case of constant but unknown
parameters).

1In contrast, in_Kendrick (1979) only 5 of the 15 parameters were learned. The other 10 were
assumed to be known perfectly.
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Part of the system equations, namely Eqg. (12.12), is now nonlinear in the new
state vector

2, = [ ’;k ] (12.14)
k
Also, the covariance of the state vector at tilmas estimated with data obtained
through period: is now defined as
5= [0 o
Ek\k Ek\k
With this notation the initial conditions for the augmented state equafions (12.12)

and [12.1B) are

(12.15)

1.014 ]
002
~.004
. 460.1 ; ~1.312
ol = l 113.1 ] 0= 093
753
~.100
448

(12.16)

o [271 112
oo = {1.12 2.78] (12.17)

zgrg = (2;;{5)' = (12.18)

SO OO O o oo
SO OO O o oo

2690E—03 —.5469E—03 —.3743E—03 —.5619E—02
—5469E—03  .2297E—02  .1590E—03 —.1992E—01
—.3743E-03  .1590E—03  .9675E—03  .1039E—01
00 = | —5619E—02 —.1992E—01  .1039E—01  .2316E+01
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H440E-03 —.1106E—02 —.7568E—03 —.1136E—-01 (12.19)
—.1106E-02  .4644E—-02  .3215E—-03 —.4028E—-01
—.7568E—03  .3215E—-03  .1956E—-02  .2102E—-01
—.1136E—01 —.4028E—01  .2102E—-01  .4684E4-01

The prior mean ofx is set toxy, and the prior mean fo@ is set to the
estimated reduced-form parameter estimates. The state covafiance (12.17) is set
equal to the measurement-error covariance. The covariance](12.18) was set to
zerdd The covariancé (12.19) was estimated with the Time Series Processor (TSP)
econometric package.

12.3 Adaptive Versus Certainty-Equivalence
Policies

When measurement errors are considered, will adaptive-control methods vyield
substantially better results than certainty-equivalence and open-loop-feedback
methods? Posed another way, the question is whether or not it is worthwhile to
carry out the elaborate calculations which are required to consider the possibility
of learning parameters and the gains which accrue from this learning. Results
presented later in this section provide some evidence that it is not worthwhile;
however, these results are based on assumptions that many economists—including
the author—find unrealistic. Before presenting the results a word of caution about
numerical results obtained from complicated calculations is in order.

As is apparent from Chap. 110, the computer codes from which these results
have been obtained are rather complex since they include both estimation and
optimization procedures embedded in a Monte Carlo routine. Independently
coded programs have therefore been used to check results. Fred Norman, Yaakov
Bar-Shalom, and the author have independently coded various versions and parts
of the adaptive algorithms. The most complicated part of the code is in the
evaluation of the cost-to-go. Norman (using his program), Kent Wall (using Bar-
Shalom’s program), and the author have been able to duplicate each other’s results

2 This covariance could be estimated by applying a Kalman filter to the same data that were
used for estimating the reduced form of the model. Some sensitivity tests on an earlier model
indicated that the results were affected substantially by the cho‘m“%gf
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on a number of other problems but have not fully checked the present problem.
Therefore, the results presented here must be checked against one’s intuition until
complete numerical checking can be accomplished. It is in this spirit that the
results are presented.

Table[12.1 shows the results from thé Monte Carlo runs completed. For
each run random values of the systems neisethe measurement noises;,
the initial state estimatg,|y, and the initial parameter estima‘igo are generated
using the means and covariances described above. The evidence suggests that
the sequential certainty-equivalence procedure of Appéndix O is inferior to both
the open-loop-feedback method (OLF) of CHdp. 6 and the adaptive-control (dual)
method of Chap._10. Of the two stochastic methods the OLF was superior in
18 and the dual method ih2 of the 34 runs. As more data are obtained, it will
be useful to see whether there is a statistically significant difference between the
three methods.

If the OLF results continue to appear to be better than the dual results, it
would be possible to use the computationally simple OLF results rather than
the computationally complex dual procedures in performing stochastic control
on macroeconomic models. Of course this tendency may not continue as larger
models are used for experimentation. Also, these results are for a model is which
the parameters are assumed to be constant over time. If, alternatively, it had
been assumed that some or all of the parameters were time-varying (a realistic
assumption for some parameters), the ranking of the three methods might be
different. Under the assumption of time-varying parameters the initial covariance
matrix for the parametelﬁgﬁ) would probably have larger elements, representing
the fact that the parameters would be known with less certainty. Then there would
be more to learn, and the dual method might be superior to the OLF method.
However, though more could be learned, the information obtained would be less
valuable since its worth would decay over time with the time-varying paths of the
parameters.

12.4 Resultsfrom a Single Monte Carlo Run

In order to provide more insight into the types of results obtained from stochastic
control models the results of one of the Monte Carlo runs (run 4) are presented
in detail in the following pages. This run is representative in the sense that the
OLF solution was the least costlg3.695), the dual was next28.717), and the

certainty-equivalence solution was the worst (23.914). Also the results make clear
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Table 12.1: Comparison of criterion values (thousahds)

Monte Carlo Certainty Open-loop

run Order equivalenc€ feedbackD Dual D
1 O,D,C 22.450 22.240 22.320
2 0,C,D 28.710 28.610 28.730
3 C,D,0 31.850 32.000 31.870
4 O,D,C 23.941 23.695 23.717
) D,0,C 23.020 22.917 22.909
6 O,D,C 29.229 28.787 28.867
7 C,D,0 21.597 21.759 21.637
8 O,D,C 19.219 19.139 19.213
9 D,0o,C 25.392 25.324 25.278
10 O,D,C 27.907 27.418 27.504
11 D,0,C 25.975 22.242 22.115
12 O,D,C 26.402 25.818 25.975
13 D,0,C 21.615 21.438 21.298
14 0,C,D 27.810 27.705 27.853
15 D,0o,C 15.893 15.701 15.563
16 D,0,C 23.078 22.862 22.811
17 O,D,C 23.545 23.084 23.107
18 c,0,D 26.899 26.934 27.013
19 O,D,C 22.366 21.820 22.092
20 O,D,C 18.360 18.283 18.349
21 D,0,C 22.069 21.745 21.512
22 D,0,C 20.177 19.914 19.904
23 0,C,D 17.938 17.879 17.976
24 O,D,C 36.133 35.678 36.057
25 0,C,D 24.143 24.128 24.182
26 C,D,0 27.871 27.943 27.911
27 O,D,C 21.019 20.678 20.905
28 O,D,C 26.181 26.080 26.082
29 O,D,C 27.344 27.123 27.276
30 D,C,0 18.488 18.498 18.458
31 D,C,0 29.107 29.156 28.977
32 D,0o,C 26.894 26.581 26.496
33 O,D,C 16.811 16.312 16.523
34 D,0,C 28.878 28.708 28.678

t In these runs, the number of times each method had the lowest cost was
OLF = 18, Dual= 12, CE= 4.
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Figure 12.1: Consumption.

that the model used has some characteristics which detract from its usefulness for
testing the relative performance of different control-theory methods on economic
models.

The input data which are specific to Monte Carlo run 4 and the numerical
results for that particular run are included in Apperidix T. The primary results are
displayed graphically in the remainder of this section.

12.4.1 Time Pathsof Variables and of Parameter Estimates

Figures 12.1 anld 12.2 show the time paths of the two state variables, consumption
and investment, under each of the three control schemes, and the desired path for
each state variable. Figure 12.1 tells very little about the results but illustrates
one of the undesirable properties of this model, the fact that the consumption
path is explosive and that differences in controls have very little impact on
the consumption path. These results come from the fact that the coefficient
ay 1S 1.014 and the coefficienb, is —.004. Thus consumption grows almost
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Figure 12.2: Investment.
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independently of changes in government expenditures.

Figure [12.2 displays the investment paths under the alternative control
schemes and is considerably more interesting. It illustrates the difficulty of
maintaining an economy on a steady path in the face of the various kinds
of uncertainty which face economic policy makers. (1) There is the additive
uncertainty in the equation, representing the impact of unpredictable changes in
investment which affect the level of investment additively. (2) The policy maker
has an estimate of how the economy will respond to a policy measure but does not
know what the actual response will be. (3) The policy maker does not know what
the true state of the economy is at the moment because the statistics which report
that state are affected by measurement errors.

Next compare the sequential certainty-equivalence path (CE) and the dual-
control path (dual) in Fid._1212. Qualitatively, one would expect the dual-control
path to deviate farther from the desired path than the certainty-equivalence path
in the early time periods but be closer to the desired path in the terminal period
(just before the election). This occurs in this particular Monte Carlo run. In the
first time period desired investment is roughli.0 billion, the CE investment-
path level is about14.3, and the dual-path investment level is roughly.4.

So the CE path deviates from the desired path3blyillion while the dual path
deviates byl .4 billion. In contrast, in the last time period (period 7), supposedly
the quarter just before the next presidential elections, the CE time path deviates
from the desired by roughly billion while the dual time path deviates by less
than.1 billion. It should be emphasized that this kind of pattern is not observed
in all the Monte Carlo runs but is illustrative of the kind of result that one expects
when comparing certainty-equivalence results with dual-control results.

Next compare the OLF path with the adaptive-control (dual) path. This path
is neither as far off the desired path in the first period nor as close to the desired
path in the last period as the adaptive-control path. However, on average when all
the costs are considered, including both the state and control cost, the OLF path
has a slightly lower cost than the dual path.

If Fig. [12.2 seems to confirm one’s preconceptions about adaptive-control
results, Fig[ 1213 shows that matters are not so simple. This figure shows the
desired, CE, OLF, and dual paths for the control variable, government obligations.
The simplest preconceptions about the control path in the first time periods
in stochastic control problems are (1) that solutions like OLF which consider
uncertainty will be more “cautions,” i.e., have smaller control values, than those
like CE which do not consider uncertainty and (2) that solutions like dual which
consider learning as well as uncertainty will do more “probing,” i.e., have control



CHAPTER 12.

Government obligations, bitlions of 1958 dollars

200.00 ¢

e Open-ltoop

feedback
168.00 +
160.00 +
Desired
152.00¢+
144.00 1 1 1, L ! L |
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

Time. quarters

Figure 12.3: Government obligations.

EXAMPLE: MODEL WITH MEASUREMENT ERROR 145



CHAPTER 12. EXAMPLE: MODEL WITH MEASUREMENT ERROR 146

values farther from the desired path, than solutions like OLF which consider the
uncertainty but do not consider learning. One of these propositions is borne out
by this particular Monte Carlo run, but the other is not. The OLF path is indeed
more cautious than the CE path in the first time period, but the dual path does not
exhibit more probing than the OLF solution in the first few time periods. As work
progresses in this field, it will be interesting to observe what classes of models
will on average over many Monte Carlo runs exhibit both the caution and probing
characteristigg.

Figured12.4 t6 12.11 show the paths of the eight parameter estimates in the
vector@ for the eight time periods under each of the control methods. Figure 12.4
gives this information for the parametey;. The true value of the parameter
is 1.014. The initial estimate of the parameter 130, the same for all three
methods. This initial estimate is generated by a Monte Carlo routine which uses
the covariance of the parameter estimates.

In glancing at all eight of the parameter-estimate figures {124 0112.11) one
observes that for all three methods the estimates change substantially in the early
periods and much less in the later periods. This is due to the fact that as more data
are collected, the state and parameter-estimate covariance become smaller and
the extended Kalman filter tends to assign lower weights to new observations in
updating the parameter estimates. One can also observe that some of the parameter
estimates actually diverge from, rather than converge to, the true values. While
this is somewhat disturbing, it is worth remembering that the estimation done in
the context of an optimal control algorithm does not treat all parameters equally.
Some parameters are obviously more important than others when one considers
the impact of uncertainty on the choice of control. For example, one of the most
important parameters in this problemts, the parameter for the government-
obligations control variable in the investment equation. This parameter is shown
in Fig.[12.10. The estimates for this parameter converge toward the true value. The
estimate made in the adaptive-control (dual) solution is closer to the true value at
the terminal time than either the CE or OLF estimates. However, in the problem
at hand there is a heavy weight on deviations of the states from the desired path at
the terminal time (period 7), so it may be more important to have a good estimate
of b, in period 6 than in period 7. At period 6 the CE estimate is the closest, while
the OLF and dual estimates are about equidistant from the true value.

3Preliminary results from dual control experiments on the Abel (1975) model with 2 state
variables, 2 control variables, and 10 unknown parameters exhibit both the probing and the caution
characteristics [Kendrick (1980a)].



CHAPTER 12. EXAMPLE: MODEL WITH MEASUREMENT ERROR 147

Parametera,, X 107}

10.36 ~

10.32}

10.28+

10.24¢

10.20+

1016+

Dual

CE

Open-loop f::dback

True

10.12F

10.08

0.00

1.00

2.00

3.00 4.00 5.00 6.00 7.00

Time. quarters

Figure 12.4: Parameter;.



CHAPTER 12. EXAMPLE: MODEL WITH MEASUREMENT ERROR 148

Parametera;, X 107!

0.12r

008+

0041

True

0.00+

004t

—0.084

-0.16

Open-oop teedhack
Dual

0.00

1.00

2.00

3.00 4.00 £.00 6.00 7.00

Timc. quarters

Figure 12.5: Parameter.
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This completes the discussion of the time paths of variables and of parameter
estimates for the single Monte Carlo run. In order to understand these results
better it is useful to separate the cost-to-go into several components.

12.4.2 Decomposition of the Cost-to-Go

As discussed in Sec. 10.3, it is possible to divide the approximate cost-to-go into
three components, which were given the names deterministic, cautionary, and
probing by Bar-Shalom and Tse (1976a). While there is debate about the efficacy
of this particular separation and labeling of tel@nbe separation into components
has proved to be valuable in comparing results and debugging computer codes and
in beginning to understand the character of the results.

In general functional form the three components are:
Deterministic:

JD,N—k - f(Xkl? Ug, XoN, (X0j7 qu)ji?gi—l) (1220)
Cautionary:
Jon—k = F (¥ e Srm (Qn Ti)iok) (12.21)
Probing:
g J _ XX on 200 N-1 12 22
P,N—k — f(( Jli» <jl3° j|j)j:k+1) ( : )

The detailed expressions are in Eqs. (1D.49) to (10.51), and their derivation is
given in Appendix Q.

The reader may recall from the earlier discussion that the deterministic
component contains only nonrandom terms. All stochastic terms are in either the
cautionary or the probing components. Of these stochastic terms the cautionary
componentincludes termsiy |, which represent the uncertainty in the system
between the time a control is chosen at timend the time the next control
is chosen at tim& + 1. In contrast, the probing component includes terms in
(Eﬂj);\’;klﬂ, which is the uncertainty remaining in the system after measurements
have been taken in each time period after the current time péribdparticular,
this component includes the parameter covaridagefor all future time periods.
Since probing will serve to reduce the elements of this covariance, the component
which includes the covariance is called firebing component.

Figures[1Z2.12 td 1218 show for each period the total cost-to-go and its
breakdown into deterministic, cautionary, and probing terms as a function of the

4See, for example, Dersin, Athans, and Kendrick (1979).
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controlu,, (government obligationﬁ).Consider first Figl_12.12 for period 0. The
deterministic component is the largest of the three, followed by the cautionary
and the probing components. Also the deterministic component is a convex
function, the cautionary component is roughly a linear function, and the probing
component is concave. Since the cost-to-go is the sum of these three functions,
it is not necessarily concave or convex and the problem of local optima is a real
possibility. Recall that local optima did indeed occur in one variant of the MacRae
problem discussed in Chap]11 (see, for example[ Figl 11.2). For this reason a grid-
search method was used in finding the minimum cost-to-go. The widely spaced
points on each component represent the 20 values of government obligations at
which the functions were evaluated. The closely spaced points in turn represent a
finer grid evaluation at nine points centered on the minimum from the coarse-grid
search.

A quick glance at Figs. 12.12 throuph 12.18 reveals that there is not a serious
problem with local optima. Thus gradient methods probably could have been
used. In fact this might have improved the relative standing on the dual method in
the Monte Carlo runs. However, at this stage of the research, caution is advised.
If it should result after a variety of macroeconomic models have been solved
with grid-search methods that local optima are not a serious problem, gradient
methods can be employed. This would be an important development because it
would substantially reduce the cost of each Monte Carlo run, permitting wider
experimentation.

Now consider the effect of each of the three components on the location of the
minimum. The minimum of theeterministic cost componentin Fid. 12.112 occurs
at a government-obligation level of abolf5 billion dollars. (The interested
reader can find the numerical results in Appendix T, for period O in Table T.4.)
In contrast, the minimum of thetal cost occurs at roughly70 billion dollars.

Since the probing component is relatively flat, it is apparent that the positive slope
of the cautionary term results in a decrease in the optimum level of the control
from 185 to 170. Thus in this particular problem the cautionary term does indeed
result in a more cautious policy. In contrast, the slope of the probing term near
the optimum of170 is small but negative; so the probing term has the effect of
increasing the optimum level from the deterministic optimum.

