{VERSION 5 0 "IBM INTEL NT" "5.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 }{CSTYLE "2D Comment" 2 18 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 256 "" 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 }{CSTYLE "" -1 257 "" 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 }{CSTYLE "TXT CMD" -1 258 "MS S ans Serif" 0 0 128 0 0 1 0 0 0 0 0 0 0 0 0 1 }{CSTYLE "Bookmark" 20 259 "" 0 0 0 128 0 1 1 0 0 0 0 1 0 0 0 1 }{CSTYLE "word" -1 260 "" 0 0 128 0 0 1 0 0 0 0 0 0 0 0 0 1 }{CSTYLE "bookmark" -1 261 "" 0 0 0 128 0 1 0 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 262 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 263 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Heading 1" -1 3 1 {CSTYLE "" -1 -1 "Times" 1 18 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 6 6 1 0 1 0 2 2 0 1 }{PSTYLE "Heading 2" -1 4 1 {CSTYLE "" -1 -1 "Times " 1 14 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 4 4 1 0 1 0 2 2 0 1 } {PSTYLE "Bullet Item" -1 15 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 3 3 1 0 1 0 2 2 15 2 }{PSTYLE "Title" -1 18 1 {CSTYLE "" -1 -1 "Times" 1 18 0 0 0 1 2 1 1 2 2 2 1 1 1 1 }3 1 0 0 12 12 1 0 1 0 2 2 19 1 }{PSTYLE "newpage" -1 256 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 1 2 0 1 }{PSTYLE "vfill" -1 257 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "R3 Font 0" -1 258 1 {CSTYLE "" -1 -1 "Helvetica" 1 12 0 0 0 1 2 1 2 2 2 2 1 1 1 1 } 1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "R3 Font 2" -1 259 1 {CSTYLE "" -1 -1 "Courier" 1 12 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "R3 Font 3" -1 260 1 {CSTYLE "" -1 -1 "Lucida" 1 12 0 0 0 1 1 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "R3 \+ Font 4" -1 261 1 {CSTYLE "" -1 -1 "Lucida" 1 12 0 0 0 1 1 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "R3 Font 5" -1 262 1 {CSTYLE "" -1 -1 "Lucida" 1 12 0 0 0 1 1 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "R3 Font 6" -1 263 1 {CSTYLE "" -1 -1 "Luci da" 1 12 0 0 0 1 1 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 } {PSTYLE "R3 Font 7" -1 264 1 {CSTYLE "" -1 -1 "Charter" 1 12 0 0 0 1 1 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "R3 Font 8" -1 265 1 {CSTYLE "" -1 -1 "Charter" 1 12 0 0 0 1 1 2 2 2 2 2 1 1 1 1 } 1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "R3 Font 9" -1 266 1 {CSTYLE "" -1 -1 "Charter" 1 12 0 0 0 1 1 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "R3 Font 10" -1 267 1 {CSTYLE "" -1 -1 "Charter" 1 12 0 0 0 1 1 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE " R3 Font 11" -1 268 1 {CSTYLE "" -1 -1 "Charter" 1 12 0 0 0 1 1 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "R3 Font 12" -1 269 1 {CSTYLE "" -1 -1 "Lucida" 1 12 0 0 0 1 1 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "R3 Font 13" -1 270 1 {CSTYLE "" -1 -1 "L ucida" 1 12 0 0 0 1 1 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 } {PSTYLE "R3 Font 14" -1 271 1 {CSTYLE "" -1 -1 "Lucida" 1 12 0 0 0 1 1 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "R3 Font 15 " -1 272 1 {CSTYLE "" -1 -1 "Lucida" 1 12 0 0 0 1 1 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "R3 Font 16" -1 273 1 {CSTYLE " " -1 -1 "Courier" 1 12 0 0 0 1 1 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "R3 Font 17" -1 274 1 {CSTYLE "" -1 -1 "Courier" 1 12 0 0 0 1 1 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE " R3 Font 18" -1 275 1 {CSTYLE "" -1 -1 "Courier" 1 12 0 0 0 1 1 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "R3 Font 19" -1 276 1 {CSTYLE "" -1 -1 "Courier" 1 12 0 0 0 1 1 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "R3 