

CHAPTER 3

National Income: Where it Comes From and Where it Goes

MACROECONOMICS SIXTH EDITION

N. GREGORY MANKIW

PowerPoint® Slides by Ron Cronovich

© 2008 Worth Publishers, all rights reserved

In this chapter, you will learn...

- what determines the economy's total output/income
- how the prices of the factors of production are determined
- how total income is distributed
- what determines the demand for goods and services
- how equilibrium in the goods market is achieved

Outline of model

A closed economy, market-clearing model

Supply side

- factor markets (supply, demand, price)
- determination of output/income

Demand side

determinants of C, I, and G

Equilibrium

- goods market
- loanable funds market

Factors of production

K = capital: tools, machines, and structures used in production

L = labor: the physical and mental efforts of workers

The production function

- denoted Y = F(K, L)
- shows how much output (Y) the economy can produce from
 K units of capital and L units of labor
- reflects the economy's level of technology
- exhibits constant returns to scale

Returns to scale: A review

Initially
$$Y_1 = F(K_1, L_1)$$

Scale all inputs by the same factor z:

$$K_2 = zK_1$$
 and $L_2 = zL_1$

(e.g., if z = 1.25, then all inputs are increased by 25%)

What happens to output, $Y_2 = F(K_2, L_2)$?

- If constant returns to scale, Y₂ = zY₁
- If increasing returns to scale, Y₂ > zY₁
- If decreasing returns to scale, Y₂ < zY₁

Example 1

$$F(K,L) = \sqrt{KL}$$

$$F(zK,zL) = \sqrt{(zK)(zL)}$$

$$= \sqrt{z^2KL}$$

$$= \sqrt{z^2}\sqrt{KL}$$

$$= z\sqrt{KL}$$

= zF(K,L)

constant returns to scale for any **z** > 0

Example 2

$$F(K,L) = \sqrt{K} + \sqrt{L}$$

$$F(ZK,ZL) = \sqrt{ZK} + \sqrt{ZL}$$

$$= \sqrt{Z}\sqrt{K} + \sqrt{Z}\sqrt{L}$$

$$= \sqrt{Z}\left(\sqrt{K} + \sqrt{L}\right)$$

 $=\sqrt{z}F(K,L)$

decreasing returns to scale for any **z** > 1

Example 3

$$F(K,L) = K^2 + L^2$$

$$F(zK,zL) = (zK)^2 + (zL)^2$$

$$= \mathbf{z}^2 \left(\mathbf{K}^2 + \mathbf{L}^2 \right)$$

$$= z^2 F(K,L)$$

increasing returns to scale for any **z** > 1

Now you try...

Determine whether constant, decreasing, or increasing returns to scale for each of these production functions:

(a)
$$F(K,L) = \frac{K^2}{L}$$

(b)
$$F(K,L) = K+L$$

Answer to part (a)

$$F(K,L) = \frac{K^2}{L}$$

$$F(zK,zL) = \frac{(zK)^2}{zL}$$

$$= \frac{\mathbf{z}^2 \mathbf{K}^2}{\mathbf{z} \mathbf{L}}$$

$$= z \frac{K^2}{L}$$

$$= zF(K,L)$$

constant returns to scale for any **z** > 0

Answer to part (b)

$$F(K,L) = K + L$$

$$F(zK,zL) = zK + zL$$

$$= z(K+L)$$

$$= zF(K,L)$$

constant returns to scale for any **z** > 0

Assumptions of the model

- 1. Technology is fixed.
- 2. The economy's supplies of capital and labor are fixed at

$$K = \overline{K}$$
 and $L = \overline{L}$

Determining GDP

Output is determined by the fixed factor supplies and the fixed state of technology:

$$\overline{\mathbf{Y}} = \mathbf{F}(\overline{\mathbf{K}}, \overline{\mathbf{L}})$$

The distribution of national income

- determined by factor prices,
 the prices per unit that firms pay for the factors of production
 - wage = price of L
 - rental rate = price of K

Notation

```
W = nominal wage
```

R = nominal rental rate

P = price of output

W/P = real wage
 (measured in units of output)

R/P = real rental rate

How factor prices are determined

- Factor prices are determined by supply and demand in factor markets.
- Recall: Supply of each factor is fixed.
- What about demand?

Demand for labor

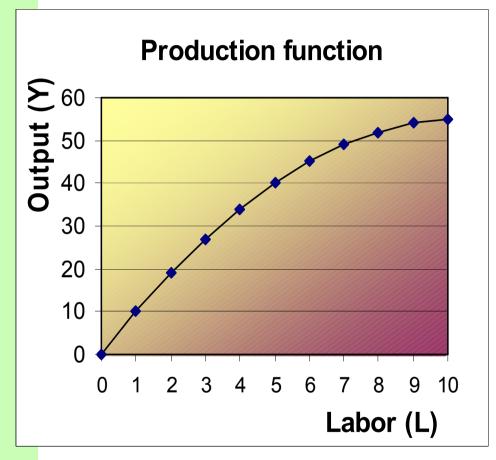
- Assume markets are competitive:
 each firm takes W, R, and P as given.
- Basic idea:
 - A firm hires each unit of labor if the cost does not exceed the benefit.
 - cost = real wage
 - benefit = marginal product of labor

