{VERSION 4 0 "IBM INTEL NT" "4.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 }{CSTYLE "2D Comment" 2 18 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 } {CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 256 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 257 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 258 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 259 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Heading 1 " -1 3 1 {CSTYLE "" -1 -1 "Times" 1 18 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 8 4 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Output" -1 11 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 3 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Plot" -1 13 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Title" -1 18 1 {CSTYLE "" -1 -1 "Times" 1 18 0 0 0 1 2 1 1 2 2 2 1 1 1 1 }3 1 0 0 12 12 1 0 1 0 2 2 19 1 }{PSTYLE "Heading 2" -1 256 1 {CSTYLE "" -1 -1 "Times" 1 14 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }3 1 0 0 8 2 1 0 1 0 2 2 0 1 }} {SECT 0 {EXCHG {PARA 18 "" 0 "" {TEXT -1 11 "Calculus II" }}{PARA 256 "" 0 "" {TEXT -1 69 "Lesson 4: Applications of Integration 2: Average Value of a Function" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 39 "Let's exa mine why we should define the " }{TEXT 256 13 "average value" }{TEXT -1 15 " of a function " }{XPPEDIT 18 0 "f;" "6#%\"fG" }{TEXT -1 19 " o ver the interval " }{XPPEDIT 18 0 "[a, b];" "6#7$%\"aG%\"bG" }{TEXT -1 8 " to be " }{XPPEDIT 18 0 "f_a = int(f(x),x = a .. b)/(b-a);" "6# /%$f_aG*&-%$intG6$-%\"fG6#%\"xG/F,;%\"aG%\"bG\"\"\",&F0F1F/!\"\"F3" } {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 44 "We could start by partitioning the interval " }{XPPEDIT 18 0 "[ a, b];" "6#7$%\"aG%\"bG" }{TEXT -1 6 " into " }{XPPEDIT 18 0 "n;" "6#% \"nG" }{TEXT -1 29 " equal sub-intervals. Since " }{XPPEDIT 18 0 "f; " "6#%\"fG" }{TEXT -1 68 " should be approximately constant on each su b-interval (at least if " }{XPPEDIT 18 0 "n;" "6#%\"nG" }{TEXT -1 54 " is large), we could approximate the average value of " }{XPPEDIT 18 0 "f;" "6#%\"fG" }{TEXT -1 48 " by computing the average value of the \+ function " }{XPPEDIT 18 0 "g;" "6#%\"gG" }{TEXT -1 21 " we get by repl acing " }{XPPEDIT 18 0 "f;" "6#%\"fG" }{TEXT -1 117 " on each subinter val by its value at the right-hand endpoint of the sub-interval. This is illustrated below, taking " }{XPPEDIT 18 0 "f;" "6#%\"fG" }{TEXT -1 20 " to be the function " }{XPPEDIT 18 0 "cos(x);" "6#-%$cosG6#%\"x G" }{TEXT -1 4 " on " }{XPPEDIT 18 0 "[0, Pi/2];" "6#7$\"\"!*&%#PiG\" \"\"\"\"#!\"\"" }{TEXT -1 52 ", with 6 sub-intervals. (The graph of t he function " }{XPPEDIT 18 0 "g;" "6#%\"gG" }{TEXT -1 88 " consists of the 6 line segments that make up the tops of the rectangles in the fi gure.)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "student[rightbox] (cos(x), x=0..Pi/2,6);" }}{PARA 13 "" 1 "" {GLPLOT2D 400 300 300 {PLOTDATA 2 "6+-%'CURVESG6&7S7$$\"\"!F)$\"\"\"F)7$$\"3NGK5j*))QU$!#>$ \"3QEIyk!RT***!#=7$$\"3DXXYUk*HS'F/$\"31j$H4#y]z**F27$$\"3=N68yVJ`(*F/ $\"3iOWDATZ_**F27$$\"3%3h%eRSe78F2$\"3a=nIl(zR\"**F27$$\"3k+,hQPB[;F2$ \"3!H&p97NZk)*F27$$\"3'H#*ed(RUf>F2$\"3hF6B)GY'3)*F27$$\"3kHX[TMk\"G#F 2$\"3G0*pfUK3u*F27$$\"3Saq%H F2$\"3a#Hg3Tx)o&*F27$$\"3)pq'4OKt)G$F2$\"3!