{VERSION 4 0 "IBM INTEL NT" "4.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 }{CSTYLE "2D Comment" 2 18 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 } {CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 256 "" 0 1 0 0 0 0 1 2 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 257 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 }{CSTYLE "" -1 258 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 }{CSTYLE "" -1 259 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 260 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 261 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 262 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 }{CSTYLE "" -1 263 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 }{CSTYLE "" -1 264 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 265 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 266 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 }{CSTYLE "" -1 267 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 268 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 }{CSTYLE "" -1 269 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 }{CSTYLE "" -1 270 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 } {CSTYLE "" -1 271 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 272 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 273 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 }{CSTYLE "" -1 274 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 }{CSTYLE "" -1 275 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 276 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 277 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 278 "" 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 1 }{CSTYLE "" 18 279 "" 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 280 "" 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 1 } {CSTYLE "" 18 281 "" 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 1 }{CSTYLE "" 18 282 "" 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 283 "" 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 1 }{CSTYLE "" 18 284 "" 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 285 "" 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 1 } {CSTYLE "" 18 286 "" 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 287 "" 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 288 "" 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 289 "" 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 290 "" 0 1 0 0 0 0 1 2 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 291 "" 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 292 "" 0 1 0 0 0 0 0 2 1 0 0 0 0 0 0 1 }{CSTYLE "" -1 293 "" 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 294 "" 0 1 0 0 0 0 0 2 1 0 0 0 0 0 0 1 }{CSTYLE "" -1 295 "" 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 296 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 }{CSTYLE "" -1 297 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 }{CSTYLE "" -1 298 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 }{CSTYLE "" -1 299 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 300 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 301 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 302 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 303 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 304 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 305 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 306 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 307 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 308 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 309 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 310 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 311 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 312 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 313 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Tim es" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 } {PSTYLE "Heading 1" -1 3 1 {CSTYLE "" -1 -1 "Times" 1 18 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 8 4 1 0 1 0 2 2 0 1 }{PSTYLE "Heading 2" -1 4 1 {CSTYLE "" -1 -1 "Times" 1 14 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 8 2 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Output" -1 11 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 3 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Output" -1 12 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 3 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Title" -1 18 1 {CSTYLE "" -1 -1 "Times" 1 18 0 0 0 1 2 1 1 2 2 2 1 1 1 1 }3 1 0 0 12 12 1 0 1 0 2 2 19 1 }{PSTYLE "Normal" -1 256 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Heading 2" -1 257 1 {CSTYLE "" -1 -1 "Times" 1 14 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }3 1 0 0 8 2 1 0 1 0 2 2 0 1 }} {SECT 0 {EXCHG {PARA 18 "" 0 "" {TEXT -1 11 "Calculus II" }}{PARA 257 "" 0 "" {TEXT -1 45 "Lesson 11: Integration of Rational Functions" }} }{SECT 0 {PARA 3 "" 0 "" {TEXT -1 12 "Introduction" }}{EXCHG {PARA 0 " " 0 "" {TEXT -1 123 "You know from the Fundamental Theorem of Calculus that every continuous function has an anti-derivative. Specifically, if " }{XPPEDIT 18 0 "f;" "6#%\"fG" }{TEXT -1 30 " is continuous on an interval " }{XPPEDIT 18 0 "[a, b];" "6#7$%\"aG%\"bG" }{TEXT -1 7 ", t hen " }{XPPEDIT 18 0 "F(x) := Int(f(t),t = a .. x);" "6#>-%\"FG6#%\"xG -%$IntG6$-%\"fG6#%\"tG/F.;%\"aGF'" }{TEXT -1 41 " is differentiable on the open interval (" }{XPPEDIT 18 0 "a,b;" "6$%\"aG%\"bG" }{TEXT -1 7 "), and " }{XPPEDIT 18 0 "D(f)(x) = f(x);" "6#/--%\"DG6#%\"fG6#%\"xG -F(6#F*" }{TEXT -1 22 " on this interval, so " }{XPPEDIT 18 0 "F;" "6# %\"FG" }{TEXT -1 27 " is an anti-derivative for " }{XPPEDIT 18 0 "f;" "6#%\"fG" }{TEXT -1 62 " .\n\nOn the other hand, not every (continuous ) function has an " }{TEXT 256 10 "elementary" }{TEXT -1 172 " anti-de rivative, which we could define loosely as an anti-derivative built up from functions discussed in first semester of Calculus. We have seen some examples already. " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "int(exp(-x^2), x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$*&-%%sqrtG6#% #PiG\"\"\"-%$erfG6#%\"xGF)#F)\"\"#" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "int(sqrt(x^3 + 1), x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&*&%\"xG\"\"\"-%%sqrtG6#,&*$)F%\"\"$F&F&F&F&F&#\"\"#\"\"&*&*.# \"\"'F0F&,&#F-F/F&*&^##!\"\"F/F&-F(6#F-F&F&F&-F(6#*&,&F%F&F&F&F&F5F:F& -F(6#*&,(F%F&#F&F/F:F7F&F&,&#!\"$F/F&F7F&F:F&-F(6#*&,(F%F&#F&F/F:*&^## F&F/F&F;F&F&F&,&FGF&FNF&F:F&-%*EllipticFG6$*$F=F&*$-F(6#*&FQF&FFF:F&F& F&*$-F(6#F*F&F:F&" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 14 "The function s " }{TEXT 257 3 "erf" }{TEXT -1 5 " and " }{TEXT 258 9 "EllipticF" } {TEXT -1 185 " appearing in these anti-derivatives are not familiar to us: they do not appear in Stewart, and are not considered elementary. \n\nIt is therefore of some interest to know which functions " }{TEXT 259 2 "do" }{TEXT -1 202 " have elementary anti-derivatives. This wor ksheet will show you that every rational function does, by explicitly \+ showing how, in principle, such a function may be anti-differentiated. (Recall that a " }{TEXT 260 17 "rational function" }{TEXT -1 1 " " }{XPPEDIT 18 0 "f;" "6#%\"fG" }{TEXT -1 27 " is a function of the form " }{XPPEDIT 18 0 "f(x) = P(x)/Q(x);" "6#/-%\"fG6#%\"xG*&-%\"PG6#F'\" \"\"-%\"QG6#F'!\"\"" }{TEXT -1 8 ", where " }{XPPEDIT 18 0 "P;" "6#%\" PG" }{TEXT -1 5 " and " }{XPPEDIT 18 0 "Q;" "6#%\"QG" }{TEXT -1 245 " \+ are polynomials.) The idea is to show first that any rational functio n can be written as a sum of certain special types of rational functio ns, then show how to find anti-derivatives for each of the special typ es. The special types are called " }{TEXT 261 17 "partial fractions" }{TEXT -1 80 ", and we will begin by looking at the types of partial f raction that are needed." }}}}{SECT 0 {PARA 3 "" 0 "" {TEXT -1 17 "Par tial Fractions" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 55 "Suppose we are g iven a rational expression, for example" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 92 "f := (x^7 + 6*x^5 - 3*x^2 + 7) /\n (2*x^5 + 21* x^4 + 44*x^3 - 24*x^2 + 144*x - 432);\n " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"fG*&,**$)%\"xG\"\"(\"\"\"F+*&\"\"'F+)F)\"\"&F+F+*& \"\"$F+)F)\"\"#F+!\"\"F*F+F+,.*$F.F+F3*&\"#@F+)F)\"\"%F+F+*&\"#WF+)F)F 1F+F+*&\"#CF+F2F+F4*&\"$W\"F+F)F+F+\"$K%F4F4" }}}{EXCHG {PARA 0 "" 0 " " {TEXT -1 119 "We will want to refer to the numerator and denominator of this expression separately, and we can extract them with the " } {TEXT 262 5 "numer" }{TEXT -1 5 " and " }{TEXT 263 5 "denom" }{TEXT -1 10 " commands:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "P := n umer(f);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"PG,**$)%\"xG\"\"(\"\" \"F**&\"\"'F*)F(\"\"&F*F**&\"\"$F*)F(\"\"#F*!