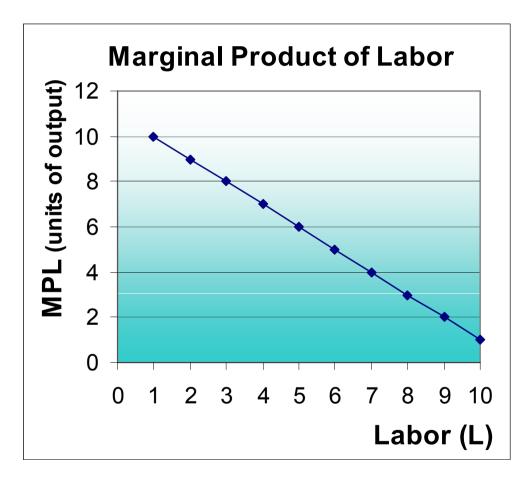
Marginal product of labor (MPL)

definition:

The extra output the firm can produce using an additional unit of labor (holding other inputs fixed):

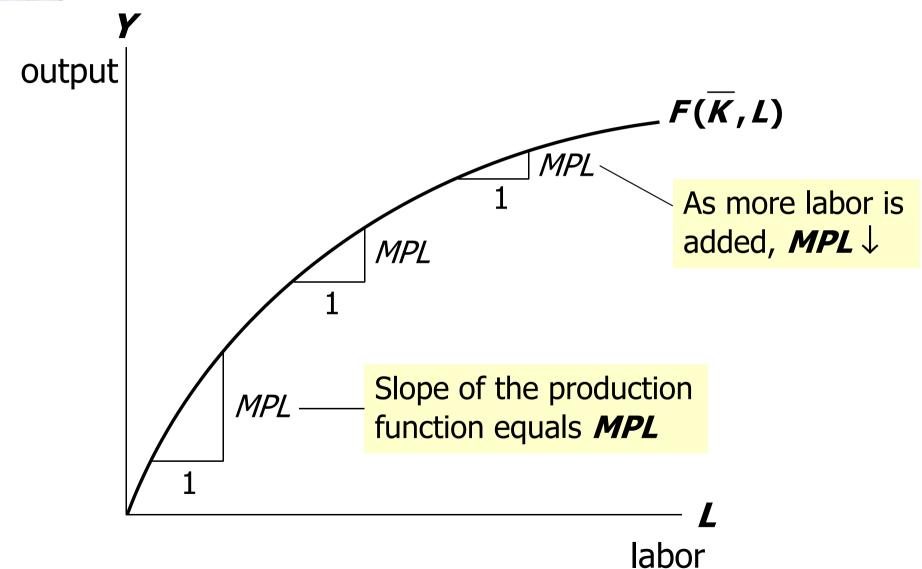
$$MPL = F(K, L+1) - F(K, L)$$


Exercise: Compute & graph MPL


- a. Determine *MPL* at each value of *L*.
- **b.** Graph the production function.
- C. Graph the MPL curve with MPL on the vertical axis and
 L on the horizontal axis.

L	Υ	MPL
0	0	n.a.
1	10	?
2	19	?
3	27	8
4	34	?
5	40	?
6	45	?
7	49	?
8	52	?
9	54	?
10	55	?

Answers:



Diminishing marginal returns

- As a factor input is increased, its marginal product falls (other things equal).
- Intuition: Suppose ↑L while holding K fixed
 - ⇒ fewer machines per worker
 - ⇒ lower worker productivity

MPL and the production function

CHAPTER 3 National Income

Check your understanding:

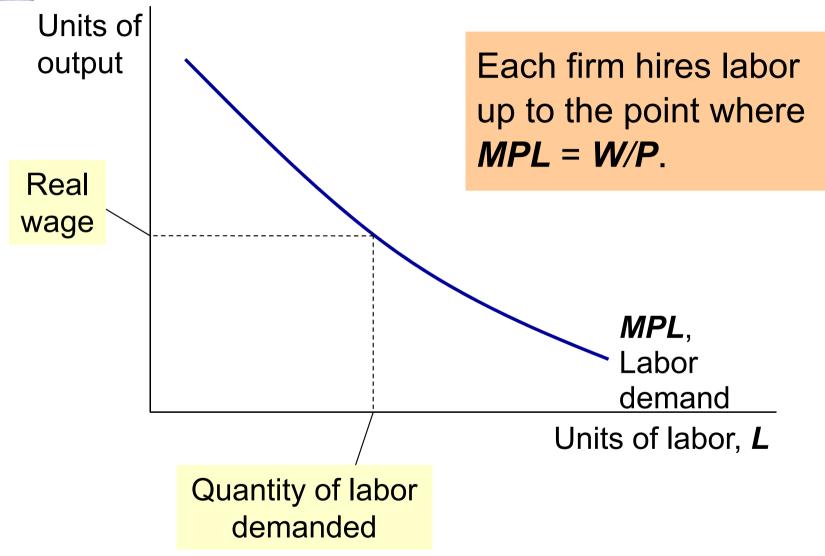
Which of these production functions have diminishing marginal returns to labor?