\\CyiMoSY*F27$$\"3#f/N#RTo* e$F2$\"3;o4Josfi$*F27$$\"3Ut79wN[GRF2$\"3U5G)z'RAQ#*F27$$\"3/)F2 $\"31AKL\"Gew#oF27$$\"3gv)\\AI@S\\)F2$\"3NI5]d>K/mF27$$\"3vn()=V,i>))F 2$\"3Wp$f4=xjN'F27$$\"3'G:[dg&*f:*F2$\"3#Gr\"zlF:$4'F27$$\"3sSt6rL2&[* F2$\"3+kbUhf'*GeF27$$\"3mka(*HIZ.)*F2$\"3S\\$>&*yStc&F27$$\"3Em\"[l:+d ,\"!#<$\"3syV,H.Dq_F27$$\"3c!3XyEmu/\"Fau$\"35cj1lEn(*\\F27$$\"3sJ_*>P $Q\"3\"Fau$\"3DF8Py$y5q%F27$$\"3.M\"G%4t676Fau$\"3Cg[y,0kFWF27$$\"3co* Q4iU([*Q$QF27$$\"3 Hk&>q'*z.@\"Fau$\"3G8u?D(Qm_$F27$$\"34Q$[)>&*oU7Fau$\"38OldzS^AKF27$$ \"3I^lOFY^w7Fau$\"3gN^_O]_+HF27$$\"3`!)f6EA448Fau$\"3]EKPO+F(e#F27$$\" 3=;T7EvSU8Fau$\"3s9%3md%3kAF27$$\"3a_wiepWv8Fau$\"3G+Nc*p#4T>F27$$\"3U $obdw1eS\"Fau$\"3v3+*zL?Ck\"F27$$\"3s$)o#3`-1W\"Fau$\"3#R-7)3IE)H\"F27 $$\"3-#*)4zFCZ5!\"*Ff^l7$Fi^lF(Ff\\l-Fj[l6$7&F\\_l7$Fi^l$ \"+^/>)e#Fa\\l7$$\"+Rp**38F[_lFa_l7$Fd_lF(Ff\\l-Fj[l6$7&Ff_lFf_l7$$\"+ Fjzq:F[_lF(Fj_lFf\\l-%+AXESLABELSG6$Q\"x6\"Q!6\"-%%VIEWG6$;F(F[`l%(DEF AULTG" 1 2 0 1 10 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 0 "Curve \+ 1" "Curve 2" "Curve 3" "Curve 4" "Curve 5" "Curve 6" "Curve 7" }}}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 21 "The average value of " }{XPPEDIT 18 0 "g;" "6#%\"gG" }{TEXT -1 32 " should just be the mean of the " } {XPPEDIT 18 0 "n;" "6#%\"nG" }{TEXT -1 17 " values taken by " } {XPPEDIT 18 0 "g;" "6#%\"gG" }{TEXT -1 4 ". (" }{XPPEDIT 18 0 "n = 6; " "6#/%\"nG\"\"'" }{TEXT -1 37 " in the example above.) This mean is " }{XPPEDIT 18 0 "sum(f(a+k*(b-a)/n),k = 1 .. n)/n;" "6#*&-%$sumG6$-% \"fG6#,&%\"aG\"\"\"*(%\"kGF,,&%\"bGF,F+!\"\"F,%\"nGF1F,/F.;F,F2F,F2F1 " }{TEXT -1 3 " = " }{XPPEDIT 18 0 "1/(b-a);" "6#*&\"\"\"F$,&%\"bGF$% \"aG!\"\"F(" }{XPPEDIT 18 0 "sum(f(a+k*(b-a)/n),k = 1 .. n);" "6#-%$su mG6$-%\"fG6#,&%\"aG\"\"\"*(%\"kGF+,&%\"bGF+F*!\"\"F+%\"nGF0F+/F-;F+F1 " }{XPPEDIT 18 0 "(b-a)/n;" "6#*&,&%\"bG\"\"\"%\"aG!\"\"F&%\"nGF(" } {TEXT -1 35 " . Apart from the first factor of " }{XPPEDIT 18 0 "1/(b -a);" "6#*&\"\"\"F$,&%\"bGF$%\"aG!\"\"F(" }{TEXT -1 41 ", we recognise this as a Riemann sum for " }{XPPEDIT 18 0 "f;" "6#%\"fG" }{TEXT -1 5 "; as " }{XPPEDIT 18 0 "proc (n) options operator, arrow; infinity e nd;" "6#R6#%\"nG7\"6$%)operatorG%&arrowG6\"%)infinityGF*F*F*" }{TEXT -1 49 ", our approximation should therefore converge to " }{XPPEDIT 18 0 "1/(b-a);" "6#*&\"\"\"F$,&%\"bGF$%\"aG!\"\"F(" }{XPPEDIT 18 0 "in t(f(x),x = a .. b);" "6#-%$intG6$-%\"fG6#%\"xG/F);%\"aG%\"bG" }{TEXT -1 65 ", so it seems reasonable to define the (exact) average value o f " }{XPPEDIT 18 0 "f;" "6#%\"fG" }{TEXT -1 28 " to be this last expre ssion." }}}{SECT 0 {PARA 3 "" 0 "" {TEXT -1 7 "Example" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 77 "If a freely falling body starts from rest , then its displacement is given by " }{XPPEDIT 18 0 "s = gt^2/2;" "6# /%\"sG*&%#gtG\"\"#F'!\"\"" }{TEXT -1 14 ". Fix a time " }{XPPEDIT 18 0 "T;" "6#%\"TG" }{TEXT -1 34 ", and let the velocity after time " } {XPPEDIT 18 0 "T;" "6#%\"TG" }{TEXT -1 6 " be V." }}{PARA 0 "" 0 "" {TEXT -1 53 "(a). Show that the average velocity, with respect to " } {XPPEDIT 18 0 "t;" "6#%\"tG" }{TEXT -1 20 ", over the interval " } {XPPEDIT 18 0 "[0, T];" "6#7$\"\"!