\"\"F)F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "Q := denom(f);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"QG,.*$)%\"xG\"\"&\"\"\"\"\"#*&\"#@F*)F(\"\"%F*F**& \"#WF*)F(\"\"$F*F**&\"#CF*)F(F+F*!\"\"*&\"$W\"F*F(F*F*\"$K%F7" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 45 "(Of course, we could equally well \+ start with " }{XPPEDIT 18 0 "P;" "6#%\"PG" }{TEXT -1 5 " and " } {XPPEDIT 18 0 "Q;" "6#%\"QG" }{TEXT -1 12 " and define " }{XPPEDIT 18 0 "f;" "6#%\"fG" }{TEXT -1 73 " to be their quotient.)\n\nIn this exam ple, the degree of the numerator of " }{XPPEDIT 18 0 "f;" "6#%\"fG" } {TEXT -1 77 " is greater than or equal to the degree of the denominato r, so we can divide " }{XPPEDIT 18 0 "P;" "6#%\"PG" }{TEXT -1 4 " by \+ " }{XPPEDIT 18 0 "Q;" "6#%\"QG" }{TEXT -1 23 ", obtaining a quotient \+ " }{XPPEDIT 18 0 "q;" "6#%\"qG" }{TEXT -1 17 " and a remainder " } {XPPEDIT 18 0 "r;" "6#%\"rG" }{TEXT -1 12 ", such that\n" }{XPPEDIT 18 0 "P/Q = q+r/Q;" "6#/*&%\"PG\"\"\"%\"QG!\"\",&%\"qGF&*&%\"rGF&F'F(F &" }{TEXT -1 24 " , where the degree of " }{XPPEDIT 18 0 "r;" "6#%\"r G" }{TEXT -1 28 " is less than the degree of " }{XPPEDIT 18 0 "Q;" "6# %\"QG" }{TEXT -1 34 ". We then rewrite the expression " }{XPPEDIT 18 0 "f;" "6#%\"fG" }{TEXT -1 30 " in this form, denoting it by " } {XPPEDIT 18 0 "f1;" "6#%#f1G" }{TEXT -1 1 "." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "q := quo(P, Q, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"qG,(*$)%\"xG\"\"#\"\"\"#F*F)*&#\"#@\"\"%F*F(F*!\"\"#\"$x$\" \")F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "r := rem(P, Q, x); " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"rG,,\"&l.#\"\"\"*&\"%+@F')%\"x G\"\"#F'F'*&#\"%tf\"\")F'*$)F+\"\"%F'F'!\"\"*&#\"%VXF,F'*$)F+\"\"$F'F' F4*&\"%a!*F'F+F'F4" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "f1 := q + r/Q;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#f1G,**$)%\"xG\"\"#\"\" \"#F*F)*&#\"#@\"\"%F*F(F*!\"\"#\"$x$\"\")F**&,,\"&l.#F**&\"%+@F*F'F*F* *&#\"%tfF3F**$)F(F/F*F*F0*&#\"%VXF)F**$)F(\"\"$F*F*F0*&\"%a!*F*F(F*F0F *,.*$)F(\"\"&F*F)*&F.F*F=F*F**&\"#WF*FBF*F**&\"#CF*F'F*F0*&\"$W\"F*F(F *F*\"$K%F0F0F*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 40 "We can easily c heck that the expression " }{XPPEDIT 18 0 "f1;" "6#%#f1G" }{TEXT -1 13 " is equal to " }{XPPEDIT 18 0 "f;" "6#%\"fG" }{TEXT -1 2 " :" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "simplify(f1);" }}{PARA 11 " " 1 "" {XPPMATH 20 "6#*&,**$)%\"xG\"\"(\"\"\"F)*&\"\"'F))F'\"\"&F)F)*& \"\"$F))F'\"\"#F)!\"\"F(F)F),.*$F,F)F1*&\"#@F))F'\"\"%F)F)*&\"#WF))F'F /F)F)*&\"#CF)F0F)F2*&\"$W\"F)F'F)F)\"$K%F2F2" }}}{EXCHG {PARA 0 "" 0 " " {TEXT -1 21 "Since the polynomial " }{XPPEDIT 18 0 "q;" "6#%\"qG" } {TEXT -1 98 " can easily be anti-differentiated, the remaining problem is to see how to\nanti-differentiate the " }{TEXT 264 6 "proper" } {TEXT -1 19 " rational function " }{XPPEDIT 18 0 "r/Q;" "6#*&%\"rG\"\" \"%\"QG!\"\"" }{TEXT -1 33 " . We will call this expression " } {XPPEDIT 18 0 "f2;" "6#%#f2G" }{TEXT -1 2 " :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "f2 := r/Q;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>% #f2G*&,,\"&l.#\"\"\"*&\"%+@F()%\"xG\"\"#F(F(*&#\"%tf\"\")F(*$)F,\"\"%F (F(!\"\"*&#\"%VXF-F(*$)F,\"\"$F(F(F5*&\"%a!*F(F,F(F5F(,.*$)F,\"\"&F(F- *&\"#@F(F3F(F(*&\"#WF(F:F(F(*&\"#CF(F+F(F5*&\"$W\"F(F,F(F(\"$K%F5F5" } }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 36 " \nThe next step is always poss ible " }{TEXT 265 12 "in principle" }{TEXT -1 130 ", although it may b e impossible to carry out in practice: we\nfactor the denominator into linear and irreducible quadratic factors." }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 10 "factor(Q);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*(,&% \"xG\"\"#\"\"$!\"\"\"\"\",&*$)F%F&F)F)\"\"%F)F)),&F%F)\"\"'F)F&F)" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 47 "With the factorisation completed, \+ we can write " }{XPPEDIT 18 0 "f2;" "6#%#f2G" }{TEXT -1 31 " as a sum \+ of partial fractions:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "f3 := convert(f2, parfrac, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#f3G ,**&\"\"\"F',&%\"xG\"\"#\"\"$!\"\"F,#\"%^!)\"&+]%*&#\"'$pE$\"$+'F'*$), &F)F'\"\"'F'F*F'F,F'*&#\"(J#=n\"&+!=F'*&F'F'F6F,F'F,*&#F'\"&++\"F'*&,& \"#;F'*&\"%p;F'F)F'F'F',&*$)F)F*F'F'\"\"%F'F,F'F," }}}{EXCHG {PARA 0 " " 0 "" {TEXT -1 130 "It should now be clear that if we can anti-differ entiate each term in this sum, we can anti-differentiate the original \+ expression " }{XPPEDIT 18 0 "f;" "6#%\"fG" }{TEXT -1 264 " . In later sections of the worksheet, we will see how to anti-differentiate any \+ type of partial fraction, but first you should see what kinds of parti al fraction can arise, and how they relate to the factorisation of the denominator.\n\nTwo observations:\n\n 1. The " }{TEXT 266 7 "convert " }{TEXT -1 129 " command is able to do the initial polynomial divisio n as well as the subsequent decomposition. For example, using our ori ginal " }{XPPEDIT 18 0 "f;" "6#%\"fG" }{TEXT -1 3 " , " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "convert(f, parfrac, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,0*$)%\"xG\"\"#\"\"\"#F(F'*&#\"#@\"\"%F(F&F( !\"\"#\"$x$\"\")F(*&#\"%^!)\"&+]%F(,&F&F'\"\"$F.F.F(*&#\"'$pE$\"$+'F(* $),&F&F(\"\"'F(F'F(F.F(*&#\"(J#=n\"&+!=F(*&F(F(F>F.F(F.*&#F(\"&++\"F(* &,&\"#;F(*&\"%p;F(F&F(F(F(,&F$F(F-F(F.F(F." }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 3 "2. " }{TEXT 267 82 "The factorisation step is the biggest \+ hurdle in the whole partial fraction method:" }{TEXT -1 257 " every ot her step is automatic (although the whole procedure can become extreme ly long and tedious), but there is no systematic method for finding th e factorisation of a polynomial, although there is a theorem which gua rantees that the factorisation exists." }}}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 10 "Question 1" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 45 "Here ar e some rational expressions. Use the " }{TEXT 268 7 "convert" }{TEXT -1 346 " command to write them in partial fractions, and observe the t ypes of terms which can occur. Try to find a rule which relates the t ypes of partial fraction which occur in a given decomposition to the f actorisation of the numerator. Test your rule by making up other exam ples and seeing if you can predict the types of partial fractions you \+ get." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 301 10 "Solutions." }{TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "g1 := 1/(x^2 - 9);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6 #>%#g1G*&\"\"\"F&,&*$)%\"xG\"\"#F&F&\"\"*!\"\"F-" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "convert(g1,parfrac,x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&*&\"\"\"F%,&%\"xGF%\"\"$!\"\"F)#F%\"\"'*&#F%F+F%*&F%F %,&F'F%F(F%F)F%F)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "g2 := \+ (3*x + 5)/(x^2 - 9);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#g2G*&,&%\"x G\"\"$\"\"&\"\"\"F*,&*$)F'\"\"#F*F*\"\"*!\"\"F0" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 22 "convert(g2,parfrac,x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&*&\"\"\"F%,&%\"xGF%\"\"$!\"\"F)#\"\"(F(*&#\"\"#F(F%,& F'F%F(F%F)F%" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "g3 := (3*x \+ + 5)/(x^2 - 9)^2;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#g3G*&,&%\"xG\" \"$\"\"&\"\"\"F**$),&*$)F'\"\"#F*F*\"\"*!\"\"F0F*F2" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "convert(g3,parfrac,x);" }}{PARA 11 "" 1 " " {XPPMATH 20 "6#,**&\"\"\"F%*$),&%\"xGF%\"\"$!\"\"\"\"#F%F+#\"\"(\"#= *&#\"\"&\"$3\"F%*&F%F%F(F+F%F+*&#F%\"\"*F%*&F%F%*$),&F)F%F*F%F,F%F+F%F +*&#F2F3F%F;F+F%" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "g4 := ( 2*x^3 + x)/(x^2 - 9)^2;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#g4G*&,&* $)%\"xG\"\"$\"\"\"\"\"#F)F+F+*$),&*$)F)F,F+F+\"\"*!\"\"F,F+F3" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "convert(g4,parfrac,x);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#,**&\"\"\"F%*$),&%\"xGF%\"\"$!\"\"\"\" #F%F+#\"#>\"#7*&F%F%F(F+F%*&#F.F/F%*&F%F%*$),&F)F%F*F%F,F%F+F%F+*&F%F% F6F+F%" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 36 "g5 := (x^3 - 2*x^ 2 + 3)/(x^2 - 9)^3;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#g5G*&,(*$)% \"xG\"\"$\"\"\"F+*&\"\"#F+)F)F-F+!\"\"F*F+F+*$),&*$F.F+F+\"\"*F/F*F+F/ " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "convert(g5,parfrac,x); " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,.*&\"\"\"F%*$),&%\"xGF%\"\"$!\"\" F*F%F+#F%\"#=*&#F%\"#CF%*$)F(\"\"#F%F+F%*&#F%\"$W\"F%F(F+F%*&#\"\"(\"# OF%*$),&F)F%F*F%F*F%F+F%*&#F%\"#7F%*&F%F%*$)F=F3F%F+F%F+*&#F%F6F%*&F%F %F=F+F%F+" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "g6 := x/(x^2 + 9);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#g6G*&%\"xG\"\"\",&*$)F&\"\" #F'F'\"\"*F'!