CHAPTER SEVEN

OPTIMAL RISKY PORTFOLIOS

THE INVESTMENT DECISION can be viewed as
a top-down process: (i) Capital allocation
between the risky portfolio and risk-free
assets, (ii) asset allocation across broad
asset classes (e.g., U.S. stocks, international
stocks, and long-term bonds), and (iii) secu-
rity selection of individual assets within each
asset class.

Capital allocation, as we saw in Chapter
6, determines the investor’s exposure to risk.
The optimal capital allocation is determined
by risk aversion as well as expectations for
the risk-return trade-off of the optimal risky
portfolio. In principle, asset allocation and
security selection are technically identical;
both aim at identifying that optimal risky
portfolio, namely, the combination of risky
assets that provides the best risk-return
trade-off. In practice, however, asset allo-
cation and security selection are typically
separated into two steps, in which the broad
outlines of the portfolio are established first
(asset allocation), while details concerning
specific securities are filled in later (security
selection). After we show how the optimal
risky portfolio may be constructed, we will

consider the cost and benefits of pursuing
this two-step approach.

We first motivate the discussion by illus-
trating the potential gains from simple diver-
sification into many assets. We then proceed
to examine the process of efficient diversifi-
cation from the ground up, starting with an
investment menu of only two risky assets,
then adding the risk-free asset, and finally,
incorporating the entire universe of available
risky securities. We learn how diversification
can reduce risk without affecting expected
returns. This accomplished, we re-examine
the hierarchy of capital allocation, asset allo-
cation, and security selection. Finally, we offer
insight into the power of diversification by
drawing an analogy between it and the work-
ings of the insurance industry.

The portfolios we discuss in this and
the following chapters are of a short-term
horizon—even if the overall investment
horizon is long, portfolio composition can
be rebalanced or updated almost continu-
ously. For these short horizons, the skewness
that characterizes long-term compounded
returns is absent. Therefore, the assumption of



normality is sufficiently accurate to describe holding- | accomplished with Excel. Appendix B provides a
period returns, and we will be concerned only with | review of portfolio statistics with emphasis on the
portfolio means and variances. intuition behind covariance and correlation mea-

In Appendix A, we demonstrate how construc- | sures. Even if you have had a good quantitative

tion of the optimal risky portfolio can easily be methods course, it may well be worth skimming.

7.1 DIVERSIFICATION AND PORTFOLIO RISK

Suppose your portfolio is composed of only one stock, Ball Computer Corporation.
What would be the sources of risk to this “portfoliof@u might think of tve broad sources
of uncertainty First, there is the risk that comes from conditions in the general economy
such as theusiness ycle, inflation, interest rates, angolhange rates. None of these mac-
roeconomic &ctors can be predicted with certajrapd all afect the rate of return on Dell
stock. In addition to these macroecononaictbrs there areérin-specifc influences, such
as Dells success in research andelepment, and personnel changesese éctors afect
Dell without noticeably décting otherifms in the economy

Now consider a nae diversification stratgy, in which you include additional securi-
ties in your portfolio. Br example, place half your funds in ExxonMobil and half in Dell.
What should happen to portfolio risk® the etent that theifm-specifc influences on the
two stocks differ, diversification should reduce portfolio riskoFexample, when oil prices
fall, hurting ExxonMobil, computer prices might rise, helping DElle two efects are
offsetting and stabilize portfolio return.

But why end diersification at only tw stocks? If we diersify into may more securi-
ties, we continue to spread out oMpesure toifm-specifc factors, and portfolioalatil-
ity should continue todll. Ultimately, hovever, even with a lage number of stocks we
cannot &oid risk altogetherbecause virtually all securities ardeated by the common
macroeconomicdctors. Br example, if all stocks are fafcted by the bsiness ycle, we
cannot &oid exposure to bsiness ycle risk no matter he mary stocks we hold.

When all risk is ifrm-specifc, as inFigure7.1, panelA, diversification can reduce risk
to arbitrarily lov levels. The reason is that with all risk sources independent xheserre
to ary particular source of risk is reduced to aliggble level. The reduction of risk to
very low levels in the case of independent risk sources is sometimes callediuhance
principle, because of the notion that an insurance compapends on the risk reduction
achieved through diersification when it writes manpolicies insuring against matmnde-
pendent sources of risk, each pplieing a small part of the compas overall portfolio.
(See Section 7.5 for a discussion of the insurance principle.)

When common sources of riskfedt all firms, havever, even tensve diversifica-
tion cannot eliminate risk. IRigure7.1, panel B, portfolio standard dation falls as the
number of securities increasest it cannot be reduced to zefide risk that remainsven
after extensie diversification is callednarket risk, risk that is attribtable to mar&twide
risk sources. Such risk is also calkydtematic risk, or nondiversifiablerisk. In contrast,
the risk thatanbe eliminated by dersification is calleduniquerisk, firm-specific risk,
nonsystematic risk, or diversifiablerisk.

This analysis is borne out by empirical studieigiure7.2 shavs the efiect of portfo-
lio diversification, using data on NYSE stock3he fgure shavs the a&erage standard

Meir Statman, “Hw Mary Stocks Mak a Dversified Portfolio?” Journal of Fnancial and Quantitative
Analysis22 (September 1987).
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FIGURE 7.1 Portfolio risk as a function of the number of stocks in the portfolio

deviation of equally weighted portfolios constructed by selecting stocks at random as a
function of the number of stocks in the portfolio. rer@ge, portfolio risk doesll with
diversification, lut the paver of dversifcation to reduce risk is limited by systematic or
common sources of risk.
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FIGURE 7.2 Portfolio diversification. The average standard deviation of returns of portfolios
composed of only one stock was 49.2%. The average portfolio risk fell rapidly as the number of stocks
included in the portfolio increased. In the limit, portfolio risk could be reduced to only 19.2%.