%\"TG" }{TEXT -1 5 ", is " } {XPPEDIT 18 0 "V/2;" "6#*&%\"VG\"\"\"\"\"#!\"\"" }{TEXT -1 1 "." }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 257 9 "Solution." }{TEXT -1 63 " First, notice that we are asked to f ind the average value of " }{TEXT 258 8 "velocity" }{TEXT -1 2 ", " } {XPPEDIT 18 0 "v = gt;" "6#/%\"vG%#gtG" }{TEXT -1 9 ". Since " } {XPPEDIT 18 0 "V;" "6#%\"VG" }{TEXT -1 25 " is the velocity at time " }{XPPEDIT 18 0 "T;" "6#%\"TG" }{TEXT -1 1 "," }}{PARA 0 "" 0 "" {XPPEDIT 18 0 "V = gT;" "6#/%\"VG%#gTG" }{TEXT -1 65 ". The average v elocity, with respect to time, over the interval " }{XPPEDIT 18 0 "[0, T];" "6#7$\"\"!%\"TG" }{TEXT -1 4 ", is" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "(1/(T - 0))*int(g*t, t=0..T);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$*& %\"TG\"\"\"%\"gGF&#F&\"\"#" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 19 "and this is indeed " }{XPPEDIT 18 0 "V/2;" "6#*&%\"VG\"\"\"\"\"#!\"\"" } {TEXT -1 3 ". " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 12 "(b). Define " }{XPPEDIT 18 0 "S = g*T^2/2;" "6#/%\"SG*(%\"gG\"\"\"*$%\"TG\"\"#F'F*! \"\"" }{TEXT -1 27 ", the displacement at time " }{XPPEDIT 18 0 "T;" " 6#%\"TG" }{TEXT -1 53 ". Write the velocity as a function of displace ment, " }{XPPEDIT 18 0 "s;" "6#%\"sG" }{TEXT -1 75 ", and show that th e average velocity, with respect to s, over the interval " }{XPPEDIT 18 0 "[0, S];" "6#7$\"\"!%\"SG" }{TEXT -1 5 ", is " }{XPPEDIT 18 0 "2* V/3;" "6#*(\"\"#\"\"\"%\"VGF%\"\"$!\"\"" }{TEXT -1 1 "." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 259 9 "Solut ion." }{TEXT -1 59 " In part (a), all quantities were written as func tions of " }{XPPEDIT 18 0 "t;" "6#%\"tG" }{TEXT -1 47 ". Now we have \+ to write everything in terms of " }{XPPEDIT 18 0 "s;" "6#%\"sG" } {TEXT -1 23 ", through the relation " }{XPPEDIT 18 0 "s = gt^2/2;" "6# /%\"sG*&%#gtG\"\"#F'!\"\"" }{TEXT -1 15 ". Solving for " }{XPPEDIT 18 0 "t;" "6#%\"tG" }{TEXT -1 9 ", we get " }{XPPEDIT 18 0 "t = sqrt(2 *s/g);" "6#/%\"tG-%%sqrtG6#*(\"\"#\"\"\"%\"sGF*%\"gG!\"\"" }{TEXT -1 19 ", so (for example) " }{XPPEDIT 18 0 "v = gt;" "6#/%\"vG%#gtG" } {TEXT -1 3 " = " }{XPPEDIT 18 0 "sqrt(2*g*s);" "6#-%%sqrtG6#*(\"\"#\" \"\"%\"gGF(%\"sGF(" }{TEXT -1 36 ". Now let's compute the average of \+ " }{XPPEDIT 18 0 "v;" "6#%\"vG" }{TEXT -1 30 ", considered as a functi on of " }{XPPEDIT 18 0 "s;" "6#%\"sG" }{TEXT -1 20 ", over the interva l " }{XPPEDIT 18 0 "[0, S];" "6#7$\"\"!%\"SG" }{TEXT -1 1 ":" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "S := g*T^2/2;" }}{PARA 11 " " 1 "" {XPPMATH 20 "6#>%\"SG,$*&%\"gG\"\"\")%\"TG\"\"#F(#F(F+" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 42 "w := (1/(S - 0))*int(sqrt(2* g*s), s=0..S);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"wG,$*$-%%sqrtG6# *&)%\"gG\"\"#\"\"\")%\"TGF-F.F.#F-\"\"$" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "assume(g>0); assume(T>0);" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 12 "simplify(w);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$* &%#g|irG\"\"\"%#T|irGF&#\"\"#\"\"$" }}}}}{MARK "2 1 0" 0 }{VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 }{PAGENUMBERS 0 1 2 33 1 1 }