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "conver t(g6,parfrac,x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*&%\"xG\"\"\",&*$) F$\"\"#F%F%\"\"*F%!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 " g7 := (x^7 - 1)/(x^2 + 5)^4;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#g7G *&,&*$)%\"xG\"\"(\"\"\"F+F+!\"\"F+*$),&*$)F)\"\"#F+F+\"\"&F+\"\"%F+F, " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "convert(g7,parfrac,x); " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,**&,&!\"\"\"\"\"*&\"$D\"F'%\"xGF' F&F'*$),&*$)F*\"\"#F'F'\"\"&F'\"\"%F'F&F'*&*&\"#vF'F*F'F'*$)F-\"\"$F'F &F'*&*&\"#:F'F*F'F'*$)F-F0F'F&F&*&F*F'F-F&F'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 86 "g8 := 1/(x^10 - 3*x^8 + 8*x^7 - 18*x^6 + 24*x^5 \+ - 26*x^4 + 24*x^3 - 15*x^2 + 8*x - 3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#g8G*&\"\"\"F&,6*$)%\"xG\"#5F&F&*&\"\"$F&)F*\"\")F&!\"\"*&F/F& )F*\"\"(F&F&*&\"#=F&)F*\"\"'F&F0*&\"#CF&)F*\"\"&F&F&*&\"#EF&)F*\"\"%F& F0*&F9F&)F*F-F&F&*&\"#:F&)F*\"\"#F&F0*&F/F&F*F&F&F-F0F0" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "factor(denom(g8));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*(,&%\"xG\"\"\"\"\"$F&F&),&F%F&F&!\"\"F'F&),&*$)F% \"\"#F&F&F&F&F'F&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "conver t(g8,parfrac,x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,0*&\"\"\"F%,&%\"x GF%\"\"$F%!\"\"#F)\"&+S'*&#F%\"#KF%*$),&F'F%F%F)F(F%F)F%*&#\"#8\"$G\"F %*&F%F%*$)F1\"\"#F%F)F%F)*&#\"#&)\"$7&F%F1F)F%*&#F%\"%+?F%*&,&\"$H\"F% *&\"$K$F%F'F%F%F%,&*$)F'F9F%F%F%F%F)F%F)*&#F%\"#]F%*&,&F%F%*&\"\")F%F' F%F%F%*$)FFF9F%F)F%F)*&#F%\"#?F%*&,&F)F%*&F9F%F'F%F%F%*$)FFF(F%F)F%F) " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 108 "g9 := (x^7 + x^5 + x^3 + 1) /\n(x^10 - 3*x^8 + 8*x^7 - 18*x^6 + 24*x^5 - 26*x^4 + 24*x^3 - 1 5*x^2 + 8*x - 3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#g9G*&,**$)%\"x G\"\"(\"\"\"F+*$)F)\"\"&F+F+*$)F)\"\"$F+F+F+F+F+,6*$)F)\"#5F+F+*&F1F+) F)\"\")F+!\"\"*&F8F+F(F+F+*&\"#=F+)F)\"\"'F+F9*&\"#CF+F-F+F+*&\"#EF+)F )\"\"%F+F9*&F@F+F0F+F+*&\"#:F+)F)\"\"#F+F9*&F8F+F)F+F+F1F9F9" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "factor(denom(g9));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*(,&%\"xG\"\"\"\"\"$F&F&),&F%F&F&!\"\"F'F&), &*$)F%\"\"#F&F&F&F&F'F&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 " convert(g9,parfrac,x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,0*&\"\"\"F% ,&%\"xGF%\"\"$F%!\"\"#\"$2$\"%+!)*&#F%\"\")F%*$),&F'F%F%F)F(F%F)F%*&#F %\"#;F%*$)F2\"\"#F%F)F%*&#\"#8\"#kF%F2F)F%*&#\"\"(\"%+?F%*&,&\"#VF%*& \"#pF%F'F%F%F%,&*$)F'F8F%F%F%F%F)F%F)*&#F%\"#DF%*&,&F'F%F(F)F%*$)FFF8F %F)F%F)*&#F%\"#?F%*&,&F%F%*&F(F%F'F%F%F%*$)FFF(F%F)F%F)" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 318 "The denominators of the partial fraction s are factors (or powers of factors) of the denominator of the origina l fraction. If a factor appears only once in the denominator, there i s a single partial fraction with that factor as its denominator; if a \+ factor is repeated, there will be partial fractions with that power " }{TEXT 299 20 "and all lower powers" }{TEXT -1 38 " of that factor in \+ their denominators." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 " " {TEXT -1 131 "As for the numerators of the partial fractions: any p artial fraction coming from a linear factor has a constant in its nume rator (" }{TEXT 300 5 "Maple" }{TEXT -1 189 " writes this constant in \+ front of the fraction, leaving a numerator of 1); any partial fraction coming from an irreducible quadratic factor has at most a linear poly nomial in the numerator." }}}}}{SECT 0 {PARA 3 "" 0 "" {TEXT -1 33 "Te rms arising from Linear Factors" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 270 "After doing Question 1 in the last section, you should be convinc ed that (apart from a possible polynomial) only two types of partial f raction show up in the decomposition of a rational function. If the d enominator of the original rational function has a linear factor " } {XPPEDIT 18 0 "a*x+b;" "6#,&*&%\"aG\"\"\"%\"xGF&F&%\"bGF&" }{TEXT -1 65 ", possibly repeated, there will be\npartial fractions of the form \+ " }{XPPEDIT 18 0 "1/((a*x+b)^n);" "6#*&\"\"\"F$),&*&%\"aGF$%\"xGF$F$% \"bGF$%\"nG!\"\"" }{TEXT -1 87 " in the decomposition; if the original denominator has an irreducible quadratic factor " }{XPPEDIT 18 0 "a*x ^2+b*x+c;" "6#,(*&%\"aG\"\"\"*$%\"xG\"\"#F&F&*&%\"bGF&F(F&F&%\"cGF&" } {TEXT -1 65 ", possibly repeated, there will be partial fractions of t he form " }{XPPEDIT 18 0 "(A*x+B)/((a*x^2+b*x+c)^n);" "6#*&,&*&%\"AG\" \"\"%\"xGF'F'%\"BGF'F'),(*&%\"aGF'*$F(\"\"#F'F'*&%\"bGF'F(F'F'%\"cGF'% \"nG!\"\"" }{TEXT -1 39 " . In each case, the highest value of " } {XPPEDIT 18 0 "n;" "6#%\"nG" }{TEXT -1 341 " which appears is the numb er of times the corresponding factor is repeated in the original denom inator. It follows that if we can find anti-derivatives for each of t hese expressions, we can anti-differentiate any rational function.\n\n It is easy to find anti-derivatives for the partial fractions arising \+ from linear factors: just substitute " }{XPPEDIT 18 0 "u = a*x+b;" "6# /%\"uG,&*&%\"aG\"\"\"%\"xGF(F(%\"bGF(" }{TEXT -1 40 " . Here are two \+ worked examples, using " }{TEXT 269 9 "changevar" }{TEXT -1 10 " from \+ the " }{TEXT 270 7 "student" }{TEXT -1 9 " package." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "with(student):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "p1 := Int(1/(2*x - 3), x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p1G-%$IntG6$*&\"\"\"F),&%\"xG\"\"#\"\"$!\"\"F.F+" }} }{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 34 "p2 := changevar(u=2*x - 3, \+ p1, u);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p2G-%$IntG6$,$*&\"\"\"F* %\"uG!\"\"#F*\"\"#F+" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "p3 \+ := simplify(p2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p3G,$-%$IntG6$* &\"\"\"F*%\"uG!\"\"F+#F*\"\"#" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "p4 := value(p3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p4G,$-%#l nG6#%\"uG#\"\"\"\"\"#" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "p5 := subs(u = 2*x - 3, p4);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p5G,$ -%#lnG6#,&%\"xG\"\"#\"\"$!\"\"#\"\"\"F+" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "p1 = p5 + C;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%$I ntG6$*&\"\"\"F(,&%\"xG\"\"#\"\"$!\"\"F-F*,&-%#lnG6#F)#F(F+%\"CGF(" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "q1 := Int(1/(4*x + 17)^6, x) ;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q1G-%$IntG6$*&\"\"\"F)*$),&%\" xG\"\"%\"# " 0 "" {MPLTEXT 1 0 37 "q2 := changevar(u = 4*x + 17, q1, u);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q2G-%$IntG6$,$*&\"\"\"F**$)%\"uG\"\"'F*!\"\"#F*\"\"% F-" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "q3 := simplify(q2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q3G,$-%$IntG6$*&\"\"\"F**$)%\"uG \"\"'F*!\"\"F-#F*\"\"%" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "q 4 := value(q3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q4G,$*&\"\"\"F'* $)%\"uG\"\"&F'!\"\"#F,\"#?" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "q5 := subs(u = 4*x + 17, q4);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#> %#q5G,$*&\"\"\"F'*$),&%\"xG\"\"%\"# " 0 "" {MPLTEXT 1 0 12 "q1 = q5 + C;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%$IntG6$*&\"\"\"F(*$),&%\"xG\"\"%\"# " 0 "" {MPLTEXT 1 0 28 "p1 := Int(1/(4*x + 5)^3, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p1G-%$IntG6$*&\"\"\"F)*$),&%\"xG\"\"%\"\"&F) \"\"$F)!\"\"F-" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 36 "p2 := cha ngevar(u = 4*x + 5, p1, u);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p2G- %$IntG6$,$*&\"\"\"F**$)%\"uG\"\"$F*!\"\"#F*\"\"%F-" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "p3 := simplify(p2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p3G,$-%$IntG6$*&\"\"\"F**$)%\"uG\"\"$F*!\"\"F-#F*\" \"%" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "p4 := value(p3);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p4G,$*&\"\"\"F'*$)%\"uG\"\"#F'!\"\" #F,\"\")" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "p5 := subs(u = \+ 4*x + 5, p4);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p5G,$*&\"\"\"F'*$) ,&%\"xG\"\"%\"\"&F'\"\"#F'!\"\"#F/\"\")" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "p1 = p5 + C;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%$I ntG6$*&\"\"\"F(*$),&%\"xG\"\"%\"\"&F(\"\"$F(!\"\"F,,&*&F(F(*$)F+\"\"#F (F0#F0\"\")%\"CGF(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 4 "(b) " }{XPPEDIT 18 0 "Int(1/(sqrt(2 )*x-1),x);" "6#-%$IntG6$*&\"\"\"F',&*&-%%sqrtG6#\"\"#F'%\"xGF'F'F'!