Source: From Meir Statman, “How Many Stocks Make a Diversified Portfolio? Journal of Financial and Quantitative Analysis 22
(September 1987). Reprinted by permission.
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/7.2 PORTFOLIOS OF TWO RISKY ASSETS

In the last section we consideredweatversification using equally weighted portfolios
of several securities. It is time moto studyeficient diversification, whereby we construct
risky portfolios to preide the lavest possible risk for gngiven level of expected return.
The nearby box prades an introduction to the relationship betweerediification and
portfolio construction.

Portfolios of two risky assets are relatly easy to analyze, and th#ustrate the prin-
ciples and considerations that apply to portfolios of ynassets. It mads sense to think
about a tw-asset portfolio as an asset allocation decision, and so we considautual
funds, a bond portfolio specializing in long-term debt securities, deiytadd a stock
fund that specializes in equity securiti€s,Table7.1 lists the parameters describing the
rate-of-return distribtion of these funds.

A proportion denoted bwy, is invested in the bond fund, and the remainder wp,
denotedw, is invested in the stock fun@he rate of return on this portfolig,, will be?

rp = WDI‘D + WEI’E (71)

whererp is the rate of return on the debt fund apds the rate of return on the equity
fund.

The pected return on the portfolio is a weightegrage of gpected returns on the
component securities with portfolio proportions as weights:

E(rp) = WoE(rp) + WeE(rg) (7.2)
The \ariance of the ta-asset portfolio is

Our first obseration is that the ariance of the portfolio, unléthe e&pected return, is
nota weighted gerage of the indidual assetariancesTo understand the formula for the
portfolio variance more clearlyecall that the c@mriance of a &riable with itself is the
variance of thatariable; that is

Cov(ip,lp) = D, Pr(scenaiio)lr, — E(rp)1rp — E(p)]

scerafios

2 Pr(scerario)[r, — E(rp)]? (7.4

_ 2
=0p

Therefore, another ay to write the ariance of the portfolio is

o5 = WoWpCov(rp, Ip) + WeWeCov(rg, Ie) + 2wpWeCov(rp, Ie) (7.5
Debt Equity TABLE 7.1
Expected return, E(r) 8% 13% Descriptive statistics
Standard deviation, o 12% 20% for two mutual funds
Covariance, Cov(rp, rg) 72
Correlation coefficient, ppe .30

2SeeAppendix B of this chapter for aview of portfolio statistics.
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INTRODUCTION TO DIVERSIFICATION

Diversification is a familiar term to most investors. In
the most general sense, it can be summed up with this
phrase: “Don‘t put all of your eggs in one basket.”
While that sentiment certainly captures the essence
of the issue, it provides little guidance on the practical
implications of the role diversification plays in an inves-
tor's portfolio and offers no insight into how a diversi-
fied portfolio is actually created.

WHAT IS DIVERSIFICATION?
Taking a closer look at the concept of diversification,
the idea is to create a portfolio that includes multi-
ple investments in order to reduce risk. Consider, for
example, an investment that consists of only the stock
issued by a single company. If that company’s stock
suffers a serious downturn, your portfolio will sustain
the full brunt of the decline. By splitting your invest-
ment between the stocks of two different companies,
you reduce the potential risk to your portfolio.
Another way to reduce the risk in your portfolio is
to include bonds and cash. Because cash is generally
used as a short-term reserve, most investors develop
an asset allocation strategy for their portfolios based
primarily on the use of stocks and bonds. It is never
a bad idea to keep a portion of your invested assets
in cash, or short-term money-market securities. Cash
can be used in case of an emergency, and short-term
money-market securities can be liquidated instantly in
the event your usual cash requirements spike and you
need to sell investments to make payments.
Regardless of whether you are aggressive or con-
servative, the use of asset allocation to reduce risk
through the selection of a balance of stocks and bonds
for your portfolio is a more detailed description of how

a diversified portfolio is created than the simplistic eggs
in one basket concept. The specific balance of stocks
and bonds in a given portfolio is designed to create
a specific risk-reward ratio that offers the opportunity
to achieve a certain rate of return on your investment
in exchange for your willingness to accept a certain
amount of risk.

WHAT ARE MY OPTIONS?

If you are a person of limited means or you simply pre-
fer uncomplicated investment scenarios, you could
choose a single balanced mutual fund and invest all of
your assets in the fund. For most investors, this strat-
egy is far too simplistic. Furthermore, while investing
in a single mutual fund provides diversification among
the basic asset classes of stocks, bonds and cash, the
opportunities for diversification go far beyond these
basic categories. A host of alternative investments
provide the opportunity for further diversification. Real
estate investment trusts, hedge funds, art and other
investments provide the opportunity to invest in vehi-
cles that do not necessarily move in tandem with the
traditional financial markets.

CONCLUSION

Regardless of your means or method, keep in mind
that there is no generic diversification model that will
meet the needs of every investor. Your personal time
horizon, risk tolerance, investment goals, financial
means and level of investment experience will play a
large role in dictating your investment mix.

Source: Adapted from Jim McWhinney, Introduction to Diversification,

December 16, 2005, www.investopedia.com/articles/basics/05/
diversification.asp, retrieved April 25, 2006.