Thus in this problem for this time period the effect of the cautionary term

5A grid-search method was used to obtain the points shown in these figures. First the functions
were evaluated at 20 points betwaepn = 100 andu,; = 195. Then the function was evaluated at
10 points around the minimum found in the first grid search.
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is to result in a lower level of government expenditures, and the effect of
the probing term is to cause a tendency toward higher levels of government
expenditures. However, the cautionary term has a fairly large positive slope,
and the probing form has a small negative slope. This suggests that, relative to
the Xy 11, terms, the(EN)j-V;,#l terms are not changed much by changes in the
government obligations. Another way to say this is that increases in government
obligations have two effects. One is to increase the uncertainty about the levels
of consumption and investment which will be obtained in the next period (period
k + 1). The other is to decrease the uncertainty about postmeasurement values
of the states and parameters in all future time periods. For this problem in this
(and all other) time periods the two effects work in opposite directions, but the
uncertainty in period + 1 is the overriding effect.

It seems reasonable to conjecture that larger valueggﬁf that is, of the
initial covariance matrix of the parameters, will result in relatively greater effects
from the probing terms; i.e., if there was greater initial uncertainty about the
parameters, probing would be more worthwhile. With the assumption used in
this model that parameters are constant but unknown, the initial covariance of
the parameters is sufficiently small for further learning from probing not to be
a high priority. If, on the other hand, it was assumed that the parameters were
time-varying, the initial parameter-covariance matrix elements would be larger
and there would be probably be more gain from active learning. However, the
value of knowing the parameters better at any time is less when parameters are
time-varying since the parameters will change. Therefore under the assumption
of time-varying parameters it seems likely but not certain that there will be more
active probing.

Against this one can ask whether or not economists really know the parameters
of United States macroeconomic models as well as is represented by the
covariance of coefficients when estimated on 20 to 30 years of quarterly data
with the assumption that parameters are constant over that entire period. An
assumption that at least some of the parameters are time-varying seems much
more realistic.

This completes the discussion of the results for period 0. A comparison of the
results across all of the time periods follows.

In looking at Figs[12.13 t6 12.18, the first thing one observers is that the
deterministic cost term increases relative to the other two components. This is an
artifact of the particular problem at hand and probably not a general result. The
reason for this can be seen in Hig. 12.1, which shows the divergence of the dual
path from the desired path for consumption. This divergence is a result of the
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explosive path of consumption in this particular model and thus is not a result that
is likely to recur when more suitable models are used.

Next one can observe that the cautionary component becomes smaller and has
a smaller positive slope as one moves from period 0 to period 6. This results
from the fact that uncertainty about both states and parameters is reduced as time
passes.

Also, the probing component becomes smaller with the passage of time and
becomes zero in period 6 (FIg._121.18) when only one period remains and there is
therefore nothing to be gained from active learning.

Thus with a relatively high ratio of terminal-period penalti®s,y to other
period penaltied3V, of 100 : 1 there is not much gain from active learning in this
small model with constant but unknown parameters. It remains to be seen whether
this result will hold with larger models, different assumptions about parameters,
and different ratios of terminal to other period weights.

In summary the results show that (1) in the relevant range the slope of the
cautionary term is positive and the slope of the probing term is negative; (2)
the probing term is smaller in magnitude and has a smaller absolute value of the
slope than the cautionary term; and (3) both the cautionary and the probing terms
decrease with the passage of time.

12.5 Summary

The methodology of control theory embodies a variety of notions which make
it a particularly attractive means of analyzing many economic problems: (1) the
focus on dynamics and thus on the evolution of an economic system over time,
(2) the orientation toward reaching certain targets or goals and/or of improving
the performance of an economic system, and (3) the treatment of uncertainty not
only in additive-equation error terms but also in uncertain initial states, uncertain
parameter estimates, and measurement errors.
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Appendix A

Second-Order Expansion
of the System Equations

For simplicity consider first an vectorx, anm vectoru, and a set ofi functions
f* of the form
x = f(u) (A.1)
where
T U fH(u)
x=| : u=| : f(u) = : (A.2)

Ty, Uy, f(u)

Then the derivative of a single functiofi with respect to the vecton is the
column vectdt .
of'

8U1

: (A.3)
ofi

Oy,

1 This differs from the usual procedure of treating the gradient vetdrof a function as a
row vector. This means that all vectors are treated as column vectors unless they are explicitly
transposed.
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Also, the derivative of the column of functiofiswith respect to the vectar is
defined to be the matrix

! af!
1y/ — e
(f“) 3u1 Gum
fo=|  |=1............0 (A.4)
(£3)’ ort ... o
3u1 Gum

The second derivative of a single functigh with respect to the vectau is
defined to be

anz’ 32 fz
_ Oou,0uy o Ouq Uy,
flo=1 o (A.5)
anz’ 82 fz
OU, OUy o OUp, OUpy,

Using the above notation, one can write the second-order Taylor expansion of
theith equation in[(Al) around’ as

zi = f'(u") + (£)[u — u'] + 3[u — u'f, [u — u] (A-6)

Similarly the vector case of Eq._(A.6) can be written
1 i
x = f(u') + f,[u — u'] + 3 S e'lu—ul]f,[u—u (A.7)

where

el = « ith position

0

The effect of the multiplication by’ is to place the scalar quantity
[u—u]'fi,[u—uf]

in the ith row of Eq. [A.T).
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By analogy with Eq.[(AJ) the second-order Taylor expansion of the system
equations

Xk+1 = fk (Xk, llk) + €k (A8)
about(xy, u}) is
Xprr = B(up ul) + [Eexe — i) + [Fu[up — uf]
1 ) . i i
+ - Ze’ X — Xk Fh[Xp — Rip] + = Ze w, —ul]'f! [u, —ul]
+ Z e’ X — ch|k f [llk — llk] + Sk (Ag)

wheref, andf, denote the jacobians éfevaluated a(fck‘k, u,i) andf,, f.,, and
f.. denote the hessians evaluate¢saf,, uz).



Appendix B

Expected Value of Vector
and Matrix Products

B.1 TheExpected Value of a Quadratic Form

The purpose of this appendix is to show that the expected value of the quadratic
formis
FE{x'Ax} = %x'Ax + tr(AX) (B.1)
where
x = random vector of dimensiom,
A = n x n matrix,
x = F{x},
tr = trace operator,
3 = covariance ok = E{[x — x|[x — x]'}.
Following the line of argument in Goldberger (1964, p. 166), we obtain
E{x'Ax} = FE{tr(x’Ax)} x'Ax =scalar
= FE{tr[Axx']} sincetr[AB] = tr[BA]
= trE{Axx'} traceis alinear function (B.2)
E{x'Ax} = tr[A(E{xx'})] A isaconstant matrix (B.3)

Now consider the definition of the covariance matrix [see Goldberger (1964,
p. 106) for related discussion]

S = B{x-xx- %)
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= F{xx' —xx' —xx' + xx'} (B.4)
Y = E{xx'} — %% (B.5)

Therefore, from Eq[(BI5)
E{xx'} =xx'+ & (B.6)

Substitution of Eq.L(BI6) into Eq.(B.3) yields

F{x'Ax} = tr[A(xx'+X)]
= tr[x’Ax+ AX] tr[AB] = tr[BA] (B.7)
F{x'Ax} = %'Ax+tr[AX] x'Axisascalar (B.8)

and Eq.[(B.B) is the same as EQ. (B.1).

B.2 TheExpected Value of a Matrix
Triple Product

This section extends the result above to show that whpgis the (7, j)th element
of D and
D = E{AKB} (B.9)

whereA, K, andB are conformable matrices with andB random andK fixed,
we have

di; = E{a;Kb;} = 4, Kb; + trKZy, ] (B.10)
First let
H = AKB (B.11)
then ] )
> kb
l

Z ko1by;

hij = a l (812)

> kb
L 7
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wherea; is theith row of Al Now

hij = an Z k'ubz]‘ + a2 Z kotbyj + -+ - + aip Z Fnibyj
] ] ]

- Sl =3 et

= a;ij

whereb; is thejth column of B.

Thus,

dij = E{hm} = E{aleJ}
Then, following the steps used in Sec.B.1, we have

E{aZKbJ} =

Also,

Ebjai

Therefore,

E{tr[ajKb,]} sincea;Kb; = scalar
E{tr[Kb;a;j]} sincetr[AB] = tr[BA]
tr(E{Kbja;}) traceis alinear function
tr(KE{b;a;}) Kisa constant matrix

BE{[b; — b]la; — a;]'}
E{bja; — Bja;- — b]fi; + B]é.;}
E{b;a}} — bja]

E{bja;} = f)]é; + Ebjai
Substitution of Eq.[(B.20) into EJ.(B.18) yields

E{ajKb;} = tr[K(b;a}) +KZya]

or

= tr[é;KlA)]’ + KEbjai]

E{a)Kb;} = a/Kb; + tr[KZ} ,/]
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(B.13)

(B.14)

(B.15)
(B.16)
(B.17)
(B.18)

(B.19)

(B.20)

(B.21)

1 To be consistent in the treatment of vecterscontains the elements of thith row of A, but
these elements are arranged as a column. &hisa row vector.



Appendix C

Equivalence of Some
Matrix Riccati Recursions

This appendix shows the equivalence of $he, andK recursions in two articles.
The first article is (BTL) Bar-Shalom, Tse, and Larson (1974) . The second article
is (TBM) Tse, Bar-Shalom, and Meier (1973). The recursions are given in the
papers in the following forms: BTL (A.14) to (A.16):

gi = Gjy1 — %HL}(;&HU + %tl’[Kj_HQj + Axxzj|j] gy =0(C.1)
b; = H, — :H:,uxg{;l_llHu Py = Ly (CZ)
Kj = j_(:xx - -Axx KN = LN,xx (C3)

TBM (A.7) to (A.9):

9 = 9+ — sH HGH 4 5tr[Ho S5 + (851 — 2y K]

gN = %tr[LN,xx2N|N] (C4)
b, = Hy - }CLX%;&HU Py = Ly (C5)
Kj = g{xx - Axx Ky = LN,xx (C6)

Since Eqs[(Cl2) and(Q.3) are the same as Eqsl. (C.5)add (C.6), itis necessary
only to show the equivalence for EqE. (C.1) andC.4). The method of doing this
is to begin with Eq.[(C]1) and derive EQ.(C.4).

First one needs a relationship between thef Eq. (C.1) and the; of
Eq. (C.4). This lies in the expected cost-to-go formulas of the two papers which
are, respectively, BTL (3.19):

AJy_ ;=g + BE{p}ox; + ;0x/K;6x;|P’} (C.7)
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and TBM (A.3):

First consider the termA J3,_; and AJ;, which are equivalent even though
thej’s are not. In fact the subscripts on these terms could be writtdh-ag z =
Jr, Wherejg is thej used in[[C.V) andy is thej used in[[C.8). Then

Jr+ip=N (C.9

makes it clear thafr is an index for counting backward. ThusJy _, is the
cost-to-gojp periods from the end and J7 is the cost-to-go at periogr. So

we can set Eq[(C.7) equal to Ef. (C.8) with the understanding of the indexing as
stated above. Doing this and taking the expectation in[Eq] (C.7) yields

g + PjOX;); + 50X, K;0%); + 5tr[K; 3] = g; + pjox;); + 50X, K;0%,);
(C.10)
or
9j = §j — 5tr[K; 3] (C.11)

Equation [[C.111) can be substituted into Hg. {C.1) as the first step in the
transformation of the BTL equatiof {C.1) into the TBM equatibn {C.4). This
yields

~

95 — str[KZ] = g — ptr[K 54
—1H HuuHy + 260K 1 Q) + AxxX;);] (C.12)
or
9 = gin — gHL I H,
+ 10K Q) 4+ AxxZj; + KiEj; — K Bjq41]  (C.13)
A comparison of Eqs[{C.13) and (C.4) shows that all terms are the same except
the trace term. Therefore consider only the trace term. Solveg EQ. (C.3).for
and substitute the result into the trace term to obtain
K1 Qj + Axx ) + KjZj — K By
= tr[K; 1 Q) + HxZj)j — K1 ]
= tr[K;11Q; + Hux Xy + £ K 115X
— K 1X1141] by definition ofHxx (C.14)
= tr[Hyx X5 + K1 [£. 38 + Q]
— K1 Zj1)511]  tr(AB) = tr(BA) (C.15)
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Now consider the middle term of Eq._(C]15). It can be shown that
Yy =652tk +Q; (C.16)
through the following steps. By definition
By = B{Xj1 = Xl X1 — %00,] [P} (C.17)

The termx;,;; was shown in Eq[(9.13) to be
Xj1; = £(X;)5, ug) Z e'tr(fi 2j)5) (C.18)

Also a second-order expansion of the system equalioh (9.4) (set}gin:g uy)
yields, from Eq.[(9.10),

X1 = £ (xm,uk)wa — X+ 2 Ze xm [ —x;;]+¢&; (C.19)

Dropping the second-order terms from EQsS. (C.18) Bnd {C.19) and subtracting one
from the other results in

Xjr1 — Xy = filx; — %] + §; (C.20)
Substitution of Eq.[(C.20) into E4. (C.117) yields
Y= E{f, [x; — %;][x; XJ\J] f, + 2f, (X XJ\J]E + &€ |g)j} (C.21)
or

by the definitions of2;; andQ; and the assumption of the independence pf
and¢;. Expression[(C.22) is then the same as Eq. (C.16) and can be substituted
into Eq. (C.15) to obtain

trace term= tr[Hy 3 + K120 — Kj1Z510541] (C.23)

Substitution of Eq.[{C.23) into thé expression[{C.13) and use once again of
tr(AB) = tr(BA) provides

9; = 91 — sHLH G Hy + 2tr(H S + (D41 — Zj141)Kj41)  (C.24)
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which is the same as E@.(C.4).
The initial condition for Eq.[(C}) can be obtained by using the relationship
betweery andg in Eq. (C11)

QN =gn + %tr[KNENW] (C25)

From Egs.[(Cll) and (C.3)y = 0 andKy = Lyxx; therefore, Eq.[{C.25)
becomes

gn = 5tr(Lyxx SN |N) (C.26)
asin Eq.[[CHh).
Thus the equivalence between E@s.(C.1) (C.4)] (C.2Yand (C.5),ahd (C.3)
and [C.6) has been shown.



Appendix D
Second-Order Kalman Filter

This appendix is about the use of bayesian methods to obtain estimates @f |
andX x4 from X, andX; ), using the measurement., ;. This is done
with the method outlined in Bryson and Ho (1969, pp. 377-381, and probs. 12.2.2
to0 12.2.5, pp. 357-358). Their method b(i) (p. 378) is employed here.
The problem is to use the measurement relationship

Yi = hy(xk, Ck) (D.1)

to improve the estimates of the mean and covariance. dbince neithe nor
¢ is directly observable, it is necessary to use the informatiop to improve
the estimate. In order to show how this is done, a general derivation will be
accomplished by using the sections in Bryson and Ho mentioned above, and then
these will be extended slightly through the use of a second-order expansion of the
measurement relationship.

Bryson and Ho’s (BH) notation for the measurement relationshipl (D.1) is
{Bryson and Ho (1969, eq. (12.7.1))}

z = h(x, V) (D.2)

where

z = m x 1 measurement vector,
x =n X 1 state vector,
v = ¢ X 1 measurement-noise vector.