\" \"F/F." }{TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 303 9 "Solution." }{TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 32 "q1 := Int(1/(sqrt(2)*x - 1), x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q1G-%$IntG6$*&\"\"\"F),&*&-%%sqrtG6#\"\"#F)%\"xGF)F)F)!\"\"F1 F0" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 42 "q2 := changevar(u = s qrt(2)*x - 1, q1, u);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q2G-%$IntG 6$,$*&*$-%%sqrtG6#\"\"#\"\"\"F/%\"uG!\"\"#F/F.F0" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "q3 := simplify(q2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q3G,$*&-%%sqrtG6#\"\"#\"\"\"-%$IntG6$*&F+F+%\"uG!\" \"F0F+#F+F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "q4 := value( q3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q4G,$*&-%%sqrtG6#\"\"#\"\" \"-%#lnG6#%\"uGF+#F+F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 34 "q 5 := subs(u = sqrt(2)*x - 1, q4);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#> %#q5G,$*&-%%sqrtG6#\"\"#\"\"\"-%#lnG6#,&*&F'F+%\"xGF+F+F+!\"\"F+#F+F* " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "q1 = q5 + C;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%$IntG6$*&\"\"\"F(,&*&-%%sqrtG6#\"\"#F(%\" xGF(F(F(!\"\"F0F/,&*&F+F(-%#lnG6#F)F(#F(F.%\"CGF(" }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 4 "(c) \+ " }{XPPEDIT 18 0 "Int(5/(x+2),x);" "6#-%$IntG6$*&\"\"&\"\"\",&%\"xGF( \"\"#F(!\"\"F*" }{TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 " " }{TEXT 304 9 "Solution." }{TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "r1 := Int(5/(x + 2), x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#r1G-%$IntG6$,$*&\"\"\"F*,&%\"xGF*\"\"#F*!\"\"\"\"&F, " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 32 "r2 := changevar(u = x+2 , r1, u);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#r2G-%$IntG6$,$*&\"\"\" F*%\"uG!\"\"\"\"&F+" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "r3 : = simplify(r2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#r3G,$-%$IntG6$*& \"\"\"F*%\"uG!\"\"F+\"\"&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "r4 := value(r3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#r4G,$-%#lnG 6#%\"uG\"\"&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "r5 := subs( u = x+2, r4);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#r5G,$-%#lnG6#,&%\" xG\"\"\"\"\"#F+\"\"&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "r1 \+ = r5 + C;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%$IntG6$,$*&\"\"\"F),&% \"xGF)\"\"#F)!\"\"\"\"&F+,&-%#lnG6#F*F.%\"CGF)" }}}}}{SECT 0 {PARA 3 " " 0 "" {TEXT -1 36 "Terms arising from Quadratic Factors" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 108 "In this section, we will see how to anti -differentiate the second type of partial fraction: one of the\nform \+ " }{XPPEDIT 18 0 "(A*x+B)/((a*x^2+b*x+c)^n);" "6#*&,&*&%\"AG\"\"\"%\"x GF'F'%\"BGF'F'),(*&%\"aGF'*$F(\"\"#F'F'*&%\"bGF'F(F'F'%\"cGF'%\"nG!\" \"" }{TEXT -1 46 " arising from an irreducible quadratic factor " } {XPPEDIT 18 0 "a*x^2+b*x+c;" "6#,(*&%\"aG\"\"\"*$%\"xG\"\"#F&F&*&%\"bG F&F(F&F&%\"cGF&" }{TEXT -1 148 " in the original denominator.\nWe will begin by looking at two special cases. The general case can then be \+ handled by cleverly combining these two.\n" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 271 8 "CASE 1: " }{XPPEDIT 18 0 "A = 0;" "6#/%\"A G\"\"!" }{TEXT -1 50 " .\n\nIn this case, our partial fraction looks l ike " }{XPPEDIT 18 0 "B/((a*x^2+b*x+c)^n);" "6#*&%\"BG\"\"\"),(*&%\"aG F%*$%\"xG\"\"#F%F%*&%\"bGF%F+F%F%%\"cGF%%\"nG!\"\"" }{TEXT -1 17 " . \+ The constant " }{XPPEDIT 18 0 "B;" "6#%\"BG" }{TEXT -1 91 " in the num erator can be pulled through the anti-derivative sign, so we may as we ll assume " }{XPPEDIT 18 0 "B = 1;" "6#/%\"BG\"\"\"" }{TEXT -1 38 ". \+ We can also factor the coefficient " }{XPPEDIT 18 0 "a;" "6#%\"aG" } {TEXT -1 40 " out of the denominator (it will become " }{XPPEDIT 18 0 "a^n;" "6#)%\"aG%\"nG" }{TEXT -1 29 " when we pull it through the " } {XPPEDIT 18 0 "n;" "6#%\"nG" }{TEXT -1 82 "-th power) and pull it thro ugh the anti-derivative sign, so we may as well assume " }{XPPEDIT 18 0 "a = 1;" "6#/%\"aG\"\"\"" }{TEXT -1 37 " also. We are now reduced t o finding" }{XPPEDIT 18 0 "Int(1/((x^2+b*x+c)^n),x);" "6#-%$IntG6$*&\" \"\"F'),(*$%\"xG\"\"#F'*&%\"bGF'F+F'F'%\"cGF'%\"nG!\"\"F+" }{TEXT -1 9 " , where " }{XPPEDIT 18 0 "x^2+b*x+c;" "6#,(*$%\"xG\"\"#\"\"\"*&%\" bGF'F%F'F'%\"cGF'" }{TEXT -1 16 " is irreducible." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 35 "To solve this problem, we re-write " }{XPPEDIT 18 0 "x^2+b*x+c" "6#,(*$%\"xG\"\"#\"\"\"*&%\"bGF 'F%F'F'%\"cGF'" }{TEXT -1 78 " by completing the square, and make a ta ngent substitution. Needless to say, " }{TEXT 272 5 "Maple" }{TEXT -1 15 " has a command " }{TEXT 273 14 "completesquare" }{TEXT -1 31 ". This command resides in the " }{TEXT 274 7 "student" }{TEXT -1 119 " package, so you should load that package now if you have not already \+ done so.\n\nHere are two worked examples of case 1:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 33 "p1 := Int(1/(x^2 - 6*x + 18), x);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p1G-%$IntG6$*&\"\"\"F),(*$)%\"xG\" \"#F)F)*&\"\"'F)F-F)!\"\"\"#=F)F1F-" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "den1 := x^2 - 6*x + 18;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%den1G,(*$)%\"xG\"\"#\"\"\"F**&\"\"'F*F(F*!\"\"\"#=F*" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 32 "den2 := completesquare(den1, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%den2G,&*$),&%\"xG\"\"\"\"\" $!\"\"\"\"#F*F*\"\"*F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "p 2 := subs(den1=den2, p1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p2G-%$ IntG6$*&\"\"\"F),&*$),&%\"xGF)\"\"$!\"\"\"\"#F)F)\"\"*F)F0F." }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "p3 := changevar(x-3 = 3*tan( u), p2, u);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p3G-%$IntG6$*&,&\"\" \"F**$)-%$tanG6#%\"uG\"\"#F*F*F*,&\"\"$F**&F3F*F,F*F*!\"\"F0" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "p4 := simplify(p3);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p4G,$-%$IntG6$\"\"\"%\"uG#F)\"\"$" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "p5 := value(p4);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p5G,$%\"uG#\"\"\"\"\"$" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 36 "p6 := subs(u = arctan((x-3)/3), p5) ;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p6G,$-%'arctanG6#,&%\"xG#\"\" \"\"\"$F,!\"\"F+" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "p1 = p6 + C;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%$IntG6$*&\"\"\"F(,(*$)%\"x G\"\"#F(F(*&\"\"'F(F,F(!\"\"\"#=F(F0F,,&-%'arctanG6#,&F,#F(\"\"$F(F0F7 %\"CGF(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 35 "q1 := Int(1/(x^2 - 6*x + 18)^3, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q1G-%$IntG6$ *&\"\"\"F)*$),(*$)%\"xG\"\"#F)F)*&\"\"'F)F/F)!\"\"\"#=F)\"\"$F)F3F/" } }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "q2 := subs(den1 = den2, q1 );" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q2G-%$IntG6$*&\"\"\"F)*$),&*$ ),&%\"xGF)\"\"$!\"\"\"\"#F)F)\"\"*F)F1F)F2F0" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "q3 := changevar(x-3 = 3*tan(u), q2, u);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q3G-%$IntG6$,$*&\"\"\"F**$),&F*F**$ )-%$tanG6#%\"uG\"\"#F*F*F4F*!\"\"#F*\"$V#F3" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "q4 := simplify(q3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q4G,$-%$IntG6$*&\"\"\"F**$),&F*F**$)-%$tanG6#%\"uG\"\"#F*F*F4 F*!\"\"F3#F*\"$V#" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 1 " " }{TEXT 275 5 "Maple" }{TEXT -1 78 " seems unwilling to make the next simplifi cation, so we will have to force it." }{MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 40 "q5 := subs(1 + tan(u)^2 = sec(u)^2, q4);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q5G,$-%$IntG6$*&\"\"\"F**$ )-%$secG6#%\"uG\"\"%F*!\"\"F0#F*\"$V#" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "q6 := simplify(q5);" }}{PARA 11 "" 1 "" {XPPMATH 20 " 6#>%#q6G,$-%$IntG6$*$)-%$cosG6#%\"uG\"\"%\"\"\"F.#F0\"$V#" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 125 "This is now do-able: we have a reduction formula for powers of cosine. Rather than grind out the calculation, we will allow " }{TEXT 276 5 "Maple" }{TEXT -1 34 " to evaluate this \+ anti-derivative." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "q7 := v alue(q6);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q7G,(*&)-%$cosG6#%\"uG \"\"$\"\"\"-%$sinGF*F-#F-\"$s**(#F-\"$['F-F(F-F.F-F-*&F3F-F+F-F-" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 36 "q8 := subs(u = arctan((x-3)/ 3), q7);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q8G,(*&)-%$cosG6#-%'arc tanG6#,&%\"xG#\"\"\"\"\"$F1!