{VERSION 4 0 "IBM INTEL NT" "4.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 }{CSTYLE "2D Comment" 2 18 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 } {CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 256 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 }{CSTYLE "" -1 257 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 258 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 259 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 260 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 } {CSTYLE "" -1 261 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 }{CSTYLE "" -1 262 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 263 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 264 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 }{CSTYLE "" -1 265 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 266 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 267 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Heading 1" 0 3 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }1 0 0 0 8 4 0 0 0 0 0 0 -1 0 }{PSTYLE "Mapl e Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 } 3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Plot" 0 13 1 {CSTYLE " " -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Title" 0 18 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 1 1 0 0 0 0 0 0 1 }3 0 0 -1 12 12 0 0 0 0 0 0 19 0 }{PSTYLE "Heading 2" -1 256 1 {CSTYLE "" -1 -1 "Times" 1 14 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }3 1 0 0 8 2 1 0 1 0 2 2 0 1 }} {SECT 0 {EXCHG {PARA 18 "" 0 "" {TEXT -1 11 "Calculus II" }}{PARA 256 "" 0 "" {TEXT -1 63 "Lesson 22: Approximating General Functions with \+ Taylor Series\n" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 108 "In the previo us lesson, we saw how to approximate the sine and cosine functions arb itrarily accurately near " }{XPPEDIT 18 0 "x = 0;" "6#/%\"xG\"\"!" } {TEXT -1 187 " by using polynomials. In this worksheet, we will see \+ that the same approach can be used to approximate other functions, and that it can be used to get approximations near other points." }}} {SECT 0 {PARA 3 "" 0 "" {TEXT -1 21 "Approximations near 0" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart;" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 181 "Recall how the method works: we find an approximation to our function near 0, then we subtract that approximation from the fun ction, and see how quickly the difference goes to 0 as " }{XPPEDIT 18 0 "proc (x) options operator, arrow; 0 end;" "6#R6#%\"xG7\"6$%)operato rG%&arrowG6\"\"\"!F*F*F*" }{TEXT -1 26 " by dividing by powers of " } {XPPEDIT 18 0 "x;" "6#%\"xG" }{TEXT -1 1 "." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "f := x -> sqrt(1 + x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"fGR6#%\"xG6\"6$%)operatorG%&arrowGF(-%%sqrtG6#,&\" \"\"F09$F0F(F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "plot(f, -1..1);" }}{PARA 13 "" 1 "" {GLPLOT2D 400 300 300 {PLOTDATA 2 "6%-%'C URVESG6$7W7$$!\"\"\"\"!$F*F*7$$!3%pmm\"HU,\"*)*!#=$\"3]'o3=F/7$$ !3ommm;p0k&*F/$\"3]v`j1]#z3#F/7$$!3E++vV5Su$*F/$\"3Sl&Qci(>,DF/7$$!3wK L$3jhR_$F/7$$!3:mmm \"4m(G$)F/$\"3-6r^$ys!)3%F/7$$!3\"QLL3i.9!zF/$\"3g[%zI'R/\"e%F/7$$!3\" ommT!R=0vF/$\"3c\\tv0M\"[*\\F/7$$!3u****\\P8#\\4(F/$\"3gDu?k\"y)*Q&F/7 $$!3+nm;/siqmF/$\"3%\\ewjur+x&F/7$$!3[++](y$pZiF/$\"3i&Gf@32c7'F/7$$!3 3LLL$yaE\"eF/$\"3iU+jb*p4Z'F/7$$!3hmmm\">s%HaF/$\"3?2#><)ycgnF/7$$!3Q+ ++]$*4)*\\F/$\"3/!Htmk6C2(F/7$$!39+++]_&\\c%F/$\"3u@Q[)fvAP(F/7$$!31++ +]1aZTF/$\"3W!pT)Go8]wF/7$$!3umm;/#)[oPF/$\"339kKBD*R*yF/7$$!3hLLL$=ex J$F/$\"3'\\N'fP!)\\u\")F/7$$!3*RLLLtIf$HF/$\"3vVZ[i$\"3-kG]:K3x&*F/7$$!3KMLL3s$QM%Fgs$\"3CeuoioR!y*F/7$$!3]^ omm;zr)*!#@$\"37W;T&)G1&***F/7$$\"3%pJL$ezw5VFgs$\"3I>CXJkK@5!#<7$$\"3 s*)***\\PQ#\\\")Fgs$\"3JV78g#[*R5Fjt7$$\"3GKLLe\"*[H7F/$\"3q5PKSGpf5Fj t7$$\"3I*******pvxl\"F/$\"3E![4&*z6(z5Fjt7$$\"3#z****\\_qn2#F/$\"3]se^ 2O%*)4\"Fjt7$$\"3U)***\\i&p@[#F/$\"3-8-y-jB<6Fjt7$$\"3B)****\\2'HKHF/$ \"36*zIe`-s8\"Fjt7$$\"3ElmmmZvOLF/$\"3%oT&G\"o[[:\"Fjt7$$\"3i******\\2 goPF/$\"3E-ia5oRt6Fjt7$$\"3UKL$eR<*fTF/$\"3)4cg:^a**=\"Fjt7$$\"3m***** *\\)Hxe%F/$\"3_Eb@[nz27Fjt7$$\"3ckm;H!o-*\\F/$\"3isA)3]ZVA\"Fjt7$$\"3y )***\\7k.6aF/$\"3))36pa>TT7Fjt7$$\"3#emmmT9C#eF/$\"3un:j!zryD\"Fjt7$$ \"33****\\i!*3`iF/$\"3OG.kNg([F\"Fjt7$$\"3%QLLL$*zym'F/$\"3#zh'\\P9/\" H\"Fjt7$$\"3wKLL3N1#4(F/$\"3l?,])=mtI\"Fjt7$$\"3Nmm;HYt7vF/$\"3)[MS<*o NB8Fjt7$$\"3Y*******p(G**yF/$\"3@3.'e>#)yL\"Fjt7$$\"3]mmmT6KU$)F/$\"3] IN#pDQVN\"Fjt7$$\"3fKLLLbdQ()F/$\"3%=qew;*))o8Fjt7$$\"3[++]i`1h\"*F/$ \"3gS-P+]B%Q\"Fjt7$$\"3W++]P?Wl&*F/$\"3!\\HWDCl()R\"Fjt7$$\"\"\"F*$\"3 :&4tBc8UT\"Fjt-%'COLOURG6&%$RGBG$\"#5F)F+F+-%+AXESLABELSG6$Q!6\"Fg\\l- %%VIEWG6$;F(Fj[l%(DEFAULTG" 1 2 0 1 10 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 0 "Curve 1" }}}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 6 "Since \+ " }{XPPEDIT 18 0 "f(0) = 1;" "6#/-%\"fG6#\"\"!\"\"\"" }{TEXT -1 85 ", \+ our first approximation should be the constant function (0-th degree p olynomial) 1:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "p0 := x -> 1;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p0G\"\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "limit(f(x) - p0(x), x=0);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"!" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 79 "As e xpected, our approximation is good enough that the difference goes to \+ 0 as " }{XPPEDIT 18 0 "proc (x) options operator, arrow; 0 end;" "6#R6 #%\"xG7\"6$%)operatorG%&arrowG6\"\"\"!F*F*F*" }{TEXT -1 16 " , but how fast?" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "limit((f(x) - p0( x))/x, x=0);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6##\"\"\"\"\"#" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 22 "This limit shows that " }{XPPEDIT 18 0 "f(x)-p0(x);" "6#,&-%\"fG6#%\"xG\"\"\"-%#p0G6#F'!