It is desirable to obtaim(x|z), that is, the conditional distribution of the state
given the measurementctually obtained. Now by the definition of a conditional

177



APPENDIX D. SECOND-ORDER KALMAN FILTER 178

distribution
p(x|z)p(z) = p(x, z) (D.3)
or x.2)
_ px,z
p(X|Z) - p(z) (D4)

Thereforep(x|z) can be obtained from the joint distribution &f and z and
the distribution ofz. Assume for the moment thatx, z) is a joint normal
distribution andp(z) is a normal distribution. Then it is possible to derive a
conditional distributionp(x|z) in terms of the parameters of the distributions
p(x,2) andp(z) 3

Since it has been assumed thét, z) is normal, it can be written as

plz,x) = (27r)(m+i)/2|P|1/2 eXp{_%U[Z — o be-xI]P” l - ] }

D.5)
where
P,. P.x , :
P = = covariance matrix ofz, x) (D.6)
PXZ PXX
Also sincep(z) is assumed to be normally distributed, it can be written as
1 1 _
pe) = G ol - A PLE -} O

Then substitution of Eqs. (D.5) and (ID.7) into Hq. (D.4) yields

N e R R A F A )
Pixlz) = | oy mepye exp{—3([z — 2]'P;}[z — 2])}

(D.8)
In order to simplify this expression further it is necessary to obtain the inverse
of the partitioned matriX@¥. This can be done using, for example, the method
outlined in Ayres|(1962, p. 58)

1 The procedure followed here is the same as that used in solving prob. 12.2.4in_Bryson and Ho
(1969).
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where
C = Pyx — szPZ_ZIsz (D].O)

The first term on the right-hand side of E. (D.8) can also be simplified. For this it
is necessary to obtain the determinant of the partitioned matrix [see Gantmacher
(2960, vol. I, pp. 45-46)]

|P| = |PZZ||PXX - PXZP;ZIPZX| = |PZZ||C| (D-ll)

Substitution of Eqs[(D]9) and (D.111) into EQ. (D.8) then yields

1 1 , .,
p(x[z) = (COREREE exp {—5 ([[Z —z|,[x - x]]
(P Pr)C (P Py) | (TP, P,

Note in particular that th®_! terms cancel. Also from Eq.(D.12)

1
Pt = e

X exp {_% ([[—szPz; [z~ 2])', x — x]] l ﬁi gi l
. l ~P,P) [z - 7] D} (D.13)

X—X
p(x|z) W
« exp{—%([x % - PP [z—c"
X [x— % —PuP. ]z — z]])} (D.14)
and Eq.[(D.14) is a normal distribution with mean
E{x|z} = x + P, P!z — Z] (D.15)
and covariance

BE{[x — x|[x — x|'|z} = ¢ = Py — Px,P, P, (D.16)
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Therefore it has been shown thapifx, z) andp(z) are each normal densities,
the conditional distributiop(x|z) will also be normal and will have the mean and
covariance given by Eq4. (D.115) arid (D.16). Therefore the next step is to show
thatp(z) andp(x, z) are normal densities.
Consider firstp(z) and specialize the measurement relationship (D.2) to
the linear (or linearized case)
z=Hx+v (D.17)

whereH is ann x n matrix, and let
E{x} = x E{x—x|x—x]} =M
E{v} = 0 E{vww'} =R
In this casez is a linear combination of the two normally distributed random

variablesx andv; therefore,z is also normally distributed [see Bryson and Ho
(1969, p. 312)]. Also the mean and covariance can be calculated as follows:

z = F{z}=F{Hx+v}=Hx+0=Hx (D.18)
P,, = B{lz—2|[z-2|}
= E{[Hx+v - Hx|[Hx +v — Hx]'}
= E{[H[x —x] + v][H[x — x] + v]'}
= E{H[x - x|[x — x|H + 2H[x — X]v + vv'} (D.19)
P,, = HMH +R (D.20)

Thereforez is normally distributed as
p(z) = N(Hx, HMH' + R) (D.21)
Next considep(x, z). To show thap(x, z) is a normal density one can write
p(z,x) = p(z|x)p(x) (D.22)

It will first be shown thaip(x) andp(z|x) are normal densities. Therz, x) will
be derived, and it will be demonstrated that it is a normal density.
The densityp(x) is normal by assumption, i.e.,

p(x) = N[x, M] (D.23)
Then the density(z|x) is normal because

z=Hx+v
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and withx fixed, z is a linear function ofv. Also v is normally distributed;
thereforez is normally distributed. The mean and covariance(afx) are

F{z|x} = E{Hx + v|x} = Hx + F{v|x} = Hx
and
cov(z|x) = E{[z — Hx][z — Hx]'|x} = E{E{vV'|x}} =R
Therefore,
p(z|x) = N[Hx, R| (D.24)
Then using Egs[{D.23) and (D]24) in EQ.(D.22) yields
p(z,x) = N[Hx, RIN[x,M]
= Llexp{-4(fz— Hx]R'[z - Hx] + [x - XM '[x - x])}
where
¢ = (2m) R R M2

Next, complete the squares of the term in brackets in the exponent, i.e.,

G = [z-Hx]R 'z - Hx]+ [x — xM ™ '[x — ¥]
ZR 'z — 2z2ZR'Hx + xXHR 'Hx + xXM 'x — 2x'M " 'x + M 'x

Then, in order to complete the square add the zero term

YHR 'Hx — 2XH'R'Hx +xXHR'Hx
— 92ZR'Hx + 2ZR'Hx + 2xXHR 'Hx — 2x’H'R 'Hx
=0

to the right-hand side of th@ equation to obtain

G = ZR 'z-2ZR 'Hx + ¥HR 'Hx
—2[ZR 'Hx — ZR 'Hx — ¥H'R 'Hx + ¥H'R 'Hx]
+x' M~ + HR'H]x — 28'[M~! + HR'H|x
+x'M '+ HR 'H]x
= [z—-Hx|R [z - Hx| - [z — Hx]R 'H[x — x|
—x—-%HR 'z - Hx] + [x — x][M~' + HR'H][x — ¥]
. 4 _
_ W—}RLB—XH[_SRA M;gﬁEH][Z_HX]

X —X
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Also it can be shown that

R “R'H | ' [HMH+R HM
-HR' M'HR'H N MH' M
Thereforep(z, x) is normal densi@'
p(z,x) = N[(HX, %), P] (D.25)

where

!
p_ l P,, P,. ] _ [HMH +R HM (D.26)

Py, Pxx MH' M
Expressions [(D.21),[(D.25), and_(DI26) provide the mean and covariance
of p(z) andp(z, x) for the special case of a linear (or linearized) measurement

relationship. These relationships can now be used in Egs.(D.15]and (D.16) to
yield the conditional mean and variancexofivenz, that is,

E{x|z} = x+P,P,l[z 7 (D.27)
E{x|z} = %+ MH[HMH + R] '[z — HX] (D.28)
and
Y = E{x-x|x—x]|z} = Px — Px,P, P, (D.29)
Y = M-MH[HMH +R|'"HM (D.30)

To derive the Kalman filter for a second-order expansion of the measurement
equation with additive noise, consider first such a form to replace the linear

equation[(D.1I7)
z=h(x)+v (D.31)

2 A simple derivation of this is to recall th&,, = HMH' + R from (0_21) andPxx = M
by definition. So it remains only to obtal,, sinceP is symmetric an®, = P,

P.x = E{[x—-x|[z-12|}

E{[x — x][H[x — x] + Vv]'}

E{[x — x][x - x]'H' + [x — x][v]'}
P, = MH'

3Bryson and Ho use the notati@ rather than® for the covariance matrix af conditional
onz. Thus Eqgs.[[D:28) and{D.BO) provide the mean and covarianpéxdt) for a first-order
expansion of the measurement relationship. However, TBM use a second-order expansion.
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The second-order expansion of this expression is
z ~ h(x) + hydx + - Ze ox'h! 6x +v
Then the expected value is
=E{z} =h(x) + - Z e'tr[h

because”{6x} = 0, where
M = E{(6x)(6x)'}
Then

1 .
z—E(z):hx5x+§Ze’5Xhl 6x+v——2etr

The covariance fop(z) is obtained as

P,, = E{[z— E{z}]lz— E{z}]’}

M]
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(D.32)

(D.33)

(D.34)

_ E{hxaxaxfh; vt i S efel[8x'hi, 5x][6x'h 8x]

J

- T e b MM
-2 S M) o ox) |

or

P,, = h,Mh! +R + 1 >N e'e’ E{(6x'hl, 0x)(6x'hl, 6x)}
i

1 o . )
FLY Y e MM
(]
2 . . .
2SS bl Mt hM]
(|

(D.35)

(D.36)
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Now consider only the third term on the right-hand side of Eq. (ID.36). This
is a fourth moment, and under gaussian assumptions one has [see Appendix F
or/Athans, Wishner, and Bertolini (1968, eq. (48), p. 508)]

L Z e e/ E{(8x'hi_8x)(5x'h]_5x)} = P ¢/ (e/)'tr[h. Mhi_M]
+- Z Z )'tr[hl, M]tr[h? M] (D.37)
Then, using Eq.(D.37) in Eq.(D.B6) and collecting terms yields

P,, = h,Mh/ + R+ % Z Z e'e’tr[h’ Mh’ M]| (D.38)
iog
Using Eqg. (D.2F7) and (D.29) again, one obtains
E{x|z} = x+PyP, [z 17
= X+ [Mh] [thh; + R+ % Z Z eief’tr[h;xth;xM]] h
[z — 2] o (D.39)
and

Y = P« PP P, (D.40)

-1
1 - . .
Y = M- [Mh] [thh; +R+ 3 N ezeyftr[h;xMh§xM]]
i

[h,M] (D.41)



Appendix E

Alternate Forms of the
Cost-to-Go Expression

This appendix shows the equivalence of [Eg. (P.69), the Tse, Bar-Shalom, and Meier
(1973) (TBM) result, and Eq[{9.68), the Bar-Shalom, Tse, and Larson |(1974)
(BTL) result.

Since C, n_—1 and «;4; in BTL are equivalent toJ, y_x—1 and g, ;+1,
respectively, in TBM, Eq.[(9.68) is the same as [Eq. (9.69) except for the term

1 N—-1
3 > K1 Q)+ AxxZjy]
j=k+1

This term is derived here and then substituted into [Eq.{9.68).
Start with a result from AppendixIC, namely EQ. (C-11)

95 = §; — 3tr[K; 2] (C-11)

where

9; = gi+1 — sH I Hu + 500K Qy + Al gy =0 (C-1)

9 = 9+ — sHH G Hu + 5tr[Ho S5 + ()41 — Zjg4+0 K]
gN = %tr[LN,xsz\N] (C-4)
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From Eq.[[C-1) one can get

g1 = Grso — sHEH G Hu + $60[Kp2Qppt + AxxSh1jb+1]
gz = s — 3H HwuHy 4+ 500K 3Quio + AxxZhiopy]  (E.1)
gN-1 = gN — —H' WHoaHy + %tr[KNQNA + Axx BN -1n-1]

Successive substitution of all expressions into the first expression ilEY. (E.1)
leads to

1N1
Jk+1 = N__ZHI

1H —|—— Z tI‘ j+1Qj+'Axx2j|j] (E2)
] =k+1

j =k+1
In exactly the same way, one gets from Eq. (C-4)
1 N-1

Jk+1 = N__ > HIG
] k+1
N-1
+5 >t He X + (Bj51 — Bjrj+) K] (E3)
j=kt1

On the other hand, by E4.{CJ11),

Ik = Ge1 — 5[ Ke1 Bppa ] (E4)
Substituting Eqs[(El2) and(E.3) into Eq.(E.4) and simplifying the result leads
to
1 N— 1 N-1
2, [Kj+1Qj + AsxBjs] + 9v = 5 > {tr[HuEy,

+ (Zj41 — i) Kl + gv — 3tr[Kip1 Zgraps) (E.5)

Substitutinggy = 0 from Eq. [C-1) andjy = tr[Ly xx ] from Eq. [C-4)
into Eq. (E.5) yields

N-1

3 > [KiQy + Ayl
j=kt1

N—
Z {tr] HXXEN (2j+1\j - Ej+1|j+1)Kj+1]}
j=k+

wl»—*

+ %tr[LN,XXEN\N] — %tf[Kk+1Ek+1|k+1]

(E.6)
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Substituting Eq.{EJ]6) into E(J._(9.68) leads to

J;,N—k:f{}ikn{wk(xka uy) + o (ag) + Conog—1 + Vt1

+ St [E g1k — Skt K + 0Ly xx 2| v]
1 N-1
+5 Y tr[HeE, + (B — 2j+1|j+1)Kj+1)]} (E.7)

2 j=k+1

Equation[(E.Y) is exactly the same as EQg. (P.69) since the notational difference
between TBM and BTL is

TBM BTL
Jo,N—k—l Co,N—k—l
Jo,k+1 Ve+1




Appendix F

Expected Value
of the Product of

Two Quadratic Forms

by
Jorge Rizo Patron

In |Athans, Wishner, and Bertolini (1968, app. A, especially Eq. (48), p. 508), a
formal derivation ofE { (x'Ax)(x'Bx)} = 2tr[AXBX|+tr[AX]tr[BX] is given.
However, Athans et al. take as given that for a vector of gaussian random variables
with zero means one has

E{zz;rpm} = 04500 + 0o + 0uoj (F.1)

whereo;; is the covariance between andz;. In these notes, the derivation of
Eq. (E1) is developed. Thereafter, following closely the approach of the above
article, a formal proof of equality

E{[x'Ax|[x'Bx]} = 2tr[AXBX] + tr[AX]tr[BX]

whereX is the covariance matrix of thes, is given.
As E{z;x;zix,} is a fourth moment, the point of departure of the derivation
is the moment-generating functifnTo make exposition easier, this appendix is

1 The author has been helped in certain aspects of the derivation by notes of Yaakov Bar-
Shalom.
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divided into three sections. The first section provides a derivation of the fourth
moment in the scalar case. The second section generalizes this to the vector case,
and the third section applies the result to obtain the desired derivation.

F.1 Fourth Moment of a Normal Distribution
With Zero Mean: Scalar Case

x ~ N(0,0%)
wherex is a normal variable and? is its variance. Thereforef{z — u}? =
E{z*} = 02, as the meafy) is 0.
The moment-generating function would be [Theil (1971, p. 75)]
Mz(t) = e(1/2)7°t?
d

Mz'(t) = %Mx(t) = %022t6(1/2)02t2 = o2te(1/D7Y = g2t Ma(t)
d2
ﬁMx(t) = 0% tMa'(t) + Mx(t)o® = o*t(c*tMx(t)) + Mz (t)o?
= (o"? +o*)Mx(t)
d3

—Mz(t) = (o' +0®)M2'(t) + Mx(t)20't = (6*t? + 0% (c*t Mz (t))
+ Mz(t)20%t
(0583 + o't + 20" t) M (t) = (0% + 30*t) Mx(t)
—Mz(t) = (c°*+3c*t)M2'(t) + (30°t* + 30*) Mx(t)
(0% + 30't)o*tMx(t) + (30°* + 30*) M (t)
(%" + 60°t* + 30" ) M (2)

From the definition of the moment-generating function

4 d4
E =—M
{a} = 2 Ma(0)
Substituting O fort in the fourth derivative gives
E{z'} = 30*(Mx(0))

AS M:[,‘(O) = 6(1/2)02(0) = ]_’
E{z"} = 30"
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F.2 Fourth Moment of a Normal Distribution
With Zero Mean: Vector Case

In this case
x ~ N(0,X)
whereX is the variance-covariance matrix.
The moment-generating function when the meanis zero is given by {Theil[1971,
p. 77, eq. (5.7)]}
Ml‘(t) — 6(1/2)1:’21:

At this point it is useful to develop some derivations of matrix derivatives which
will be used later.

Recall that if
[ filt) ] [ ]

f(t)=| fi(t) | =M x1lvector and t=| t; | =N x 1vector
L fm(t) L N

then according to the notation used in Apperﬁ]g A,
-4 -

. fi®)
d d
Efz‘(t) = Ejfi(t) = N x 1 vector
4 :
a0l

2 In this appendix] is used to indicate partial derivatives.
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d d d T
d—tlfl(t) Ejfl(t) Efl(t)
] S R s ey
af(t) = d—tlfz'(t) - Ejfi(t) Efi(t)
SURREEEEEIERE RN |
d—tlfM( ) Eij(t) me(t)

which is anM x N matrix.
The following rules apply.
Rulel y
—t'At = 2At
dt

whereA is an N x N symmetric matrix and is an/N x 1 vector. The prime
stands for transpose.

Rule2 y
—At=A
dt
whereA is anM x N matrix.
Rule3
ia't =—tla=a
dt dt

wherea is anN x 1 vector.
Rule4

Se(6)9() = £6)] o] + [ LE®]o(0)
A 7 dat )Y
wheref(t) isanM x 1 vector andy(t) is a scalar.

PROOF f(t)g(t) is a vector of the form
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Therefore

192

[ d d d
—fi(t)g(t —fi(t)g(t —fi(t)g(t
9 o SR e Eefi)()
e e e
i) i i©9() - F()g(t)
e e LR |
— fu(t)g(t — fur(t)g(t — fu(t)g(t
G @9 - e fu(®g) - (et |
Therefore, callingf;(t) simply f; andg(t) simply g, we have
[ dg df1 dg df1 dg dfy ]
Fae T I, 9, Py 9ty
....C.Z.g ..... dfi .......... _'d'gm”dfl .......... ..(.ié ..... dfim
fldtl dt, fldtj dt; fldtN "9 din
...d:q ..... cif.]\;[ .......... cigl“”;if];/[“”-””“dlg ..... dfM
I G T 9, I, T gy, MG T ary |
[, dg dg dg ]
fldtl fldtj fldtN
i ...d!} .......... : g. .......... ckg}n
(£)g(t) fic, o i
...d.g .......... a.g .......... .d.g..
_ fMdt1 fMdtj fMdtN
A A dh ]
dt, dt, dt 5
ﬁﬁ ........ d.f.i..
I dt, dty
df oAby dfw
dt, dt; diy |
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Finally,

Rule5

T

f

| fur ]

d

|

dg
dt,

dg
dt;

Cag(t) =al o]

wherea is anM x 1 vector andy(t) is a scalar.

PROOF

Then

dt

—ag(t) =

[ aig(t) T

= | ol

| awg(t) |

dg
%]*

EXPECTATION OF PROD OF QUADRATIC FORMS

df
It
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Rule6 y y
—Af(t) = A—f(t
T Af(t) ft)

whereA isaK x M matrix andf(t) is ani/ x 1 vector.