Font 20" -1 277 1 {CSTYLE "" -1 -1 "Courier" 1 12 0 0 0 1 1 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "R3 Font 21" -1 278 1 {CSTYLE "" -1 -1 "Lucidatypewriter" 1 12 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 } {PSTYLE "R3 Font 22" -1 279 1 {CSTYLE "" -1 -1 "Lucidatypewriter" 1 12 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE " R3 Font 23" -1 280 1 {CSTYLE "" -1 -1 "Lucidatypewriter" 1 12 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "R3 Font 24 " -1 281 1 {CSTYLE "" -1 -1 "Lucidatypewriter" 1 12 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "R3 Font 25" -1 282 1 {CSTYLE "" -1 -1 "Lucidatypewriter" 1 12 0 0 0 1 2 1 2 2 2 2 1 1 1 1 } 1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "R3 Font 26" -1 283 1 {CSTYLE "" -1 -1 "Lucidatypewriter" 1 12 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "R3 Font 27" -1 284 1 {CSTYLE "" -1 -1 "Luc idatypewriter" 1 12 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "R3 Font 28" -1 285 1 {CSTYLE "" -1 -1 "Lucidatypewri ter" 1 12 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 } {PSTYLE "Definition" -1 286 1 {CSTYLE "" -1 -1 "Times" 1 12 0 64 128 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Theorem" -1 287 1 {CSTYLE "" -1 -1 "Times" 1 12 219 36 36 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Problem" -1 288 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 255 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 4 4 3 4 1 0 2 2 0 1 }{PSTYLE "dblnorm" -1 289 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 2 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "code" -1 290 1 {CSTYLE "" -1 -1 "Comic Sans MS" 1 10 128 0 128 1 2 1 2 2 2 1 3 1 3 1 }1 1 0 0 0 0 3 12 1 0 2 2 0 1 }{PSTYLE "asis" -1 291 1 {CSTYLE "" -1 -1 "Arial Narrow" 1 12 128 64 0 1 2 2 2 2 2 1 3 1 1 1 } 1 1 0 0 0 0 3 6 1 0 2 2 0 1 }{PSTYLE "subproblem" -1 292 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "diagram" -1 293 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "dblnorm.m ws" -1 294 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 2 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Item" -1 295 1 {CSTYLE "" -1 -1 "Lucida Sans" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 6 0 3 0 1 0 2 2 0 1 }{PSTYLE "Heading 2" -1 296 1 {CSTYLE "" -1 -1 "Times" 1 14 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }3 1 0 0 8 2 1 0 1 0 2 2 0 1 }} {SECT 0 {EXCHG {PARA 18 "" 0 "" {TEXT -1 11 "Calculus II" }}{PARA 296 "" 0 "" {TEXT -1 68 "Lesson 7: Applications of Integration 5: Moments and Center of Mass" }}}{SECT 0 {PARA 3 "" 0 "" {TEXT -1 26 "Moments a nd Center of Mass" }}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 25 "Center of ma ss of a Wire " }}{PARA 4 "" 0 "" {TEXT -1 0 "" }}{EXCHG {PARA 0 "" 0 " center of mass" {TEXT -1 26 "Suppose we have a wire " }{XPPEDIT 18 0 "l " "6#%\"lG" }{TEXT -1 31 " feet long whose density is " } {XPPEDIT 18 0 "rho(x)" "6#-%$rhoG6#%\"xG" }{TEXT -1 31 " pounds per f oot at the point " }{XPPEDIT 18 0 "x" "6#%\"xG" }{TEXT -1 95 " feet fr om the left hand end of the wire. What is the total mass of the wire \+ and where is its " }{TEXT 260 14 "center of mass" }{TEXT -1 70 ", i .e., the point cm about which the total moment of the wire is 0?" }}} {PARA 15 "" 0 "Riemann sum" {TEXT 256 4 "Mass" }{TEXT -1 43 " Chop th e wire into n small pieces each " }{XPPEDIT 18 0 "Delta*x[i]" "6#*&% &DeltaG\"\"\"&%\"xG6#%\"iGF%" }{TEXT -1 39 " feet long and pick an arb itrary point " }{XPPEDIT 18 0 "c[i]" "6#&%\"cG6#%\"iG" }{TEXT -1 74 " \+ in each piece. An approximation to the mass of the ith piece of wire \+ is " }{XPPEDIT 18 0 "rho(c[i])*Delta*x[i]" "6#*(-%$rhoG6#&%\"cG6#%\"iG \"\"\"%&DeltaGF+&%\"xG6#F*F+" }{TEXT -1 45 ", so an approximation to t he total mass is " }{XPPEDIT 18 0 "Sum(rho(c[i])*Delta*x[i],i=1..n) " "6#-%$SumG6$*(-%$rhoG6#&%\"cG6#%\"iG\"\"\"%&DeltaGF.