In words, the ariance of the portfolio is a weighted sum of@dances, and each weight is

the product of the portfolio proportions of the pair of assets in thariemce term.
Table7.2 shawvs hav portfolio variance can be calculated from a spreadsheeelR

of the table shwes thebordered covariance matrix of the returns of theawnutual funds.
The bordered matrix is the wariance matrix with the portfolio weights for each fund
placed on the borders, that is, along tingt fov and columnTo find portfolio variance,
multiply each element in the eariance matrix by the pair of portfolio weights in itsvro
and column borderdd up the resultant terms, and yowéahe formula for portfolio
variance gien inEquation 7.5

We perform these calculations in panel B, which is leeder-multiplied covariance
matrix: Each ceariance has been multiplied by the weights from theaod the column
in the bordersThe bottom line of panel B canis that the sum of all the terms in this
matrix (which we obtain by adding up the column sums) is indeed the portéslance
in Equation 7.5

This procedure wks because the eariance matrix is symmetric around the diagonal,
that is, Co(rp, rg) = Cov(rg, rp). Thus each cariance term appears twice.
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CHAPTER 7 Optimal Risky Portfolios 199

A. Bordered Covariance Matrix TABLE 7.2
Portfolio Weights wp We Computation
Wp Cov(rp, rp) Covl(rp, rg) of portfolio
Wg Cov(rg, rp) Cov(rg, re) variance from
B. Border-multiplied Covariance Matrix ::aet:iivarlance
Portfolio Weights wp Wg
Wp wpwpCoVv(rp, rp) wpwCoV(rp, rg)
WE wewpCov(rg, rp) wewe Cov(rg, re)
wp + wg =1 WDWDCOVWOV(" & Ip) WDWECOVWOV(" £ e)

Portfolio variance ~ wpwpCoV(rp, rp) + wewpCoV(rg, rp) + wpweCov(rp, rg) + wewCov(rg, re)

This technique for computing thawance from the bordanultiplied cosariance matrix
is general; it applies to gmumber of assets and is easily implemented on a spreadsheet.
Concept Check 1 asks you to try the rule for a three-asset portfolio. Use this problem to
verify that you are comfortable with this concept.

a. First confirm for yourself that our simple rule for computing the variance of a two-asset

portfolio from the bordered covariance matrix is consistent with Equation 7.3.

Cg_'\lIECCEKPT b. Now consider a portfolio of three funds, X, Y, Z, with weights wy, wy, and w;. Show that

the portfolio variance is

1

2 2 2 2 2 2
wi oy + wyoy + wios + 2wyxwyCov(ry, ry)

+2wyw,Cov(ry, r7) + 2wyw;Cov(ry, rz)

Equation 7.3reveals that ariance is reduced if the wariance term is m@tive. It is
important to recognize thaven if the ceariance term is posite, the portfolio standard
deviation still is less than the weightedexrage of the indidual security standard dia-
tions, unless the twsecurities are perfectly posiily correlated.

To see this, notice that thevariance can be computed from the correlationfanent,

PpEe, @S
Cov(rp, r'e) = poednoe (7.6)
Therefore,
o2 = W20 + W2oZ + 2WoWeop0eppe (7.7)
Other things equal, portfolicaviance is higher whepye is higher In the case of perfect
positive correlationppe = 1, the right-hand side dgquation 7.7is a perfect square and
simplifies to
0‘5 = (Wpop + Weog)? (7.8)
or
Op = WpOp + Weog (7.9

Therefore, the standard\dation of the portfolio with perfect posie correlation is just
the weighted erage of the component standardidgons. In all other cases, the €or
relation coeficient is less than 1, making the portfolio standardiat®n lessthan the
weighted aerage of the component standardidions.
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PART II

Portfolio Theory and Practice

A hedge asset hamgativecorrelation with the other assets in the portfdiquation 7.7
shaws that such assets will be particularlfeefive in reducing total risk. Moreer, Equa-
tion 7.2shavs that &pected return is urfaicted by correlation between returiiberefore,
other things equal, we willwhys prefer to add to our portfolios assets with &, even
better nggative correlation with ourxasting position.

Because the portfolie’ expected return is the weightedemage of its component
expected returns, whereas its standandat®n is less than the weightedeaage of the
component standard dations, portfolios of less than perfectly cetated assets always
offer better risk—eturn opportunities than the individual component securities on their
own.The lowver the correlation between the assets, the greater the gaiitieney.

How low can portfolio standard dmtion be?The lovest possible alue of the correla-
tion coeficient is—1, representing perfect gative correlation. In this casequation 7.7
simplifies to

O'é = (WDO-D - WEO'E)2 (710)
and the portfolio standard dation is
o, = Absolute alue Wpop — Weo) (7.12)

Whenp = —1, a perfectly hedged position can be obtained by choosing the portfolio pro-
portions to sole

WDO-D - WEO'E =0

The solution to this equation is

g
Wp = E
op tog
(7.12)
g
W = D —=1-w,
op tog

These weights dre the standard #&tion of the portfolio to zero.