PROOF

I zh: arn fa(t) |

Af(t) = Xh: ak,; fu(t)

Zathh(t)
L A d
Calling f,,(t) simply f, we have
[ df df i df dfmv ]
fl11dt1 + et ay dt, andtN + +a1MdtN
; . df1 ............ dfM ........... df1 ............ dfM .
—Af(t) = L. oM. B BT M
A gy TG Okt g s T G
. df1 ............. ; fM .......... df1 ............ dfM .
i aKldtl + + ag dtl aKldtN + +aKMdtN ]
Therefore
ai a1 a1m
iAf(t) - .a ......... a. ........ (;. .
d(t) k1 ki kM
a1 aK; QKM
A A dR
dt, dt; dty
d_fzd_ﬁ ........ df;
| dt; dty
dt, dt; diy |
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d d

—Af(t) = A—f(t
i) (t) T (t)
Rule7 "
=1
dt
PROOF
dhodn i) g
dt_ dtl dtz dtN B 1
ol dw diw | din
dt,  dt, din 0 1

With these rules in mind one can find the fourth derivative of the moment-
generating function.

Recall thatMxz(t) = e1/2¥®t wherez is normally distributed with zero
mean.

First derivative. Therefor

a
dt

Mz(t) = [%%t’xt} Mz (t)

By rule 1 above,

d
%Mx(t) = XtMzx(t)

Second derivative.

d—2MSC(t) = iEth(t)
dt2 o dt

d
= EEth(t) by rule 6

d !
= 2{t<%Mx(t)> +IM:U(1:)} by rules 4 and 7

= X[t(StMxz(t)) +IMz(t)] by substituting ford Ma(t)
= X[tt'EMz(t) + IMz(t)] sinceX is symmetric and/z(t) is a scalar

8 Mz(t) is a scalar, the first derivative is a vector, the second derivative is a matrix, and the
third derivative is a row vector of matrices.
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Third derivative. Recall that
d2

[ d [ d d [ d d (d i
e JE R REAEERIEE SRR §
| —(—M —(—M —(—M
dt1<dtl x(t)> dtj<dtl x(t)> dtN<dtl x(t)>
e AR R
Gy e @) o g () o (M) |
Then
d2M t
p7e) z(t)
d /d bod /d | vood o [d
— | —Mz(t P — | —Mx(t | P—— t
{dh(dt e )> ; dt2<dt e )> | ; dtN<dt ()>
and
d? d(d/d l bod(do/d
— Mzxt)=] === i [ =
ag () {dt{dh(dth(t))} i | dt{dtN (dth(tO}
d d/d .
where a”{%d_ti <%Mx(t)> } are matrices
The problem then is to find the matrix
B(Mz(t)) d(d/d ‘
— = —{— (=M f
dtdtde  dt { dt; <dt x(t)> } or eachi
as

d /d d? .

— | —=Mz(t) ) =—=Mz(t) |

dti<dt g )> <dt2 g )>e
wheree' is a vector of zero element except for thle position, where the element
is one. Then replacing the value @f(Mz(t))/dt* gives

d% (%Mx(t)) — S[t'SMa(t) + IMa(t)]e
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and
%;(;)) = %{E[tt’EMx(t)—l—IMx(t)]ei}
= Zd%{[tt'ﬁl]\/[x(t)—i—IMx(t)]ei} by rule 6
%gf;)) - zdilt[(tt'zei)(Mx(t))]+zdiieiMx(t) (F.2)

By rule 4 the first term in EqL(E.2) equals
7 d ' d l [
E{ttEe [aMx(t)} 4 <att Se )Mx(t)}
By rule 5 the second term in Ed.(F.2) equals

!
zdilteiMx(t) = zei<dilth(t)>
Substituting these two last equalities in Eg. (F.2), one gets

% _ 5 {ttlzez(d%]\/[x(t)), + <d%tt’2ei> Mx(t) + é(%MﬂC(t)),}

Substituting for(d(Mz(t))/dt)’, we get
d*(Mx(t))
dtdt;dt
By rules 4 and 7, recalling e’ is a scalar, one has
d

| d . d ,
Lise = Zize :t<—t’2 > I(t'Sel
a e pradURoly gt e ) + Lt

= t(Ze') +1I(t'Se’) byrule3

=3 [tt'zeit’zMx(t) +e't'SMa(t) + dilt(tt'zei)Mx(t)] (F.3)

Therefore, substituting this value into Eg. (F.3) gives

d*(Mx(t)) ; ; ; ;
—— Y = 3tt'Te't’E WY +t(e)T + I(t'Ze)) | Ma(t
Jedidt [ e +e +t(e') X+ I(t'Xe") | Mx(t)

Fourth derivative. Similarly to the 3rd derivative, the value of the matrix
d*(Mz(t))/(dtdt;dt,;dt) is computed. Recall that

d'(Ma(t)  d d(Ma(t)  d [d?’(Ma:(t))ej}

dbdtdt;dt — dt dtdtdt;  dt| dtdidt
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wheree’ is a vector of zero elements except in positjpwhere the element is 1.
Therefore,

d*(Mz(t d , , _ o

W = —AMz()Z[tt'Te't'S + e't'S + t(e')' T + I(t'Te’)]e’}
]

d*(Mu(t)) R » N o ald ,

ddidtdt ’ 'Y+ t(e')'S + I(t'Se’ ]{_M ]

dedidtyde — CEEECI R A t(el) B 4 I(t'Re)]el| 7 Ma(t)

d : : : o
+ Mx(t)%{E[tt'Ee’t'E +e't'S + t(e')'S + I(t'Se’) e’ }
by rule 4 (F.4)

The second term in Eq._(F.4) consists of a sum of four terms, each equal to
Mz(t) multiplied by a derivative. These derivatives will be found first.

d , - d . .
%Ett’Ee’t'EeJ = E{(Ett’Ee’)(t'EeJ)}
At t'Se’ is a scalar, rule 4 applies. Then

d . .
— Ttt' Te't' Te’
dt

rd A rd :
= Ttt/ l-'EJ) '2J<—2 'zw)
Ytt'Xe (dtt e’ ) + (t'3e) = tt'Ze

o (d .
_ Ett’Zele]'E+t’2e]{a[(2t)(t’2el)]} by rule 3

o . d N d .
= Ytt'Se'e!'X +t'Te’ [2t<at'2el> + <—2t> (t'3e")| by rule 4

dt

= Ttt'Se'(e/) T +t'Ze/[Zt(e’)E + Z(t'Ze’)] byrules2and 3
= Ttt'Se'(e/)T +t'Ze’/Tt(e')'T + (t'Ze’ ) Et'Te
On the other hand,

d d

%E(ei)t'Eej = - (Ze')(t'Ze’)}
d N
= Eel<%t’2e7> by rule 5
= Xe'(e/)S byrule3
Also
iEte“Eej = iEt((ei)'Eej) = i((ei)'Eej)Et
dt dt dt



APPENDIX F. EXPECTATION OF PROD OF QUADRATIC FORMS 199

as(e')'Xe’ is a scalar. Therefore

aEt(el)'EeJ = ((e')'Ze’)X  byrule 2
Finally,
d o d . :
—Y(t'Xe’)e = —(t'Xe’)Xe’

dt dt

rd N/
= Xe’ <at'2e’> by rule 5
= Xe/(e')'T byrule3
Substituting these values into EQ. (F.4) leads to

d*(Mz(t)) , , , o (dMx(t)\'
T = Stt'Tet’'S + e't’'S + t(e)'T + I(t'Ze’)]e’ <7>
dedtdtdb [t BT + e'tS 4 t(eh) X+ Lt Be) e —5
+ Mz(t){Ztt'Ze' (/)T + (t'Ze’) St(e')'=
+ (t'Ze/)St'Se’ + Te'(e/)'T + [(e') Te!|T + Tel (') T}
To find the fourth moment, one needs to substitute zeroifothis expression.
Then all terms witht’ or t on them vanish, and what remains is

{%L:O = Mz(0)[Ze'(e’)' T + ((¢')'Ze/) T + Te () X]

AS M:[,‘(O) = 6_(1/2)(0) = ]_’

A O)] = Sz [e)zeln + Be(e )
_ S{el(e)S + () DT+ oi(e)'S)

Our goal is to obtain&{z,z;z;z;}. It is most direct to show this by taking
E{xz;z;x} as follows for the case in whichB{x} = 0:

O o0 o0 --- 0
E{XSL‘Z'CL‘]'X’} = 3 0 0 O 1 0 S 4ol
0 0 0 --- 0 (i, 7)th element
0 00 0
0 0~1 0 5

(4, 0)t
element
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Then
([ 0 0 o0 o] )
...................... Oij
0 0 0 0 Oij
E{xxixjx'} = X 0j1 Oj3 043 -+ OjN |+ Oij
0 0 o -+ 0
---------------------- i O'i]—
([ 0 0 0 0 |
0 0 0 0 1)
0O 0 O 0
+ | o O O3 OiN
O 0 O 0
0 0 0 0 |
01i051 01i0j2 010N 01105 0120
_ | 02051 0205 o%TN | J J ]
......................... oo oo
010451 01042 010N e Pt

015041 015042

02041 02502
+ J Jj

015041 015042
Therefore, ifE{x} =0,

E{xlxixjxk} = O1i0jk + O1k0ij + 0150k

F.3 Proof of F{[x'Ax|[x'Bx]} = 2r[AXBX] +
tr|AX]tr[BX]

It is assamed thaA andB are symmetric matrices. Because of the properties of
the trac

x'Ax = tr[x'Ax] = tr[Axx'] and x'Bx = tr[Bxx/|

4 See AppendikB and/or Goldberger (1964, p. 166).
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As a result,
E{[x'Ax]|[x'Bx]} = F{tr[Axx'|tr[Bxx']}
Call
r1ry T1T9 T1TN
D=Axx=A| ...,
TNT] TNIo INITN
In this case
dn = Zaljxjxl d22 = ZCLQj.’L'jIL‘Q d” = Zaijxjxi
J J J
tI‘(D) = Z Z Qi LT
iog
Call
F = Bxx' tr(F) = Z Z brTrT;
E ol
and
tr(D)tr(F) = Z Z Z Z Qibr Tt ;T
i § k1
Then
E{[x'Ax|[x'Bx]} = E{tr[ xx')|} =

x']tr[B
E{trD]tr[F|} =

2

From the developmentin Séc. F.2

E{[X’AX] [X’BX]} = Z Z Z Z a/ijbk:l(o—ijo—lk + UikUjl + UilUjk)
i 7 k1

201

(x
ZZ;; aijbr E{ (zizjopx) }

= Z Z Z Z @ijbrioijo + Z Z Z Z a;ibr1oik0 1
i j k1 A

+2.00. D aibuouc;x
i j ok l

(F.5)

As subindicesk and/ can be interchanged, the second term in the last expression

can be written

Z Z Z Zaijbklaikaﬂ = Z ZZ Zaijblko—ilo—jk
i 7 k1 i 7 k1
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But asb;. = by (B is symmetric), the term at the right of the last equation can be
expressed differently, and

DD DD aibuoinoi =YY DD aibuouci
T j k1 i 7 k1
Therefore in EqL(EI5), the second and third terms are equal and

E{[X,AX] [X,BX]} = Z Z Z Z aijbklO'ijO'lk + 2 Z Z Z Z aijbklo—iko—jl
[ ik ) k1
’ ’ (F.6)
On the other hanfd,

_Zaljajl > 102
i i

AZ = | > agon D azoj
i i

I Zbuﬂm Zbuﬁkz o]

k k
BY = Z bokOk1 Z bokOk2
k k

CallingP = AXBX, we_get
P, = (Z a1j0j1> <2k: b1k0k1> + <Z a1j0j2> (2}; b2k0k1> e
J J
= Z Xk: a101b110%1 + Z Xk: a1j0jobo0Og1 * - -
J J
= Z Xk: a10k1 (Xl: szbuc>
J
Similarly
Py = Z Ek: Q5O ki <2l: Ujlblk>
J

Therefore

tr[P] = Xl: 2]: Xk: i Ok <Xl: szbm>

5 The reader is cautioned to be aware of the difference bet\@:e(summation ovey) andX

J
(variance-covariance matrix).
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and
AEBE Zzzzawakza]lblk asP = AYBXY

As o,; = oy, andby, = by,
r[AYBY] = Z Z Z Z a;;0ik0j1bkl (F.7)
Also, from the observation of matricesX andBX shown above
trfAX] = > ai05
i
tr[BX] = El: Ek: bikor = El: Ek: briok  asby = by
Then
tr[AX]tr[BX] = Z Z Z Z ijbriojiogw = Z Z Z Z aijboijor,  (F.8)
sinceo;; = 0;; andoy, = oy. Therefore, from Eqs[{H.7) and (F.8)
2tr[ASBE] + tr[AZ]tr[BE] = 2 Z Z Z Z 3010 j1bxt
+ Z Z ij le aijoibuon  (F.9)
ig

As the right-hand sides in Eq$§.(F.6) and[F.9) are identical, the left sides would
also be equal and the equality

E{[x'Ax|[x'Bx]} = 2tr[AXBX] + tr[AX]tr[BX]

is proved.



Appendix G

Certainty-Equivalence
Optimal Cost-To-Go Problem

The problem is to minimize

Jo,Nflcfl = l[XoN — X ]IWN[XON - iN]
+ Z s1x0; — X5 Wi[xo; — %] + [x0; — %] F[u,; — 1]
j=k+1
+ $uy; — 5] Aj[uy; — 1)) (G.1)
subject to

Xo,j+1 = Aj(Ooj)xoj + Bj(Ooj)uoj + cj(Ooj) Xo k41 = )A(lc—l—1|k (GZ)
0,j+1 = D0, Oo k1 = Ops1k (G.3)

To simplify, substitute the results of the forward integration of [Eq.|(G.3) into
Eq. (G.2) and the drop Eq._(G.3) from the problem. The resulting problem is
similar to the problem[(2]1) td (2.3) and can be converted into that form by

completion of the square.
Therefore, rewrite EqL(G.1) as

JO(N — k- 1) = % IONWNXON — }EINWNXON + %)‘EINWN}.&N

o) 1z ol
+ Z ) 0]W Xo] XjoXo]’ + §XjW]'Xj
j=k+1
x! ~/ =~/ ~/ ~
F jUoj — llijXoj — Xijlloj + Xijqu
AW + L0 AT
+ 3 OJA u,; — WAju,; + 5U5A;1y) (G.4)

204
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Table G.1: Notational equivalence

(2-1),(2-3) (G-5),(G-2) (2-1),(2-3) (G-5),(G-2)
W W A A

WnN —WN}zN )‘k —(F;ij + Ajflj)
Wi W; Ay A;(6,)

Wy, —(W,x; + F;1;) By, B;(6,)

Fy F; Ck ¢;(6o;)

Dropping the constant terms and collecting terms yields
JO(N — k- 1) = % IONWNXON — iINWNXoN

+ Z 2 OJW i Xoj — [X;'Wj_'_ﬁ;F;]XOj
j=k+1

F jUo; —|— ' jWoj — [u]'Aj + i;-Fj]uoj) (GS)

2 OJ
The problem[(GJ5) and(G.2) is in the same form as the quadratic linear
problem [2.1) to[(2]3). The notational equivalence is shown in Table G.1.

The solution to probleni(2.1) t6(2.3) is given in E4s.(2.51) and (2.52). Using
these results and the notational equivalence in Table G.1 yields the feedback rule

110]' = Gonj + gj (G6)
where
G, = [ ( OJ)IK]-HB (0 ) +A']_1
X[F; + B;(0,) K;11A,;(0,)] (G.7)
gi = —[Bj(0,)'K;11B;(0,) + Aj]” '
B

x[B;(00;)' [Kjy1¢j(055) + pjr1] — FiX; — Ajiiy] (G.8)
with, from Egs. [(2.58) and (2.54),

K; = A;(0,)K;1A;(0,)
/ , 1
— [A;(0,)'K;11B;(8,5) + F,][B;(0,)'K;11B;(8,5) + Aj]
X [F; + B] (OOj),Kj+1A](00])] + W] WhereKN = WN (GQ)

and with
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- [Aj(HOJ)IK]+1B](00]) ]

x[B;(0,) K;41B;(0,5) + Aj]™ '

x[B; (001),[ i+1€5(005) + Pjt1] — (F;fc] + A;;)]

+A;(00;)[K;j11¢j(0,)) + pji1] — [W;X; + Fjii]
wherepy = —WyXy (G.10)



Appendix H

M atrix Recursionsfor
the Augmented System

The matrixK for the augmented systein (10.38) can be partitioned as
Kxx | Kox !
K= [——-——-—4——(———-)--] (H.1)
Kex i K00

whereK** = K andK is the recursion for the unaugmented system defined in
Eq. (10.3B). Similarlyp can be partitioned as

I
p0

To begin the derivation of the recursiob&* and K% recall the following
definitions from Chap.]9 [see E{. (9145)]:

K, = Hyx — Axx (H.2)

where, from Eq.(9.37),
Ay = H H T H o (H.3)

and, from Eq.[(9.31),

:H:xx = Hxx_'_f;chjJrlfx j_Cux - Hux+flllKj+1fx j_Cuu - Huu+flllKj+1fu
(H.4)
where, from Eq.{9.28),

Hj = Lj(Xj, u]‘) + p;-Jrlfj (H5)

207
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and, from Eq.msﬁ,
H, =L+ f;(pj+1 H, =L, + flllpj+1

N
Hxx = Lxx + Z[(ez),pj-l-l]f;cx

1= 1

(H.6)
Huu - Luu + Z p]+1

Hyu = Lxu + Z[(ez) Pj1)feu
=1
The time subscript is omitted fromH, 3, andA for simplicity. The subscript
x now is changed ta wherez is the augmented state vector. Hence, for example,
Eq. (H2) becomes
K;=%H,,— A, (H.7)

The recursion¥&?* andK® can be obtained by expressing Eq. (H.7) in terms of
f* andf? from Eq. [10.20). This requires in turn expressing Egs.](H.4) (H.6)
in terms off* andf? as the rest of this appendix will show.