\"\"" }{TEXT -1 12 " looks like " }{XPPEDIT 18 0 "x/2;" "6#*&%\"xG\"\"\"\"\"#!\"\"" } {TEXT -1 6 " when " }{XPPEDIT 18 0 "x;" "6#%\"xG" }{TEXT -1 40 " is sm all, so our next approximation is " }{XPPEDIT 18 0 "p0(x)+x/2;" "6#,&- %#p0G6#%\"xG\"\"\"*&F'F(\"\"#!\"\"F(" }{TEXT -1 2 " :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "p1 := x -> 1 + (1/2)*x;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p1GR6#%\"xG6\"6$%)operatorG%&arrowGF(,&\" \"\"F-*&#F-\"\"#F-9$F-F-F(F(F(" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 59 "Before computing further, let's plot our original function " } {XPPEDIT 18 0 "f;" "6#%\"fG" }{TEXT -1 42 " , together with the linear approximation " }{XPPEDIT 18 0 "p1;" "6#%#p1G" }{TEXT -1 2 " :" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "plot(\{f,p1\}, -1..1);" }} {PARA 13 "" 1 "" {GLPLOT2D 400 300 300 {PLOTDATA 2 "6&-%'CURVESG6$7W7$ $!\"\"\"\"!$F*F*7$$!3%pmm\"HU,\"*)*!#=$\"3]'o3=F/7$$!3ommm;p0k&* F/$\"3]v`j1]#z3#F/7$$!3E++vV5Su$*F/$\"3Sl&Qci(>,DF/7$$!3wKL$3jhR_$F/7$$!3:mmm\"4m(G$)F/$ \"3-6r^$ys!)3%F/7$$!3\"QLL3i.9!zF/$\"3g[%zI'R/\"e%F/7$$!3\"ommT!R=0vF/ $\"3c\\tv0M\"[*\\F/7$$!3u****\\P8#\\4(F/$\"3gDu?k\"y)*Q&F/7$$!3+nm;/si qmF/$\"3%\\ewjur+x&F/7$$!3[++](y$pZiF/$\"3i&Gf@32c7'F/7$$!33LLL$yaE\"e F/$\"3iU+jb*p4Z'F/7$$!3hmmm\">s%HaF/$\"3?2#><)ycgnF/7$$!3Q+++]$*4)*\\F /$\"3/!Htmk6C2(F/7$$!39+++]_&\\c%F/$\"3u@Q[)fvAP(F/7$$!31+++]1aZTF/$\" 3W!pT)Go8]wF/7$$!3umm;/#)[oPF/$\"339kKBD*R*yF/7$$!3hLLL$=exJ$F/$\"3'\\ N'fP!)\\u\")F/7$$!3*RLLLtIf$HF/$\"3vVZ[i$\"3-kG]:K3x&*F/7$$!3KMLL3s$QM%Fgs$\"3CeuoioR!y*F/7$$!3]^omm;zr)*!# @$\"37W;T&)G1&***F/7$$\"3%pJL$ezw5VFgs$\"3I>CXJkK@5!#<7$$\"3s*)***\\PQ #\\\")Fgs$\"3JV78g#[*R5Fjt7$$\"3GKLLe\"*[H7F/$\"3q5PKSGpf5Fjt7$$\"3I** *****pvxl\"F/$\"3E![4&*z6(z5Fjt7$$\"3#z****\\_qn2#F/$\"3]se^2O%*)4\"Fj t7$$\"3U)***\\i&p@[#F/$\"3-8-y-jB<6Fjt7$$\"3B)****\\2'HKHF/$\"36*zIe`- s8\"Fjt7$$\"3ElmmmZvOLF/$\"3%oT&G\"o[[:\"Fjt7$$\"3i******\\2goPF/$\"3E -ia5oRt6Fjt7$$\"3UKL$eR<*fTF/$\"3)4cg:^a**=\"Fjt7$$\"3m******\\)Hxe%F/ $\"3_Eb@[nz27Fjt7$$\"3ckm;H!o-*\\F/$\"3isA)3]ZVA\"Fjt7$$\"3y)***\\7k.6 aF/$\"3))36pa>TT7Fjt7$$\"3#emmmT9C#eF/$\"3un:j!zryD\"Fjt7$$\"33****\\i !*3`iF/$\"3OG.kNg([F\"Fjt7$$\"3%QLLL$*zym'F/$\"3#zh'\\P9/\"H\"Fjt7$$\" 3wKLL3N1#4(F/$\"3l?,])=mtI\"Fjt7$$\"3Nmm;HYt7vF/$\"3)[MS<*oNB8Fjt7$$\" 3Y*******p(G**yF/$\"3@3.'e>#)yL\"Fjt7$$\"3]mmmT6KU$)F/$\"3]IN#pDQVN\"F jt7$$\"3fKLLLbdQ()F/$\"3%=qew;*))o8Fjt7$$\"3[++]i`1h\"*F/$\"3gS-P+]B%Q \"Fjt7$$\"3W++]P?Wl&*F/$\"3!\\HWDCl()R\"Fjt7$$\"\"\"F*$\"3:&4tBc8UT\"F jt-%'COLOURG6&%$RGBG$\"#5F)F+F+-F$6$7S7$F($\"3++++++++]F/7$F=$\"35mmmT :(z@&F/7$FG$\"3jLLe9ui2aF/7$FL$\"3Anm;z_\"4i&F/7$FQ$\"3$pmmT&phNeF/7$F V$\"35LLe*=)H\\gF/7$Fen$\"3;nm\"z/3uC'F/7$Fjn$\"37++DJ$RDX'F/7$F_o$\"3 'fm;zR'okmF/7$Fdo$\"3I++D1J:woF/7$Fio$\"3WLLL3En$4(F/7$F^p$\"3qmm;/RE& G(F/7$Fcp$\"3\")*****\\K]4](F/7$Fhp$\"3$******\\PAvr(F/7$F]q$\"3`+++v' Hi#zF/7$Fbq$\"3jmm\"z*ev:\")F/7$Fgq$\"3kKLL347T$)F/7$F\\r$\"3,LLLLY.K& )F/7$Far$\"3?***\\7o7Tv)F/7$Ffr$\"3IKLL$Q*o]*)F/7$F[s$\"3A++D\"=lj;*F/ 7$F`s$\"3]***\\PaRY2/\"Fjt7$Fa u$\"3imm\"zXu91\"Fjt7$Ffu$\"3'******\\y))G3\"Fjt7$F[v$\"3!****\\i_QQ5 \"Fjt7$F`v$\"3#***\\7y%3T7\"Fjt7$Fev$\"3#****\\P![hY6Fjt7$Fjv$\"3ELLLQ x$o;\"Fjt7$F_w$\"3')****\\P+V)=\"Fjt7$Fdw$\"3im;zpe*z?\"Fjt7$Fiw$\"3)* ****\\#\\'QH7Fjt7$F^x$\"37L$e9S8&\\7Fjt7$Fcx$\"3%***\\i?=bq7Fjt7$Fhx$ \"3GLL$3s?6H\"Fjt7$F]y$\"3&***\\7`Wl78Fjt7$Fby$\"3emmm'*RRL8Fjt7$Fgy$ \"3_mmTvJga8Fjt7$F\\z$\"3KL$e9tOcP\"Fjt7$Faz$\"3'******\\Qk\\R\"Fjt7$F fz$\"3@LL3dg6<9Fjt7$F[[l$\"3_mmmw(GpV\"Fjt7$F`[l$\"3-+]7oK0e9Fjt7$Fe[l $\"3-+](=5s#y9Fjt7$Fj[l$\"3++++++++:Fjt-F_\\l6&Fa\\lF+Fb\\lF+-%+AXESLA BELSG6$Q!6\"F_fl-%%VIEWG6$;F(Fj[l%(DEFAULTG" 1 2 0 1 10 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 0 "Curve 1" "Curve 2" }}}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 94 "Observe that the (graph of the) linear approxim ation is just the tangent line to the graph of " }{XPPEDIT 18 0 "f;" " 6#%\"fG" }{TEXT -1 4 " at " }{XPPEDIT 18 0 "x = 0;" "6#/%\"xG\"\"!" } {TEXT -1 2 " ." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "limit((f( x) - p1(x))/x, x=0);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"!" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "limit((f(x) - p1(x))/x^2, x= 0);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6##!\"\"\"\")" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 181 "These limits show that we have improved the appr oximation, and tell us what the next term should be. We can repeat th e process as many times as we like. Here are a few more steps." }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 35 "p2 := x -> 1 + (1/2)*x - (1/ 8)*x^2;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p2GR6#%\"xG6\"6$%)operat orG%&arrowGF(,(\"\"\"F-*&#F-\"\"#F-9$F-F-*&#F-\"\")F-*$)F1F0F-F-!\"\"F (F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "limit((f(x) - p2(x ))/x^3, x=0);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6##\"\"\"\"#;" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "p3 := x -> p2(x) + (1/16)*x^ 3;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p3GR6#%\"xG6\"6$%)operatorG%& arrowGF(,&-%#p2G6#9$\"\"\"*&#F1\"#;F1)F0\"\"$F1F1F(F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "limit((f(x) - p3(x))/x^4, x=0);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6##!\"&\"$G\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "p4 := x -> p3(x) - (5/128)*x^4;" }}{PARA 11 "" 1 " " {XPPMATH 20 "6#>%#p4GR6#%\"xG6\"6$%)operatorG%&arrowGF(,&-%#p3G6#9$ \"\"\"*&#\"\"&\"$G\"F1*$)F0\"\"%F1F1!\"\"F(F(F(" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 6 "p4(x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,,\" \"\"F$*&#F$\"\"#F$%\"xGF$F$*&#F$\"\")F$*$)F(F'F$F$!\"\"*&#F$\"#;F$)F( \"\"$F$F$*&#\"\"&\"$G\"F$*$)F(\"\"%F$F$F." }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 31 "How well has the method worked?" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "plot(\{f,p2,p4\}, -1..1);" }}{PARA 13 "" 1 "" {GLPLOT2D 400 300 300 {PLOTDATA 2 "6'-%'CURVESG6$7S7$$!\"\"\"\"!$\"3++ +++]PMF!#=7$$!3ommm;p0k&*F-$\"3a*)Hl3W(4?$F-7$$!3wKL$3WF-7$$!3\"QLL3i.9!zF-$\"3+\"\\`s%HaF-$\"3o3s$4&Hz#y'F-7$$!3Q+++]$*4)*\\F-$\"3#y54'e \\F'3(F-7$$!39+++]_&\\c%F-$\"3#)HDqo)=1Q(F-7$$!31+++]1aZTF-$\"3G+K3bH0 bwF-7$$!3umm;/#)[oPF-$\"3/i_4-+\"p*yF-7$$!3hLLL$=exJ$F-$\"35q/)*4(of<) F-7$$!3*RLLLtIf$HF-$\"37%3BWXpbS)F-7$$!3]++]PYx\"\\#F-$\"3G(GHNZD`m)F- 7$$!3EMLLL7i)4#F-$\"3a,Cw9B5*)))F-7$$!3c****\\P'psm\"F-$\"3(*yy(fK>%G \"*F-7$$!3')****\\74_c7F-$\"3MysU.nm]$*F-7$$!3)3LLL3x%z#)!#>$\"3kk9+]V 3x&*F-7$$!3KMLL3s$QM%Fdr$\"3sgFS1pR!y*F-7$$!3]^omm;zr)*!#@$\"37W;T&)G1 &***F-7$$\"3%pJL$ezw5VFdr$\"3Jk$4vUE8-\"!#<7$$\"3s*)***\\PQ#\\\")Fdr$ \"3Rm>]n\"[*R5Fgs7$$\"3GKLLe\"*[H7F-$\"3MUgsO@pf5Fgs7$$\"3I*******pvxl \"F-$\"3s!*zm_(3(z5Fgs7$$\"3#z****\\_qn2#F-$\"37g>nfW$*)4\"Fgs7$$\"3U) ***\\i&p@[#F-$\"3m:i(fb9s6\"Fgs7$$\"3B)****\\2'HKHF-$\"3!y9\\f'Q:P6Fgs 7$$\"3ElmmmZvOLF-$\"3)4\"R&o.eZ:\"Fgs7$$\"3i******\\2goPF-$\"3%\\(*))y OMK<\"Fgs7$$\"3UKL$eR<*fTF-$\"3))yM>^Tp*=\"Fgs7$$\"3m******\\)Hxe%F-$ \"3'p:H&R>Q27Fgs7$$\"3ckm;H!o-*\\F-$\"3)[A3*[%HPA\"Fgs7$$\"3y)***\\7k. 6aF-$\"3'oKw%)*e]S7Fgs7$$\"3#emmmT9C#eF-$\"37*H\\KF#fc7Fgs7$$\"33**** \\i!*3`iF-$\"3?Oov8Fgs7$$\"3 Y*******p(G**yF-$\"335S`mJcK8Fgs7$$\"3]mmmT6KU$)F-$\"3_teJy)*[Z8Fgs7$$ \"3fKLLLbdQ()F-$\"3-(fyzN./O\"Fgs7$$\"3[++]i`1h\"*F-$\"3;k\")[2iot8Fgs 7$$\"3W++]P?Wl&*F-$\"39t_^T&)*eQ\"Fgs7$$\"\"\"F*$\"3+++++vV)R\"Fgs-%'C OLOURG6&%$RGBG$\"#5F)$F*F*Fa[l-F$6$7W7$F(Fa[l7$$!3%pmm\"HU,\"*)*F-$\"3 ]'o3=F-7$F/$\"3]v`j1]#z3#F-7$$!3E++vV5Su$*F-$\"3Sl&Qci(>,DF-7$F4 $\"3q94mjnEbGF-7$F9$\"3oOE$>jhR_$F-7$F>$\"3-6r^$ys!)3%F-7$FC$\"3g[%zI' R/\"e%F-7$FH$\"3c\\tv0M\"[*\\F-7$FM$\"3gDu?k\"y)*Q&F-7$FR$\"3%\\ewjur+ x&F-7$FW$\"3i&Gf@32c7'F-7$Ffn$\"3iU+jb*p4Z'F-7$F[o$\"3?2#><)ycgnF-7$F` o$\"3/!Htmk6C2(F-7$Feo$\"3u@Q[)fvAP(F-7$Fjo$\"3W!pT)Go8]wF-7$F_p$\"339 kKBD*R*yF-7$Fdp$\"3'\\N'fP!)\\u\")F-7$Fip$\"3vVZ[iCXJkK@5 Fgs7$Fis$\"3JV78g#[*R5Fgs7$F^t$\"3q5PKSGpf5Fgs7$Fct$\"3E![4&*z6(z5Fgs7 $Fht$\"3]se^2O%*)4\"Fgs7$F]u$\"3-8-y-jB<6Fgs7$Fbu$\"36*zIe`-s8\"Fgs7$F gu$\"3%oT&G\"o[[:\"Fgs7$F\\v$\"3E-ia5oRt6Fgs7$Fav$\"3)4cg:^a**=\"Fgs7$ Ffv$\"3_Eb@[nz27Fgs7$F[w$\"3isA)3]ZVA\"Fgs7$F`w$\"3))36pa>TT7Fgs7$Few$ \"3un:j!zryD\"Fgs7$Fjw$\"3OG.kNg([F\"Fgs7$F_x$\"3#zh'\\P9/\"H\"Fgs7$Fd x$\"3l?,])=mtI\"Fgs7$Fix$\"3)[MS<*oNB8Fgs7$F^y$\"3@3.'e>#)yL\"Fgs7$Fcy $\"3]IN#pDQVN\"Fgs7$Fhy$\"3%=qew;*))o8Fgs7$F]z$\"3gS-P+]B%Q\"Fgs7$Fbz$ \"3!\\HWDCl()R\"Fgs7$Fgz$\"3:&4tBc8UT\"Fgs-F\\[l6&F^[lFa[lF_[lFa[l-F$6 $7S7$F($\"3+++++++]PF-7$F/$\"3Us6&Gt\"euSF-7$F4$\"3o0!>k6LJN%F-7$F9$\" 3ip[bHh4iYF-7$F>$\"3ahaaYE^o\\F-7$FC$\"3Qc=%)\\f*)o_F-7$FH$\"3ePY(*H2J VbF-7$FM$\"3'**eL9Z:L#eF-7$FR$\"3_gXqc0Z3hF-7$FW$\"37C/ZN@B)Q'F-7$Ffn$ \"3ANd&HmN8n'F-7$F[o$\"3!okl1Iun\"pF-7$F`o$\"3i>T4hyo)=(F-7$Feo$\"3m<( o&pr.duF-7$Fjo$\"3Equ&p].7r(F-7$F_p$\"35v[51rBQzF-7$Fdp$\"3&4*[H;p_.#) F-7$Fip$\"30$pYu^)GC%)F-7$F^q$\"3M'*))p?4]w')F-7$Fcq$\"3'G'3#[uOc*))F- 7$Fhq$\"32$Q)pIyhJ\"*F-7$F]r$\"3!oi0P)R+_$*F-7$Fbr$\"39`mBGuXx&*F-7$Fh r$\"3Sqhg'4NXz5Fgs7$Fht$ \"3%R6$[1tW)4\"Fgs7$F]u$\"3A[P&4-2k6\"Fgs7$Fbu$\"3Ru1T`o'e8\"Fgs7$Fgu$ \"3WUs'GK?H:\"Fgs7$F\\v$\"33uQ)z4x1<\"Fgs7$Fav$\"3qqk')GZO'=\"Fgs7$Ffv $\"3ot#H5TxI?\"Fgs7$F[w$\"3SzYqK\\Q=7Fgs7$F`w$\"3%*[K!on_RB\"Fgs7$Few$ \"3YtSy$3X([7Fgs7$Fjw$\"3_`bf\\!yPE\"Fgs7$F_x$\"3)*z*f\"=#=yF\"Fgs7$Fd x$\"3%[()3%p9t\"H\"Fgs7$Fix$\"3S$)zWa_308Fgs7$F^y$\"3&fy!H_f'pJ\"Fgs7$ Fcy$\"3*)f\\aaJ7I8Fgs7$Fhy$\"3l^ps)Rv9M\"Fgs7$F]z$\"3K.]!*po9`8Fgs7$Fb z$\"3!\\.f,++RO\"Fgs7$Fgz$\"3+++++++v8Fgs-F\\[l6&F^[lF_[lF_[lFa[l-%+AX ESLABELSG6$Q!6\"Fd_m-%%VIEWG6$;F(Fgz%(DEFAULTG" 1 2 0 1 10 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 0 "Curve 1" "Curve 2" "Curve 3" }}}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 44 "There is nothing special about the function " }{XPPEDIT 18 0 "f;" "6#%\"fG" }{TEXT -1 150 " we chose: th e method will work with any reasonably nice function. Here is one tha t is important in statistics (it is used to describe the so-called " } {TEXT 257 19 "normal distribution" }{TEXT -1 2 ")." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "g := x -> exp(-x^2/2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"gGR6#%\"xG6\"6$%)operatorG%&arrowGF(-%$expG6#,$*$)9 $\"\"#\"\"\"#!\"\"F3F(F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "plot(g, -4..4, 0..2);" }}{PARA 13 "" 1 "" {GLPLOT2D 400 300 300 {PLOTDATA 2 "6%-%'CURVESG6$7]o7$$!\"%\"\"!$\"3a=^-ziiaL!#@7$$!3ommmmFi DQ!#<$\"32I1#*QS!pj'F-7$$!35LLLo!)*Qn$F1$\"3!QVN#*HGB<\"!#?7$$!3nmmmwx E.NF1$\"3/u*=qG.E;#F97$$!3YmmmOk]JLF1$\"3Guu?)fF&*)QF97$$!3_LLL[9cgJF1 $\"3M4tj,UgunF97$$!3smmmhN2-IF1$\"30'3yK<3S5\"!#>7$$!3!******\\`oz$GF1 $\"3yl\\.+]r#y\"FN7$$!3!omm;)3DoEF1$\"3a>CGeU]WGFN7$$!3?+++:v2*\\#F1$ \"3fv+Gsf$QS%FN7$$!3BLLL8>1DBF1$\"3!Q1g#R;r+nFN7$$!3kmmmw))yr@F1$\"3m3 *fR#4xd%*FN7$$!3;+++S(R#**>F1$\"3EL-'f!=Tb8!#=7$$!30++++@)f#=F1$\"3a]y #3rFz)=Fgo7$$!3-+++gi,f;F1$\"3=TE@SeWDDFgo7$$!3qmmm\"G&R2:F1$\"3Z!)RkT Ci5KFgo7$$!3XLLLtK5F8F1$\"3%pQ'[WZLXTFgo7$$!3_LLL$yP2D\"F1$\"35C@PY?6u XFgo7$$!3eLLL$HsV<\"F1$\"3phn4J@*y,&Fgo7$$!3!pmmT2Tb3\"F1$\"3MCz]Q3rZb Fgo7$$!3+-++]&)4n**Fgo$\"3G4RBjAE&3'Fgo7$$!3cpmmT2jW0!pT\"**Fgo7$$!3m0++]-6&)))F N$\"3k=sz4_gg**Fgo7$$!3')RLLe4**RYFN$\"3!)3c(Q.T#*)**Fgo7$$!3gSnmmmr[R F9$\"3SMt[Q?#*****Fgo7$$\"3n=L$3Fr)4=FN$\"3m5k5***Fgo7$$\"38/L$e9d$>iFN$\"3-@`Y)[y1)**Fgo7$$\"3'oHLL 3+TU)FN$\"3I/LrX,ek**Fgo7$$\"3AGL$efeLG\"Fgo$\"3DYn!oo()z\"**Fgo7$$\"3 yELL$=2Vs\"Fgo$\"3ga\"ptzPC&)*Fgo7$$\"3Khmmm7+#\\#Fgo$\"3moG#pfnUp*Fgo 7$$\"3)e*****\\`pfKFgo$\"3w13*Hi&e#[*Fgo7$$\"36HLLLm&z\"\\Fgo$\"3M8O2j m%4'))Fgo7$$\"3>(******z-6j'Fgo$\"3REZUt1LE!)Fgo7$$\"3q\"******4#32$)F go$\"3+E(f^&R$>3(Fgo7$$\"3q#****\\zS!pk&3hFgo7$$\"3K****\\FJ*G3\"F1$\"3mcEp=4mjbFgo 7$$\"3G******H%=H<\"F1$\"3_h#3'p:YE]Fgo7$$\"3qKLLo,\"QD\"F1$\"3!p0(e4r acXFgo7$$\"35mmm1>qM8F1$\"3AsC^rSi.TFgo7$$\"3%)*******HSu]\"F1$\"3?X`e rXS5KFgo7$$\"3'HLL$ep'Rm\"F1$\"3N?