\"\"F2F1-%$sinGF*F1#F1\"$s**(#F1\"$['F1F(F 1F4F1F1*&F9F1F+F1F1" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "q9 : = simplify(q8);" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#>%#q9G,$*&,4%\"xG\" $E\"\"$;#!\"\"*&\"\"$\"\"\")F(F-F.F.*&\"#FF.)F(\"\"#F.F+*&-%'arctanG6# ,&F(#F.F-F.F+F.)F(\"\"%F.F.*(\"#7F.F5F.F/F.F+*(\"#sF.F5F.F2F.F.*(F*F.F 5F.F(F.F+*&\"$C$F.F5F.F.F.*$),(*$F2F.F.*&\"\"'F.F(F.F+\"#=F.F3F.F+#F. \"$['" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 10 "Question 3" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 52 "Use the method above to find these anti-derivatives:" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 4 "(a) " }{XPPEDIT 18 0 "Int(1/(x^2+2*x+11),x );" "6#-%$IntG6$*&\"\"\"F',(*$%\"xG\"\"#F'*&F+F'F*F'F'\"#6F'!\"\"F*" } {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 305 9 "So lution." }{TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "e xpr := 1/(x^2 + 2*x + 11);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%exprG *&\"\"\"F&,(*$)%\"xG\"\"#F&F&*&F+F&F*F&F&\"#6F&!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "p1 := Int(expr, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p1G-%$IntG6$*&\"\"\"F),(*$)%\"xG\"\"#F)F)*&F.F)F-F)F )\"#6F)!\"\"F-" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "den1 := d enom(expr);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%den1G,(*$)%\"xG\"\"# \"\"\"F**&F)F*F(F*F*\"#6F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "den2 := completesquare(den1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#> %%den2G,&*$),&%\"xG\"\"\"F*F*\"\"#F*F*\"#5F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "p2 := subs(den1 = den2, p1);" }}{PARA 11 "" 1 " " {XPPMATH 20 "6#>%#p2G-%$IntG6$*&\"\"\"F),&*$),&%\"xGF)F)F)\"\"#F)F) \"#5F)!\"\"F." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 46 "p3 := chan gevar(x+1 = sqrt(10)*tan(u), p2, u);" }}{PARA 11 "" 1 "" {XPPMATH 20 " 6#>%#p3G-%$IntG6$*&*&-%%sqrtG6#\"#5\"\"\",&F.F.*$)-%$tanG6#%\"uG\"\"#F .F.F.F.,&F0F-F-F.!\"\"F5" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "p4 := simplify(p3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p4G,$*&-%%s qrtG6#\"#5\"\"\"-%$IntG6$F+%\"uGF+#F+F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "p5 := value(p4);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#> %#p5G,$*&-%%sqrtG6#\"#5\"\"\"%\"uGF+#F+F*" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 43 "p6 := subs(u = arctan((x+1)/sqrt(10)), p5);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p6G,$*&-%%sqrtG6#\"#5\"\"\"-%'arcta nG6#,$*&,&%\"xGF+F+F+F+F'F+#F+F*F+F3" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "p1 = p6 + C;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%$I ntG6$*&\"\"\"F(,(*$)%\"xG\"\"#F(F(*&F-F(F,F(F(\"#6F(!\"\"F,,&*&-%%sqrt G6#\"#5F(-%'arctanG6#,$*&,&F,F(F(F(F(F3F(#F(F6F(F=%\"CGF(" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 109 "As always, it is easy to check this answ er. (I usually don't do the checks in my solutions, but you should!) " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "check := diff(p6, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&checkG,$*&\"\"\"F',&F'F'*&#F'\"#5 F'),&%\"xGF'F'F'\"\"#F'F'!\"\"F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "simplify(check);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#* &\"\"\"F$,(*$)%\"xG\"\"#F$F$*&F)F$F(F$F$\"#6F$!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 4 "(b ) " }{XPPEDIT 18 0 "Int(1/(x^2+6*x+11),x);" "6#-%$IntG6$*&\"\"\"F',(*$ %\"xG\"\"#F'*&\"\"'F'F*F'F'\"#6F'!\"\"F*" }{TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 306 9 "Solution." }{TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "expr := 1/(x^2 + 6*x + 11 );" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%exprG*&\"\"\"F&,(*$)%\"xG\"\" #F&F&*&\"\"'F&F*F&F&\"#6F&!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "q1 := Int(expr, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q1G- %$IntG6$*&\"\"\"F),(*$)%\"xG\"\"#F)F)*&\"\"'F)F-F)F)\"#6F)!\"\"F-" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "den1 := denom(expr);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%%den1G,(*$)%\"xG\"\"#\"\"\"F**&\"\"' F*F(F*F*\"#6F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "den2 := c ompletesquare(den1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%den2G,&*$), &%\"xG\"\"\"\"\"$F*\"\"#F*F*F,F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "q2 := subs(den1 = den2, q1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q2G-%$IntG6$*&\"\"\"F),&*$),&%\"xGF)\"\"$F)\"\"#F)F) F0F)!\"\"F." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 47 "q3 := change var(x + 3 = sqrt(2)*tan(u), q2, u);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6 #>%#q3G-%$IntG6$*&*&-%%sqrtG6#\"\"#\"\"\",&F.F.*$)-%$tanG6#%\"uGF-F.F. F.F.,&F0F-F-F.!\"\"F5" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "q4 := simplify(q3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q4G,$*&-%%sqrt G6#\"\"#\"\"\"-%$IntG6$F+%\"uGF+#F+F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "q5 := value(q4);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#> %#q5G,$*&-%%sqrtG6#\"\"#\"\"\"%\"uGF+#F+F*" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 42 "q6 := subs(u = arctan((x+3)/sqrt(2)), q5);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q6G,$*&-%%sqrtG6#\"\"#\"\"\"-%'arct anG6#,$*&,&%\"xGF+\"\"$F+F+F'F+#F+F*F+F4" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "q1 = q6 + C;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%$I ntG6$*&\"\"\"F(,(*$)%\"xG\"\"#F(F(*&\"\"'F(F,F(F(\"#6F(!\"\"F,,&*&-%%s qrtG6#F-F(-%'arctanG6#,$*&,&F,F(\"\"$F(F(F4F(#F(F-F(F>%\"CGF(" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 4 "(c) " }{XPPEDIT 18 0 "Int(1/((2*x^2-4*x+10)^2),x);" "6#-%$ IntG6$*&\"\"\"F'*$,(*&\"\"#F'*$%\"xGF+F'F'*&\"\"%F'F-F'!\"\"\"#5F'F+F0 F-" }{TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 307 9 "Solution." }{TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "expr := 1/(2*x^2 - 4*x + 10);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#> %%exprG*&\"\"\"F&,(*$)%\"xG\"\"#F&F+*&\"\"%F&F*F&!\"\"\"#5F&F." }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "r1 := Int(expr^2, x);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%#r1G-%$IntG6$*&\"\"\"F)*$),(*$)%\"xG \"\"#F)F0*&\"\"%F)F/F)!\"\"\"#5F)F0F)F3F/" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 20 "den1 := denom(expr);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%den1G,(*$)%\"xG\"\"#\"\"\"F)*&\"\"%F*F(F*!\"\"\"#5F*" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "den2 := completesquare(den1) ;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%den2G,&*$),&%\"xG\"\"\"F*!\"\" \"\"#F*F,\"\")F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "r2 := s ubs(den1 = den2, r1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#r2G-%$IntG 6$*&\"\"\"F)*$),&*$),&%\"xGF)F)!\"\"\"\"#F)F2\"\")F)F2F)F1F0" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "r3 := changevar(x-1 = 2*tan( u), r2, u);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#r3G-%$IntG6$*&\"\"\" F),&\"#KF)*&F+F))-%$tanG6#%\"uG\"\"#F)F)!\"\"F1" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 19 "r4 := simplify(r3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#r4G,$-%$IntG6$*&\"\"\"F*,&F*F**$)-%$tanG6#%\"uG\"\"# F*F*!\"\"F1#F*\"#K" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 40 "r5 := subs(1 + tan(u)^2 = sec(u)^2, r4);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6 #>%#r5G,$-%$IntG6$*&\"\"\"F**$)-%$secG6#%\"uG\"\"#F*!\"\"F0#F*\"#K" }} }{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "r6 := simplify(r5);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%#r6G,$-%$IntG6$*$)-%$cosG6#%\"uG\"\" #\"\"\"F.#F0\"#K" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "r7 := v alue(r6);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#r7G,&*&-%$cosG6#%\"uG \"\"\"-%$sinGF)F+#F+\"#k*&F.F+F*F+F+" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 36 "r8 := subs(u = arctan((x-1)/2), r7);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#r8G,&*&-%$cosG6#-%'arctanG6#,&%\"xG#\"\"\"\"\"# #F0F1!\"\"F0-%$sinGF)F0#F0\"#k*&F6F0F*F0F0" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 19 "r9 := simplify(r8);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#r9G,$*&,,%\"xG\"\"#F)!\"\"*&-%'arctanG6#,&F(#\"\"\"F)#F1F)F*F 1)F(F)F1F1*(F)F1F,F1F(F1F**&\"\"&F1F,F1F1F1,(*$F3F1F1*&F)F1F(F1F*F6F1F *#F1\"#k" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "r1 = r9 + C;" } }{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%$IntG6$*&\"\"\"F(*$),(*$)%\"xG\"\" #F(F/*&\"\"%F(F.F(!\"\"\"#5F(F/F(F2F.,&*&,,F.F/F/F2*&-%'arctanG6#,&F.# F(F/#F(F/F2F(F-F(F(*(F/F(F8F(F.F(F2*&\"\"&F(F8F(F(F(,(F,F(*&F/F(F.F(F2 F@F(F2#F(\"#k%\"CGF(" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 88 "Since thi s is the most complicated example we have worked out so far, we might \+ check it:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "check := diff( r9, x);" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#>%&checkG,&*&,.