From Eq.[(10.20) it follows that

(H.8)

where the subscript denotes the gradient of each set of functions with respect to
the state vector. Also

. |5

f2 = e (H.9)
and H* = L* + p'f*, from Eq. [H.5), where the time subscript is omitted for
simplicity, or

fx
H?Z — [X + LG + [(px)/i(pe)’] |j__—-‘| (HlO)
Note that Eq.[(H.10) is still a scalar.
Sinced does not enter the cost functiab? = 0, Eq. [H.10) becomes
fx

H* = I+ (0} (0°) [f] (H.11)

1Since (e’)'p;;1 is a scalar quantity it is equal to the quanté$p’,, which is used in
Jt+ j+1

Eq. [9.29).
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and, from Eqs/[(10.16) t¢ (10.19),

L* = %[Xk - ik]lwk[xk — x| + [xx — ik]'Fk[uk — U]
+glug — W) Agfuy — Gy (H.12)

The gradient off* with respect t@ is

HY
H: = [—--—--] (H.13)
Hg
where
o [ PR st g
sincef? = 0 in view of the system equations and the criterion function
Z X X 1 px X X
Hy =Ly + ()1 (£2)] [pel — (D" + ()" (H.15)
sinceLj = 0 in view of the criterion function.
Hence, ,
LX + fx X
2= [‘";‘%‘“,;'(""')'})7"9"] (H.16)
(f5)p*+ (f5) p
Similarly, the gradient of{* with respect tau is
e N GG (H.17)
b

Since

LX =F[xy — %] + Apu, —@,] ()'=B" =0

u

Eq. (H.17) becomes

X

HZ = LS + [(£)'10] [——135-] = F\[x; — %] + Au— Aii + B'p* (H.18)
p

The hessian off * with respect te is given by

>Zcx i H>ZcG
pe = [ o (H.19)
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Using Eqgs. [H.I¥) and (H.15) and lettinge X and: € ©O denote the
indices of the original state equations and of the parameter evolution equations,
respectively, we get

H? =Ly + Z(e;p .t Z e'p‘(’fZ = (H.20)
1eX 1€EO
sincef: = 0 for all 4, and
70 = (Hp) =Lyxg+ > eip™flg+ eip’fly = > eip*fly (H.21)
1€EX €O 1eX
sinceL, = 0 andfi, = 0 for; € ©, and
Hgg — Lgo + Z e;prée + Z e;pefée =0 (H22)
e X €O

sinceLgy = 0 andfy, = 0 for all i.
A 2x2 example will make the derivation of Eq._(H]20) from Eq.(H.14) clearer.
Consider the followin@ x 2 case. Let

' fl(xla 1‘2)
H=1L | H.23
(.’L‘l;l'Q) + [pl .pQ] [ f2(1'1,1'2) ( )
Note thatp,; andp, are scalars. Then
_ Hl'l
H, = [ i, (H.24)
I 4! £l h
e :L‘”[ EHPJ Har =Lt | ZHPQ]
or .
— HII _ Lml Ill ";2 pl
Hx—le]—[Lm]—F[ i 52]_192] (H.25)
The hessiail, is obtained from Eq[{H.25)
Hmlml HiL’IZL’Q
H,x = [ Hoo Hoo l (H.26)

RedefineH, = Hxlxl’ Hyy = H5E15E2’ Hsy = HCUZCEQ! Ly = L:m:vl; and
fi1 = fr12,» @and so on. Then

Hll H12 ] (H 27)

Hxx =
le Hy,



APPENDIX H. MATRIX RECURSIONS FOR AUGMENTED SYSTEM 211

where
Hy = Gilexl =Ly + [ p1 P2 } ;1% |
Hyp = %Hxl =Lz + [ p1 P2 ] ;% = Hy (H.28)
Hy = %sz = Loy + [ p1 P2 ] Eﬁ

Substituting Eq.[(H.28) into Eq. (H.R7) leads, after simplification, to

—_ l..@ll_-i __L_lz_] [_.Rl.fﬁ.i?i?.ﬁl.-i-_izl_ﬁz_i}’_yffz._]
x Ly § Ly pifo +pefh 4 pifa + p2afes
Ly, i Ll?l [ffl f112] lf121 f122l
e tp H.29
le T | T T | B
H,, = Lxx+2e;[?lffcx (H.30)
- 2

o wn IELS A S IEEEI FICS FY
Lo = [P g = [ AR oo =
l[@l t Loy o J ! 0 2 0
Notice that Eq.[[H.20)is equivalent to EG.(HI30).

Now, substituting Eqs[{(H.20) t6 (H.22) into EQ. (H.19) leads to

Ly | 0 0 | fi
H, = [] +3 ep” [9] (H.31)

1€X

From the criterion equatiol.,, = W, and from the system equations
i, = al = (fi. ), wherea), denotes the gradient of thith row of the coefficient
matrix A (6;) with respect td,. Therefore,

W |0 0 | a
H, = [0] +3 ep [] (H-32)

which is the same as Eq. (10137).
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In exactly the same way, the hessiantbf with respect tau, that is,H? , is
obtained from Eq[(H.17)

HY, =L, + > eip™fi, + > ejp’fl, (H.33)

icX j€o
In view of the system equation and cost functional again,

LX,=A f,=0=f, foricX,j€0O

Therefore
H? = A (H.34)
On the other hand, from Eq. (H[17),
H;, =L, + > ep*f, + > ep’f, (H.35)
1€X JjEO
Recall that

fx H _ fxu
f, = l £, ] from which f,, = [ £, ]

is derived, hence, Ed._(H.B5) can be rewritten as

f fi
HZ, =L}, + > ep” [ o ] +Y ep’ [ f’]‘-“ ] (H.36)
i€X fu j€O Ou

Again, from the system equation and cost function, the following facts are
found:

fi, = 0 foricX
£, =0 forjeoO
f,, = (by)) forie X
£, = 0 forje®

wherebj, denotes the gradient of thith row of the coefficient matri . (8;) with
respect t@;.
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Therefore Eq.[{H.36) can be written as

F I X __9__ _ _____-___F_‘ ________
(5] g b feby] o

iex Yiex €;p*(bp
Now, using Egs.[(HI2) to[{Hl4), we can rewrite the recurskénfor the
augmented system as
Kj - j_sz _-Azz
K, = fK; f, +H,, — 3, H Hu, (H.38)
Then using Eqgs.[(H.38)[ (H.1)[(H.8),_(H.4), arld (H.9), we can write Ehe

recursion for the augmented system as

Kxx i (KHX)’
Kj = [y 7 60 -
Ko | K
fr ) KK fx | .
= "f'a"J:"fé' “I_<_9_X“J’“f<_55_ "f'o"J:"ﬁ' +H,,
x 1 0 : j+1 x 1 0
|' fl}f-l Kxx i Kxe f)}: i fg- ) -|l
T "I'{o';"i"f{'éé' "f'o"T"fé' +Hy,
[ u | : G+1 X 1 10 J
0 Ox 00 ) uu
LRSS L P I _
H :.15.’:1}--5’:?1 [ x i ] +i| (H39)
0 0x | 1c00 (70 e uz :
L fu K g K j+1 fx g f@ J
Since, from[[(1I0.20)* = Ax + Bu + c andf® = D@,
f*=A =B =D ff=f=0 (H.40)
Substituting Eqs[(H.32) (H.34), (HI37), anhd (H.40) info (H.39) yields
KXX_E (Kex)’
Kox | Koo
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W {0 0 | a
+ [mboo 4+ ) elp”™ [‘ ------- 3'-"0--]
L 0 H ] 12 ( )I H 0
[ B" Kxx | Kx8 A | fx !
! ! 0 I ! ]
== P ERm— I F'! p*by
lo_ lKax i K””] 0D +l PR “’”
B[k ik [B] ]
0] LK™ | K* || o0 ]
B[R P KOIA
0 K* | K || 0o | D
+ [F > ei(p) o” (H.41)
Consider the first term only
AL GV [Kx K] (AL
0 D]J||K™ | K% 0| D
1 1 ]_l_l 1

()’ KA
(H.42)
_________ AK>A L AKSFLKOD)
- ((fx) K** 4+ D KGX)A E (fg) (Kxxfx + KXGD) + D/(Kexfx + KGGD)
(H.43)

Consider the term in the first brace after the minus sign:

Bl [K> | K®][A | ff .
B LR KRN A LR o5 o)
[OHK"XEK‘”’HOED] Fi{Tew ]
KA i Kxxfx+Kx0D ,
— BI:O _________ e Q __________ |: li I be:|
[[ ! ] [KGXA i Kaxfg—FKGGD] :Zep

= [B'K™A + F'{B'(K™f5 + K*D) + _elp*bjy|  (H.44)
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Next consider the inverse term:

= [BK*B+A] " (H.45)

By using Eqgs.[(H.44) and (H.45) all terms after the minus sign in [Eq. (H.41)
can be rewritten as
(] = [BK*A+F B/ (K™ + K*D) + Y(e') p*bj|
u[B'K™A + F'{B'(K*f; + K*D) + 3 e/p*b})
[ A'K*B+F
~ | ()K= + D'K®*)B + (z e;.pr;',>' ]
u[B'K™A + F'{B'(K*f; + K*’D) + > e/p*bj| (H.46)
(A I B ]

J— I

C D

(H.47)

where
A = (A'K™B + F)u(BK™A +F)
B — (A'K™B+F) ;J,{BI(KXng +K¥D)+ Y e;prg}
!
C = {((fg;)’Kxx + D'K™)B + (Z e;prg> } p{B'K™A +F'}
and

D = {((6)K> + DK™)B
I ———

and wherqu = [A + B'K*B] .
Next, combine the second and third terms on the right-hand side of Eq] (H.41)
to obtain

W {0 0 : a W i S ejp*al
] o8-
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Now Eg. [H41) can be rewritten as a sum of partitioned matrices {H.43),
(H47), and [(H.48). Without actually writing out this total expression, consider
each of the component matriceslf; in Eq. (H.41) one a time. First consider
K**, which is

K7 = A’KiT A - [A'KST B + Flu[B'K;T A+ F ]+ W; (H.49)

This is exactly the same as the certainty-equivalence Riccati matrix in
Eq. (10.38). This proves Ed.{10]39). Then, considét, which is

KP* = [(6)K2 + DK A
- [((f;‘)’K;‘:1 +DK%,)B + (Z e;px(bé)'ﬂ
pBKZA+F]+Y ep*(ap)  withK* =0 (H.50)
This is the same as E§.(10140). Finally, consiléf, which is
K? = (&) (K% +K9,D) + D' (K%, f5 + K%,D)
- “(f;‘)’K}‘L + DK, |B + [Z e;prg}'] u[B[K, 5 + K2, D)
+3 e;prg} with K% = 0 (H.51)

This is the same as Eq.(10142). Thus, the Riccati marjxs fully specified by
Egs. (H.49) tol(H.51).
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Vector Recursionsfor the
Augmented System

Recall from Eq.[(9.44) that

p; = Hy— 3,5, H,
= H, — [Hy + 1K ) [How + 1K1 f] 'H,  from Eq. [9.31)
Writing this for the augmented system and using Eq. (9.31) again provides

p;, = [ po ] =H; — 3}, H,H,
Pl

/
z z x\/ 1 K> Kx0 f))cc fy
= Hz - Huz + [(fu),:(fg)]l [ K0x K00 ] l fe fZ@ ]]
i+l

. {H 0| o oo | | B ” H ()
+1
but in this case
*=B f=0 f=A =D and f?=0 (1.2)
Also

H%Z, =A from Eq. (H34)
H? = (HZ) = {F’ > e'pxbl] from Eq. (H.37)
' €X
H? =F(xx — X))+ Au— Au + B'p* from Eq. (H.18) (1-3)
; L+ A'p*
H= l () ’px - (£9)pO ] from Eq. (H.16)

217
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With the above, Eq[{Il1) becomes
px _ L§+A'px ]
P’ | (£5)'p* + (£8)'p’
— !
! I X1.1 I Kxx Kxe A fé‘
o {F Zez‘p bo} + [B :0] [K@X K99 i 0D
: K** Kx@ B -|71
x |[A+|B'i0 [ 0x 00] [’"']
el e ] 6
X[F,[xx — Xx] + Au — A + B'p*]
LX 4+ A'p* ]
(f5)'p* + (f§)'p?
. ) KxxA i Kxxfx+KX0D /
1 1 X710 1l o2 o= _Z o__1_ X _--_
- HF i Zeip be] + [B :0} [ KO*A Kexf5c+KO0D ﬂ

K*>*B
KB

xlAJr[B’;o]l H_I[F’[x—i]JrAu—AﬁJrB’px]

L+ A'p*
[ (f5)'p* + (£5)'p° ]
~[BK=A + F'} 3 elp*by + BK™f5 + K*D]|
xp[F'(x — %) + Au — At + B'p*|
LY+ A'p*
[ (£)'p* + (£§)'p? ]
[A'K**B + F|u[F'[x — X] + Au — Au + B'p*]
- [(6) K= + D'K™B + [T elp*bj| (1.4)
x[F'[x —X] + Au — Aa + B'p¥]
wherep = [A + BK**B] ', Therefore
p; =L+ A'pl, — [A'K*™B + Flu[F'(x — X) + A(u— )+ B'p},] (1.5)

since

LY = 1 [x;—%;] W, [x; —%;]+[x; —%;] Fj[w; — ]+ 3 [u;— ;] A [u;—;] (1.6)
we have
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Substitution of Eq.[(I6) into Eq[{IL5) yields
p; = Wjx; — %]+ Fj[u; — 4] + A'p},
—[A'KT B + Fylp[Fj(x; — %) + Aj(u; — 1) + B'py] (1.7)
Now it is necessary to show that
pf=K;x;+p; whereK; = KX* (1.8)

and K; and p; are obtained from the certainty-equivalence (CE) solution in
AppendiXG.

It can be shown by induction that Eq._(I.7) and](l.8) are equivalent. First
consider the last periody. Then, from Eq.[(I.I7),

p’]if — WN[XN — iN] + FN[uN - ﬁN] + A,p)]if—l—l
—[A'Kn 1B+ Fyluy[Fy(xy —Xy) + Ay(uy — iiy) + B'py 4]

butFy = Ay = p},, = 0 from the CE solution. Therefore, the equation above
becomes

Py = Wy[xy — Xy] (1.9)

Also recall from the CE solution [Eq$.(10133) and (10.34)] fKat = Wy and
py = —Wxxy. Therefore Eq.[{ID) can be written as

Py = Kyxy + P (1.20)

Next consider the perio® — 1. For this period Eq[(II7) can be written as

Py 1 = Wnxo[xy 1 — Xy 1] +Fn ifuy 1 —0n 1]+ APy
_[A,KNB + FNfl]HNfl[FIN,l(XNA —Xn_1)
+AN—1(uN—1 — ﬁN—l) + B'p?\,] (lll)

Let

Y = Py =AKyB+Fy_, =A'WyB+Fy_,
ox = (SXN,1 = XN-1 — }ENfl (I12)

du = duy.;=uy_;— Uy
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Then Eq. [I.I1) can be written as

Py = Wnx_10xy_1 +Fduy_; + A'py
—tpn pu[F'dxy | + Aduy | + B'pY]
= Wy 10xy 1+ Fduy | + A'py
—puF'dxy_1 —YppAduy_ — puB'py
= [Wy_1 — YuF0xy 1 + [F — YuA|duy_,

+[A — ¥uB'py (1.13)
From Eqgs.[(I.P) and (1.12)
Py = Wylxy — Xy] = Wydxy (1.14)

and from the system equations
6XN :XN—}EN :AXN_1+BUN_1+C—}EN (|15)

For notational simplicity all variables without a time subscript are for period
N —1. Using this convention and substituting E¢s. (J.14) and{1.15) into[EqJ (1.13),
we obtain
p* = [W —¢uF'|0x + [F — puA]du
+[A, — ’lb[,LBI][WNAX + WNBU + WNC — WN}EN]
= [W—¢pFlx — [W - ¢ppuF|x + [F — ppuAlu — [F — ppAld
—|—AIWNAX + AIWNBU + A,WNC — A,WN}‘EN
—puB'WyAx — puB'WyBu — ¥puB'W yc
Collecting terms irx, u andx yields
p* = [W—ouF + A'WyA — pyuB'WyAlx
+[F —YuA + AAWyB — yuB'WyBJu — [W — YuF'|x
—[F —ypAli
+YpuB' — A'TWyXy + [A" — puBTWyc (1.17)
Consider only the second term on the right-hand side of[Eql (1.17):
[F — ¢uA+A'WyB— puB'WyBlu
= [F+A'WyB —¢yu(A + BKyB)u
= [ —pup Ju=0 (1.18)
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Therefore Eq.[{I.17) reduces to

p* = [W+AWyA - ¢ugpx — [W — ppF]x - [F — ppuAla

+[A" = ypuBWylc — %y] (1.19)
or
p* = [A'KyA —Yuyp’' + Wix + Ppu[Fx + At — B'Wy(c — Xy)]
~Wx — Fii + AW y[c — %] (1.20)
or

p* = [A'KyA — put’ + Wix — u[B(Kyc + py) — (FX + Ail)]

+A[Kye+py| — [W + Fil] (1.21)
Using Egs.[(10.33) and@(L.12), we obtain
Ky 1= AKyA — ¥y pun 1%+ Wy (1.22)
and using Eqs[(10.84) and (1112) provides
Pv—i = —tv_ipn—1[B(Kne+Py) — (FyoiXn_t + Ay_iiy_y)]
+A'[Kye + py| — [WyoiRy_1 + Fy_ifiy_i] (1.23)
Then using Egs[ (1.22) and (T.23), we can write Eq. (I.21)
PY_; = Kn_1Xy_1 + Pros (1.24)

which establishes the second step of the induction. In the same manner it can be
shown that for any period, Eqgs. [I.7) and{L.B) are equivalent. This proveshe

recursion[(10.43).



