

CHAPTER

The Open Economy

MACROECONOMICS SIXTH EDITION N. GREGORY MANKIW PowerPoint[®] Slides by Ron Cronovich

© 2008 Worth Publishers, all rights reserved

In this chapter, you will learn...

- accounting identities for the open economy
- the small open economy model
 - what makes it "small"
 - how the trade balance and exchange rate are determined
 - how policies affect trade balance & exchange rate

Trade-GDP ratio, selected countries, 2005 (Imports + Exports) as a percentage of GDP

Luxembourg	297.2%
Ireland	149.9
Czech Republic	141.5
Hungary	134.2
Austria	103.8
Sweden	89.8
Switzerland	89.0
Korea, Republic of	82.2
Germany	76.2%
Poland	74.7

Canada	72.0
Mexico	61.5
Turkey	61.4
United Kingdom	56.8
Spain	56.4
France	53.0
Italy	52.2
Australia	42.1
Japan	27.3
United States	26.8

- spending need not equal output
- saving need not equal investment

Preliminaries

 $oldsymbol{C} = oldsymbol{C}^d + oldsymbol{C}^f$ $oldsymbol{I} = oldsymbol{I}^d + oldsymbol{I}^f$ $oldsymbol{G} = oldsymbol{G}^d + oldsymbol{G}^f$ superscripts:

- f = spending on
 foreign goods

EX = exports =

foreign spending on domestic goods

$$IM = imports = C^{f} + I^{f} + G^{f}$$

= spending on foreign goods

GDP = expenditure on domestically produced g & s

 $\boldsymbol{Y} = \boldsymbol{C}^{\boldsymbol{d}} + \boldsymbol{I}^{\boldsymbol{d}} + \boldsymbol{G}^{\boldsymbol{d}} + \boldsymbol{E}\boldsymbol{X}$ = (C - C') + (I - I') + (G - G') + EX $= C + I + G + EX - (C^{f} + I^{f} + G^{f})$ = C + I + G + EX - IM= C + I + G + NX

The national income identity in an open economy

Y = C + I + G + NX

Trade surpluses and deficits

NX = EX - IM = Y - (C + I + G)

trade surplus:

output > spending and exports > imports Size of the trade surplus = **NX**

trade deficit:

spending > output and imports > exports Size of the trade deficit = -NX

International capital flows

- Net capital outflow
 - = **S I**
 - = net outflow of "loanable funds"
 - net purchases of foreign assets
 the country's purchases of foreign assets
 minus foreign purchases of domestic assets
- When S > I, country is a <u>net lender</u>
- When S < I, country is a <u>net borrower</u>

The link between trade & cap. flows

$$NX = Y - (C + I + G)$$

implies

$$NX = (Y - C - G) - I$$

$$= S - I$$

trade balance = net capital outflow
Thus,
a country with a trade deficit (NX < 0)

is a net borrower ($\boldsymbol{S} < \boldsymbol{I}$).

CHAPTER 5 The Open Economy

slide 10

"The world's largest debtor nation"

- U.S. has had large trade deficits, been a net borrower each year since the early 1980s.
- As of 12/31/2006:
 - U.S. residents owned \$13.8 trillion worth of foreign assets
 - Foreigners owned \$16.3 trillion worth of U.S. assets
 - U.S. net indebtedness to rest of the world: \$2.5 trillion--higher than any other country, hence U.S. is the "world's largest debtor nation"

Saving and investment in a small open economy

- An open-economy version of the loanable funds model from Chapter 3.
- Includes many of the same elements:
 - production function $\boldsymbol{Y} = \overline{\boldsymbol{Y}} = \boldsymbol{F}(\overline{\boldsymbol{K}},\overline{\boldsymbol{L}})$
 - consumption function
 - investment function
 - exogenous policy variables $\boldsymbol{G} = \boldsymbol{G}, \ \boldsymbol{T} = \boldsymbol{T}$

CHAPTER 5 The Open Economy

 $\boldsymbol{C} = \boldsymbol{C}(\boldsymbol{Y} - \boldsymbol{T})$

I = I(r)

National saving: The supply of loanable funds

 $\overline{\boldsymbol{S}} = \overline{\boldsymbol{Y}} - \boldsymbol{C}(\overline{\boldsymbol{Y}} - \overline{\boldsymbol{T}}) - \overline{\boldsymbol{G}}$

As in Chapter 3, national saving does not depend on the interest rate

S, I

CHAPTER 5 The Open Economy

5

Assumptions re: Capital flows

- a. domestic & foreign bonds are perfect substitutes (same risk, maturity, *etc*.)
- **b. perfect capital mobility:**

no restrictions on international trade in assets

c. economy is **small**:

cannot affect the world interest rate, denoted r*

c implies *r** is exogenous

Investment:

The demand for loanable funds

If the economy were closed...

...the interest rate would adjust to equate investment and saving:

But in a small open economy...

the exogenous world interest rate determines investment...