EXAMPLE 7.1 Portfolio Risk and Return

Let us apply this analysis to the data of the bond and stock funds as pres@atadril.
Using these data, the formulas for tix@ected return,ariance, and standardwi&tion of
the portfolio as a function of the portfolio weights are

E(rp) =8wp + 13w
op =12°W3 + 20°WZ + 2X 12X 20<. K wpWe
=144W3 + 40002 + 144n, W

_[2
Op = 0'p

We can &periment with diferent portfolio proportions to obserthe effect on portfo-
lio expected return andaviance. Suppose we change the proportieesied in bondS he
effect on epected return is talbated inTable 7.3and plotted irFigure 7.3When the pro-
portion irvested in debtaries from zero to 1 (so that the proportion in equétsies from
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TABLE 7.3

Portfolio Standard Deviation for Given Correlation

Expected return

Wb WE E(re) p=-1 p=0 p=.30 p=1 and standard
0.00 1.00 13.00 20.00 20.00 20.00 20.00 deviation
0.10 0.90 12.50 16.80 18.04 18.40 19.20 with various
0.20 0.80 12.00 13.60 16.18 16.88 18.40 correlation
0.30 0.70 11.50 10.40 14.46 15.47 17.60 ol
0.40 0.60 11.00 7.20 12.92 14.20 16.80
0.50 0.50 10.50 4.00 11.66 13.11 16.00
0.60 0.40 10.00 0.80 10.76 12.26 15.20
0.70 0.30 9.50 2.40 10.32 11.70 14.40
0.80 0.20 9.00 5.60 10.40 11.45 13.60
0.90 0.10 8.50 8.80 10.98 11.56 12.80
1.00 0.00 8.00 12.00 12.00 12.00 12.00

Minimum Variance Portfolio

wWp 0.6250 0.7353 0.8200 —
We 0.3750 0.2647 0.1800 —
E(rp) 9.8750 9.3235 8.9000 —
op 0.0000 10.2899 11.4473 —

1 to zero), the portfolioxpected return goes from 13% (the stock ferepected return)
to 8% (the gpected return on bonds).

What happens whem, > 1andwg < 0? In this case portfolio stragewould be to sell the
equity fund short and west the proceeds of the short sale in the debt fumnd will decrease

Expected Return

8%~ 2 Equity Fund

Debt Fund

/8%‘

w (stocks)
-0.5 0 1.0 2.0

w (bonds) = 1 — w (stocks)
1.5 1.0 0 -1.0

FIGURE 7.3 Portfolio expected return as a function of investment proportions
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Portfolio Standard Deviation (%)

Portfolio Theory and Practice

the epected return of the portfolio.oF example,
whenwy = 2 andwg = —1, epected portfolio

A return &lls to 2X 8 + (—1) X 13 = 3%. At this
35—+ ,). p=-1 point the alue of the bond fund in the portfolio is
S 0 twice the net wrth of the accounfThis ettreme
30T / S - 30 position is inanced in part by short-selling stocks
|
|

Weight in Stock Fund

equal in \alue to the portfoli® net vorth.

The reverse happens whew, < 0andwg > 1.
This stratgy calls for selling the bond fund short
and using the proceeds indnce additional pur
chases of the equity fund.

Of course, @rying investment proportions

|
:
- I
| y | also has an &fct on portfolio standard detion.
N K | Table 7.3 presents portfolio standard wiations
ST N 4 ! for different portfolio weights calculated from
o ! | Equation 7.7using the assumealue of the cor
4 T T > . .
~50 0 50 1.0 1.50 relation coeficient, .30, as well as otheales

of p. Figure7.4 shavs the relationship between

standard daation and portfolio weights. Look
first at the solid cum for ppg = .30. The graph
shavs that as the portfolio weight in the equity
fund increases from zero to 1, portfolio standard
deviation first falls with the initial dversification
from bonds into stocksubthen rises again as the
portfolio becomes hedy concentrated in stocks, and again is wradsified. This pattern
will generally hold as long as the correlation ¢médnt between the funds is not too high.
For a pair of assets with a ¢gr positve correlation of returns, the portfolio standardide
tion will increase monotonically from theverisk asset to the high-risk assetefun this
case, hwever, there is a posite (if small) \alue from dversification.

What is the minimum keel to which portfolio standard diation can be held?df the
parameter &lues stipulated ifable7.1, the portfolio weights that sadvthis minimization
problem turn out to e

FIGURE 7.4 Portfolio standard deviation as a func-
tion of investment proportions

Wyin(D) = .82
Wyin(E) = 1 — .82= .18
This minimum-ariance portfolio has a standard/@dgion of
omin = [(82 X 122) + ((1& X 207 + (2 X .82X .18 X 72)[2 = 11.45%

as indicated in the last line dable 7.3for the colummp = .30.
The solid colored line ifrigure7.4 plots the portfolio standard dation whenp = .30
as a function of the iiestment proportions. It passes through tteundversified portfolios

3As long ag < op/og, volatility will initially f all when we start with all bonds andgieto move into stocks.

“This solution uses the minimization techniques of calc¥rite out the gpression for portfolio ariance from
Equation 7.3substitute - w;, for wg, differentiate the result with respectvtg, set the deviative equal to zero,
and sole forwp to obtain

a2 —Cov(iy, Ie)

WMin( D) =
% + 02 —2Cov(,,Ie)