\"\"#\"\"\"* &*&#F)F(F))%\"xGF(F)F),&F)F)*$),&F.F,#F)F(!\"\"F(F)F)F4F)*(F(F)-%'arct anG6#F2F)F.F)F)*&F.F)F/F4F4*&F(F)F6F)F4*&#\"\"&F(F)F/F4F)F),(*$F-F)F)* &F(F)F.F)F4F=F)F4#F)\"#k*&#F)FBF)*&*&,,F.F(F(F4*&F6F)F-F)F)*(F(F)F6F)F .F)F4*&F=F)F6F)F)F),&F.F(F(F4F)F)*$)F>F(F)F4F)F4" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "simplify(check);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$*&\"\"\"F%*$),(*$)%\"xG\"\"#F%F%*&F,F%F+F%!\"\"\"\"&F %F,F%F.#F%\"\"%" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 84 "This is the or iginal rational function, though written in a slightly different form. " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" } {TEXT 277 10 "\nCASE 2: " }{XPPEDIT 18 0 "A*x+B = 2*a*x+b;" "6#/,&*&% \"AG\"\"\"%\"xGF'F'%\"BGF',&*(\"\"#F'%\"aGF'F(F'F'%\"bGF'" }{TEXT -1 88 " .\n\nIn this case, the numerator is exactly the derivative of the irreducible polynomial " }{XPPEDIT 18 0 "a*x^2+b*x+c;" "6#,(*&%\"aG\" \"\"*$%\"xG\"\"#F&F&*&%\"bGF&F(F&F&%\"cGF&" }{TEXT -1 59 ". If this r emarkable coincidence occurs, the substitution " }{XPPEDIT 18 0 "u = a *x^2+b*x+c;" "6#/%\"uG,(*&%\"aG\"\"\"*$%\"xG\"\"#F(F(*&%\"bGF(F*F(F(% \"cGF(" }{TEXT -1 14 " does the job." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 41 "p1 := Int((2*x + 2)/(x^2 + 2*x + 11), x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p1G-%$IntG6$*&,&%\"xG\"\"#F+\"\"\"F,,(*$) F*F+F,F,*&F+F,F*F,F,\"#6F,!\"\"F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 43 "p2 := changevar(u = x^2 + 2*x + 11, p1, u);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p2G-%$IntG6$*&\"\"\"F)%\"uG!\"\"F*" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "p3 := value(p2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p3G-%#lnG6#%\"uG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 35 "p4 := subs(u = x^2 + 2*x + 11, p3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p4G-%#lnG6#,(*$)%\"xG\"\"#\"\"\"F-*&F,F-F+F- F-\"#6F-" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "p1 = p4 + C;" } }{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%$IntG6$*&,&%\"xG\"\"#F*\"\"\"F+,(* $)F)F*F+F+*&F*F+F)F+F+\"#6F+!\"\"F),&-%#lnG6#F,F+%\"CGF+" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 47 "q1 := Int((6*x + 30)/(3*x^2 + 30*x \+ + 33)^7, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q1G-%$IntG6$*&,&%\" xG\"\"'\"#I\"\"\"F-*$),(*$)F*\"\"#F-\"\"$*&F,F-F*F-F-\"#LF-\"\"(F-!\" \"F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 46 "q2 := changevar(u = 3*x^2 + 30*x + 33, q1, u);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q2G- %$IntG6$*&\"\"\"F)*$)%\"uG\"\"(F)!\"\"F," }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "q3 := value(q2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#> %#q3G,$*&\"\"\"F'*$)%\"uG\"\"'F'!\"\"#F,F+" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 38 "q4 := subs(u = 3*x^2 + 30*x + 33, q3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q4G,$*&\"\"\"F'*$),(*$)%\"xG\"\"#F'\"\"$*&\" #IF'F-F'F'\"#LF'\"\"'F'!\"\"#F4F3" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "q1 = q4 + C;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%$I ntG6$*&,&%\"xG\"\"'\"#I\"\"\"F,*$),(*$)F)\"\"#F,\"\"$*&F+F,F)F,F,\"#LF ,\"\"(F,!\"\"F),&*&F,F,*$)F/F*F,F7#F7F*%\"CGF," }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 69 "Case 2 may appear to be very special, but at least i t is very easy.\n\n" }}}{EXCHG {PARA 256 "" 0 "" {TEXT -1 18 "THE GENE RAL CASE.\n" }{TEXT 278 138 "\nAs mentioned above, the general case ca n be written as a combination of the two special cases. This is done \+ by re-writing the numerator " }{XPPEDIT 279 0 "A*x+B;" "6#,&*&%\"AG\" \"\"%\"xGF&F&%\"BGF&" }{TEXT 280 5 " as " }{XPPEDIT 281 0 "A/(2*a);" "6#*&%\"AG\"\"\"*&\"\"#F%%\"aGF%!\"\"" }{TEXT -1 2 " (" }{XPPEDIT 282 0 "2*a*x+b;" "6#,&*(\"\"#\"\"\"%\"aGF&%\"xGF&F&%\"bGF&" }{TEXT -1 2 ") " }{TEXT 283 3 "+ (" }{XPPEDIT 284 0 "B-A*b/(2*a);" "6#,&%\"BG\"\"\"* (%\"AGF%%\"bGF%*&\"\"#F%%\"aGF%!\"\"F," }{TEXT 285 92 ") . This formu la may not be too illuminating: the point is that we write the derivat ive of " }{XPPEDIT 286 0 "a*x^2+b*x+c;" "6#,(*&%\"aG\"\"\"*$%\"xG\"\"# F&F&*&%\"bGF&F(F&F&%\"cGF&" }{TEXT -1 0 "" }{TEXT 287 167 " in the num erator, so that we can use Case 2, and then we adjust constants so tha t we have the correct numerator. If you think about it, this is the s ame as dividing " }{XPPEDIT 256 0 "A*x+B;" "6#,&*&%\"AG\"\"\"%\"xGF&F& %\"BGF&" }{TEXT 288 5 " by " }{XPPEDIT 256 0 "2*a*x+b;" "6#,&*(\"\"# \"\"\"%\"aGF&%\"xGF&F&%\"bGF&" }{TEXT 289 16 ", so we can use " } {TEXT 290 5 "Maple" }{TEXT 291 3 "'s " }{TEXT 292 3 "rem" }{TEXT 293 5 " and " }{TEXT 294 3 "quo" }{TEXT 295 43 " commands to do the algebr a. For example:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 36 "expr1 \+ := (5*x - 3)/(x^2 + 2*x + 11);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&e xpr1G*&,&%\"xG\"\"&\"\"$!\"\"\"\"\",(*$)F'\"\"#F+F+*&F/F+F'F+F+\"#6F+F *" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 117 "We find the derivative of t he denominator, and find the quotient and remainder when it is divided into the numerator." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "d : = diff(denom(expr1), x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"dG,&% \"xG\"\"#F'\"\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "q := q uo(numer(expr1), d, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"qG#\"\" &\"\"#" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "r := rem(numer(ex pr1), d, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"rG!\")" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "expr2 := q*d/denom(expr1);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%&expr2G,$*&,&%\"xG\"\"#F)\"\"\"F*,(* $)F(F)F*F**&F)F*F(F*F*\"#6F*!\"\"#\"\"&F)" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 24 "expr3 := r/denom(expr1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&expr3G,$*&\"\"\"F',(*$)%\"xG\"\"#F'F'*&F,F'F+F'F'\"# 6F'!\"\"!\")" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 73 "We can easily che ck that our original expression is the sum of these two:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "simplify(expr2 + expr3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*&,&%\"xG\"\"&\"\"$!\"\"\"\"\",(*$)F%\"\"#F) F)*&F-F)F%F)F)\"#6F)F(" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 6 "Since " }{TEXT 296 5 "expr2" }{TEXT -1 89 " is an example of Case 2 (apart fro m the factor of 5/2, which causes no difficulty), and " }{TEXT 297 5 " expr3" }{TEXT -1 173 " is an example of Case 1, we can find anti-deriv atives for each of them, and hence for the original expression. In ex actly the same way, if we had started with a power of " }{XPPEDIT 18 0 "a*x^2+b*x+c;" "6#,(*&%\"aG\"\"\"*$%\"xG\"\"#F&F&*&%\"bGF&F(F&F&%\"c GF&" }{TEXT -1 32 " in the denominator, for example" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 38 "expr4 := (5*x - 3)/(x^2 + 2*x + 11)^3;" } }{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&expr4G*&,&%\"xG\"\"&\"\"$!\"\"\"\" \"*$),(*$)F'\"\"#F+F+*&F1F+F'F+F+\"#6F+F)F+F*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 54 "we would re-write it as the sum of the two expressions " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "expr5 := q*d/denom(expr 1)^3;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&expr5G,$*&,&%\"xG\"\"#F)\" \"\"F**$),(*$)F(F)F*F**&F)F*F(F*F*\"#6F*\"\"$F*!\"\"#\"\"&F)" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 3 "and" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "expr6 := r/denom(expr1)^3;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&expr6G,$*&\"\"\"F'*$),(*$)%\"xG\"\"#F'F'*&F.F'F-F'F' \"#6F'\"\"$F'!\"\"!\")" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 6 "Check:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "simplify(expr5 + expr6); " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*&,&%\"xG\"\"&\"\"$!\"\"\"\"\"*$), (*$)F%\"\"#F)F)*&F/F)F%F)F)\"#6F)F'F)F(" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 143 "In conclusion, we can now anti-differentiate any partial fraction coming from an irreducible quadratic factor, and hence any r ational function." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}} {SECT 0 {PARA 4 "" 0 "" {TEXT -1 10 "Question 4" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 123 "Re-write each of the following expressions as a sum of an expression that falls into Case 1 and one that falls into Case \+ 2." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "p1 := (3*x + 4)/(x^2 \+ + x + 1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p1G*&,&%\"xG\"\"$\"\"% \"\"\"F*,(*$)F'\"\"#F*F*F'F*F*F*!