a)
$$F(K,L) = 2K + 15L$$

b)
$$F(K,L) = \sqrt{KL}$$

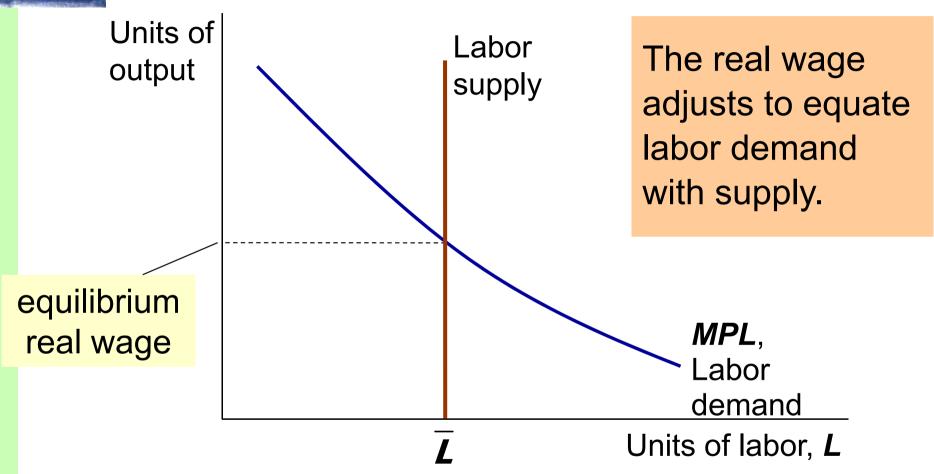
c)
$$F(K,L) = 2\sqrt{K} + 15\sqrt{L}$$

Exercise (part 2)


Suppose W/P = 6.

- d. If *L* = 3, should firm hire more or less labor? Why?
- e. If **L** = 7, should firm hire more or less labor? Why?

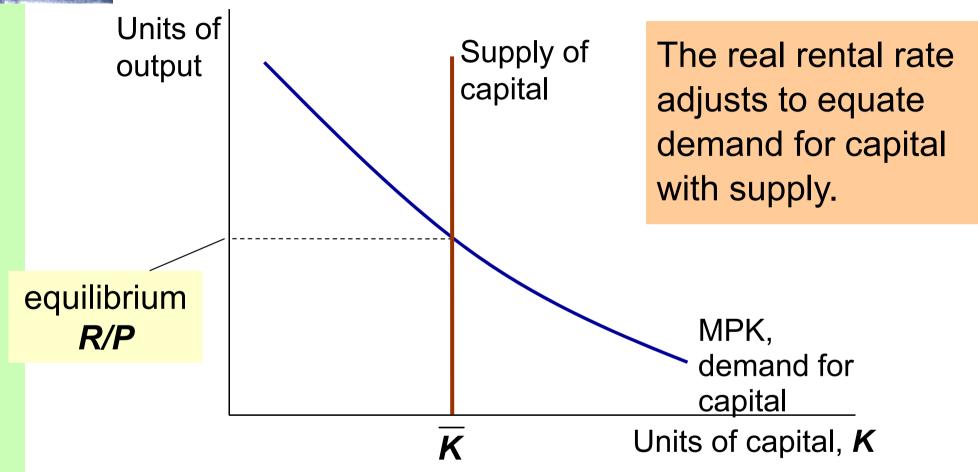
L	Y	MPL
0	0	n.a.
1	10	10
2	19	9
3	27	8
4	34	7
5	40	6
6	45	5
7	49	4
8	52	3
9	54	2
10	55	1



MPL and the demand for labor

The equilibrium real wage

Determining the rental rate


We have just seen that MPL = W/P.

The same logic shows that MPK = R/P:

- diminishing returns to capital: MPK↓ as K↑
- The MPK curve is the firm's demand curve for renting capital.
- Firms maximize profits by choosing K such that MPK = R/P.