Alternatively, with a spreadsheet program such as Excel, you can obtain an accurate solution by usingrthe Solv
to minimize the ariance. SeAppendixA for an exkample of a portfolio optimization spreadsheet.
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of wp = 1 andwg = 1. Note that theninimum-variance portfolio has a standard dation
smaller than that of either of the individual component as$eéis.illustrates the &fct of
diversification.
The other three lines fRigure7.4 shav how portfolio risk varies for other alues of the
correlation codfcient, holding the ariances of each asset constdiitese lines plot the
values in the other three columnsTable 7.3
The solid dark line connecting the uwelisified portfolios of all bonds or all stocks,
wp = 1 orwg = 1, shavs portfolio standard deation with perfect positie correlation,
p = 1. In this case there is no ahtage from diersification, and the portfolio standard
deviation is the simple weightedierage of the component asset standaviatens.
The dashed colored cuwrwdepicts portfolio risk for the case of uncorrelated assets,
p = 0.With lower correlation between the dvassets, dersification is more déctive and
portfolio risk is laver (at least when both assets are held in pes&mounts)The mini-
mum portfolio standard detion whenp = 0 is 10.29% (se&able7.3), again lower than
the standadl deviation of either asset.
Finally, the triangular brodn line illustrates the perfect hedge potential when the
two assets are perfectly gagively correlated { = —1). In this case the solution for the
minimum-\ariance portfolio is, b¥quation 7.12
. Og 20
Wyin(D; p = —1) :O'D + og 12+ 20 625
Wyin(E; p = —1) = 1 - .625= .375
and the portfolio ariance (and standardwdation) is zero.
We can combind=igures 7.3and7.4 to demonstrate the relationship between portfolio
risk (standard deation) and gpected return—gen the parameters of theadlable assets.
This is done inFigure7.5. For ary pair of investment proportionsyy, wg, we read the
expected return fronfFigure7.3 and the standard
deviation from Figure7.4. The resulting pairs of
expected return and standard/ddion are tablated Expected Return (%)
in Table 7.3and plotted irFigure 7.5 A
The solid colored cuevin Figure7.5 shavs the 14
portfolio opportunity set for p = .30. We call it
the portfolio opportunity set because it wisoall L Py e
combinations of portfolioxgected return and stan- 12 |
dard deiation that can be constructed from thetw 11 !
available assetsThe other lines sho the portfolio .- |
opportunity set for otheralues of the correlation 10_":_’ |
coeficient. The solid black line connecting thedaw 9+ - |
funds shws that there is no beriefrom diversi- gL - ____ == !
cation when the correlation between the & per | |
fectly positve (p = 1). The opportunity set is not 7 | |
“pushed” to the northwesthe dashed colored line 6— ! !
demonstrates the greater bétkedm diversification 5| [ |
when the correlation coétient is lover than .30. T T T 1 |' T i >
Finally, for p = —1, the portfolio opportu- 0 2 4 6 8 10 12 14 16 18 20

nity set is linearbut now it offers a perfect hedg-
ing opportunity and the maximum ahtage from
diversification.

To summarize, although thexgected return of
ary portfolio is simply the weightedvarage of the

Standard Deviation (%)

FIGURE 7.5 Portfolio expected return as a

function of standard deviation
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asset gpected returns, this is not true of the standardatien. Potential ben&$ from
diversification arise when correlation is less than perfectly pasitihe laver the correla-
tion, the greater the potential beihéfom diversification. In the gtreme case of perfect
negative correlation, we he a perfect hedging opportunity and can construct a zero-
variance portfolio.

Suppose nw an irvestor wishes to select the optimal portfolio from the opportu-
nity set.The best portfolio will depend on riskiersion. Portfolios to the northeast in
Figure7.5 provide higher rates of returrubimpose greater ris€he best trade-bamong
these choices is a matter of personal
Cg’;‘é:g;-r Compute and draw the portfolio opportunity set for the | Preference. estors with greater risk

debt and equity funds when the correlation coefficient | aversion will prefer portfolios to the
2 between them is p = .25. southwest, with laver expected return
but lower risk®

ASSET ALLOCATION WITH STOCKS, BONDS, AND BILLS

In the preious chapter wexamined the capital allocation decision, the choice af ho
much of the portfolio to lee in risk-free mongmarlket securities @rsus in a risk portfo-

lio. Now we hae talen a further step, specifying that the yiglortfolio comprises a stock
and a bond fundiVe still need to she how investors can decide on the proportion of their
risky portfolios to allocate to the stoclensus the bond magk This is an asset allocation
decisionAs the nearby box emphasizes, mogesiment professionals recognize that “the
really critical decision is he to divvy up your mong among stocks, bonds and supersafe
investments such dseasury bills.

In the last section, we deed the properties of portfolios formed by mixingotwsky
assets. Gen this background, we waeintroduce the choice of the third, risk-free, portfolio.
This will allow us to complete the basic problem of asset allocation across thedheessét
classes: stocks, bonds, and risk-free nganarket securities. Once you understand this case,
it will be easy to see moportfolios of maw risky securities might best be constructed.

The Optimal Risky Portfolio with Two Risky Assets
and a Risk-Free Asset

What if our risly assets are still comied to the bond and stock fundsit bov we can also

invest in risk-freel-bills yielding 5% Ve start with a graphical solutioRigure7.6 shavs

the opportunity set based on the properties of the bond and stock funds, using the data from
Table 7.1

5Given a leel of risk aversion, one can determine the portfolio thatvites the highest el of utility. Recall

from Chapter 6 that we were able to describe the utilityidedl by a portfolio as a function of itsmected

return, E(rp), and its \ariance,of,, accordingto the relationshipU = E(r;) — 0.5Ac§. The portfolio mean and
variance are determined by the portfolio weights in theftumds wg andw,, according tdEquations 7.2nd7.3.

Using those equations and some calculus,imeethe optimal imestment proportions in the oAfunds.A warn-

ing: to use the follwing equation (or anequation imolving the risk aersion parameteA), you must gpress
returns in decimal form.