+^wyv/DFgo7$$\"3')******R>4N=F1$\"3m 08*z'eqc=Fgo7$$\"3#emm;@2h*>F1$\"3M$e0QD?RO\"Fgo7$$\"3]*****\\c9W;#F1$ \"3:stU!\\*>5'*FN7$$\"3Lmmmmd'*GBF1$\"3%H+cz(e6SmFN7$$\"3j*****\\iN7]# F1$\"3I[Uim&Q,Q%FN7$$\"3aLLLt>:nEF1$\"39)HBhKbG&GFN7$$\"35LLL.a#o$GF1$ \"3u)[-kl1&)y\"FN7$$\"3ammm^Q40IF1$\"3UKogR#QS4\"FN7$$\"3y******z]rfJF 1$\"3%pfp))3[Fz'F97$$\"3gmmmc%GpL$F1$\"3-IO#>uV)>QF97$$\"3/LLL8-V&\\$F 1$\"3rC?*>\\OFA#F97$$\"3=+++XhUkOF1$\"3$pw)G!p(y87F97$$\"3=+++:oZ]Gi'F-7$$\"\"%F*F+-%'COLOURG6&%$RGBG$\"#5!\"\"$F*F*Fa`l-%+AXE SLABELSG6$Q!6\"Fe`l-%%VIEWG6$;F(Fh_l;Fa`l$\"\"#F*" 1 2 0 1 10 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 0 "Curve 1" }}}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 5 "When " }{XPPEDIT 18 0 "x = 0;" "6#/%\"xG\"\"!" } {TEXT -1 2 ", " }{XPPEDIT 18 0 "g(x) = 1;" "6#/-%\"gG6#%\"xG\"\"\"" } {TEXT -1 42 ", so that will be our first approximation." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "q0 := x -> 1;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q0G\"\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "limit(g(x) - q0(x), x=0);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"! " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "limit((g(x) - q0(x))/x, x=0);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"!" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 31 "limit((g(x) - q0(x))/x^2, x=0);" }}{PARA 11 " " 1 "" {XPPMATH 20 "6##!\"\"\"\"#" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 102 "These limits show that the constant 1 is also the linear approxim ation, as is clear from the graph of " }{XPPEDIT 18 0 "g;" "6#%\"gG" } {TEXT -1 47 ". The quadratic approximation adds a new term." }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "q2 := x -> q0(x) - (1/2)*x^2 ;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q2GR6#%\"xG6\"6$%)operatorG%&a rrowGF(,&-%#q0G6#9$\"\"\"*&#F1\"\"#F1*$)F0F4F1F1!\"\"F(F(F(" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 6 "q2(x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&\"\"\"F$*&#F$\"\"#F$*$)%\"xGF'F$F$!\"\"" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 28 "In fact, the only powers of " }{XPPEDIT 18 0 "x;" "6#%\"xG" }{TEXT -1 35 " which appear in approximations of \+ " }{XPPEDIT 18 0 "g;" "6#%\"gG" }{TEXT -1 6 " near " }{XPPEDIT 18 0 "x = 0;" "6#/%\"xG\"\"!" }{TEXT -1 95 " are even (why?). We will take a dvantage of this fact to avoid unnecessary computations below." }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "limit((g(x) - q2(x))/x^4, x= 0);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6##\"\"\"\"\")" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "q4 := x -> q2(x) + (1/8)*x^4;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q4GR6#%\"xG6\"6$%)operatorG%&arrowGF(,&-% #q2G6#9$\"\"\"*&#F1\"\")F1)F0\"\"%F1F1F(F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "limit((g(x) - q4(x))/x^6, x=0);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6##!\"\"\"#[" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 37 "q6 := x -> q4(x) - (1/48)*x^6; q6(x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q6GR6#%\"xG6\"6$%)operatorG%&arrowGF(,&-%#q4G6#9$\" \"\"*&#F1\"#[F1*$)F0\"\"'F1F1!\"\"F(F(F(" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,*\"\"\"F$*&#F$\"\"#F$*$)%\"xGF'F$F$!\"\"*&#F$\"\")F$)F*\"\"%F$F $*&#F$\"#[F$*$)F*\"\"'F$F$F+" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "plot(\{g,q6\}, -4..4, -2..2);" }}{PARA 13 "" 1 "" {GLPLOT2D 400 300 300 {PLOTDATA 2 "6&-%'CURVESG6$7[o7$!\"%$!+LLLLg!\")7$$!+#p0k&R!\" *$!+@e?5cF+7$$!+%Q6G\"RF/$!+.H\">@&F+7$$!+wq@pQF/$!+E1HP[F+7$$!+nFiDQF /$!+8a@&[%F+7$$!+=/w\\PF/$!+^R4BRF+7$$!+o!)*Qn$F/$!+(y]0U$F+7$$!+AHe)e $F/$!+5[B?HF+7$$!+xxE.NF/$!+/=2#[#F+7$$!+1rQ1DBF/$!+GxDT8F/7$$!+w))yr@F/$!*On`j(F/7$$!+S(R#**> F/$!*dU\"=LF/7$$!++@)f#=F/$!*@e*p\\!#57$$!+gi,f;F/$\"+')=yj8F[r7$$!+\" G&R2:F/$\"+Z%G&[EF[r7$$!+tK5F8F/$\"+)\\iJ$RF[r7$$!+$HsV<\"F/$\"+2Vs\"F/$\"+wxV_)*F[r 7$$\"*O&pfKF/$\"+OBe#[*F[r7$$\"*kcz\"\\F/$\"+e'f3'))F[r7$$\"*\"G5JmF/$ \"+8%)RD!)F[r7$$\"*6#32$)F/$\"+XOTwqF[r7$$\"*Ey'G**F/$\"+a1@'3'F[r7$$ \"+J%=H<\"F/$\"+s>nW\\F[r7$$\"+3>qM8F/$\"+ed$>)QF[r7$$\"+,.W2:F/$\"+QG =[EF[r7$$\"+fp'Rm\"F/$\"+Kjq;8F[r7$$\"+T>4N=F/$!*gpT='F[r7$$\"+8s5'*>F /$!*1beD$F/7$$\"+mXTk@F/$!*:nEF/$!+kW)4t$F/7$$\"+0a#o$GF/$!+RPY'y&F/7$$\"+`Q4 0IF/$!+UiBk')F/7$$\"+\"3:(fJF/$!+!>hkA\"F+7$$\"+p*QF+7$$\"+7$$!3!******\\` oz$GF_`l$\"3yl\\.+]r#y\"F\\bl7$$!3!omm;)3DoEF_`l$\"3a>CGeU]WGF\\bl7$$! 3?+++:v2*\\#F_`l$\"3fv+Gsf$QS%F\\bl7$$!3BLLL8>1DBF_`l$\"3!Q1g#R;r+nF\\ bl7$$!3kmmmw))yr@F_`l$\"3m3*fR#4xd%*F\\bl7$$!3;+++S(R#**>F_`l$\"3EL-'f !=Tb8!#=7$$!30++++@)f#=F_`l$\"3a]y#3rFz)=F[dl7$$!3-+++gi,f;F_`l$\"3=TE @SeWDDF[dl7$$!3qmmm\"G&R2:F_`l$\"3Z!)RkTCi5KF[dl7$$!3XLLLtK5F8F_`l$\"3 %pQ'[WZLXTF[dl7$$!3_LLL$yP2D\"F_`l$\"35C@PY?6uXF[dl7$$!3eLLL$HsV<\"F_` l$\"3phn4J@*y,&F[dl7$$!3!pmmT2Tb3\"F_`l$\"3MCz]Q3rZbF[dl7$$!3+-++]&)4n **F[dl$\"3G4RBjAE&3'F[dl7$$!3cpmmT2jW0!pT\"**F[dl7$$!3m0++]-6&)))F \\bl$\"3k=sz4_gg**F[dl7$$!3')RLLe4**RYF\\bl$\"3!)3c(Q.T#*)**F[dl7$$!3g Snmmmr[RFg`l$\"3SMt[Q?#*****F[dl7$$\"3n=L$3Fr)4=F\\bl$\"3m5k5***F[dl7$$\"38/L$e9d$>iF\\bl$\"3-@` Y)[y1)**F[dl7$$\"3'oHLL3+TU)F\\bl$\"3I/LrX,ek**F[dl7$$\"3AGL$efeLG\"F[ dl$\"3DYn!oo()z\"**F[dl7$$\"3yELL$=2Vs\"F[dl$\"3ga\"ptzPC&)*F[dl7$$\"3 Khmmm7+#\\#F[dl$\"3moG#pfnUp*F[dl7$$\"3)e*****\\`pfKF[dl$\"3w13*Hi&e#[ *F[dl7$$\"36HLLLm&z\"\\F[dl$\"3M8O2jm%4'))F[dl7$$\"3>(******z-6j'F[dl$ \"3REZUt1LE!)F[dl7$$\"3q\"******4#32$)F[dl$\"3+E(f^&R$>3(F[dl7$$\"3q#* ***\\zS!pk &3hF[dl7$$\"3K****\\FJ*G3\"F_`l$\"3mcEp=4mjbF[dl7$$\"3G******H%=H<\"F_ `l$\"3_h#3'p:YE]F[dl7$$\"3qKLLo,\"QD\"F_`l$\"3!p0(e4racXF[dl7$$\"35mmm 1>qM8F_`l$\"3AsC^rSi.TF[dl7$$\"3%)*******HSu]\"F_`l$\"3?X`erXS5KF[dl7$ $\"3'HLL$ep'Rm\"F_`l$\"3N?