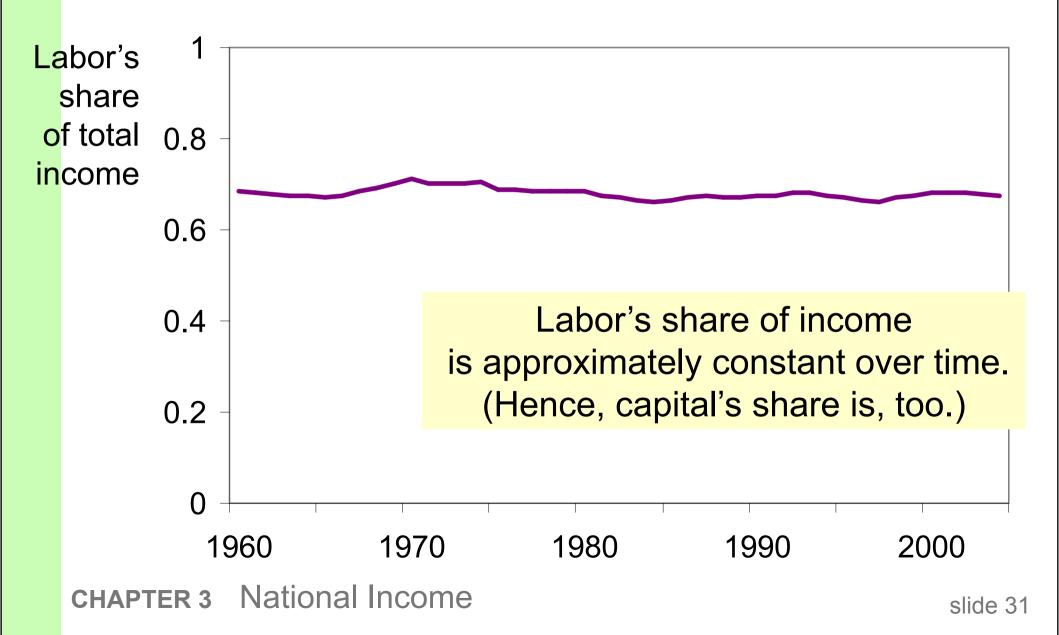
The equilibrium real rental rate

The Neoclassical Theory of Distribution

- states that each factor input is paid its marginal product
- is accepted by most economists

How income is distributed:

total labor income =
$$\frac{W}{P}\overline{L} = MPL \times \overline{L}$$


total capital income =
$$\frac{R}{P}\overline{K} = MPK \times \overline{K}$$

If production function has constant returns to scale, then

$$\overline{Y} = MPL \times \overline{L} + MPK \times \overline{K}$$
national labor capital income income

The ratio of labor income to total income in the U.S.

The Cobb-Douglas Production Function

The Cobb-Douglas production function has constant factor shares:

 α = capital's share of total income: capital income = $MPK \times K = \alpha Y$ labor income = $MPL \times L = (1 - \alpha)Y$

The Cobb-Douglas production function is:

$$Y = AK^{\alpha}L^{1-\alpha}$$

where **A** represents the level of technology.

The Cobb-Douglas Production Function

Each factor's marginal product is proportional to its average product:

$$MPK = \alpha A K^{\alpha-1} L^{1-\alpha} = \frac{\alpha Y}{K}$$

$$MPL = (1-\alpha)AK^{\alpha} L^{-\alpha} = \frac{(1-\alpha)Y}{K}$$

Outline of model

A closed economy, market-clearing model

Supply side

- **DONE** factor markets (supply, demand, price)
- **DONE** determination of output/income

Demand side

 $Next \rightarrow \Box$ determinants of C, I, and G

Equilibrium

- goods market
- loanable funds market

Demand for goods & services

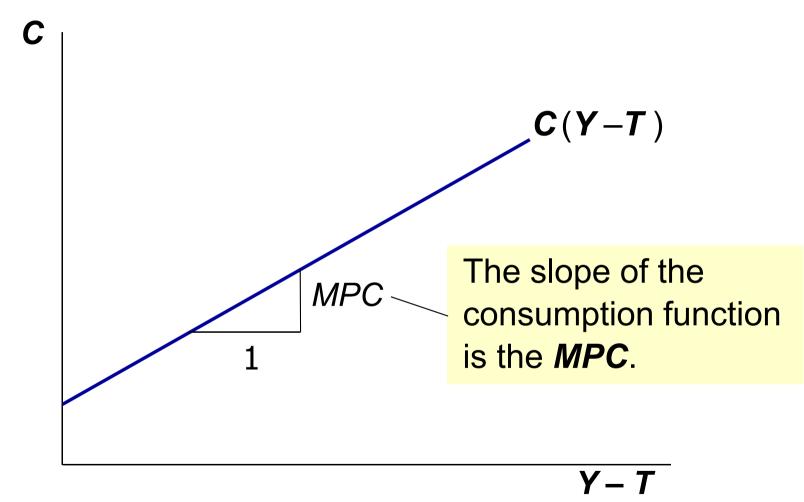
Components of aggregate demand:

C = consumer demand for g & s

I = demand for investment goods

G= government demand for g & s

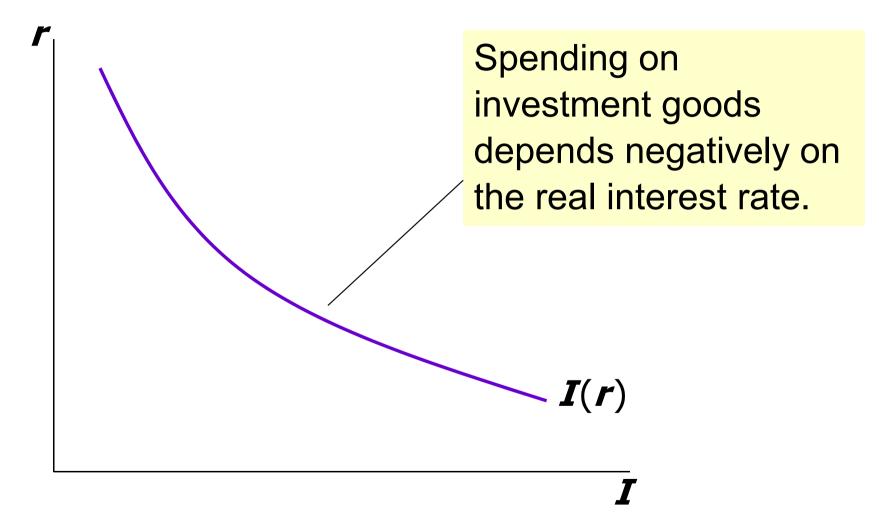
(closed economy: no NX)



Consumption, C

- def: Disposable income is total income minus total taxes: Y – T.
- Consumption function: C = C(Y T)Shows that $\uparrow(Y - T) \Rightarrow \uparrow C$
- def: Marginal propensity to consume (MPC) is the increase in C caused by a one-unit increase in disposable income.