_ E(ro) — E(re) + Alog — 000¢epoe)
A(O‘é + (ré — 20p0ePpE)
We=1—wp

D

Here, too, Exce$ Soler or similar softwre can be used to maximize utility subject to the constrairis| .-
tions 7.2and7.3, plus the portfolio constraint thet, + wg = 1 (i.e., that portfolio weights sum to 1).



RECIPE FOR SUCCESSFUL INVESTING:

FIRST, MIX ASSETS WELL

First things first.

If you want dazzling investment results, don't start
your day foraging for hot stocks and stellar mutual
funds. Instead, say investment advisers, the really
critical decision is how to divvy up your money among
stocks, bonds, and supersafe investments such as
Treasury bills.

In Wall Street lingo, this mix of investments is called
your asset allocation. “The asset-allocation choice is
the first and most important decision,” says William
Droms, a finance professor at Georgetown University.
“How much you have in [the stock market] really drives
your results.”

“You cannot get [stock market] returns from a bond
portfolio, no matter how good your security selection
is or how good the bond managers you use,” says
William John Mikus, a managing director of Financial
Design, a Los Angeles investment adviser.

For proof, Mr. Mikus cites studies such as the 1991
analysis done by Gary Brinson, Brian Singer and Gilbert
Beebower. That study, which looked at the 10-year results
for 82 large pension plans, found that a plan’s asset-
allocation policy explained 91.5% of the return earned.

DESIGNING A PORTFOLIO
Because your asset mix is so important, some mutual
fund companies now offer free services to help inves-
tors design their portfolios.

Gerald Perritt, editor of the Mutual Fund Letter, a
Chicago newsletter, says you should vary your mix of
assets depending on how long you plan to invest. The

further away your investment horizon, the more you
should have in stocks. The closer you get, the more you
should lean toward bonds and money-market instru-
ments, such as Treasury bills. Bonds and money-market
instruments may generate lower returns than stocks. But
for those who need money in the near future, conserva-
tive investments make more sense, because there’s less
chance of suffering a devastating short-term loss.

SUMMARIZING YOUR ASSETS

“One of the most important things people can do is
summarize all their assets on one piece of paper and
figure out their asset allocation,” says Mr. Pond.

Once you've settled on a mix of stocks and bonds,
you should seek to maintain the target percentages,
says Mr. Pond. To do that, he advises figuring out your
asset allocation once every six months. Because of a
stock-market plunge, you could find that stocks are
now a far smaller part of your portfolio than you envis-
aged. At such a time, you should put more into stocks
and lighten up on bonds.

When devising portfolios, some investment advisers
consider gold and real estate in addition to the usual
trio of stocks, bonds and money-market instruments.
Gold and real estate give “you a hedge against hyper-
inflation,” says Mr. Droms. “But real estate is better
than gold, because you'll get better long-run returns.”

Source: Jonathan Clements, “Recipe for Successful Investing: First,
Mix Assets Well,” The Wall Street Journal, October 6, 1993. Reprinted
by permission of The Wall Street Journal, © 1993 Dow Jones & Com-
pany, Inc. All rights reserved worldwide.

Two possible capital allocation lines (CALS) arevandrom the risk-free rate(= 5%)
to two feasible portfoliosThe frst possible CAL is dran through the minimumariance
portfolio A, which is irvested 82% in bonds and 18% in stockable7.3, bottom panel,
last column). Portfolid\'s expected return is 8.90%, and its standandaten is 11.45%.
With aT-bill rate of 5%, the ewar d-to-volatility (Sharpe) ratio, which is the slope of the
CAL combiningT-bills and the minimum-ariance portfolio, is

E(ry) — r _
S - (") —1_89-5_ 4,

Oa 11.45

Now consider the CAL that uses portfolbinstead ofA. Portfolio B invests 70% in
bonds and 30% in stocks. Itgpected return is 9.5% (a risk premium of 4.5%), and its
standard daation is 11.70%Thus the revard-to-\olatility ratio on the CAL that is sup-

ported by portfolidB is

11.7

which is higher than the ward-to-wlatility ratio of the CAL that we obtained using the
minimum-\variance portfolio and-bills. Hence, portfolid3 dominatesA.
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Expected Return (%)
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FIGURE 7.6 The opportunity set of the debt and
equity funds and two feasible CALs
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FIGURE 7.7 The opportunity set of the debt
and equity funds with the optimal CAL and the optimal
risky portfolio

But why stop at portfoli@? We can continue
to ratchet the CAL upard until it ultimately
reaches the point of tanggnwith the irvestment
opportunity set.This must yield the CAL with
the highest feasible waard-to-wlatility ratio.
Therefore, the tangencportfolio, labeledP in
Figure7.7, is the optimal risk portfolio to mix
with T-bills. We can read thexpected return and
standard deation of portfolioP from the graph
in Figure 7.7

E(rp) = 11%
op = 14.2%

In practice, when we try to construct optimal
risky portfolios from more than tarisky assets,
we need to rely on a spreadsheet or another com-
puter program.The spreadsheet we present in
Appendix A can be used to constructfiefent
portfolios of may assetsTo start, haever, we
will demonstrate the solution of the portfolio
construction problem with only tvrisky assets
(in our xample, long-term debt and equity) and a
risk-free asset. In this simpler ¢vasset case, we
can denve an eplicit formula for the weights of
each asset in the optimal portfolichis will make
it easy to illustrate some of the general issues per
taining to portfolio optimization.