Appendix J

Proof That a Constant
Term in the Cost-To-Go
ISZero

This appendix proves thaf , , in the approximate optimal cost-to-go [Eg. (10.24)]
is zero.v, has been defined to be

Y = Yer1 — sHy HoaHuxe v =0 (J.1)

[See Eq.[(9.60).] Similarlyy? is defined for the augmented system as

Vi =i — s L )T HL] withyi =0 (J.2)
From Eq. [(H18)
(HZ,) =[xk — X1 F + [uor, — 0] A} + (PF41) B (J.3)

whereu,,, is the nominal control obtained from the CE problem. From EgsJ(H.4),

(H.34), [H.40), and (10.32)

[Howil ' = [Ap + BK B = py, (3.4)

Hence Eq.[(J]2) becomes

Yo = Ve — 3([[xk — %) Fr + [uor — W) A + (pf1)' By
X u[Fp[x — Xi] + Ag[ugr — Ux] + Bpi, ) (J.5)

222
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Now, by using Eq.[{10.43) we obtaisy, , as

(Pr1) = X;c+1ﬁ;c+1 + Phs (J.6)
Substituting the unaugmented system equafion {10.7) intd Ef. (J.6) gives

!

(Ao + By + ¢4 K| + iy
Xop ALKy + uy BLKG 4+ ¢ Ky + Dy (J.7)

Now consider only the term

(p7cc+1)

[Xor — Xi]Fre + [uor — 0] A} + (PF,1) B
= [Xok — ik]le + [, — ﬁ'k],A;c + Xi)kA;ch/;chlBk
+ui)kB;ch;c+1Bk + CZEZHBk + Dj1 B
= u[A), + B;C/I\{J;C‘FIB]C] + X [Fi + A;C,I\{J;C‘FIBIC]
—i—f);cHBk - x.F, — WA, + cﬂcK;HBk (J.8)
Also let -
), = [Fr + ALK, By (J.9)
By using Eqgs.[(J]4) an@ (J.9) in EQ. (J.8) we get
Xor — Xp|Fr + [ug — 1ix]' A} + pr, B

Y A | ’ ~ ~/ ~1 Al
= Uyl + X, Wh + Py Br — X, Fp — Ay

+¢ K1 By, (J.10)
The nominal controli,;, from Eq. (10.30) is
Uor, = GrpXor + 8 (J.11)
where
G = — ¥,
and

gr = — i [B' (Kpr1c + Pry1) — (Fify + Ayil)]
Substitution of Eq.[{J.11) into Eq.(JI10) then yields
%ok — Xk) Fr +  [uor — 0] Aj, + (piiﬂ)'Bk
= —[[BI(KkHC + Pr+1)
— (FiXp + Aplp)) gy, + x50, Oy
+ x,, ¥}, + Py, Bi
— (X Fp + AL + KBy =0 (J.12)



APPENDIX J. PROOF THAT TERM IN COST-TO-GO IS ZERO

Substituting Eq.[{J12) into Eq.(J.5) leads to
Ve = Vs
Sincev% = 0, Eq. [J.18) implies
Vi1 =0
which was sought in EqL_(10.B5).
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Appendix K

Updating the Augmented
State Covariance

Begin with Egs.[(9.84) and (9.B5), that is,

Zitrktr = I = Vipihg o[ S (K1)
and
Vis1 = Ekﬂ\kh,z,kﬂ [hZ,kJrlEkJrl\khlz,kJrl + Ryt
53 Y€€ trlhl, B s, S B (K.2)
i

For the case at hand the observation relationship iS.fEq.(10.8), that is,
Vi = Hip(0r)x) + Wy (K.3)
Thus, in the notation of EqL_(9.5),
hy, = Hy(6r)xy (K.4)

Therefore the observation relationship for the augmented system is

yi = [Hi(6,)10] [ 3 | + G, (K.5)
and in the augmented system
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with ' '
h, = Hk(Bk) and hy = Ze’}tk+1|ka9

by analogy with results in Appendix L. Also,

» hy, | b
hy, + hgy
and . |
Therefore
hi,S [ 0 EHéHE"XEEX"]
zz—k+1k — _____i__,_'i'“"' -———e—x——d:-——-e.e__
(Hy) ¢+ O » Pon e
_ o [HE® G HR (K.5)
= Hgzxx i ngxg .
and

= t[H,SO¥H) %% 4 H)x% (Hj) ==
+(Hp) SHB + (Hp) S (Hp) =]
= 20 [H),X*H) %% + H,x% (H) o (K.9)
Then substitution of EqL(KI9) into Eq.(K.2) yields

!/ !
Vi = 2k+1\khz,k+1[hz,k+12k+1|khz,k+1+Rk+1

+ 03 el(e) uHy SH £ + Hy % (H))'5]](K.10)

L

For many problem$I will not be a function o, so that

H,=0 foralli
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For this special case Eq.(K.6) becomes

h, = [H; {0] (K.11)
and Eq.[(K.Y) becomes '
h! =0 (K.12)
Thus Eq.[(K.10) becomes
S xx i 2){0 Hl
Vi l"ie}"*:"ga'é ] e
: k+1)k 0
XX ! EXB H;c
_______ N I et =5
xlsz i 200] o7+ Res (K.13)
or
2 He Xx _
Vi ["éb}tl'ﬁfi' [He 1 255 Hy ) + Ry '
E+1kt k41
XX -1
— l..?.-.l:l.lk.‘tl.glfjlzl._ (K.14)
EBXH;H-ISI;-H
where
Sk1 = Hit 2% Hi g + Ry (K.15)
Substitution of Eqs[(K.14) anfl (K.115) into EQ. (K.1) yields
Exx i Exe r I i 0 ExxH/ Sfl
I
»ox | % o i1 »O*H, S,
'__5_3."_"._1__53_"_9__]
Eex : 200 k+1|k
[T S He
_Ezil\kH;chlSI;ilHkJrl
Rl >id ] .16)
-EBX ' 200 " '
Therefore
Dok = SR — S HL G Sen Hen R (K.17)
!
Eziukﬂ = (Eﬁil\k) :Ezil\k_EginH;chlSl;ilHkJrlEzin(K'18)
Ezil\kJrl = Ezim_2211\kH;c+151;i1Hk+12ﬁ1\k (K.19)
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So for the case in whicH is not a function 0@, the relationships [(K17)-
(K19) are used for obtaining . 1x+1 from X1, WhenH is a function ofé,

Egs. [K11) and[{KI0) should be used, along with EQ. (K.6).



Appendix L

Derivative of the System Equations
with Respect to the Parameters

Recall (dropping the time subscrip} from Eq. [10.2D) that

f*=A(0)x+ B(0)u+ c(0) (L.1)
Rewrite Eq.[(L.1) as
a'(0)x b!(0)u c(0)
a?(0)x b2(0)u (0
£ = (: L (: ™y ( ) (L.2)
a"(0)x b"(0)u ()
where
a’(@) = ithrowof A(0)
b’(@) = ith row of B(6)
c'(8) = ithrow ofc(8)
Then
) 0 4 ) 0 ) 0 4
xagla(e) a92a(0) X@Q,a(o)
/i 2 /i 2 /i 2
£ = X891a (9) x892a (6) X89ra (6)
,c’)n ...... ,8n ........... ,8n .....
Xa—ela (0) x8—92a (0) X aera (0)




APPENDIX L. DERIV OF SYS EQUATIONS WRT PARAMETERS 230
/i 1 /i 1 ! 9 1
891b (6) u892b (6) uagrb (9)
, 0 , 0 , 0
,an ...... ,an ........... ,an
0 1 0 1 0 1
8—910 () 3—920 (0) 89rc (0)
d , 0 , 9 ,
+| 2650 34,0 59, (©) (L.3)
a n ...... a n .......... a . n .....
8—010 () 6—926 (0) 39,«6 (0)
Next define
0 0 0
6—91%1 (0) 6—92(1“ (0) 8—0,@“ (0)
0 0 0
: o . P P I
af = ga'(0) = | 79,720 57,20 56, "% (L4)
00
0 0 0
Then
0 0 0
X,ag — Zx] 89 aij (0) Zl’] 89 al] (0) Z xj 89 al] (0) (L5)
J J r
and
0 0 0
XJ:% 50, 11(0) Z%’a—%%(@) %:xja—&alj(e)
: Sz 0 a2, (0) Zx'iag (6) Zx-iag (9)
Z ez-x'a’e _ > J 89 J J 892 J r Jagr J
J
...... aaa
2]: Zj 90 an;(0) Z xja—ezany () 2]: xja—eranj (0)
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1 1 1
X891a(0) X892a(0) X@HTG(O)
) 0 5 ) 0 ) 0 5
— X 8—010, (0) 8—02a (0) X agra (0) (L6)
,an ...... ,an .......... ,an
X5—91a (9) X5—92a (9) X Gﬂra (9)
Similarly define
0 0 0
a—elbil(e) 8—9219,»1(0) a—grbﬂ(e)
0 0 0
. 0 .. —~h Ay Ay
by = —50"(0) = | 99, ba(8)  Fg,el®) 56, "2(8) (L.7)
a .......... a .............. a ........
a_elbim(o) a—%bim(e) a—erbz-m(e)
Then
u'bl, = Zuib (9) Zu 0 b(B)Zu 0 b:;(0) (L.8)
6 ; 199, 4 ; 190, 4 790,
and
0 0 0
Zu] 90 b1;(0) Zuja—[%blj(e) Zuj%blj (6)
J J r
0 0 0
S e, = > uy 59,02 (0) Zua%b%(e) Zujgsz(f))
y J yi r
...... aaa
Zuja—elbm(e) > 50, i (0) Z%’%bm’(@)
L J J J r
RS RN ' 0 41
5D (0) W bl(6) 500 ()
li a 2 ! a 2 li a 2
,an ...... ,an ........... ,an
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Define
c_ 0 sy = Do) L o2,
= 5g¢ (0) = 2, ¢ (0) 20, ¢ (0) 20, ¢ (09) (L.10)
Then
0 0 0 ]
8—9101(0) 8—9201(0) 89 61(0)
0 0 0
Zeic;} _ 3—9102(9) 3—9202(9) f)ﬁrcz(e)
8 ......... 8 ............. 8 ........
I 8—916"(0) 5—92%(9) 6—9,6"(0) ]
[0 gy 9 0 1y ]
20,° (6) 20,° (6) 90.° (6)
0 , 9 , 0 ,
= 3—910 (6) 3—920 (6) E)Grc () (L.11)
an ...... an .......... an .....
I 3—910 (0) 8—026 (0) 80,0 ()

which¢; = theith row inc(6) = ¢; = theith element irc(8).
Then substitution of Eqs[(L.6), (.9), arid (C111) into Hq. (L.3) yields

f5 => ex'aj+ ) euby+> e (L.12)

J

In order to evaluate Eq._(L.12) &, uj) one has

£ (ks 2, wp) = Y expag(k) + D ei(up)by(k) + 3 ecy(k)  (L.13)

1€X 1eX 1€X

which is the desired result.



Appendix M

Projection of the Augmented State
Vector

This appendix details the one-period projection of the mean and covariance of
the augmented state vector, i.e., the projection.Qf ;, andX;, |, from z,,, and
Ek|k-

Using Eq. [0.7B), we have

5 5 T 1 7 )
Zyi1 e ~ £(Zgpp, uy) + 2 > e'tr[f,, Xy (M.1)
i€l
wherel = X U®, X is the set of indices for the system equations for the original
state variables® is the set of indices for the parameter dynamics equations, and
X U ® means the union of the two sets.
For the linear case

A AL(0ok) Xk + Br(0ox)uf + (6,
f(zk, uy) = [""k'('"l_c)_ﬂli___15_],?%_;E2__k _____ - (___E)_] M:2)
Also £ fi ;
7 i 4 0 i P
fi = -2 L_x6 ---7——:——919— e X (M.3)
féx : fé@ ale + 0
. fi_ 1 f 0:!0
f;z XX _I__EF.G.- = [ 1€ ® (M 4)
féx : fé@ 0:'0
and

XX i Exe
Tk = [Saox T 500
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Therefore
py [0 A [E L =TT [ Y R2A Y 2
2z~ klk — (aé)’ i 0 6% ; 3160 - (aé)lzxx ; (ag)IEXB b
(M.5)
and _
£, ke =0 fori e © (M.6)
Therefore
[ 1 iy i
1 5 Ze tr[fZZEk|k]
- Z eztr[f;ZEMk] = -—1——1—62(——-————7 ———————
el 5 Ze’tr[fézﬁm]
L €O
r 1 ) ai Eex i ai 200
5 Ze’tr l""iQT';;"T""ZQT';B'
= | Zicx_ L (p)'Z™ 1 (ap)'=7 |
i 0
r 1 . .
- Zeztr[azezex 4 (az )lzxe]
= __2__i_62(_ ________________________
I 0
> e'tr[ay XX
= |EEX . (M.7)
i 0
Hence, the use of Eq$. (M.2) and (M.7) in Hg. (M.1) yields
. g
k+1lk — ~
! i 0k+1\k
[ Ak(OO,k)chk + Bk (Go,k)ug + ¢y, (Go,k) + Zeitr[agﬁgx]
T (1=0,
i Dkéo,k
(M.8)

and sinced does not differ fron®,, we need to use only the top half of EG._(M.8);
ie.,

X1k = Ap(Oor)Xik + Bi(Oop)uf + cx(Oor) + Y €'tr[ag=gn]  (M.9)

1€X
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Next Eg. [9.78) can be used to project the variance one step ahead

1 . . ,
Ek-i-l\k = fZEk‘kf; + Qz + 5 Z Z e’(e])'tr[fQZZk‘kngEk‘k] (MlO)
(]
5 [f;‘ifé‘][?xiﬁx"] lf:if;‘]’+les o]
ke = [ep + c0 | [5ox | 300 | |0 | 0 N
fx 1 fe k E 1 E k)|k fx 1 fe k 0 1 Fk
1 o fz i fz'g XX i zxe
b e ] [ 22
2i61j€[ fo | oo o1 x% K|k
[f,fgx | [zxx | zx@l > MAD)
X 7=z ==1=—==""=- ""'X"'E’ """"" .
PO 78 »ox | x99 "
And since

£ = Ap(0r)xi + Bi(0p)u] + ci(0) % = D6,

so we have
£ = A.(6r)

X

and (see Appendix]L)
f5 = exXap+ > e(ul)bp+> ecy ff=0 f§ =D, (M.12)

Substitution of Eqs.[(MI3)[[(Ml4), and (M.[12) into Ef. (MI11) yields

. [Aif;‘][EXXEEX"] [A’i 0]
k+1]k 0 i | [sex s | [

0 D] [=™ix%] [ D]

+ Q0 + A0 (M.13)
oirj |oio '

wheréd]

1
A = 2> Y e

27,6Xj6X

(0 G [Z im0l 0 foap | [Z
(a‘ig)/ i 0 Eex i 200 (ag)/ i 0 Eax i 200

INote that the summations below are ovéwhile the summations in EQC{M.11) are over
This explains whyA is in the upper left hand corner in Eq._(M]13).
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Then
. ALf] [ ZTA LT | TOD
T Lo D | 20 A+ 2005y | 20D
Qi 0] [B_:O.
+l0 i T k+ 0! 0
(M.14)
where
Z S [__.%é}%f’.‘___i_-_%.fi?f-_] B
zEX]eX (aé)lzxx i ( -)sze (ap) 2> | (a )Exg
Then
E [Exx i 2x0‘|
k1l = [ §0x | 00 =
z e k4+1]k
ASA+ AR (£5) + fESA + fR0(f) | AXXOD! + 3D ]
DX*A’ + DX (£)) i DX%D’
Q i 0] [C i 0]
+[—----1---- + [ (M.15)
o : T ) 0O:0
where
C = —Z Z eJ tr aezex 29X+a2200(a§)12xx
1eX jeX