+^wyv/DF[dl7$$\"3')******R>4N=F_`l$\"3m08*z' eqc=F[dl7$$\"3#emm;@2h*>F_`l$\"3M$e0QD?RO\"F[dl7$$\"3]*****\\c9W;#F_`l $\"3:stU!\\*>5'*F\\bl7$$\"3Lmmmmd'*GBF_`l$\"3%H+cz(e6SmF\\bl7$$\"3j*** **\\iN7]#F_`l$\"3I[Uim&Q,Q%F\\bl7$$\"3aLLLt>:nEF_`l$\"39)HBhKbG&GF\\bl 7$$\"35LLL.a#o$GF_`l$\"3u)[-kl1&)y\"F\\bl7$$\"3ammm^Q40IF_`l$\"3UKogR# QS4\"F\\bl7$$\"3y******z]rfJF_`l$\"3%pfp))3[Fz'Fg`l7$$\"3gmmmc%GpL$F_` l$\"3-IO#>uV)>QFg`l7$$\"3/LLL8-V&\\$F_`l$\"3rC?*>\\OFA#Fg`l7$$\"3=+++X hUkOF_`l$\"3$pw)G!p(y87Fg`l7$$\"3=+++:oZ]Gi'F[`l7$$Fj^ lFc_lFi_l-F\\_l6&F^_lFb_lF__lFb_l-%+AXESLABELSG6$Q!6\"Fbdm-%%VIEWG6$;F h_lF\\dm;$!\"#Fc_l$\"\"#Fc_l" 1 2 0 1 10 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 0 "Curve 1" "Curve 2" }}}}}{SECT 0 {PARA 3 "" 0 "" {TEXT -1 39 "Approximations near points other than 0" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart;" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 78 "As you can see from the examples above, our approximation s are very good near " }{XPPEDIT 18 0 "x = 0;" "6#/%\"xG\"\"!" }{TEXT -1 63 ", but not near other points. Suppose we wanted to approximate \+ " }{XPPEDIT 18 0 "sqrt(1+x);" "6#-%%sqrtG6#,&\"\"\"F'%\"xGF'" }{TEXT -1 6 " near " }{XPPEDIT 18 0 "x = 3;" "6#/%\"xG\"\"$" }{TEXT -1 27 ", \+ for example. Of course, " }{TEXT 258 2 "at" }{TEXT -1 1 " " } {XPPEDIT 18 0 "x = 3;" "6#/%\"xG\"\"$" }{TEXT -1 92 " this expression \+ is exactly equal to 2, so this should certainly be our first approxima tion." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "f := x -> sqrt(1 + x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"fGR6#%\"xG6\"6$%)operatorG %&arrowGF(-%%sqrtG6#,&\"\"\"F09$F0F(F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "p0 := x -> 2;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p 0G\"\"#" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 65 "What should the next a pproximation be? We want to know how fast " }{XPPEDIT 18 0 "f(x)-2;" "6#,&-%\"fG6#%\"xG\"\"\"\"\"#!\"\"" }{TEXT -1 14 " goes to 0 as " } {XPPEDIT 18 0 "proc (x) options operator, arrow; 3 end;" "6#R6#%\"xG7 \"6$%)operatorG%&arrowG6\"\"\"$F*F*F*" }{TEXT -1 116 " , so we need to compare it with other, simpler, expressions which are going to 0. Wh en we were approximating near " }{XPPEDIT 18 0 "x = 0;" "6#/%\"xG\"\"! " }{TEXT -1 29 ", we compared with powers of " }{XPPEDIT 18 0 "x;" "6# %\"xG" }{TEXT -1 28 " . Now we are working near " }{XPPEDIT 18 0 "x = 3;" "6#/%\"xG\"\"$" }{TEXT -1 14 " so powers of " }{XPPEDIT 18 0 "x; " "6#%\"xG" }{TEXT -1 32 " don't go to 0---but powers of (" }{XPPEDIT 18 0 "x-3;" "6#,&%\"xG\"\"\"\"\"$!\"\"" }{TEXT -1 5 ") do!" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "limit(f(x) - p0(x), x=3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"!" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "limit((f(x) - p0(x))/x, x=3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"!" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 33 "limit((f(x) - p 0(x))/(x-3), x=3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6##\"\"\"\"\"%" }} }{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "p1 := x -> p0(x) + (1/4)*(x -3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p1GR6#%\"xG6\"6$%)operatorG %&arrowGF(,(-%#p0G6#9$\"\"\"*&#F1\"\"%F1F0F1F1#\"\"$F4!\"\"F(F(F(" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 15 "Unfortunately, " }{TEXT 259 5 "Map le" }{TEXT -1 129 " insists on simplifying some of the polynomial appr oximations; we will see later how we can force it to write them in pow ers of " }{XPPEDIT 18 0 "x-3;" "6#,&%\"xG\"\"\"\"\"$!\"\"" }{TEXT -1 114 " . However it is written, though, we should observe that the lin ear approximation is once again the tangent line:" }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 20 "plot(\{f,p1\}, -1..5);" }}{PARA 13 "" 1 "" {GLPLOT2D 400 300 300 {PLOTDATA 2 "6&-%'CURVESG6$7S7$!\"\"$\"\"\"\"\"! 7$$!+]2<#p)!#5$\"+JdpK5!\"*7$$!+7bBavF/$\"+7T9h5F27$$!+D$3XF'F/$\"+#HP J4\"F27$$!+v#)H')\\F/$\"+VDMD6F27$$!+i3@/PF/$\"+GZRd6F27$$!+7q0]F2$\"+\\D9v8F27$$\"*DM^I'F2$\"+c$GwS\"F27$$\"*0ytb(F2$\"+^ W$*Q9F27$$\"*RNXp)F2$\"+&QjtY\"F27$$\"+XDn/5F2$\"+O\"o6]\"F27$$\"+!y?# >6F2$\"+&>0)H:F27$$\"+4wY_7F2$\"+-p6j:F27$$\"+IOTq8F2$\"+3Mg#f\"F27$$ \"+4\">)*\\\"F2$\"+xZ&\\i\"F27$$\"+EP/B;F2$\"+K4wb;F27$$\"+)o:;v\"F2$ \"+AR!zo\"F27$$\"+%)[op=F2$\"+@7U<F2$\"+;'f#\\6\"=F27$$\"+[n%)oBF2$\"+(o6A%= F27$$\"+5FL(\\#F2$\"+yJLu=F27$$\"+e6.BEF2$\"+!zdd!>F27$$\"+p3lWFF2$\"+ F27$$\"+A))ozGF2$\"+1A#*p>F27$$\"+Ik-,IF2$\"+3mD+?F27$$\"+D-eIJF2 $\"+c]kK?F27$$\"+>_(zC$F2$\"+0Q*>1#F27$$\"+b*=jP$F2$\"+R(zS4#F27$$\"+4 /3(\\$F2$\"+-,FC@F27$$\"+C4JBOF2$\"+Jx#e:#F27$$\"+DVsYPF2$\"+\"3\"o'=# F27$$\"+>n#f(QF2$\"+!o\")*=AF27$$\"+!)RO+SF2$\"+&*44]AF27$$\"+_!>w7%F2 $\"+jZ!>G#F27$$\"+*Q?QD%F2$\"+(4bMJ#F27$$\"+5jypVF2$\"+ylWUBF27$$\"+Uj p-XF2$\"+'3ucP#F27$$\"+gEd@YF2$\"+lJR0CF27$$\"+4'>$[ZF2$\"+-*zqV#F27$$ \"+6Ejp[F2$\"+`\"3uY#F27$\"\"&$\"+++++DF2-%'COLOURG6&%$RGBG$\"#5F($F+F +F][l-F$6$7W7$$F(F+F][l7$$!3u****\\(oUIn*!#=$\"3eGI%p4'>3=Ff[l7$$!3[** ***\\P&3Y$*Ff[l$\"3uEpsVa!*Ff[l$\"3kkI&*4v)=8 $Ff[l7$$!3/+++]2<#p)Ff[l$\"3[bg)Q>#R;OFf[l7$$!3#3+]78.K7)Ff[l$\"3vNmPn 8?KVFf[l7$$!3[++]7bBavFf[l$\"3MfM#Q5na%\\Ff[l7$$!3++++D$3XF'Ff[l$\"3Oi 1V!f!o.hFf[l7$$!3c*****\\F)H')\\Ff[l$\"3!*e64m(\\23(Ff[l7$$!3J++]i3@/P Ff[l$\"3#)*Ggd*3gMzFf[l7$$!3V++]7/Gu0%***Ff[ l7$$\"3m****\\P'=pD\"Ff[l$\"3Wi.Npi)41\"!#<7$$\"3y+++]c.iDFf[l$\"3e&HS P([!37\"Ff_l7$$\"3;+++DMe6PFf[l$\"3w'f:fqk4<\"Ff_l7$$\"32,++]>q0]Ff[l$ \"3n+!3/jx\\A\"Ff_l7$$\"3h******\\U80jFf[l$\"3?BuR!f:pF\"Ff_l7$$\"3'4+ ++0ytb(Ff[l$\"3>m2CnD/D8Ff_l7$$\"3w****\\(QNXp)Ff[l$\"3Y>q\\7'zsO\"Ff_ l7$$\"3.+++XDn/5Ff_l$\"34(*)[FfkeT\"Ff_l7$$\"3.+++!y?#>6Ff_l$\"3e-o,oV vb9Ff_l7$$\"3'****\\(3wY_7Ff_l$\"3*4i^3JA3]\"Ff_l7$$\"3#)******HOTq8Ff _l$\"3DN)*\\\"Ff_l$\"3WBN@E;3\"e\"Ff_l7$$\"3: ++DEP/B;Ff_l$\"3W(*Q*GM\"e>;Ff_l7$$\"3=++](o:;v\"Ff_l$\"3[2mvr%*ze;Ff_ l7$$\"3=++v$)[op=Ff_l$\"3k#>O%GW,%p\"Ff_l7$$\"3%*****\\i%Qq*>Ff_l$\"36 &*yBuc>JFf_l7$$\"3(****\\(o3lWFFf_l$\"3([tv//5^$>Ff_l7$$\"3!