\"\"" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 308 9 "Solution." }{TEXT -1 83 " (To be honest, \+ this procedure is probably done more easily by hand, but here are " } {TEXT 309 5 "Maple" }{TEXT -1 50 " solutions, following the method ind icated above.)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 17 "den := de nom(p1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$denG,(*$)%\"xG\"\"#\"\" \"F*F(F*F*F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "d := diff(d en, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"dG,&%\"xG\"\"#\"\"\"F( " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "q := quo(numer(p1), d, \+ x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"qG#\"\"$\"\"#" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "r := rem(numer(p1), d, x);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"rG#\"\"&\"\"#" }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 22 "p2 := q*d/den + r/den;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p2G,&*&,&%\"xG\"\"#\"\"\"F*F*,(*$)F(F)F*F*F(F*F*F*! \"\"#\"\"$F)*&#\"\"&F)F*F+F.F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 35 "q1 := (6*x + 5)/ (x^2 + 4*x + 13)^2;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q1G*&,&%\"xG \"\"'\"\"&\"\"\"F**$),(*$)F'\"\"#F*F**&\"\"%F*F'F*F*\"#8F*F0F*!\"\"" } }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 310 9 "Solution." } {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "quad := x^2 + 4*x + 13;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%quadG,(*$)%\"xG\"\" #\"\"\"F**&\"\"%F*F(F*F*\"#8F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "d := diff(quad, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"dG, &%\"xG\"\"#\"\"%\"\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "q := quo(numer(q1), d, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"qG\" \"$" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "r := rem(numer(q1), \+ d, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"rG!\"(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "q2 := (q*d)/quad^2 + r/quad^2;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q2G,&*&,&%\"xG\"\"#\"\"%\"\"\"F+*$),(*$)F (F)F+F+*&F*F+F(F+F+\"#8F+F)F+!\"\"\"\"$*&\"\"(F+*$F-F+F3F3" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 10 "Question 5" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 122 "Work through the complete proce dure we have outlined, and find anti-derivatives for the following exp ressions: first use " }{TEXT 298 7 "convert" }{TEXT -1 106 " to find \+ the partial-fraction decomposition, then find anti-derivatives for eac h of the partial fractions." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "p1 := 1/((x-1)*(x+1)^2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p1G *&\"\"\"F&*&,&%\"xGF&F&!\"\"F&),&F)F&F&F&\"\"#F&F*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 311 9 "Solution." }{TEXT -1 0 "" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "p2 := convert(p1, parfrac, x );" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p2G,(*&\"\"\"F',&%\"xGF'F'!\" \"F*#F'\"\"%*&#F'\"\"#F'*&F'F'*$),&F)F'F'F'F/F'F*F'F**&#F'F,F'*&F'F'F3 F*F'F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "p3 := Int(1/(4*(x -1)), x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p3G-%$IntG6$*&\"\"\"F) ,&%\"xG\"\"%F,!\"\"F-F+" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 " p4 := changevar(u=x-1, p3, u);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p 4G-%$IntG6$,$*&\"\"\"F*%\"uG!\"\"#F*\"\"%F+" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "p5 := simplify(p4);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p5G,$-%$IntG6$*&\"\"\"F*%\"uG!\"\"F+#F*\"\"%" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "p6 := value(p5);" }}{PARA 11 "" 1 " " {XPPMATH 20 "6#>%#p6G,$-%#lnG6#%\"uG#\"\"\"\"\"%" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "p7 := subs(u=x-1, p6);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p7G,$-%#lnG6#,&%\"xG\"\"\"F+!\"\"#F+\"\"%" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 93 "Since the next two partial fractio ns involve the same substitution, we will do them together." }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "p8 := op(2, p2) + op(3, p2); " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p8G,&*&\"\"\"F'*$),&%\"xGF'F'F' \"\"#F'!\"\"#F-F,*&#F'\"\"%F'*&F'F'F*F-F'F-" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 17 "p9 := Int(p8, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p9G-%$IntG6$,&*&\"\"\"F**$),&%\"xGF*F*F*\"\"#F*!\"\"#F0F/*&#F*\" \"%F**&F*F*F-F0F*F0F." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "p1 0 := changevar(u=x+1, p9, u);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$p1 0G-%$IntG6$,&*&\"\"\"F**$)%\"uG\"\"#F*!\"\"#F/F.*&#F*\"\"%F**&F*F*F-F/ F*F/F-" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "p11 := value(p10) ;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$p11G,&*&\"\"\"F'%\"uG!\"\"#F' \"\"#*&#F'\"\"%F'-%#lnG6#F(F'F)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "p12 := subs(u=x+1, p11);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>% $p12G,&*&\"\"\"F',&%\"xGF'F'F'!\"\"#F'\"\"#*&#F'\"\"%F'-%#lnG6#F(F'F* " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "p13 := p7 + p12;" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%$p13G,(-%#lnG6#,&%\"xG\"\"\"F+!\"\"# F+\"\"%*&#F+\"\"#F+,&F*F+F+F+F,F+*&#F+F.F+-F'6#F2F+F," }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "Int(p1, x) = p13 + C;" }}{PARA 11 " " 1 "" {XPPMATH 20 "6#/-%$IntG6$*&\"\"\"F(*&,&%\"xGF(F(!\"\"F(),&F+F(F (F(\"\"#F(F,F+,*-%#lnG6#F*#F(\"\"%*&#F(F/F(F.F,F(*&#F(F5F(-F26#F.F(F,% \"CGF(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "q1 := (3*x + 4)/(x^2 + x + 1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q1G*&,&%\"xG\"\"$\"\"%\"\"\"F*,(*$)F'\"\" #F*F*F'F*F*F*!\"\"" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 312 9 "Solution." }{TEXT -1 176 " Since the denominator is irreducibl e (as will become apparent when we complete the square), this expressi on is already in partial-fraction form. We proceed as in Question 4. " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 17 "den := denom(q1);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%$denG,(*$)%\"xG\"\"#\"\"\"F*F(F*F*F* " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "d := diff(den, x);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"dG,&%\"xG\"\"#\"\"\"F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "q := quo(numer(q1), d, x);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"qG#\"\"$\"\"#" }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 26 "r := rem(numer(q1), d, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"rG#\"\"&\"\"#" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "q2 := q*d/den;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%# q2G,$*&,&%\"xG\"\"#\"\"\"F*F*,(*$)F(F)F*F*F(F*F*F*!\"\"#\"\"$F)" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "q3 := r/den;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q3G,$*&\"\"\"F',(*$)%\"xG\"\"#F'F'F+F'F'F'!\"\" #\"\"&F," }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 15 "The expression " } {XPPEDIT 18 0 "q1;" "6#%#q1G" }{TEXT -1 143 " has been split into expr essions that fall into case 1 and case 2, so we can proceed to find an ti-derivatives for each of them. We start with " }{XPPEDIT 18 0 "q2; " "6#%#q2G" }{TEXT -1 1 "." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 17 "q4 := Int(q2, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q4G-%$IntG 6$,$*&,&%\"xG\"\"#\"\"\"F-F-,(*$)F+F,F-F-F+F-F-F-!\"\"#\"\"$F,F+" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 40 "q5 := changevar(u = x^2 + x \+ + 1, q4, u);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q5G-%$IntG6$,$*&\" \"\"F*%\"uG!\"\"#\"\"$\"\"#F+" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "q6 := value(q5);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q6G,$-%#l nG6#%\"uG#\"\"$\"\"#" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 32 "q7 \+ := subs(u = x^2 + x + 1, q6);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q7 G,$-%#lnG6#,(*$)%\"xG\"\"#\"\"\"F.F,F.F.F.#\"\"$F-" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 8 "Now for " }{XPPEDIT 18 0 "q3;" "6#%#q3G" }{TEXT -1 1 "." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 17 "q8 := Int(q3, x) ;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q8G-%$IntG6$,$*&\"\"\"F*,(*$)% \"xG\"\"#F*F*F.F*F*F*!\"\"#\"\"&F/F." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "den1 := completesquare(den);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%den1G,&*$),&%\"xG\"\"\"#F*\"\"#F*F,F*F*#\"\"$\"\"%F* " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "q9 := subs(den=den1, q8 );" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#q9G-%$IntG6$,$*&\"\"\"F*,&*$) ,&%\"xGF*#F*\"\"#F*F1F*F*#\"\"$\"\"%F*!\"\"#\"\"&F1F/" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 52 "q10 := changevar(x + 1/2 = sqrt(3/4 )*tan(u), q9, u);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$q10G-%$IntG6$, $*&,&*$-%%sqrtG6#\"\"$\"\"\"#F0\"\"#*(F1F0F,F0)-%$tanG6#%\"uGF2F0F0F0, &*$F4F0#F/\"\"%F;F0!