+ () T2y 2% + (ap) = (a) =)
Then the component matrices of Hq. (M.15) can be rewritten as
e = ARZELAL +Ak2k\k(f0k) +f0k2k|kA, +f0k2k\k(fgk)l + Qk
+3° > el(e!) tx( agﬁzﬁcafgﬁm + aOEk‘k(ae) pifs (M.16)

1€X jeX
S = (B2 = ASED) + 5. 200D; (M.17)
or
2k+1\k = Dkzk\kA,+Dk2k\k(fgk)l (M.18)

S0 = DDy + Ty (M.19)



Appendix N

Updating the Augmented State
Vector

Begin with the augmented equation like Eg. (9.86)

Zit 11 = Zht1k + Vit [ Vet — Dop1Zeg) (N.1)

and write it in augmented form as

~ ~ ~

X

X X
l 6 ] = l 6 ] + Vi l}%ﬂ — [hy k41, hg pq1] l 6 ] ] (N.2)
kt1lk+1 ke+1]k ke+1]k

where, from Eq.[(K.B), for the case in which noisy measurementsatbne are
available,

hy i1 = Hk+1(élc+1|k) hg 1 = eif{k+1|kH4i9,k+1 (N.3)

For the case in whicth and H are not functions of, Eq. (N.3) can be
rewritten as

hy 1 = He hg1 =0 (N.4)
Substitution of Eq.L(NLI3)[(NI4), and (K.114) into Ef._(N.2) yields

x x 2t e Ser :
[ 0 ] = [ 0 ] + '_é'gi'u'ﬁ,'i"s'fi' [Yi+1 _Hk+1Xk+1|k] (N.5)
k+1|k+1 k+1|k k+1|k~TE+1 k41

where, from Eq.[(K.15),
Sk+1 - Hk+122;(i1|kH2;+1 + Rk+1 (N6)
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Then Eq.[[(N.5) can be rewritten

S s XX ! —1 S
X1kt = Xertfk T Spp1 e g1 Sen Ve — HepiXeg ] (N.7)

and
Ors1jk1 = Okgrin + 05 Hy 1Sl [k — HiXegapi] (N.8)



Appendix O

The Sequential
Certainty-Equivalence M ethod

Repeat the following calculations for each time period beginning kvith0.

Step 1. Generate the random vectors for the system nojsend the measurement
Noisewy 1.

Step 2. Solve the certainty-equivalence problem from perio period NV and
setu] = ul¥, as given by Eq[{10.30).
Step 3. Obtain the actual value of the state vector with

Xk+1 = A.Xk + Bu; + Ci + Vg (Ol)
and the actual value of the measurement vector with

Vit+1 = Hgp1Xp 1 + Wi (0.2)
Step 4. Getxy 1 x andéy,,p, by using Eqs.[(MB) and (M.9)

Xptijk = Ak(ék\k)ﬁk\k + Bk(émk)u; + Ck(ék\k) +> eitr[aéﬁifz] (0.3)

1€X
and X

Step 5. GetX, |, by using Eqs.[(M.T6) td (M.19)
e = AGEERAL+ ARG+ B A
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+f0k2k|k(fgk), + Qi
—+ Z Z e] tr aezk‘kaezk‘k + agzk‘k(aﬂ) k)|k) (O 5)

1€X jeX
2k+1|k = DkzmkAl + Dk2k|k(fgk), (0.6)
2k+1|k = Dk2k|kD;c + I (0.7)

Step 6. For the case in whiclH is not a function o# use Eqs.[(K.17) td (K.19)
to getXy 1 k11

ﬁl\kﬂ = ﬁuk - k+1|kH;c+ISk+1Hk+12k+l|k (0.8)
2k+1\k+1 = (2k+1\k) _2k+1\k 2k+1\kH;c+ISk+lHk+12k+1\k (0.9)
Sk = 200k — S0 Seh Hen 25 (0.10)

Step 7. Update the means; ;.51 andék+1|k+1 by using Eqs.[{NJ7) and (N.8)
Xpr1fer1 = Xk + Sp5 e St Vi — HepaXpp] (C.11)
and

Ok k1 = Ok + S5 S b e — Hia R (C.12)

Step 8. Setk = k + 1 and get the new, ék|k, andX,, from the oldx 4 1jx+1,
ék-l—l\k—i—l’ andX; k4. Then repeat steps 1 through 8.

Store the control valueaj, at each step since it is the optimal control for the
sequential certainty-equivalence mettfiod.

1The interested reader may wish to turn back to §e¢. 7.3 to see how results from this appendix
were used in that example.



Appendix P
The Reestimation Method

In this method the econometric model is reestimated each time period with the
assumption of perfect measurement of the state vector. Then the certainty-
equivalence path is calculated, and the control for the next period only is applied.
After the period the model is reestimated and the process continues.

The steps are to repeat the following calculations for each time period
beginning withkt = 0:

1. Generate the random vectors for the system nojsend the measurement
Nnoisewy 1.

2. Solve the certainty-equivalence problem from pefidd periodN and set
u] = u, as given by Eq[(10.30).

3. Obtain the actual value of the state vector with
Xp+1 = Ax; +Buy, + ¢+ v (P.1)
and the actual value of the measurement vector with
Vit1 = X1 + Wit (P.2)
(assuming thaH = I).

4, Set
f‘k+1\k+1 = Yk+1

and estimateﬁk+1|k+1 by using ordinary least squares on the reduced form
or two-stage least squares on the structural form as appropriate.
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5. Set
ﬁrukﬂ =0 Eziukﬂ =0
and obtairs?9, , ., from the estimation method used in step 4.
6. Setk = k + 1 and get the newy, ék|k, andXy, from the oldxyijx+1,

ék+1‘k+1, and Xy 1x41, respectively. Storar as up* since it is the
reestimation-method control value. Then repeat steps 1 through 6.



Appendix Q

Deter ministic, Cautionary, and
Probing Components of the
Cost-to-Go

In this appendix the deterministic, cautionary, and probing components of the
approximate cost-to-go are derived.
Begin with the deterministic component in EQ.(10.44), that is, Eq. (10.46)

Ip.n—k = W(Zk, W) + Op(ug) + Co 1 + Vet (Q.1)

Recalling thatC, ., is the deterministic cost-to-go along the nominal path
[Eqg. (@.17)] and using the fact that= 0 (from Appendix), we can write the
general form of this component as

N-1

Jp.N—k = wi(2Zk, ) + Op(u) + Ly (Xon) + D Lj(X0, Uoy) (Q.2)
k1

For the linear problem at hand one can use HEqgs.110.2) 0] (10.6) in E¢. (Q.2)
to obtain

Jpnk = [xp — % Filuy, —a,) + %[uk — 1) Afuy — Ty
N-1
+5Xon — X Wi [xonw —Xn] + D (5%05 — %] W%y — %]
=kt
H[Xoj = Ko ] Filuo; — 5] + 3w, — 0] Aj[u, ; — a;)) (Q.3)

This expression then provides the deterministic component of the cost-to-go.
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Next consider the cautionary term from Hq. (10.47)

N-1

1
Jon—k = %tf[KkHEkﬂ\k] + B > tr[K ;11 Q7] (Q.4)

j=k+1

Begin with only the first term in this expression,

Kxx i Kx*9 XX i %60
K1 Zpap] = tr| [ peryaal B vy T
' k+1 ' k+1]k
= tr(KXXExx+Kx020x)+tr(K0xEx0+K00200)
tr (K% S ) + 200 (KPS 305 )
+ tr(Kz-el—IEk-H\k) (Q.5)

Similarly the second term in Ed. (Q.4) can be written as

K** i KxB i 0
tr(K;11Qf) = tr([‘ """ T ] [%F D (Q.6)
' j+1 b

This expression uses the assumptions in EQ. (10.10) about the covariance of the
system-equation noise terms. From Eq. (Q.6) one obtains

(K1 Q) = tr(K3¥,Q;) + tr(K7Y,T) Q7)
Substitution of Eqs[(Q]5) and (Q.7) info (Q.4) yields
Jon-r = 3tr (Kﬁﬂ P + e (KPE SR ) + 3t (KR 20 )
42 Ekjﬂ [tr(K3F,Q;) + tr(K99,T;)] (Q.8)
]

which is the cautionary component.
It remains only to evaluate the probing component Eq. (10.48)

N-1

1
JP,N—k: = 5 Z tr[-Azz,jEjU] (Qg)

j=k+1

From Eq.[[9.3l7)
‘A'ZZ] — :H:, :H:uu ]:H:uz,j (Qlo)

uz,j
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For the quadratic linear problem at hand, use Hgs. (H.44)[and](H.45) to rewrite
Eqg. (Q.10) as

/
Azz — |:BIKxXA + Fl i B/[KXXf;( 4 KXGD] 4 Ze;pxbzg:| [BlexB + A]fl

x [B’KXXA +FBK™f + K*D] + Y e;prg} (Q.12)
and
Ay = 2B (Q.12)
=~ ciD '
where
A = [A'K™B + F]uB'K*A + F|
B = [AK*B+F|u [B’[K"ng‘ +K*D]+ Y e;prZ]
!/
C = |IDK™+ KB + | Y elp™by| | wBK™A + F]
and

. ! .
D= [(D’K”X+fg'KXX)B+ (Z e;prg> } " {B’(K"ng—i—K"eD)qLZ e;.pr;,}
From Egs.[(Q9) and (Q.12) we can then determine the probing term

ek = 5 % { AKS,B + Flu,[BK A + FS%)
j =k+1

+ 2tr<[B K A + F)'p,

B'[K,f5 + KXY, D] + Y elp*by } Em)
oo |[DK, + (KB + | X elp™bj) ]u]

< (B 5 + K3,D) + X elp™b |29 | (Q.13)



Appendix R

The Measurement-Error Covariance

Following the work of| Conrad| (1977), the revisions of the national-income
accounts were used to obtain an estimate of the covariance matrix of the noise
term of the measurement equations. This was done by assuming that the latest
revision available is the true value and that the difference between this and the
initial estimate is the size of the measurement error.

Table[R.1 gives the first reported value of GC58, GPI58, and GNP58 and
Table[R.2 gives the latest revision used in this study (those publishedSartyey
of Current Business on or before the November 1968 issue).

The differences between these two series, of course, understates the magnitude
of the true measurement errors. Worse still, they may provide misleading
estimates of the true measurement errors since those series which have the largest
true measurement errors may be the most difficult to revise and thus be the
series that shows the least revision and therefore the smallest errors. So, the
measurement errors shown in the revisions in Tablé R.3 reflect lower bounds on
the true measurement errors. As this kind of work proceeds, it will be useful to
attempt to obtain independent information on the magnitudes of the measurement
errors by making detailed studies on some elements of the time series.

A glance at Tablé RI3 confirms that the revisions are serially correlated and
have nonzero means. However, for purposes of this study, we have assumed that
the measurement errors have zero means and are uncorrelated over time. For a
study which exploits the information in the serial correlation and nonzero means
of these statistics see Bar-Shalom and Wall (1978).

The covariance of these time series is given in Tablé R.4. This i8 the
matrix used forR, the covariance of the measurement noise. There is a slight
inconsistency in the components for GNP58 since the model actually uses GNP58
- GNET58, that is, GNP net of net exports. However, the magnitude of this
inconsistency is small.
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Table R.1: First reported values, billions of 1958 dollars
Quarter GC58 GPI58 GNP58

64-1 364.5 83.8 967.1
Il 369.8 85.2 275.9

1l 377.3 86.0 282.6
v 376.8 90.2 584.7
65| 385.9 94.7 997.5
Il 390.2 93.0 601.4

1] 396.7 92.9 609.7
A\ 403.3 100.5 624.4
66-I 409.9 100.9 633.6
Il 412.2 106.3 643.5

1l 418.3 102.5 649.3
A\ 418.5 106.4 657.2
67- 422.0 95.7 656.7
Il 430.6 91.3 664.7

1] 431.5 96.4 672.0

v 434.0 103.0 679.6
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Table R.2: Latest revision, billions of 1958 dollars
Quarter GC58 GPI158 GNP58

64-1 366.3 85.3 571.1
Il 370.7 87.3 278.6

1l 378.6 87.6 285.8
v 379.3 90.8 988.5
65-| 387.9 96.9 601.6
Il 393.4 96.8 610.4

1] 400.3 99.6 622.5
v 409.2 103.4 636.6
66-I 415.7 106.1 648.6
Il 414.8 109.5 653.3

1l 420.0 107.4 659.5
A\ 420.6 112.3 667.1
67- 424.8 99.8 665.7
Il 431.2 94.2 669.2

1l 431.8 99.3 675.6

v 434.1 104.7 681.8
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Table R.3: Size of revisions, billions of 1958 dollars
Quarter GC58 GPI58 GNP58

64-| —-1.8 —-1.5 —4.0
Il —-0.9 —2.1 —2.7
1l —-1.3 —-1.6 —-3.2
v —2.5 —0.6 —3.8
65-| —2.0 —2.2 —4.1
Il —3.2 —-3.8 -9.0
1] —-3.6 —6.7 —12.8
A\ -5.9 -2.9 —12.2
66-I -5.8 —5.2 —15.0
Il —2.6 —-3.2 -9.8
1l —1.7 —-4.9 —10.2
A\ 2.1 -5.9 -9.9
67-I —-2.8 —4.1 -9.0
Il —0.6 -2.9 —4.5
1] -0.3 -2.9 -3.6
v -0.1 —-1.7 —-2.2

Table R.4: Covariance of revisions
GC58 GPI58 GNP58

GC58 2.71 1.12 5.52
GPI5S8 1.12 2.78 5.42
GNP58 5.52 0.42 16.22




Appendix S

Data for Deter ministic Problem
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Quarter GC58 GPI58 YN GNET58 GGES58

47- 203.4 01.3 293.3 13.1 38.6
Il 207.0 48.9 295.7 13.3 39.8

1] 207.4 48.6 296.6 13.0 40.7
v 207.3 o7.1 304.8 9.70 40.3
48-1 208.5 09.8 309.4 7.70 41.1
Il 210.7 60.9 317.1 5.80 45.5

1] 211.1 61.3 320.2 5.60 47.8
A\ 212.8 09.7 323.2 5.50 50.7
49-| 213.2 592.3 316.7 7.80 51.3
Il 216.3 45.0 315.0 7.50 53.8

1l 216.8 48.6 319.6 6.50 04.2
A\ 219.7 46.0 319.5 3.80 53.8
50-I 223.5 99.1 336.0 3.60 53.4
Il 227.6 66.3 345.1 3.40 01.3

1] 238.8 70.8 361.3 1.50 51.7
v 232.1 81.0 367.8 2.30 54.8
51-1 236.0 71.7 372.1 2.70 64.4
Il 230.0 75.1 376.7 4.80 1.7

1] 232.0 70.0 381.9 6.80 79.9

A\ 233.3 63.0 381.9 6.80 85.6
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Quarter GC58 GPI58 YN GNET58 GGES58
52-1 233.7 63.8 385.4 6.00 87.8
Il 238.1 56.0 385.8 3.80 91.7
1] 239.1 28.6 392.3 1.60 94.6
v 246.8 63.6 404.7 .60 94.4
53-I 250.1 63.4 411.1 1.00 97.7
Il 251.5 64.2 415.6 .80 99.9
1l 251.1 61.5 412.6 1.10 100.0
v 250.4 95.7 407.3 1.50 101.3
54-| 250.8 56.3 401.1 1.80 94.1
Il 253.3 27.0 399.1 3.00 88.8
1] 256.9 29.8 403.9 3.30 87.2
v 261.9 64.3 411.7 4.00 85.4
55-1 267.6 70.8 423.9 4.10 85.5
Il 273.0 75.5 432.7 2.70 84.2
1l 276.3 76.9 439.0 3.10 85.8
A\ 279.0 78.5 443.6 2.80 85.1
56- 279.8 75.5 440.4 3.20 85.2
Il 280.3 74.5 440.6 5.00 85.8
1l 280.8 74.0 439.2 5.30 84.3
v 284.7 73.3 443.6 6.70 85.7
S57-1 286.6 70.5 446.1 7.30 89.0
Il 287.0 69.9 446.2 7.00 89.4
1] 289.3 70.9 449.2 6.00 89.1
v 289.7 64.0 443.6 4.60 89.9
58-I 285.6 57.50 435.0 2.5 91.80
Il 287.5 56.00 437.0 2.5 93.60
1l 291.9 61.60 448.3 2.4 94.80
A\ 295.2 68.50 460.3 1.3 96.50
59| 302.3 70.90 468.7 —.10 95.50
Il 307.0 78.50 480.6 —.70 95.10
1] 310.0 70.20 474.4 .60 94.30
v 310.1 75.00 479.2 1.2 94.20
60-I 313.9 79.90 487.6 2.6 93.90
Il 317.8 73.50 485.9 3.9 94.70
1] 316.5 71.00 482.9 4.5 95.40