&%\"xG6#F-F./F-; F.%\"nG" }{TEXT -1 32 " . This approximate mass is a " }{TEXT 260 11 "Riemann sum" }{TEXT -1 33 " approximating the integral " } {XPPEDIT 18 0 "Int(rho(x),x=0..l)" "6#-%$IntG6$-%$rhoG6#%\"xG/F);\"\"! %\"lG" }{TEXT -1 71 ", and so the mass of the wire is defined as the v alue of this integral." }}{PARA 15 "" 0 "approximate moment" {TEXT 257 14 "Center of mass" }{TEXT -1 29 ": Chopping as above, the " } {TEXT 260 18 "approximate moment" }{TEXT -1 53 " of the ith piece a bout the center of mass cm is " }{XPPEDIT 18 0 "(c[i]-cm)*rho(c[i])*D elta*x[i]" "6#**,&&%\"cG6#%\"iG\"\"\"%#cmG!\"\"F)-%$rhoG6#&F&6#F(F)%&D eltaGF)&%\"xG6#F(F)" }{TEXT -1 40 " and so the total approximate momen t is " }{XPPEDIT 18 0 "Sum((c[i]-cm)*rho(c[i])*Delta*x[i],i=1..n)" "6# -%$SumG6$**,&&%\"cG6#%\"iG\"\"\"%#cmG!\"\"F,-%$rhoG6#&F)6#F+F,%&DeltaG F,&%\"xG6#F+F,/F+;F,%\"nG" }{TEXT -1 64 ". This is seen to be a Riema nn sum approximating the integral " }{XPPEDIT 18 0 "Int((x-cm)*rho(x) ,x=0..l)" "6#-%$IntG6$*&,&%\"xG\"\"\"%#cmG!\"\"F)-%$rhoG6#F(F)/F(;\"\" !%\"lG" }{TEXT -1 127 ". But the center of mass is defined as the po int about which the total moment is zero so the integral satisfies the equation " }{XPPEDIT 18 0 "Int((x-cm)*rho(x),x=0..l)=0" "6#/-%$IntG6$ *&,&%\"xG\"\"\"%#cmG!\"\"F*-%$rhoG6#F)F*/F);\"\"!%\"lGF2" }{TEXT -1 101 ". Using properties of integrals, we can solve this equation for cm, to get the ratio of integrals " }{XPPEDIT 18 0 "cm=Int(x*rho(x), x=0..l)/Int(rho(x),x=0..l)" "6#/%#cmG*&-%$IntG6$*&%\"xG\"\"\"-%$rhoG6# F*F+/F*;\"\"!%\"lGF+-F'6$-F-6#F*/F*;F1F2!\"\"" }{TEXT -1 146 " . Not e the top integral represents the total moment of the wire about its l eft end (x=0) and the bottom integral is the total mass of the wire." }}{EXCHG {PARA 288 "" 0 "" {TEXT -1 143 "Exercise: Find the center o f mass of a wire 1 foot long whose density at a point x inches from the left end is 10 + x + sin(x) lbs/inch." }}}}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 40 " Center of mass of a solid of revolution" }}{PARA 4 "" 0 "" {TEXT -1 0 "" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 4 "If " } {XPPEDIT 18 0 "y *`=` *f(x) >= 0" "6#1\"\"!*(%\"yG\"\"\"%\"=GF'-%\"fG6 #%\"xGF'" }{TEXT -1 6 " for " }{XPPEDIT 18 0 "a <= x *`<=` b" "6#1%\" aG*(%\"xG\"\"\"%#<=GF'%\"bGF'" }{TEXT -1 20 ", then let S be the " } {TEXT 260 22 "solid of revolution " }{TEXT -1 179 " obtained by rota ting the region under the graph of f around the x axis. We know how to express the volume of S as an integral: Just integrate from a to b th e crossectional area " }{XPPEDIT 18 0 "Pi*f(x)^2" "6#*&%#PiG\"\"\"*$- %\"fG6#%\"xG\"\"#F%" }{TEXT -1 24 " of the solid S to get " } {XPPEDIT 18 0 "Volume = Int(Pi*f(x)^2,x=a..b);" "6#/%'VolumeG-%$IntG6$ *&%#PiG\"\"\"*$-%\"fG6#%\"xG\"\"#F*/F/;%\"aG%\"bG" }}}{EXCHG {PARA 0 " " 0 "center of mass" {TEXT -1 27 "Now how would we find the " }{TEXT 260 14 "center of mass" }{TEXT -1 203 " of the solid, assuming it's made of a homogeneous material? Well, it's clear that the center of \+ mass will be somewhere along the x-axis between a and b. Let CM be \+ the center of mass. Partition " }{XPPEDIT 18 0 "[a,b]" "6#7$%\"aG%\" bG" }{TEXT -1 21 " into n subintervals " }{XPPEDIT 18 0 "[x[i],x[i+1] \+ ]" "6#7$&%\"xG6#%\"iG&F%6#,&F'\"\"\"F+F+" }{TEXT -1 36 " and using pla nes perpendicular to " }{XPPEDIT 18 0 "[a,b]" "6#7$%\"aG%\"bG" } {TEXT -1 73 " approximate the solid S with the n disks where the ith o ne has volume " }{XPPEDIT 18 0 "Delta V[i] = Pi*f(x[i])^2*Delta x[i] " "6#/*&%&DeltaG\"\"\"&%\"VG6#%\"iGF&**%#PiGF&*$-%\"fG6#&%\"xG6#F*\"\" #F&F%F&&F26#F*F&" }}{PARA 0 "" 0 "" {TEXT -1 62 "Now the signed moment of the ith disk about the point CM is " }{XPPEDIT 18 0 "M[i] = (x-C M)* Delta V[i]" "6#/&%\"MG6#%\"iG*(,&%\"xG\"\"\"%#CMG!