...and the difference between saving and investment determines net capital outflow and net exports

Next, three experiments:

- 1. Fiscal policy at home
- 2. Fiscal policy abroad
- 3. An increase in investment demand

NX and the federal budget deficit (% of GDP), 1960-2006

slide 20

2. Fiscal policy abroad

Expansionary fiscal policy abroad raises the world interest rate.

 $\Delta \boldsymbol{I} < \boldsymbol{0}$

Results:

3. An increase in investment demand

EXERCISE:

Use the model to determine the impact of an increase in investment demand on *NX*, *S*, *I*, and net capital outflow.

3. An increase in investment demand

ANSWERS: $\Delta I > 0,$ $\Delta S = 0,$ net capital outflow and **NX** fall by the amount ΔI

The nominal exchange rate

e = nominal exchange rate,
 the relative price of
 domestic currency
 in terms of foreign currency

(e.g. Yen per Dollar)

A few exchange rates, as of 7/11/07

country	exchange rate	
Euro	0.73 Euro/\$	
Indonesia	9,037 Rupiahs/\$	
Japan	122.3 Yen/\$	
Mexico	10.8 Pesos/\$	
Russia	25.9 Rubles/\$	
South Africa	7.0 Rand/\$	
U.K.	0.49 Pounds/\$	

The real exchange rate

the lowercase Greek letter epsilon

e = real exchange rate, the relative price of domestic goods in terms of foreign goods

(*e.g.* Japanese Big Macs per U.S. Big Mac)

Understanding the units of $\boldsymbol{\varepsilon}$

$$\boldsymbol{\mathcal{E}} = \frac{\boldsymbol{e} \times \boldsymbol{P}}{\boldsymbol{P}^*}$$

(Yen per \$)×(\$ per unit U.S. goods)
Yen per unit Japanese goods

Yen per unit U.S. goods
 Yen per unit Japanese goods

Units of Japanese goods per unit of U.S. goods

- one good: Big Mac
- price in Japan:
 *P** = 200 Yen

nominal exchange rate e = 120 Yen/\$

CHAPTER 5 The Open Economy

To buy a U.S. Big Mac, someone from Japan would have to pay an amount that could buy 1.5 Japanese Big Macs.

$\boldsymbol{\varepsilon}$ in the real world & our model

In the real world:

We can think of $\boldsymbol{\varepsilon}$ as the relative price of a basket of domestic goods in terms of a basket of foreign goods

 In our macro model: There's just one good, "output." So *ɛ* is the relative price of one country's output in terms of the other country's output

How *NX* depends on ε

- $\uparrow \boldsymbol{\varepsilon} \Rightarrow$ U.S. goods become more expensive relative to foreign goods
 - $\Rightarrow \downarrow EX, \uparrow IM$
 - $\Rightarrow \downarrow NX$

U.S. net exports and the real exchange rate, 1973-2007

The net exports function reflects this inverse relationship between NX and ε:

 $NX = NX(\varepsilon)$

CHAPTER 5 The Open Economy

slide 32

The *NX* curve for the U.S.

slide 34

How $\boldsymbol{\varepsilon}$ is determined

- The accounting identity says NX = S I
- We saw earlier how *S* − *I* is determined:
 - S depends on domestic factors (output, fiscal policy variables, *etc*)
 - I is determined by the world interest rate r*
- So, *ɛ* must adjust to ensure

$$NX(\varepsilon) = \overline{S} - I(r^*)$$

How $\boldsymbol{\varepsilon}$ is determined

Neither *S* nor *I* depend on *ɛ*, so the net capital outflow curve is vertical.

e adjusts to
equate *NX*with net capital
outflow, *S* – *I*.

Interpretation: Supply and demand in the foreign exchange market

demand:

Foreigners need dollars to buy U.S. net exports.

supply: Net capital outflow (*S* – *I*) is the supply of dollars to be invested abroad.

Next, four experiments:

- 1. Fiscal policy at home
- 2. Fiscal policy abroad
- 3. An increase in investment demand
- 4. Trade policy to restrict imports

1. Fiscal policy at home

A fiscal expansion reduces national saving, net capital outflow, and the supply of dollars in the foreign exchange market...

...causing the real exchange rate to rise and **NX** to fall.

2. Fiscal policy abroad

An increase in *r** reduces investment, increasing net capital outflow and the supply of dollars in the foreign exchange market...

...causing the real exchange rate to fall and *NX* to rise.

Conomy

3. Increase in investment demand

An increase in investment reduces net capital outflow and the supply of dollars in the foreign exchange market...

...causing the real exchange rate to rise and *NX* to fall.

4. Trade policy to restrict imports

At any given value of $\boldsymbol{\varepsilon}$, an import quota $\Rightarrow \downarrow \boldsymbol{IM} \Rightarrow \uparrow \boldsymbol{NX}$ \Rightarrow demand for dollars shifts right

Trade policy doesn't affect **S** or **I**, so capital flows and the supply of dollars remain fixed.