A\ 316.5 65.20 477.6 6.2 95.90
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Quarter GC58 GPI58 YN GNET58 GGES58
61- 316.3 62.40 476.3 6.4 97.60
Il 320.5 67.80 487.9 5.0 99.50
1] 324.0 71.20 497.2 4.4 102.0
A\ 329.6 74.70 007.2 4.7 102.9
62-1 333.5 77.20 516.2 3.5 105.5
Il 335.9 79.00 022.7 5.2 107.8
1l 340.3 80.60 028.7 4.9 107.8
v 344.8 80.70 534.1 4.4 108.5
63 348.3 78.70 037.2 4.0 110.3
Il 350.0 80.50 939.1 5.8 108.7
1] 355.1 83.00 048.2 2.9 110.0
v 356.4 86.90 952.9 7.1 109.6
64-| 366.3 85.30 562.0 9.1 110.4
Il 370.7 87.30 270.6 8.0 112.6
1] 378.6 87.60 o77.4 8.4 111.2
v 379.3 90.80 580.6 7.9 110.5
65| 387.9 96.90 096.2 5.4 111.4
Il 393.4 96.80 603.4 7.0 113.1
1l 400.3 99.60 615.8 6.7 115.9
v 409.2 103.4 630.9 5.7 118.4
66-I 415.7 106.1 643.3 5.3 121.5
Il 414.8 109.5 649.0 4.3 124.7
1] 420.0 107.4 655.9 3.6 128.5
A\ 420.6 112.3 664.2 2.9 131.3
67- 424.8 99.80 662.7 3.0 138.1
Il 431.2 94.20 666.4 2.8 141.0
1l 431.8 99.30 672.5 3.1 141.4
A\ 434.1 104.7 680.8 1.0 142.0
68-1 444.9 101.5 692.8 —.10 146.5
Il 447.5 107.3 704.0 —.60 149.2
1] 455.7 105.8 711.6 .70 150.1
v 455.4 113.1 719.7 -1.3 151.2

69-1 460.1 113.1 725.8 —-2.3 152.5




Appendix T

Solution to the M acroeconomic
M odéea with Measurement Error

This appendix presents the detailed results for one Monte Carlo run of the
macroeconomic model with measurement error discussed in Chap. 12. In
particular the results are for the fourth Monte Carlo run. Graphical results are
displayed in the chapter. This appendix contains both the actual random elements
used in the run and the numerical results, so that others can check these results
and debug their own computer codes.

T.1 Random Elements

Four sets of random elements are required for each Monte Carlo run:

1. The system noise termg, in Eq. (IZ.8) for each time periodk =
0,1,...,N—1

2. The measurement-noise terms in Eq. (12.9) for each time period, =
1,2,...,N

3. The initial state-variable measurement egpdefined by
Xopp = X0 +§ (T.1)

wherex, is the initial estimate of the state vector e the initial-state-
variable measurement error
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4. The initial-parameter-vector errgt defined by
éo\o =6)+n (T.2)
where

éo|0 = initial estimate of parameter vector
6, = true value of parameter
n = initial-parameter-vector error

For all the Monte Carlo runs, and@,

were set as
460.1
X0 = l 113.1 ] (T.3)

and
1.014
.002
—.004
—1.312
6, = 093 (T.4)
.753
—.100

448

The covariance) for the additive-error terms [see E. (12.10)] was used in

the Monte Carlo routine to generate the system noise tegm&or Monte Carlo
run 4 these values were

N [ 27538 [ 2.8660 o _ | 12624
© T | 42377 P ] 1.4935 27 | 3.9079
. [ 2.2937 [ 17421 oo _ | 36733
° 7 36310 1T 11975 ° 7 | 88018
[ 2.1751
ve = _3.2589] (T-3)

The covarianc® for the measurement-error term [see Eq. (12.11)] was used

to generate the measurement-noise texpsFor Monte Carlo run 4 these values
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were
w [ 49625 [ .40668 [ 12890
r= | .93212 27| 25947 371 .05578
. — [ 1.22890 [ 89972 [ 117250
T 50955 > | 1.39700 67| 71312
[ .26480
W= | 91895 ] (1.6)

The covarianc&fy; for the initial-state vector [see Ed. (12/17)] was used to
generate the initial-state-vector measurement &rréor Monte Carlo run 4 these

values were
1.16820
¢= l .53328] (1)

The covarianc&f) for the initial-parameter vector [see EG.{12.19)] was used
to generate the initial-parameter vector errpr For Monte Carlo run 4 these
values were

01606
00983
— 02613

| =1.52010

n= 00112
04410

— 02295

| —1.33760

One of the links between these numerical input values and the results which
are displayed graphically in Chdp.J12 can be seen by using (T.4) and (T.8)lin (T.2)
to construct

(T.8)

1.0301
—.0078
—.0301

—2.8321
.0941
7971

—.1230
—.8896
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The value for parameter;; in this vector is the first element, 1.0301, and this
is used for the initial value of the parametgy; in Fig.[12.4 for all three control
methods.

T.2 Results

This section presents the results for Monte Carlo run 4. The cost (in thousands)
for the three methods for this particular run were

Dual = 23.72 OLF = 23.69 CE=23.94

The results for this particular run are consistent with the overall results which
found the Dual and OLF cost to be close to each other and somewhat better (lower)
than the CE solution cost.

The state-variable results are given in Tdblg T.1, the control-variable results
are in TableL TR, and the parameter-estimation results are in Table T.3. These
results correspond to Figs. IP.1 and 1P.2,112.3[and 12.4 19 12.11, respectively.

Table[T.4 contains the approximate cost-to-go for periods 0, 1, and 6. These
results correspond to Fids. 12112, 12.13,[and 12.18. A discussion of these results
is given in Chap_12 along with the figures.
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Table T.1: State-variable results

Period Desired Dual OLF CE
Consumption
0 460.10 460.10 460.10 460.10
1 463.55 465.04 465.01 465.00
2 467.03 472.64 472.59 472.57
3 470.53 478.72 478.66 478.63
4 474.06 485.90 485.84 485.81
5 477.61 492.62 492.56 492.52
6 481.20 498.04 498.01 497.95
7 484.81 505.38 505.36 505.28

Investment
113.10 113.10 113.10 113.10
113.95 115.44 114.63 114.39
114.80 114.62 113.64 113.19
115.66 116.72 115.71 115.25
116.53 118.19 117.36 116.96
117.41 116.93 116.62 116.15
118.29 116.19 116.51 115.76
119.17 119.12 119.78 118.85

~N~No o~ WNEO

Table T.2: Control-variable results: Government obligations
Period Desired Dual OLF CE
153.64 172.00  180.06  182.50
154.80 175.00  178.65  181.30
155.96 179.00  181.64 18291
157.13 183.00  183.68  184.08
158.31 189.00  185.82  187.54
159.49 190.00 184.41 188.28
160.69 184.00  179.71  183.39

Ol WNEO
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Table T.3: Parameter-estimation results
Parameter Period True Dual OLF CE

a1 1.0140 1.0301 1.0301 1.0301
1.0140 1.0306 1.0306 1.0306

1.0140 1.0290 1.0284 1.0286

1.0140 1.0285 1.0278 1.0281

1.0140 1.0270 1.0262 1.0268

1.0140 1.0263 1.0257 1.0263

1.0140 1.0263 1.0257 1.0263

1.0140 1.0263 1.0257 1.0263

a12 0020 —-.0078 —.0078  —.0078
.0020  —.0089  —.0087  —.0087

0020 —.0055 —.0048 —.0054

0020  —.0047  —.0039  —.0047

.0020 —.0023 —.0018 —.0031

.0020 —-.0014 —.0010 —.0024

.0020 —-.0014 —.0011  —.0025

.0020 —-.0014 —.0011 —.0024

by —-.0040 —-.0301 —-.0301 —.0301

—-.0040 —-.0316 —.0316 —.0317
—.0040 —.0275 —.0258 —.0263
—.0040 —-.0260 —.0237 —.0247
—.0040 —-.0214 —-.0185 —.0202
—-.0040 —-.0195 —-.0169 —.0186
—-.0040 —-.0195 —-.0171 —.0187
—-.0040 —-.0194 —-.0171 —.0187
—1.3120 —-2.8321 —2.8321 —2.8321
—1.3120 —-2.7819 —2.7989 —2.8011
—1.3120 —2.9199 —2.9537 —2.9270
—1.3120 —-2.9636 —3.0079 —2.9672
—1.3120 —-3.0985 —3.1565 —3.0921
—1.3120 —3.1477 —3.2125 —3.1396
—1.3120 —3.1473 —3.2018 —3.1366
—1.3120 —3.1492 —3.1948 —3.1366
.0930 0941 .0941 .0941
.0930 .0913 .0900 .0899
.0930 .0910 .0895 .0896
.0930 .0892 .0876 0878
.0930 0875 .0859 .0863
.0930 .0868 .0854 0858
.0930 0871 .0856 .0860
.0930 .0870 .0858 .0860

&

a21

~NOoO O WNEPONOOPWNEPONOOPMWNERPONOOMMWDNERONOODMWDNE,O
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Table T.3: Parameter-estimation results

Parameter Period True Dual OLF CE

Q29 .7530 7971 7971 7971
.7530 8027 .8036 .8033

.7530 .8033 .8044 .8039

7530 .8062 .8068 .8059

7530 .8089 .8091 .8078

.7530 .8098 .8098 .8085

.7530 .8095 .8095 .8082

.7530 .8093 .8094 .8080

ba —.1000 —.1230 —.1230 —.1230
—.1000 —.1152 —.1118 —.1116

—.1000 —.1145 —.1105 —.1107

—.1000 —.1089  —.1043  —.1047
1000 —.1035 —.0988  —.0996
—-.1000 —-.1016  —.0971  —.0980
—.1000 —.1026  —.0980  —.0989
—-.1000  —.1008  —.0969  —.0974
4480  —.8896  —.8896  —.8896
4480 —1.1525 —1.1382 —1.1142
4480 —1.1751 —1.1690 —1.1355
4480 —1.3435 —1.3341 —1.2837
4480 —1.4988 —1.4949 —1.4294
4480 —1.5487 —1.5507 —1.4798
4480 —1.5185 —1.5060 —1.4450
4480 —1.6254 —1.6312 —1.5580

C2
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APPENDIX T. SOLUTION TO MEASUREMENT ERROR MODEL

Table T.4: Approximate cost-to-go and its components

Government  Deter-
obligations  ministic  Cautionary Probing Total
Period O
100.00 16,219.92 5342.64  2187.56 23,750.12
105.00 15,778.62 5419.73  2198.98 23,397.32
110.00 15,364.90 5497.78  2208.72 23,071.40
115.00 14,978.76 5576.80  2216.46 22,772.02
120.00 14,620.20 5656.79  2221.86 22,498.86
125.00 14,289.22 2737.75 2224.63 22,251.61
130.00 13,985.82 5819.69  2224.47 22,029.98
135.00 13,710.01 5902.59  2221.13 21,833.73
140.00 13,461.77 5986.46 2214.41 21,662.64
145.00 13,241.11 6071.30 2204.15 21,516.57
150.00 13,048.04 6157.11 2190.27 21,395.42
155.00 12,882.54 6243.89 2172.74  21,299.18
160.00 12,744.63 6331.65 2151.62 21,227.89
165.00 12,634.29 6420.37  2127.02 21,181.68
166.00 12,615.54 6438.23 2121.69 21,175.46
167.00 12,597.88 6456.13 2116.24 21,170.25
168.00 12,581.33 6474.07  2110.66 21,166.06
169.00 12,565.89 6492.04  2104.95 21,162.88
170.00 12,551.54 6510.06 2099.12 21,160.72
171.00 12,538.30 6528.11  2093.17 21,159.58
172.00 12,526.16 6546.21 2087.09 21,159.46
173.00 12,515.13 6564.34  2080.90 21,160.37
174.00 12,505.20 6582.51  2074.59 21,162.30
175.00 12,496.37 6600.72  2068.17 21,165.26
180.00 12,468.78 6692.35  2034.45 21,195.57
185.00 12,468.76 6784.95  1998.27 21,251.99
190.00 12,496.33 6878.52  1960.00 21,334.86
195.00 12,551.48 6973.07  1919.98 21,444.53
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Table T.4: Approximate cost-to-go and its components

Government  Deter-
obligations  ministic  Cautionary Probing Total
Period 1
100.00 13,275.01 5252.92  1367.78 19,895.72
105.00 12,837.21 5297.48  1377.31 19,512.00
110.00 12,427.19 5342.93 1385.71 19,155.84
115.00 12,044.97 5389.27  1392.74 18,826.98
120.00 11,690.54 5436.50  1398.17 18,525.22
125.00 11,363.91 0484.62 1401.79 18,250.32
130.00 11,065.07 5533.63  1403.38 18,002.08
135.00 10,794.02 5583.52  1402.77 17,780.32
140.00 10,550.76 5634.31  1399.82 17,584.89
145.00 10,335.30 5685.99  1394.41 17,415.70
150.00 10,147.63 5738.56  1386.50 17,272.69
155.00 9,987.76 5792.01  1376.06 17,155.83
160.00 9,855.67 5846.36  1363.15 17,067.18
165.00 9,751.38 5901.59  1347.85 17,000.83
170.00 9,674.89 5957.72  1330.30 16,962.91
171.00 9,662.92 5969.05  1326.54 16,958.51
172.00 9,652.07 5980.42  1322.69 16,955.18
173.00 9,642.33 5991.82  1318.76 16,952.92
174.00 9,633.70 6003.26  1314.76 16,951.72
175.00 9,626.18 6014.74  1310.68 16,951.60
176.00 9,619.78 6026.25  1306.52 16,952.55
177.00 9,614.48 6037.79  1302.29 16,954.57
178.00 9,610.30 6049.37  1297.99 16,957.67
179.00 9,607.23 6060.99  1293.63 16,961.85
180.00 9,605.27 6072.64  1289.19 16,967.10
185.00 9,612.16 6131.44  1266.07 17,009.66
190.00 9,646.83 6191.12  1241.57 17,079.52
195.00 9,709.30 6251.69  1215.94 17,176.93
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Table T.4: Approximate cost-to-go and its components

Government  Deter-
obligations  ministic  Cautionary Probing Total
Period 6
100.00 29,380.71 2299.60 0.00 31,680.31
105.00 28,514.79 2224.35 0.00 30,739.13
110.00 27,701.15 2154.75 0.00 29,855.90
115.00 26,939.79 2090.82 0.00 29,030.61
120.00 26,230.72 2032.55 0.00 28,263.27
125.00 25,573.93 1979.95 0.00 27,553.88
130.00 24,969.42 1933.00 0.00 26,902.43
135.00 24,417.20 1891.72 0.00 26,308.92
140.00 23,917.26 1856.10 0.00 25,773.36
145.00 23,469.61 1826.14 0.00 25,295.74
150.00 23,074.24 1801.84 0.00 24,876.07
155.00 22,731.15 1783.20 0.00 24,514.35
160.00 22,440.34 1770.22 0.00 24,210.57
165.00 22,201.82 1762.91 0.00 23,964.73
170.00 22,015.59 1761.26 0.00 23,776.84
175.00 21,881.63 1765.27 0.00 23,646.90
180.00 21,799.96 1774.94 0.00 23,574.90
181.00 21,789.90 1777.55 0.00 23,567.45
182.00 21,781.93 1780.39 0.00 23,562.32
183.00 21,776.06 1783.46 0.00 23,559.51
184.00 21,772.27 1786.75 0.00 23,559.02
185.00 21,770.57 1790.27 0.00 23,560.84
186.00 21,770.97 1794.02 0.00 23,564.99
187.00 21,773.46 1797.99 0.00 23,571.45
188.00 21,778.04 1802.19 0.00 23,580.23
189.00 21,784.71 1806.61 0.00 23,591.32
190.00 21,793.47 1811.26 0.00 23,604.74
195.00 21,868.65 1837.92 0.00 23,706.57
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Appendix U
Changesin the Second Edition

As is discussed in the Preface to the Second Edition the changes from the First
Edition to the Second Edition are primarily in providing an electronic version of
the book that can be posted on the Internet. However, many minor corrections and
a few major ones have been made in the process of creating the electronic version
of the book. Many of the minor changes are corrections of transpose signs. Some
major changes are listed below.

EqQ. (10-64) has been changed from

Xpp1 = ApXpp + Brug + ¢ + vy, (U.1)
to
Xkl = Aka + Bku’,; +ci + Vg (UZ)
Eq. (10-65) has been changed from
0141 = DOy, + . (U.3)
to
O/H_l = DO + ny (U4)
Eq. (M-1) has been changed from
5 5 T 1 7 )
Do & £ (Zje, ) + 5 > €trlfyy (U.5)
i€l
to 1
Zis1k ~ £ (2, ) + 5 > e'tr[f,, Sy (U.6)

el
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