\"\"F+%&DeltaGF+ &%\"VG6#F'F+" }{TEXT -1 99 " and the sum of these moments will be app roximately 0, since CM is the center of mass. If we let " }{XPPEDIT 18 0 "Delta x[i]" "6#*&%&DeltaG\"\"\"&%\"xG6#%\"iGF%" }{TEXT -1 83 " g o to zero this approximate equation becomes an equation for the cent er of mass:" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 47 "CMequation := int(( x-CM)*Pi*f(x)^2,x=a..b) =0;" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 66 "Us eing properties of integrals, we can solve this equation for CM." }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 34 "sol := solve(CMequation,\{CM\} ) \+ ;" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 119 "Notice that the center of m ass of the solid of revolution is the same as the center of mass of a \+ wire whose density at " }{XPPEDIT 18 0 "x" "6#%\"xG" }{TEXT -1 34 " is the area of the cross-section." }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 126 "We can define a word cenmass which takes a function f, an inter val [a,b], and locates the center of the solid of revolution." }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 70 "cenmass := proc(f,a,b) \n int(x*f( x)^2,x=a..b)/int(f(x)^2,x=a..b) end:" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 92 "For example, the center of the solid obtained by rotating the \+ region R under the graph of " }{XPPEDIT 18 0 "y=cos(x)" "6#/%\"yG-%$c osG6#%\"xG" }{TEXT -1 21 " for x between 0 and " }{XPPEDIT 18 0 "pi/2 " "6#*&%#piG\"\"\"\"\"#!\"\"" }{TEXT -1 3 " is" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 20 "cenmass(cos,0,Pi/2);" }}}{EXCHG {PARA 0 "" 0 " " {TEXT -1 73 "Now we can define a word to draw the solid and locate t he center of mass." }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 374 "drawit := pr oc(f,a,b) \n local cm, solid;\n### WARNING: the definition of the type `symbol` has changed'; see help page for details\n cm := plots[point plot3d]([evalf(cenmass(f,a,b)),0,0],color=red,symbol=box,thickness=3): \n solid := plots[tubeplot]([x,0,0],x=a..b,radius=f(x),numpoints=20,t ubepoints=30, style=wireframe); \nplots[display]([cm,solid],scaling=co nstrained); end: " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 14 "Test this ou t." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 " drawit(cos+2,0,7);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "numFrames := 40;" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "b := 10;" }}}{EXCHG {PARA 0 " " 0 "" {TEXT -1 69 "We can animate the motion of the center of mass as the solid changes." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 89 "plots[display]( [seq(drawit(2+cos,0,(i/numFrames)* b), i=1..numFrames)],\ninsequence=true);" }}}{EXCHG {PARA 288 "" 0 "" {TEXT 262 9 "Exercise:" }{TEXT -1 63 " Find the center of mass of a h omogeneous hemispherical solid." }}{PARA 288 "" 0 "" {TEXT 263 9 "Exer cise:" }{TEXT -1 227 " A homogeneous solid is in the shape of a parab olic solid of revolution obtained by rotating the graph of y = x^2 , \+ x in [0,a] around the the y axis, for some positive number a. If the center of mass is at y= 10, what's a?" }}}}}}{MARK "0 0 0" 5 } {VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 }{PAGENUMBERS 0 1 2 33 1 1 }