*****\\A))ozGF f_l$\"3s5^bqDpp>Ff_l7$$\"3e******Hk-,IFf_l$\"3@f-/\"fc-+#Ff_l7$$\"36++ +D-eIJFf_l$\"3J%H0L*GQK?Ff_l7$$\"3u***\\(=_(zC$Ff_l$\"3c)p=Fnh51#Ff_l7 $$\"3M+++b*=jP$Ff_l$\"3gmd7L`'>4#Ff_l7$$\"3g***\\(3/3(\\$Ff_l$\"3$p2[w 2K17#Ff_l7$$\"33++vB4JBOFf_l$\"3k$R['y&)=]@Ff_l7$$\"3u*****\\KCnu$Ff_l $\"3W;:y]ypy@Ff_l7$$\"3s***\\(=n#f(QFf_l$\"3nR53n+:3AFf_l7$$\"3P+++!)R O+SFf_l$\"3=,4Uk$\\hB#Ff_l7$$\"30++]_!>w7%Ff_l$\"3Sz)zDmCWE#Ff_l7$$\"3 O++v)Q?QD%Ff_l$\"3].2/t87#H#Ff_l7$$\"3G+++5jypVFf_l$\"3ep=xP*zsJ#Ff_l7 $$\"3<++]Ujp-XFf_l$\"3KEeirEyXBFf_l7$$\"3++++gEd@YFf_l$\"3iUbJ)e&)4P#F f_l7$$\"39++v3'>$[ZFf_l$\"3]!Qc-NlvR#Ff_l7$$\"37++D6Ejp[Ff_l$\"3OA\"[z YKFU#Ff_l7$$FdzF+$\"3)y<$yU(*[\\CFf_l-Fhz6&FjzF][lF[[lF][l-%+AXESLABEL SG6$Q!6\"F^\\m-%%VIEWG6$;Fb[lFf[m%(DEFAULTG" 1 2 0 1 10 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 0 "Curve 1" "Curve 2" }}}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 76 "We can go on and construct the higher-order app roximations in the usual way." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 35 "limit((f(x) - p1(x))/(x-3)^2, x=3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6##!\"\"\"#k" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 34 "p2 := x -> p1(x) - (1/64)*(x-3)^2;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p2GR6#%\"xG6\"6$%)operatorG%&arrowGF(,&-%#p1G6#9$\"\"\"*&#F1 \"#kF1*$),&F0F1\"\"$!\"\"\"\"#F1F1F9F(F(F(" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 35 "limit((f(x) - p2(x))/(x-3)^3, x=3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6##\"\"\"\"$7&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 35 "p3 := x -> p2(x) + (1/512)*(x-3)^3;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p3GR6#%\"xG6\"6$%)operatorG%&arrowGF(,&-%#p2G6#9$ \"\"\"*&#F1\"$7&F1),&F0F1\"\"$!\"\"F7F1F1F(F(F(" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 35 "limit((f(x) - p3(x))/(x-3)^4, x=3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6##!\"&\"&%Q;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 44 "p4 := x -> p3(x) - (5/16384)*(x-3)^4; p4(x);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p4GR6#%\"xG6\"6$%)operatorG%&arrowG F(,&-%#p3G6#9$\"\"\"*&#\"\"&\"&%Q;F1*$),&F0F1\"\"$!\"\"\"\"%F1F1F:F(F( F(" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,,#\"\"&\"\"%\"\"\"*&#F'F&F'%\"x GF'F'*&#F'\"#kF'*$),&F*F'\"\"$!\"\"\"\"#F'F'F2*&#F'\"$7&F')F0F1F'F'*&# F%\"&%Q;F'*$)F0F&F'F'F2" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 " plot(\{f,p4\}, -1..5);" }}{PARA 13 "" 1 "" {GLPLOT2D 400 300 300 {PLOTDATA 2 "6&-%'CURVESG6$7S7$!\"\"$\"+++voa!#57$$!+]2<#p)F+$\"+O)GC< 'F+7$$!+7bBavF+$\"+mcPmnF+7$$!+D$3XF'F+$\"+)>EZT(F+7$$!+v#)H')\\F+$\"+ &H/s/)F+7$$!+i3@/PF+$\"+SKQd')F+7$$!+7q0]FT$\"+\" 3C^B\"FT7$$\"*DM^I'FT$\"+#G*H%G\"FT7$$\"*0ytb(FT$\"+BkTI8FT7$$\"*RNXp) FT$\"+y6Er8FT7$$\"+XDn/5FT$\"+Wng=9FT7$$\"+!y?#>6FT$\"+7=sd9FT7$$\"+4w Y_7FT$\"+u28-:FT7$$\"+IOTq8FT$\"+ti]S:FT7$$\"+4\">)*\\\"FT$\"+n,l\"e\" FT7$$\"+EP/B;FT$\"+t'R*>;FT7$$\"+)o:;v\"FT$\"+&z6!f;FT7$$\"+%)[op=FT$ \"+w)RTp\"FT7$$\"+i%Qq*>FT$\"+&fi7t\"FT7$$\"+RIKH@FT$\"+j7-pFT7$$\"+p3lWFFT$\"+,,6N>FT7$$\"+A))ozGFT$\"+tDpp >FT7$$\"+Ik-,IFT$\"+#fc-+#FT7$$\"+D-eIJFT$\"+\"*GQK?FT7$$\"+>_(zC$FT$ \"+D;1h?FT7$$\"+b*=jP$FT$\"+d\\'>4#FT7$$\"+4/3(\\$FT$\"+%fI17#FT7$$\"+ C4JBOFT$\"+yS=]@FT7$$\"+DVsYPFT$\"+lpoy@FT7$$\"+>n#f(QFT$\"+#RE\"3AFT7 $$\"+!)RO+SFT$\"+dU5OAFT7$$\"+_!>w7%FT$\"+qTMkAFT7$$\"+*Q?QD%FT$\"+Xr) >H#FT7$$\"+5jypVFT$\"+*fuqJ#FT7$$\"+Ujp-XFT$\"+[EYXBFT7$$\"+gEd@YFT$\" +o^_qBFT7$$\"+4'>$[ZFT$\"+gj!pR#FT7$$\"+6Ejp[FT$\"+hg#=U#FT7$\"\"&$\"+ )=U#[CFT-%'COLOURG6&%$RGBG$\"#5F($\"\"!F][lF\\[l-F$6$7W7$$F(F][lF\\[l7 $$!3u****\\(oUIn*!#=$\"3eGI%p4'>3=Ff[l7$$!3[*****\\P&3Y$*Ff[l$\"3uEpsV a!*Ff[l$\"3kkI&*4v)=8$Ff[l7$$!3/+++]2<#p)Ff[l $\"3[bg)Q>#R;OFf[l7$$!3#3+]78.K7)Ff[l$\"3vNmPn8?KVFf[l7$$!3[++]7bBavFf [l$\"3MfM#Q5na%\\Ff[l7$$!3++++D$3XF'Ff[l$\"3Oi1V!f!o.hFf[l7$$!3c***** \\F)H')\\Ff[l$\"3!*e64m(\\23(Ff[l7$$!3J++]i3@/PFf[l$\"3#)*Ggd*3gMzFf[l 7$$!3V++]7/Gu0%***Ff[l7$$\"3m****\\P'=pD\"Ff [l$\"3Wi.Npi)41\"!#<7$$\"3y+++]c.iDFf[l$\"3e&HSP([!37\"Ff_l7$$\"3;+++D Me6PFf[l$\"3w'f:fqk4<\"Ff_l7$$\"32,++]>q0]Ff[l$\"3n+!3/jx\\A\"Ff_l7$$ \"3h******\\U80jFf[l$\"3?BuR!f:pF\"Ff_l7$$\"3'4+++0ytb(Ff[l$\"3>m2CnD/ D8Ff_l7$$\"3w****\\(QNXp)Ff[l$\"3Y>q\\7'zsO\"Ff_l7$$\"3.+++XDn/5Ff_l$ \"34(*)[FfkeT\"Ff_l7$$\"3.+++!y?#>6Ff_l$\"3e-o,oVvb9Ff_l7$$\"3'****\\( 3wY_7Ff_l$\"3*4i^3JA3]\"Ff_l7$$\"3#)******HOTq8Ff_l$\"3DN)*\\\"Ff_l$\"3WBN@E;3\"e\"Ff_l7$$\"3:++DEP/B;Ff_l$\"3W(*Q* GM\"e>;Ff_l7$$\"3=++](o:;v\"Ff_l$\"3[2mvr%*ze;Ff_l7$$\"3=++v$)[op=Ff_l $\"3k#>O%GW,%p\"Ff_l7$$\"3%*****\\i%Qq*>Ff_l$\"36&*yBuc>JFf_l7$$\"3(****\\ (o3lWFFf_l$\"3([tv//5^$>Ff_l7$$\"3!*****\\A))ozGFf_l$\"3s5^bqDpp>Ff_l7 $$\"3e******Hk-,IFf_l$\"3@f-/\"fc-+#Ff_l7$$\"36+++D-eIJFf_l$\"3J%H0L*G QK?Ff_l7$$\"3u***\\(=_(zC$Ff_l$\"3c)p=Fnh51#Ff_l7$$\"3M+++b*=jP$Ff_l$ \"3gmd7L`'>4#Ff_l7$$\"3g***\\(3/3(\\$Ff_l$\"3$p2[w2K17#Ff_l7$$\"33++vB 4JBOFf_l$\"3k$R['y&)=]@Ff_l7$$\"3u*****\\KCnu$Ff_l$\"3W;:y]ypy@Ff_l7$$ \"3s***\\(=n#f(QFf_l$\"3nR53n+:3AFf_l7$$\"3P+++!)RO+SFf_l$\"3=,4Uk$\\h B#Ff_l7$$\"30++]_!>w7%Ff_l$\"3Sz)zDmCWE#Ff_l7$$\"3O++v)Q?QD%Ff_l$\"3]. 2/t87#H#Ff_l7$$\"3G+++5jypVFf_l$\"3ep=xP*zsJ#Ff_l7$$\"3<++]Ujp-XFf_l$ \"3KEeirEyXBFf_l7$$\"3++++gEd@YFf_l$\"3iUbJ)e&)4P#Ff_l7$$\"39++v3'>$[Z Ff_l$\"3]!Qc-NlvR#Ff_l7$$\"37++D6Ejp[Ff_l$\"3OA\"[zYKFU#Ff_l7$$FczF][l $\"3)y<$yU(*[\\CFf_l-Fgz6&FizF\\[lFjzF\\[l-%+AXESLABELSG6$Q!6\"F^\\m-% %VIEWG6$;Fb[lFf[m%(DEFAULTG" 1 2 0 1 10 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 0 "Curve 1" "Curve 2" }}}}{EXCHG {PARA 0 "" 0 " " {TEXT -1 52 "Here are approximations for our other function near " } {XPPEDIT 18 0 "x = -2;" "6#/%\"xG,$\"\"#!