The consumption function


Investment, I

- The investment function is I = I(r), where r denotes the real interest rate, the nominal interest rate corrected for inflation.
- The real interest rate is
 - the cost of borrowing
 - the opportunity cost of using one's own funds to finance investment spending.

So,
$$\uparrow r \Rightarrow \downarrow I$$

The investment function

Government spending, G

- G = govt spending on goods and services.
- G excludes transfer payments
 (e.g., social security benefits,
 unemployment insurance benefits).
- Assume government spending and total taxes are exogenous:

$$G = \overline{G}$$
 and $T = \overline{T}$

The market for goods & services

• Aggregate demand: C(Y-T)+I(r)+G

$$C(\overline{Y}-\overline{T})+I(r)+\overline{G}$$

Aggregate supply:

$$\overline{Y} = F(\overline{K}, \overline{L})$$

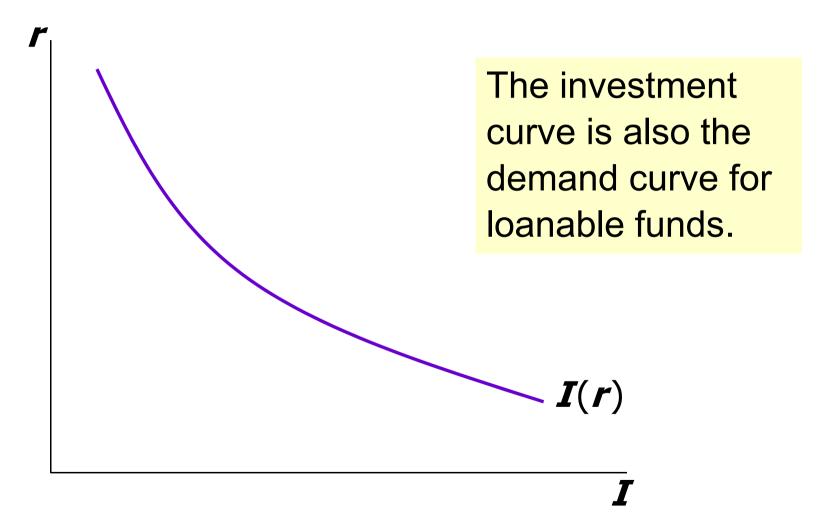
Equilibrium:

$$\overline{\boldsymbol{Y}} = \boldsymbol{C}(\overline{\boldsymbol{Y}} - \overline{\boldsymbol{T}}) + \boldsymbol{I}(\boldsymbol{r}) + \overline{\boldsymbol{G}}$$

The real interest rate adjusts to equate demand with supply.

The loanable funds market

- A simple supply-demand model of the financial system.
- One asset: "loanable funds"
 - demand for funds: investment
 - supply of funds: saving
 - "price" of funds: real interest rate


Demand for funds: Investment

The demand for loanable funds...

- comes from investment:
 Firms borrow to finance spending on plant & equipment, new office buildings, etc.
 Consumers borrow to buy new houses.
- depends negatively on r, the "price" of loanable funds (cost of borrowing).

Loanable funds demand curve

Supply of funds: Saving

- The supply of loanable funds comes from saving:
 - Households use their saving to make bank deposits, purchase bonds and other assets. These funds become available to firms to borrow to finance investment spending.
 - The government may also contribute to saving if it does not spend all the tax revenue it receives.

Types of saving

private saving =
$$(Y - T) - C$$

public saving = $T - G$
national saving, S

= private saving + public saving

$$= (Y-T)-C + T-G$$

$$= Y - C - G$$

Notation: Δ = change in a variable

• For any variable X, ΔX = "the change in X" Δ is the Greek (uppercase) letter *Delta*

Examples:

• If $\Delta L = 1$ and $\Delta K = 0$, then $\Delta Y = MPL$. More generally, if $\Delta K = 0$, then $MPL = \frac{\Delta Y}{\Delta L}$.

•
$$\Delta(Y-T) = \Delta Y - \Delta T$$
, so

$$\Delta C = MPC \times (\Delta Y - \Delta T)$$

$$= MPC \Delta Y - MPC \Delta T$$

EXERCISE:

Calculate the change in saving

Suppose MPC = 0.8 and MPL = 20.