The objectve is to fnd the weightsw, and
we that result in the highest slope of the CAL
(i.e., the weights that result in the ysgortfolio
with the highest ngard-to-\wlatility ratio). There-
fore, the objectie is to maximize the slope of
the CAL for arly possible portfoliop. Thus our
objective functioris the slope (equalently the
Sharpe ratiog,:

E(r) —r
§=—0

For the portfolio with tvo risky assets, the
expected return and standardvidgion of portfo-
lio pare

E(rp) = WpE(rp) + W E(re)
=8wp + 13w
o, =[Whod + Wi + 2wpweCov(rp, re)l "2

=[144w2 + 40002 + (2 X 72w we)]"2
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When we maximize the objeeti function,S,, we hae to satisfy the constraint that the
portfolio weights sum to 1.0 (100%), thatuwg, + wg = 1. Therefore, we sokyan optimi-
zation problem formally written as

E(rp) — It
Max S, = =5 —
subject taXw; = 1. This is a nonlinear problem that can be sdlusing standard tools of
calculus.
In the case of tevrisky assets, the solution for the weights of dpgimal risky port-
folio, P, is given by Equation 7.13. Notice that the solution empcessrates of return
(denotedR) rather than total returns (denotgd

_ E(Ry)ot — E(R)Cov( R, R)
Wp 3 5 (7.13)
E(Ry)oz + E(R)od —[E(Ry) + E(R)ICoY R, Re)

W =1—w,

EXAMPLE 7.2 Optimal Risky Portfolio

Using our data, the solution for the optimal yiglortfolio is
W — (8—5400—-(13—-9572 _
®  (8—5400+ (13— 5144—(8—5+13— 572
wg =1-—.40=.60

40

The pected return and standard/idgion of this optimal risk portfolio are
E(r,)=(4x 8)+(.6x13= 1%
op =[(-4° X 144) + (.6° X 400) + (2 X.4X .6 X 72" = 14 %
The CAL of this optimal portfolio has a slope of

11-5
=——=.42
> 14.2
which is the revard-to-\olatility (Sharpe) ratio of portfoli®. Notice that this slopexeeeds
the slope of anof the other feasible portfolios that wevkaconsidered, as it must if it is to
be the slope of the best feasible CAL.

In Chapter 6 we found the optimedmpleteportfolio given an optimatisky portfolio
and the CAL generated by a combination of this portfolio Bbdls. Now that we hae
constructed the optimal rigkportfolio, P, we can use the indidual investors degree of
risk aversion,A, to calculate the optimal proportion of the complete portfolio veshin
the risky component.

5The solution procedure for twisky assets is as folles. Substitute foE(rp) from Equation 7.2and foro, from
Equation 7.7 Substitute - w;, for we. Differentiate the resultingxpression forS, with respect tang, set the
derivative equal to zero, and sel¥orwg,.

207



208 PART Il Portfolio Theory and Practice

EXAMPLE 7.3 Optimal Complete Portfolio

An investor with a codicient of risk aersionA = 4 would tale a position in portfolid of”

E(rp)—r¢ _ .11-.05
Ac? 4X.142 (7.14)

Thus the imestor will invest 74.39% of his or her wealth in portfooand 25.61% in
T-bills. Portfolio P consists of 40% in bonds, so the fraction of wealth in bonds will be
YWy = .4 X .7439= .2976, or 29.76%. Similar/ythe irvestment in stocks will bgw: =

.6 X .7439= .4463, or 44.63%The graphical solution of this asset allocation problem is
presented in Figures 7.8 and 7.9.

Once we hee reached this point, generalizing to the case ofymisky assets is
straightforvard. Before we me on, let us briefly summarize the steps we fodid to
arrive at the complete portfolio.

1. Specify the return characteristics of all securitiepéeted returns,ariances,
covariances).
2. Establish the riskportfolio:
a. Calculate the optimal riskportfolio, P (Equation7.13).
b. Calculate the properties of portfol®using the weights determined in step (
andEquations 7.2nd7.3.

Expected Return (%)

A
18
164 CAL(P)
Indifference Curve T .
14 1+ Portfolio P.
\ Opportunity 74.39%
1 Set of Risky
12
___________ b Assets
104 __ ¢ X
i Optimal Risky
8+ :D Portfolio
! I
o .
re= 5/°4 [ Optimal ! \
Complete | 1
2 Portfolio 1 |
1 b
I
0 : M : : >
0 5 10 15 20 25 30
Standard Deviation (%)
FIGURE 7.8 Determination of the optimal complete FIGURE 7.9 The proportions of
portfolio the optimal complete portfolio

"Notice that we xpress returns as decimals in Equation 7Tlis is necessary when using the risleraion
parameterA, to sohe for capital allocation.
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3. Allocate funds between the rigkortfolio and the risk-free asset:

a. Calculate the fraction of the complete portfolio allocated to portflithe risk/
portfolio) and toT-bills (the risk-free assetQuation 7.1%

b. Calculate the share of the complete portfoliested in each asset and in
T-bills.

Recall that our tw risky assets, the bond and stock mutual funds, are alreaehsided
portfolios. Thediversification within each of these portfolios must be credited for a good
deal of the risk reduction compared to wadsified single securities.df example, the
standard déation of the rate of return on ameaage stock is about 50% (deigure?.2).