\"\"" }{TEXT -1 164 ". The c oefficients are not very nice, but you can see from the plots that the method is still working. (If you need decimal approximations, you ca n of course use " }{TEXT 260 5 "evalf" }{TEXT -1 82 ", but you should \+ be sure to compute the \"exact approximations\" first and only use " } {TEXT 261 5 "evalf" }{TEXT -1 35 " at the very end of the procedure.) " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "g := x -> exp(-x^2/2); " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"gGR6#%\"xG6\"6$%)operatorG%&ar rowGF(-%$expG6#,$*$)9$\"\"#\"\"\"#!\"\"F3F(F(F(" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 24 "q0 := x -> g(-2); q0(x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q0GR6#%\"xG6\"6$%)operatorG%&arrowGF(-%\"gG6#!\"#F(F (F(" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%$expG6#!\"#" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "limit(g(x) - q0(x), x=-2);" }}{PARA 11 " " 1 "" {XPPMATH 20 "6#\"\"!" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 42 "l1 := limit((g(x) - q0(x))/(x + 2), x=-2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#l1G,$-%$expG6#!\"#\"\"#" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 54 "Notice that the approximations will be in powers of (" } {XPPEDIT 18 0 "x-(-2);" "6#,&%\"xG\"\"\",$\"\"#!\"\"F(" }{TEXT -1 5 ") = (" }{XPPEDIT 18 0 "x+2;" "6#,&%\"xG\"\"\"\"\"#F%" }{TEXT -1 3 ") . " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 35 "q1 := x -> q0(x) + l1*( x+2); q1(x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q1GR6#%\"xG6\"6$%)o peratorG%&arrowGF(,&-%#q0G6#9$\"\"\"*&%#l1GF1,&F0F1\"\"#F1F1F1F(F(F(" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&-%$expG6#!\"#\"\"\"*(\"\"#F(F$F(,& %\"xGF(F*F(F(F(" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 62 "As always, the linear approximation gives us the tangent line:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "plot(\{g,q1\}, -4..0);" }}{PARA 13 "" 1 "" {GLPLOT2D 400 300 300 {PLOTDATA 2 "6&-%'CURVESG6$7S7$$!\"%\"\"!$!33\"Q )4(\\e+1%!#=7$$!3cLLL$Q6G\"R!#<$!3!eamWdkS#QF-7$$!3bmm;M!\\p$QF1$!3VKs BCvs=OF-7$$!37LLL))Qj^PF1$!3Y!pAd`/yQ$F-7$$!3ALLL=KvlOF1$!3Q*oU(R3NbJF -7$$!3wmm;C2G!e$F1$!3QyHgb>+CHF-7$$!39LL$3yO5]$F1$!3kApGD>^4FF-7$$!3&* ****\\nU)*=MF1$!3oq?kA*>u[#F-7$$!3iLL$3WDTL$F1$!3)G(3!e0KxD#F-7$$!3))* ***\\d(Q&\\KF1$!3#[ih3!3yG?F-7$$!3gmmmc4`iJF1$!3EY,Z$HwKz\"F-7$$!3KLLL QW*e3$F1$!3ib><&zVee\"F-7$$!33+++q)>'**HF1$!3Q#zTB$RK_8F-7$$!3.+++]5*H \"HF1$!3w@(=X@Xy6\"F-7$$!3z******H\"3&HGF1$!3l8LY?_\")=*)!#>7$$!3OLL$3 k(p`FF1$!3%>#zs:%[o'oF_p7$$!3%pmmmj^Nm#F1$!3S*)*=WThoU%F_p7$$!3!ommm9' =(e#F1$!3!GW)oqB()fBF_p7$$!3K++]F\\N)\\#F1$\"3GMVkaqs_W!#@7$$!33nmmYUs >CF1$\"3'R\")zGOGG<#F_p7$$!3\"*****\\FRXLBF1$\"3])eY(y>\"z]%F_p7$$!3?+ +]#=/8D#F1$\"3^$oC-yj9t'F_p7$$!3%omm;a*el@F1$\"3WAa;>o]^!*F_p7$$!3omm; Wn(o3#F1$\"3]:nzcI?=6F-7$$!3PLLLeV(>+#F1$\"3O#3\"[D)3![8F-7$$!3mLL$3k% y8>F1$\"3so%4MV7ne\"F-7$$!3?++]K_,P=F1$\"3%fWBei/Xz\"F-7$$!3aLLLo@5aV^MR$F-7$$!3_LL$3_;!o6F1$\"3n#>!RGsG0OF-7$$!31+++ISX#3\"F1$\"3ox t,2(zo$QF-7$$!34nm;%RY>+\"F1$\"3mh;)4=!zaSF-7$$!3W-++vr#z<*F-$\"3-vLK9 %pDG%F-7$$!3Qommm6&F-7$$!3KnmmT2`u\\F-$\"3oW_/3^I?aF-7$$!31,+++YU,UF-$\"39\"4a`=i &HcF-7$$!3,nmm;xN:LF-$\"3=*3*f5WRpeF-7$$!3#[LLL$*[G_#F-$\"3YG*=>@.R3'F -7$$!31*****\\Fpyn\"F-$\"3Tl$)pMVh7jF-7$$!3C\"*****\\#f6p)F_p$\"3.%)*z ?1?:`'F-7$$F*F*$\"37N1$=;knw'F--%'COLOURG6&%$RGBG$\"#5!\"\"FgzFgz-F$6$ 7S7$F($\"3a=^-ziiaLFdq7$F/$\"3pA>oC%ykt%Fdq7$F5$\"3+7t?701bjFdq7$F:$\" 3A'\\r!\\TE%y)Fdq7$F?$\"3\\]C\"=N)*y?\"!#?7$FD$\"3Ur`)RwKjk\"Fc\\l7$FI $\"3%4#[W5lcz@Fc\\l7$FN$\"3O8^Z6e7&*GFc\\l7$FS$\"3'H!HNF_p7$F` q$\"3[emohWz6WF_p7$Ffq$\"3yw:)>l%*GN&F_p7$F[r$\"31n*HFc.5d'F_p7$F`r$\" 3;#y3(=BjKzF_p7$Fer$\"3Y*)\\?uQy&e*F_p7$Fjr$\"3])ppR(R@L6F-7$F_s$\"3![ HV_t;![8F-7$Fds$\"3P%3GVOu?g\"F-7$Fis$\"3crZh/4;]=F-7$F^t$\"3+n*\\K'R; Z@F-7$Fct$\"3S/-Wc\"Rh[#F-7$Fht$\"3=!pmVF(=\\GF-7$F]u$\"3c<#G#=W=HKF-7 $Fbu$\"3%[,;iV&H#o$F-7$Fgu$\"3?NryoX([6%F-7$F\\v$\"3#p$3Gx9k*f%F-7$Fav $\"3W9'f<\"RQb]F-7$Ffv$\"33D " 0 "" {MPLTEXT 1 0 34 "limit((g(x) - q1(x))/(x+2), x=-2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"!" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 42 "l2 := limit((g(x) - q1(x))/(x+2)^2, x=-2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#l2G,$-%$expG6#!\"##\"\"$\"\"#" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 37 "q2 := x -> q1(x) + l2*(x+2)^2; q2(x);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q2GR6#%\"xG6\"6$%)operatorG%&arrowG F(,&-%#q1G6#9$\"\"\"*&%#l2GF1),&F0F1\"\"#F1F6F1F1F(F(F(" }}{PARA 11 " " 1 "" {XPPMATH 20 "6#,(-%$expG6#!\"#\"\"\"*(\"\"#F(F$F(,&%\"xGF(F*F(F (F(*(#\"\"$F*F(F$F()F+F*F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 42 "l3 := limit((g(x) - q2(x))/(x+2)^3, x=-2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#l3G,$-%$expG6#!\"##\"\"\"\"\"$" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 37 "q3 := x -> q2(x) + l3*(x+2)^3; q3(x);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q3GR6#%\"xG6\"6$%)operatorG%&arrowG F(,&-%#q2G6#9$\"\"\"*&%#l3GF1),&F0F1\"\"#F1\"\"$F1F1F(F(F(" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,*-%$expG6#!\"#\"\"\"*(\"\"#F(F$F(,&%\"xGF(F *F(F(F(*(#\"\"$F*F(F$F()F+F*F(F(*(#F(F/F(F$F()F+F/F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 42 "l4 := limit((g(x) - q3(x))/(x+2)^4, x=-2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#l4G,$-%$expG6#!\"##!\"& \"#C" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 37 "q4 := x -> q3(x) + \+ l4*(x+2)^4; q4(x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q4GR6#%\"xG6 \"6$%)operatorG%&arrowGF(,&-%#q3G6#9$\"\"\"*&%#l4GF1),&F0F1\"\"#F1\"\" %F1F1F(F(F(" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,,-%$expG6#!\"#\"\"\"*( \"\"#F(F$F(,&%\"xGF(F*F(F(F(*(#\"\"$F*F(F$F()F+F*F(F(*(#F(F/F(F$F()F+F /F(F(*&#\"\"&\"#CF(*&F$F()F+\"\"%F(F(!\"\"" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 20 "plot(\{g,q4\}, -4..0);" }}{PARA 13 "" 1 "" {GLPLOT2D 400 300 300 {PLOTDATA 2 "6&-%'CURVESG6$7S7$$!