For each of the following, compute ΔS :

- **a.** $\Delta G = 100$
- **b.** $\Delta T = 100$
- **c.** $\Delta Y = 100$
- d. $\Delta L = 10$

Answers

$$\Delta \mathbf{S} = \Delta \mathbf{Y} - \Delta \mathbf{C} - \Delta \mathbf{G} = \Delta \mathbf{Y} - 0.8(\Delta \mathbf{Y} - \Delta \mathbf{T}) - \Delta \mathbf{G}$$
$$= 0.2\Delta \mathbf{Y} + 0.8\Delta \mathbf{T} - \Delta \mathbf{G}$$

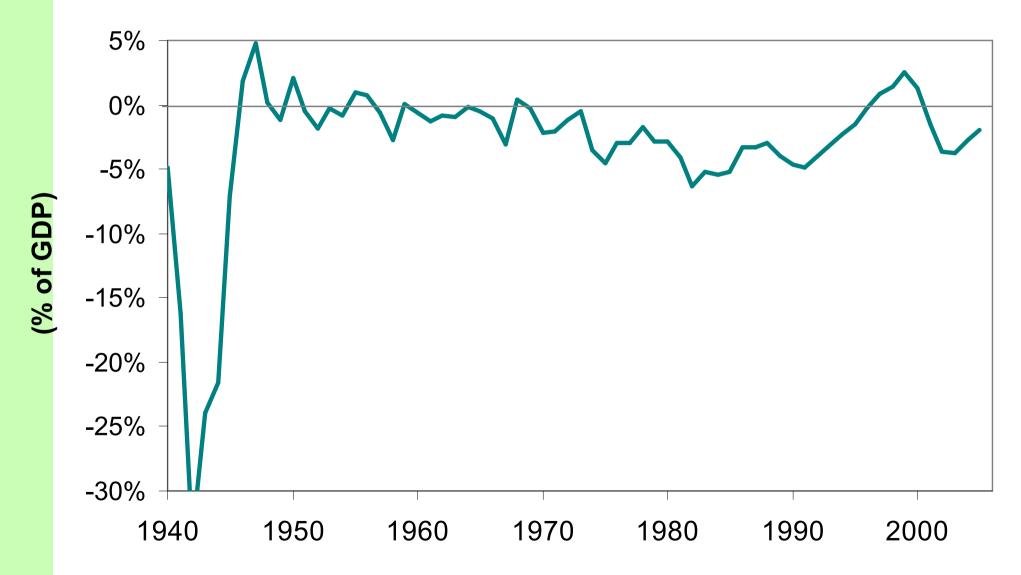
a.
$$\Delta S = -100$$

b.
$$\Delta S = 0.8 \times 100 = 80$$

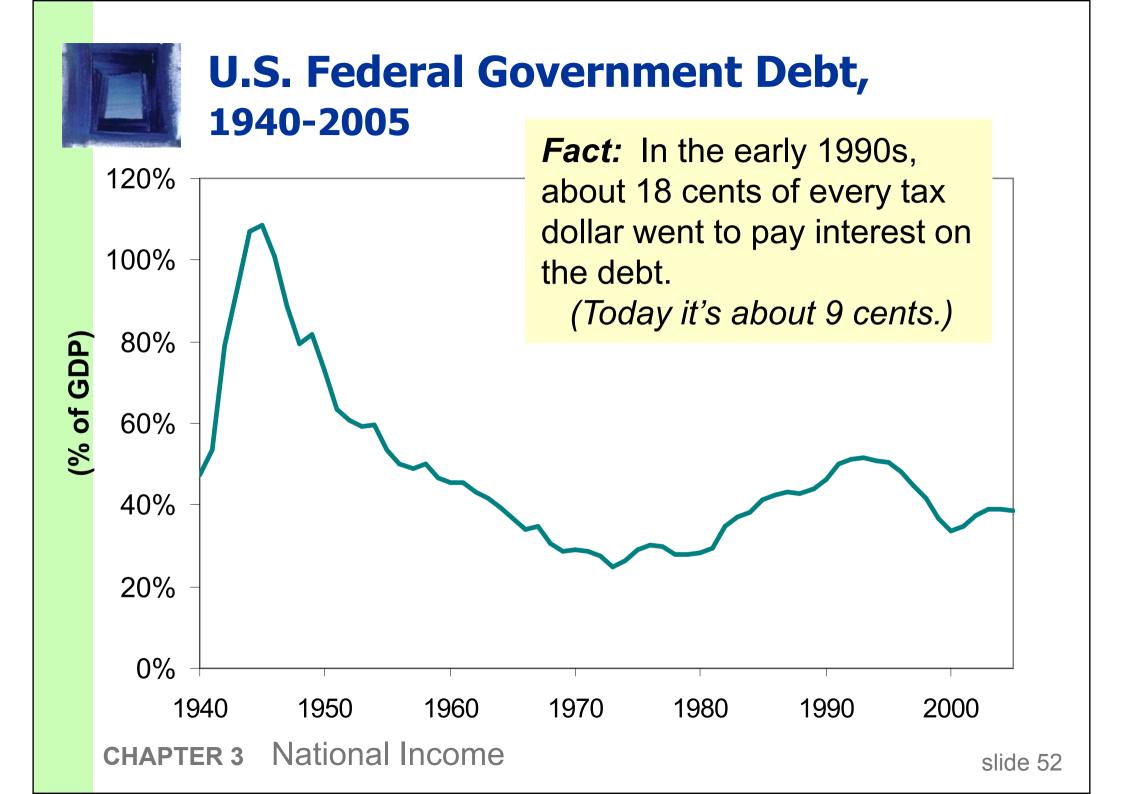
c.
$$\Delta S = 0.2 \times 100 = 20$$

d.
$$\Delta Y = MPL \times \Delta L = 20 \times 10 = 200$$
,

$$\Delta S = 0.2 \times \Delta Y = 0.2 \times 200 = 40.$$

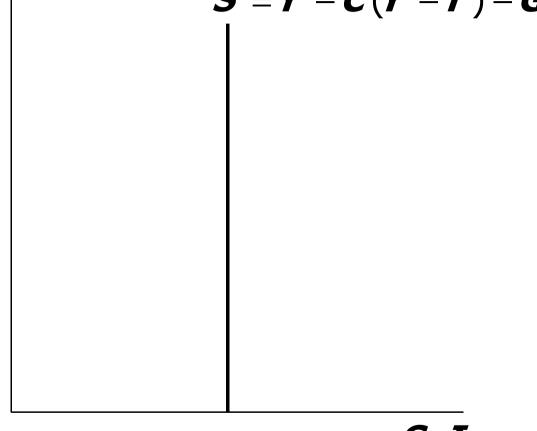

digression:

Budget surpluses and deficits


- If T > G, budget surplus = (T G) = public saving.
- If T < G, budget deficit = (G T) and public saving is negative.
- If T = G, "balanced budget," public saving = 0.
- The U.S. government finances its deficit by issuing Treasury bonds — i.e., borrowing.

U.S. Federal Government Surplus/Deficit, 1940-2005

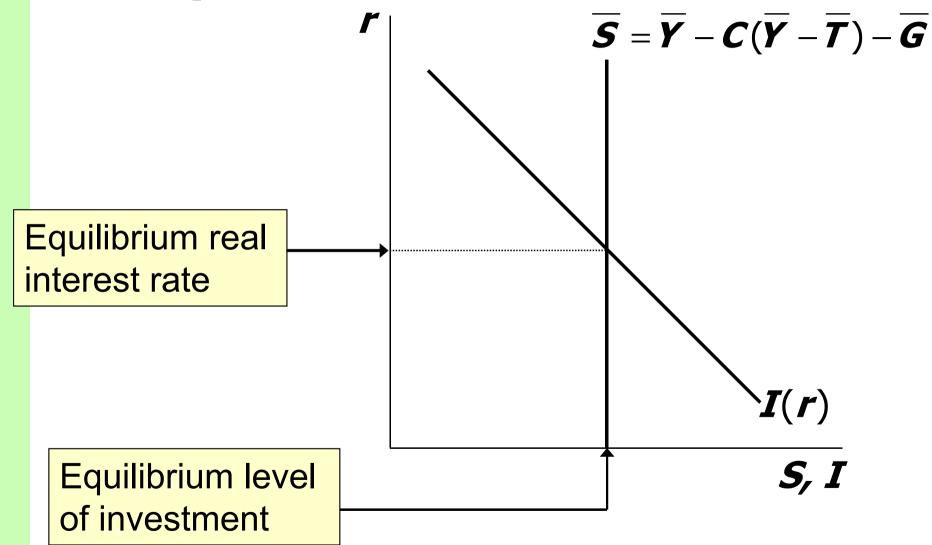
CHAPTER 3 National Income



Loanable funds supply curve

ľ

 $\overline{S} = \overline{Y} - C(\overline{Y} - \overline{T}) - \overline{G}$


National saving does not depend on *r*, so the supply curve is vertical.

S, I

Loanable funds market equilibrium

The special role of r