CHAPTER 5 I NE Open Economy

4. Trade policy to restrict imports

Results: $\Delta \boldsymbol{\varepsilon} > 0$ (demand increase) $\Delta NX = 0$ (supply fixed) $\Delta IM < 0$ (policy) ∆*EX* < 0 (rise in *ɛ*)

The determinants of the nominal exchange rate

- Start with the expression for the real exchange rate: $\boldsymbol{\varepsilon} = \frac{\boldsymbol{e} \times \boldsymbol{P}}{\boldsymbol{\rho}^*}$
- Solve for the nominal exchange rate:

$$e = \varepsilon \times \frac{P^*}{P}$$

The determinants of the nominal exchange rate

So e depends on the real exchange rate and the price levels at home and abroad...

The determinants of the nominal exchange rate

$$e = \varepsilon \times \frac{P^*}{P}$$

Rewrite this equation in growth rates (see "arithmetic tricks for working with percentage changes," Chap 2):

$$\frac{\Delta \boldsymbol{e}}{\boldsymbol{e}} = \frac{\Delta \boldsymbol{\varepsilon}}{\boldsymbol{\varepsilon}} + \frac{\Delta \boldsymbol{P}^*}{\boldsymbol{P}^*} - \frac{\Delta \boldsymbol{P}}{\boldsymbol{P}} = \frac{\Delta \boldsymbol{\varepsilon}}{\boldsymbol{\varepsilon}} + \pi^* - \pi$$

For a given value of *ɛ*,
 the growth rate of *e* equals the difference
 between foreign and domestic inflation rates.

Inflation differentials and nominal exchange rates

Purchasing Power Parity (PPP)

Two definitions:

- A doctrine that states that goods must sell at the same (currency-adjusted) price in all countries.
- The nominal exchange rate adjusts to equalize the cost of a basket of goods across countries.

Reasoning:

arbitrage, the law of one price

Purchasing Power Parity (PPP)

PPP:

Cost of a basket of foreign goods, in foreign currency.

Cost of a basket of domestic goods, in foreign currency.

Cost of a basket of domestic goods, in domestic currency.

- Solve for e : e = P*/P
- PPP implies that the nominal exchange rate between two countries equals the ratio of the countries' price levels.

Purchasing Power Parity (PPP)

• If
$$e = P^*/P$$
,
then $\varepsilon = e \times \frac{P}{P^*} = \frac{P^*}{P} \times \frac{P}{P^*} = 1$

and the **NX** curve is nonzontal.

Does PPP hold in the real world?

- No, for two reasons:
 - 1. International arbitrage not possible.
 - nontraded goods
 - transportation costs
 - 2. Different countries' goods not perfect substitutes.
- Nonetheless, PPP is a useful theory:
 - It's simple & intuitive
 - In the real world, nominal exchange rates tend toward their PPP values over the long run.

CASE STUDY: The Reagan deficits revisited

	1970s	1980s	actual change	closed economy	small open economy
G – T	2.2	3.9	\uparrow	\uparrow	\uparrow
S	19.6	17.4	\downarrow	\downarrow	\downarrow
r	1.1	6.3	\uparrow	\uparrow	no change
1	19.9	19.4	\downarrow	\downarrow	no change
NX	-0.3	-2.0	\downarrow	no change	\downarrow
3	115.1	129.4	\uparrow	no change	1

Data: decade averages; all except **r** and ε are expressed as a percent of GDP; ε is a trade-weighted index. CHAPTER 5 The Open Economy

slide 52

The U.S. as a large open economy

- So far, we've learned long-run models for two extreme cases:
 - closed economy (chap. 3)
 - small open economy (chap. 5)
- A large open economy like the U.S. falls between these two extremes.
- The results from large open economy analysis are a mixture of the results for the closed & small open economy cases.
- For example...

A fiscal expansion in three models

A fiscal expansion causes national saving to fall. The effects of this depend on openness & size:

	closed economy	large open economy	small open economy
r	rises	rises, but not as much as in closed economy	no change
1	falls	falls, but not as much as in closed economy	no change
NX	no change	falls, but not as much as in small open economy	falls

- Net exports--the difference between
 - exports and imports
 - a country's output (Y)
 and its spending (C + I + G)
- Net capital outflow equals
 - purchases of foreign assets minus foreign purchases of the country's assets
 - the difference between saving and investment

- National income accounts identities:
 - Y = C + I + G + NX
 - trade balance NX = S I net capital outflow
- Impact of policies on NX :
 - NX increases if policy causes S to rise or I to fall
 - NX does not change if policy affects neither S nor I. Example: trade policy

- Exchange rates
 - nominal: the price of a country's currency in terms of another country's currency
 - real: the price of a country's goods in terms of another country's goods
 - The real exchange rate equals the nominal rate times the ratio of prices of the two countries.

- How the real exchange rate is determined
 - NX depends negatively on the real exchange rate, other things equal
 - The real exchange rate adjusts to equate
 NX with net capital outflow

- How the nominal exchange rate is determined
 - e equals the real exchange rate times the country's price level relative to the foreign price level.
 - For a given value of the real exchange rate, the percentage change in the nominal exchange rate equals the difference between the foreign & domestic inflation rates.