\"%\"\"!$!33\"Q )4(\\e+1%!#=7$$!3cLLL$Q6G\"R!#<$!3T5T7X$=#GLF-7$$!3bmm;M!\\p$QF1$!3#\\ E39%*4`x#F-7$$!37LLL))Qj^PF1$!3#etrzOqzB#F-7$$!3ALLL=KvlOF1$!3!)Q#4Fm) Ry$)!#>7$$!3iLL$3WDTL$F1$!3K$\\Rjd0 %*3'FR7$$!3))****\\d(Q&\\KF1$!3/?_B1-]mUFR7$$!3gmmmc4`iJF1$!3+dGuL%)zM FFR7$$!3KLLLQW*e3$F1$!34]Aef\\l<;FR7$$!33+++q)>'**HF1$!3C$o!oeR6'f&!#? 7$$!3.+++]5*H\"HF1$\"3YVN6&e7y]$Ffo7$$!3z******H\"3&HGF1$\"3C)p>i$fsR6 FR7$$!3OLL$3k(p`FF1$\"3u))f7h@nB=FR7$$!3%pmmmj^Nm#F1$\"3=?CF1$\"3m[*\\s_H!G`FR7$$!3\"*****\\FRXLBF1$\"31:%[C`6Ic'FR7$ $!3?++]#=/8D#F1$\"3\"G*[_lHmIzFR7$$!3%omm;a*el@F1$\"3Wu$*[Th`&e*FR7$$! 3omm;Wn(o3#F1$\"3h\"zK!zH@L6F-7$$!3PLLLeV(>+#F1$\"3'*)GV_t;![8F-7$$!3m LL$3k%y8>F1$\"3heV(*Q`2-;F-7$$!3?++]K_,P=F1$\"3#yS$)[c%=]=F-7$$!3aLLLo @5a9%F-7$$!33+++])z iC\"F1$\"3Ol/oIo')[YF-7$$!3_LL$3_;!o6F1$\"3DLcZh:+\"F1$\"3_p9$pW`cC'F-7$$!3W-++vr#z<*F-$ \"3-Bs<>/7XoF-7$$!3Qommm6X(F-7$$!3%=++](=#Q\\(F-$\"3 'HJ.!3v91\")F-7$$!3KKLLL,CkmF-$\"3OB!*)=Yf8v)F-7$$!3ZMLL$)H(e\"eF-$\"3 hCb&)Gx)GU*F-7$$!3KnmmT2`u\\F-$\"3PlO/H-m45F17$$!31,+++YU,UF-$\"3M<*y/ w!)=2\"F17$$!3,nmm;xN:LF-$\"3w#=6yx(3V6F17$$!3#[LLL$*[G_#F-$\"3?/E()f4 B17F17$$!31*****\\Fpyn\"F-$\"3GQ9beHZs7F17$$!3C\"*****\\#f6p)FR$\"3VMo ))ziJM8F17$$F*F*$\"3s(*\\W$fk%)R\"F1-%'COLOURG6&%$RGBG$\"#5!\"\"FgzFgz -F$6$7S7$F($\"3a=^-ziiaL!#@7$F/$\"3pA>oC%ykt%Fg[l7$F5$\"3+7t?701bjFg[l 7$F:$\"3A'\\r!\\TE%y)Fg[l7$F?$\"3\\]C\"=N)*y?\"Ffo7$FD$\"3Ur`)RwKjk\"F fo7$FI$\"3%4#[W5lcz@Ffo7$FN$\"3O8^Z6e7&*GFfo7$FT$\"3'H!HNFR7$Faq$\"3[emohWz 6WFR7$Ffq$\"3yw:)>l%*GN&FR7$F[r$\"31n*HFc.5d'FR7$F`r$\"3;#y3(=BjKzFR7$ Fer$\"3Y*)\\?uQy&e*FR7$Fjr$\"3])ppR(R@L6F-7$F_s$\"3![HV_t;![8F-7$Fds$ \"3P%3GVOu?g\"F-7$Fis$\"3crZh/4;]=F-7$F^t$\"3+n*\\K'R;Z@F-7$Fct$\"3S/- Wc\"Rh[#F-7$Fht$\"3=!pmVF(=\\GF-7$F]u$\"3c<#G#=W=HKF-7$Fbu$\"3%[,;iV&H #o$F-7$Fgu$\"3?NryoX([6%F-7$F\\v$\"3#p$3Gx9k*f%F-7$Fav$\"3W9'f<\"RQb]F -7$Ffv$\"33D " 0 "" {MPLTEXT 1 0 0 " " }}}{SECT 0 {PARA 3 "" 0 "" {TEXT -1 4 "The " }{TEXT 256 6 "Taylor" } {TEXT -1 8 " command" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 123 "Now that \+ we have seen how to produce the approximating polynomials for any func tion at any point, it is time to admit that " }{TEXT 262 5 "Maple" } {TEXT -1 92 " has a built-in command to do the computation. The polyn omials we are producing are called " }{TEXT 263 20 "Taylor polynomials , " }{TEXT -1 17 " and the command " }{TEXT 264 6 "taylor" }{TEXT -1 174 " will produce them. To use this command, you have to give an ex pression to be expanded, the point near which you want the expansion, \+ and the order of expansion required. (" }{TEXT 265 5 "Maple" }{TEXT -1 198 " has rules about how many terms it gives in the expansion, and they are not always what you might expect, but if you ask for more te rms you should get more terms.) You can omit the last parameter; " } {TEXT 266 5 "Maple" }{TEXT -1 27 " will then use its default " }{TEXT 267 5 "Order" }{TEXT -1 43 " variable to determine the number of terms ." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "f := x -> sqrt(1 + x); " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"fGR6#%\"xG6\"6$%)operatorG%&ar rowGF(-%%sqrtG6#,&\"\"\"F09$F0F(F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "taylor(f(x), x=0, 6);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#+1%\"xG\"\"\"\"\"!#F%\"\"#F%#!\"\"\"\")F(#F%\"#;\"\"$#!\"&\"$G\" \"\"%#\"\"(\"$c#\"\"&-%\"OG6#F%\"\"'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "taylor(f(x), x=0, 12);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#+=%\"xG\"\"\"\"\"!#F%\"\"#F%#!\"\"\"\")F(#F%\"#;\"\"$#!\"&\"$G\" \"\"%#\"\"(\"$c#\"\"&#!#@\"%C5\"\"'#\"#L\"%[?F4#!$H%\"&oF$F+#\"$:(\"&O b'\"\"*#!%JC\"'W@E\"#5#\"%*>%\"')GC&\"#6-%\"OG6#F%\"#7" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "taylor(f(x), x=0);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#+1%\"xG\"\"\"\"\"!#F%\"\"#F%#!\"\"\"\")F(#F%\"#;\" \"$#!\"&\"$G\"\"\"%#\"\"(\"$c#\"\"&-%\"OG6#F%\"\"'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "taylor(f(x), x=3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#+1,&%\"xG\"\"\"\"\"$!\"\"\"\"#\"\"!#F&\"\"%F&#F(\"#kF)# F&\"$7&F'#!\"&\"&%Q;F,#\"\"(\"'s58\"\"&-%\"OG6#F&\"\"'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "g := x -> exp(-x^2/2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"gGR6#%\"xG6\"6$%)operatorG%&arrowGF(-%$expG 6#,$*$)9$\"\"#\"\"\"#!\"\"F3F(F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "taylor(g(x), x=0);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6 #++%\"xG\"\"\"\"\"!#!\"\"\"\"#F)#F%\"\")\"\"%-%\"OG6#F%\"\"'" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "taylor(g(x), x=-2);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#+1,&%\"xG\"\"\"\"\"#F&-%$expG6#!\"#\" \"!,$F(F'F&,$F(#\"\"$F'F',$F(#F&F0F0,$F(#!\"&\"#C\"\"%,$F(#!\"$\"#?\" \"&-%\"OG6#F&\"\"'" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 136 "Notice tha t these are the same series we produced earlier in the worksheet. Her e are a few more that should already be familiar to you." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "taylor(sin(x), x=0, 10);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#+/%\"xG\"\"\"F%#!\"\"\"\"'\"\"$#F%\"$?\"\"\" &#F'\"%S]\"\"(#F%\"'!)GO\"\"*-%\"OG6#F%\"#5" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "taylor(cos(x), x=0, 10);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#+/%\"xG\"\"\"\"\"!#!\"\"\"\"#F)#F%\"#C\"\"%#F(\"$?(\"\" '#F%\"&?.%\"\")-%\"OG6#F%\"#5" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "taylor(exp(x), x=0, 10);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#+9% \"xG\"\"\"\"\"!F%F%#F%\"\"#F(#F%\"\"'\"\"$#F%\"#C\"\"%#F%\"$?\"\"\"&#F %\"$?(F*#F%\"%S]\"\"(#F%\"&?.%\"\")#F%\"'!)GO\"\"*-%\"OG6#F%\"#5" }}}} }{MARK "6" 0 }{VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 }{PAGENUMBERS 0 1 2 33 1 1 }