r adjusts to equilibrate the goods market <u>and</u> the loanable funds market simultaneously:

If L.F. market in equilibrium, then

$$Y-C-G=I$$

Add (C+G) to both sides to get

$$Y = C + I + G$$
 (goods market eq'm)

Thus,

Eq'm in L.F. market

Eq'm in goods market

Digression: Mastering models

To master a model, be sure to know:

- 1. Which of its variables are endogenous and which are exogenous.
- 2. For each curve in the diagram, know
 - a. definition
 - b. intuition for slope
 - c. all the things that can shift the curve
- 3. Use the model to analyze the effects of each item in 2c.

Mastering the loanable funds model

Things that shift the saving curve

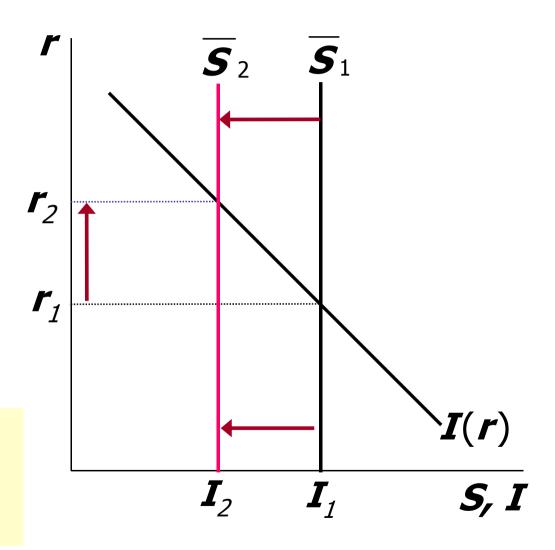
- public saving
 - fiscal policy: changes in G or T
- private saving
 - preferences
 - tax laws that affect saving
 - -401(k)
 - -IRA
 - -replace income tax with consumption tax

CASE STUDY: The Reagan deficits

- Reagan policies during early 1980s:
 - increases in defense spending: $\Delta G > 0$
 - big tax cuts: $\Delta T < 0$
- Both policies reduce national saving:

$$\overline{S} = \overline{Y} - C(\overline{Y} - \overline{T}) - \overline{G}$$

$$\uparrow \bar{\mathbf{G}} \Rightarrow \downarrow \bar{\mathbf{S}}$$


$$\downarrow \bar{T} \Rightarrow \uparrow C \Rightarrow \downarrow \bar{S}$$

CASE STUDY: The Reagan deficits

- The increase in the deficit reduces saving...
- 2. ...which causes the real interest rate to rise...