\"\"#\"\"&F2F8" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "q11 := simplify(q10);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$q11G,$*&-%%sqrtG6#\"\"$\"\"\"-%$IntG6$F+%\"uGF+#\"\"&F*" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "q12 := value(q11);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$q12G,$*&-%%sqrtG6#\"\"$\"\"\"%\"uGF+#\"\" &F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 50 "q13 := subs(u = arct an((x + 1/2)/sqrt(3/4)), q12);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$q 13G,$*&-%%sqrtG6#\"\"$\"\"\"-%'arctanG6#,$*&,&%\"xGF+#F+\"\"#F+F+F'F+# F4F*F+#\"\"&F*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 34 "Now we put the \+ two parts together." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "q14 \+ := q7 + q13;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$q14G,&-%#lnG6#,(*$) %\"xG\"\"#\"\"\"F.F,F.F.F.#\"\"$F-*(#\"\"&F0F.-%%sqrtG6#F0F.-%'arctanG 6#,$*&,&F,F.#F.F-F.F.F4F.#F-F0F.F." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "Int(q1, x) = q14 + C;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%$IntG6$*&,&%\"xG\"\"$\"\"%\"\"\"F,,(*$)F)\"\"#F,F,F)F,F,F,!\" \"F),(-%#lnG6#F-#F*F0*(#\"\"&F*F,-%%sqrtG6#F*F,-%'arctanG6#,$*&,&F)F,# F,F0F,F,F:F,#F0F*F,F,%\"CGF," }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 44 "T his was a long calculation, so let's check:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "check := diff(q14, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&checkG,&*&,&%\"xG\"\"#\"\"\"F*F*,(*$)F(F)F*F*F(F*F*F *!\"\"#\"\"$F)*&#\"#5F0F*,&F*F**&#\"\"%F0F*),&F(F*#F*F)F*F)F*F*F.F*" } }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "simplify(check);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*&,&%\"xG\"\"$\"\"%\"\"\"F(,(*$)F%\"\"#F(F(F %F(F(F(!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "r1 := 1/(x^3 - 1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#r1G*&\"\"\"F&,&*$)%\"xG\"\"$F&F&F&!\"\"F," }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 313 9 "Solution." }{TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "r2 := convert(r1, parfrac, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#r2G,&*&\"\"\"F',&% \"xGF'F'!\"\"F*#F'\"\"$*&#F'F,F'*&,&F)F'\"\"#F'F',(*$)F)F1F'F'F)F'F'F' F*F'F*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 57 "Now anti-differentiate \+ the partial fractions, one by one." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "r3 := op(1, r2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#> %#r3G,$*&\"\"\"F',&%\"xGF'F'!\"\"F*#F'\"\"$" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 17 "r4 := Int(r3, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#r4G-%$IntG6$,$*&\"\"\"F*,&%\"xGF*F*!\"\"F-#F*\"\"$F," }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 32 "r5 := changevar(u = x-1, r4, u);" } }{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#r5G-%$IntG6$,$*&\"\"\"F*%\"uG!\"\" #F*\"\"$F+" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "r6 := value(r 5);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#r6G,$-%#lnG6#%\"uG#\"\"\"\" \"$" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "r7 := subs(u = x-1, \+ r6);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#r7G,$-%#lnG6#,&%\"xG\"\"\"F +!\"\"#F+\"\"$" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 127 "The first part ial fraction is done, so we move to the second. This must first be br oken into case 1 and case 2 fractions (" }{XPPEDIT 18 0 "r9;" "6#% #r9G" }{TEXT -1 5 " and " }{XPPEDIT 18 0 "r10;" "6#%$r10G" }{TEXT -1 8 " below)." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "r8 := op(2, \+ r2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#r8G,$*&,&%\"xG\"\"\"\"\"#F) F),(*$)F(F*F)F)F(F)F)F)!\"\"#F.\"\"$" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 17 "den := denom(r8);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6# >%$denG,(*$)%\"xG\"\"#\"\"\"\"\"$*&F+F*F(F*F*F+F*" }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 18 "d := diff(den, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"dG,&%\"xG\"\"'\"\"$\"\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "q := quo(numer(r8), d, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"qG#!\"\"\"\"'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "r := rem(numer(r8), d, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"rG#!\"$\"\"#" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "r9 := q*d/den;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#r9G,$*&,& %\"xG\"\"'\"\"$\"\"\"F+,(*$)F(\"\"#F+F**&F*F+F(F+F+F*F+!\"\"#F1F)" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "r10 := r/den;" }}{PARA 11 " " 1 "" {XPPMATH 20 "6#>%$r10G,$*&\"\"\"F',(*$)%\"xG\"\"#F'\"\"$*&F-F'F +F'F'F-F'!\"\"#!\"$F," }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 19 "Anti-dif ferentiate " }{XPPEDIT 18 0 "r9;" "6#%#r9G" }{TEXT -1 1 ":" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "r11 := Int(r9, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$r11G-%$IntG6$,$*&,&%\"xG\"\"'\"\"$\"\"\"F.,(*$) F+\"\"#F.F-*&F-F.F+F.F.F-F.!\"\"#F4F,F+" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 46 "r12 := changevar(u = 3*x^2 + 3*x + 3, r11, u);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%$r12G-%$IntG6$,$*&\"\"\"F*%\"uG!\"\" #F,\"\"'F+" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "r13 := value( r12);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$r13G,$-%#lnG6#%\"uG#!\"\" \"\"'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 38 "r14 := subs(u = 3* x^2 + 3*x + 3, r13);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$r14G,$-%#ln G6#,(*$)%\"xG\"\"#\"\"\"\"\"$*&F/F.F,F.F.F/F.#!\"\"\"\"'" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 19 "Anti-differentiate " }{XPPEDIT 18 0 "r10; " "6#%$r10G" }{TEXT -1 1 ":" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "r15 := Int(r10, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$r15G-%$I ntG6$,$*&\"\"\"F*,(*$)%\"xG\"\"#F*\"\"$*&F0F*F.F*F*F0F*!\"\"#!\"$F/F. " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "den1 := completesquare( den);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%den1G,&*$),&%\"xG\"\"\"#F* \"\"#F*F,F*\"\"$#\"\"*\"\"%F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "r16 := subs(den = den1, r15);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6 #>%$r16G-%$IntG6$,$*&\"\"\"F*,&*$),&%\"xGF*#F*\"\"#F*F1F*\"\"$#\"\"*\" \"%F*!\"\"#!\"$F1F/" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 53 "r17 \+ := changevar(x + 1/2 = sqrt(3/4)*tan(u), r16, u);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$r17G-%$IntG6$,$*&,&*$-%%sqrtG6#\"\"$\"\"\"#F0\"\"#*( F1F0F,F0)-%$tanG6#%\"uGF2F0F0F0,&*$F4F0#\"\"*\"\"%F;F0!\"\"#!\"$F2F8" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "r18 := simplify(r17);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%$r18G,$*&-%%sqrtG6#\"\"$\"\"\"-%$Int G6$F+%\"uGF+#!\"\"F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "r19 := value(r18);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$r19G,$*&-%%sqrtG 6#\"\"$\"\"\"%\"uGF+#!\"\"F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 50 "r20 := subs(u = arctan((x + 1/2)/sqrt(3/4)), r19);" }}{PARA 11 " " 1 "" {XPPMATH 20 "6#>%$r20G,$*&-%%sqrtG6#\"\"$\"\"\"-%'arctanG6#,$*& ,&%\"xGF+#F+\"\"#F+F+F'F+#F4F*F+#!\"\"F*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 24 "Put everything together:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "r21 := r7 + r14 + r20;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$r21G,(-%#lnG6#,&%\"xG\"\"\"F+!\"\"#F+\"\"$*&#F+\"\"'F+-F'6#,( *$)F*\"\"#F+F.*&F.F+F*F+F+F.F+F+F,*&#F+F.F+*&-%%sqrtG6#F.F+-%'arctanG6 #,$*&,&F*F+#F+F7F+F+F " 0 "" {MPLTEXT 1 0 22 "Int(r1, x) := r21 + C;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>-%$IntG6$*&\"\"\"F(,&*$)%\"xG\"\"$F(F(F(!\"\"F.F,,*-%#lnG6#,&F, F(F(F.#F(F-*&#F(\"\"'F(-F16#,(*$)F,\"\"#F(F-*&F-F(F,F(F(F-F(F(F.*&#F(F -F(*&-%%sqrtG6#F-F(-%'arctanG6#,$*&,&F,F(#F(F=F(F(FBF(#F=F-F(F(F.%\"CG F(" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 6 "Check:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "check := diff(r21, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&checkG,(*&\"\"\"F',&%\"xGF'F'!\"\"F*#F'\"\"$*&#F'\" \"'F'*&,&F)F/F,F'F',(*$)F)\"\"#F'F,*&F,F'F)F'F'F,F'F*F'F**&#F5F,F'*&F' F',&F'F'*&#\"\"%F,F'),&F)F'#F'F5F'F5F'F'F*F'F*" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 16 "simplify(check);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*&\"\"\"F$*&,&%\"xGF$F$!\"\"F$,(*$)F'\"\"#F$F$F'F$F$F$F$F(" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 90 "This is the original rational func tion, as you can see by multiplying out the denominator." }}}}}}{MARK "0 1 0" 26 }{VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 }{PAGENUMBERS 0 1 2 33 1 1 }