3. ...which reduces the level of investment.

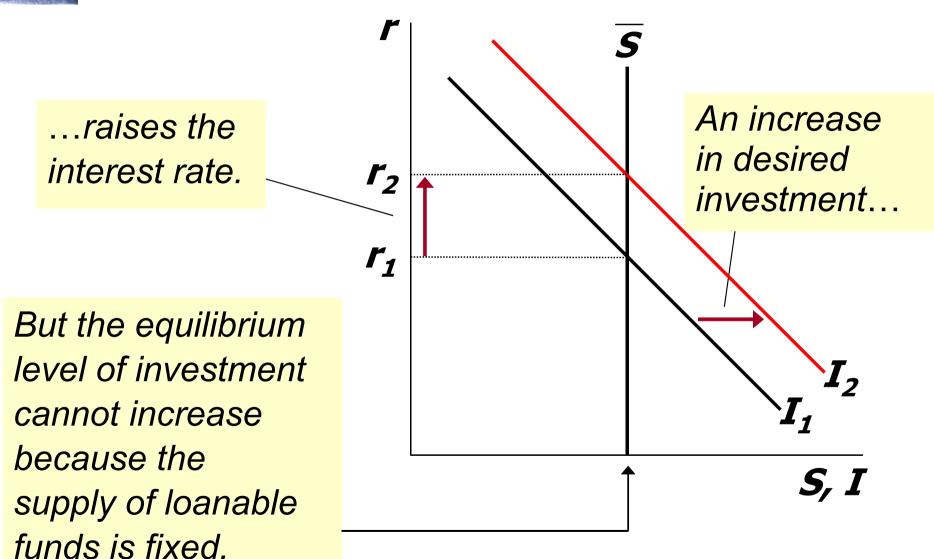
Are the data consistent with these results?

1970s	1980s	
-2.2	-3.9	
19.6	17.4	
1.1	6.3	
19.9	19.4	
	-2.2 19.6 1.1	-2.2 -3.9 19.6 17.4 1.1 6.3

T–*G*, *S*, and *I* are expressed as a percent of GDP All figures are averages over the decade shown.

Now you try...

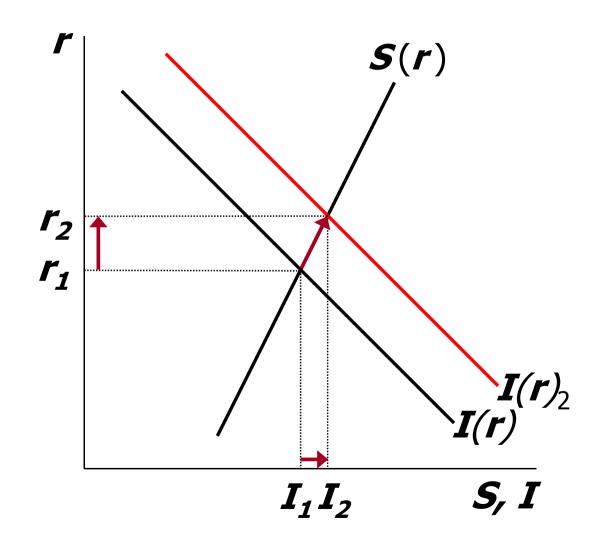
- Draw the diagram for the loanable funds model.
- Suppose the tax laws are altered to provide more incentives for private saving.
 (Assume that total tax revenue *T* does not change)
- What happens to the interest rate and investment?


Mastering the loanable funds model, continued

Things that shift the investment curve

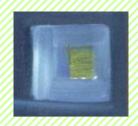
- some technological innovations
 - to take advantage of the innovation, firms must buy new investment goods
- tax laws that affect investment
 - investment tax credit

An increase in investment demand


Saving and the interest rate

- Why might saving depend on r?
- How would the results of an increase in investment demand be different?
 - Would r rise as much?
 - Would the equilibrium value of *I* change?

An increase in investment demand when saving depends on *r*


An increase in investment demand raises r, which induces an increase in the quantity of saving, which allows I to increase.

Chapter Summary

- Total output is determined by
 - the economy's quantities of capital and labor
 - the level of technology
- Competitive firms hire each factor until its marginal product equals its price.
- If the production function has constant returns to scale, then labor income plus capital income equals total income (output).

Chapter Summary

- A closed economy's output is used for
 - consumption
 - investment
 - government spending
- The real interest rate adjusts to equate the demand for and supply of
 - goods and services
 - loanable funds

Chapter Summary

- A decrease in national saving causes the interest rate to rise and investment to fall.
- An increase in investment demand causes the interest rate to rise, but does not affect the equilibrium level of investment if the supply of loanable funds is fixed.