In contrast, the standardwdation of our stock-indefund is only 20%, about equal to the
historical standard détion of the S&P 500 portfolidlhis is eidence of the importance

of diversification within the asset class. Optimizing the asset allocation between bonds and
stocks contribited incrementally to the imprement in the neard-to-\olatility ratio of the
complete portfolioThe CAL with stocks, bonds, and bilBigure7.7) shaws that the stan-

dard deiation of the complete portfolio can be further reduced to 18% while maintaining
the samegected return of 13% as the stock portfolio.

The universe of available securities includes two risky stock funds, A and B, and T-bills. The data
for the universe are as follows:

Expected Return Standard Deviation

A 10% 20%
CONCEPT B 30 60
CHECK T-bills 5 0

3

The correlation coefficient between funds A and Bis —.2.

a. Draw the opportunity set of funds A and B.

b. Find the optimal risky portfolio, P and its expected return and standard deviation.
c. Find the slope of the CAL supported by T-bills and portfolio P.

d. How much will an investor with A = 5 invest in funds A and B and in T-bills?

74 THE MARKOWITZ PORTFOLIO

SELECTION MODEL

Security Selection

We can generalize the portfolio construction problem to the case of risyg securities
and a risk-free ass&ts in the tvo risky assetsxample, the problem has three parts. First,
we identify the risk—return combinationsaélable from the set of rigkassets. Nd, we
identify the optimal portfolio of risk assets byifiding the portfolio weights that result
in the steepest CAL. Finallyve choose an appropriate complete portfolio by mixing the
risk-free asset with the optimal riglortfolio. Before describing the process in detalil, let
us frst present anwerview.
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Efficient Frontier

. [}
[ J
Global ‘e Individual
- Minimum- /. X < Assets |
Varlange Minimum-Variance Frontier
Portfolio

FIGURE 7.10 The minimum-variance frontier of risky assets

CAL(P)
_ - Efficient Frontier

Iy

FIGURE 7.11 The efficient frontier of risky assets with
the optimal CAL

The frst step is to determine the
risk—return opportunitiesvailable to
the irvestor These are summarized
by the minimum-variance fron-
tier of risky assetsThis frontier is a
graph of the lwest possible ariance
that can be attained for avgn port-
folio expected return. ®en the input
data for epected returns, ariances,
and cwvariances, we can calculate the
minimum-variance portfolio for an
targeted a&pected returnThe plot of
these gpected return—standardvila-
tion pairs is presented Figure 7.10

Notice that all the indidual assets
lie to the right inside the frontieat
least when we alle short sales in the
construction of risk portfolios® This
tells us that risk portfolios compris-
ing only a single asset are ifiefent.
Diversifying investments leads to port
folios with higher &pected returns
and laver standard deations.

All the portfolios that lie on the
minimum-variance frontier from the
global minimum-ariance portfolio
and upvard proiide the best risk—
return combinations and thus are can-
didates for the optimal portfolialhe
part of the frontier that lies abe the
global minimum-ariance portfolio,
therefore, is called thefficient fron-
tier of risky assets. For ary portfolio
on the laver portion of the minimum-
variance frontigrthere is a portfolio
with the same standard\dation and
a greater xpected return positioned
directly abwe it. Hence the bottom
part of the minimum-ariance frontier
is ineficient.

The second part of the optimiza-
tion plan irvolves the risk-free asset.
As before, we search for the capital

allocation line with the highestward-to-wlatility ratio (that is, the steepest slope) as

shavn in Figure 7.11

8When short sales are prohibited, single securities may lie on the fréotiexample, the security with the high-
est expected return must lie on the fronties that security represents tirdy way that one can obtain a return
that high, and so it must also be the minimuamiance vay to obtain that returiWwhen short sales are feasible,
however, portfolios can be constructed thafesfthe samex@ected return and\eer variance These portfolios
typically will have short positions in l@-expected-return securities.



eXcel APPLICATIONS: TWO-security model

he accompanying spreadsheet can be used to
measure the return and risk of a portfolio of two
risky assets. The model calculates the return and
risk for varying weights of each security along with
the optimal risky and minimum-variance portfo-
lio. Graphs are automatically generated for various

model inputs. The model allows you to specify a tar-
get rate of return and solves for optimal combina-
tions using the risk-free asset and the optimal risky
portfolio. The spreadsheet is constructed with the
two-security return data from Table 7.1. This spread-
sheet is available at www.mhhe.com/bkm.

A | B | c D E F Expectedfeturn (%)
1 | Asset Allocation Analysis: Risk and Return
2 Expected Standard |Correlation
3 Return Deviation | Coefficient| Covariance
4 Security 1 0.08 0.12 0.3 0.0072
5 Security 2 0.13 0.2
6 T-Bill 0.05 0
7
8 Weight Weight Expected Standard Reward to
9 Security 1 Security 2 Return Deviation Volatility
10 1 0 0.08000 0.12000 0.25000
1 0.9 0.1 0.08500 0.11559 0.30281
12 0.8 0.2 0.09000 0.11454 0.34922
13 0.7 0.3 0.09500 0.11696 0.38474 0 T T T T T T >
14 06 0.4 0.10000 0.12264 0.40771 0 5 100 1SE 200255308 35

Standard Deviation (%)

The CAL that is supported by the optimal portfolpis tangent to the &€ient frontier
This CAL dominates all alternat feasible lines (the brek lines that are dnan through
the frontier). Portfolid®, therefore, is the optimal rigkportfolio.

Finally, in the last part of the problem the imidual investor chooses the appropriate
mix between the optimal rigkportfolio P andT-bills, exactly as in Figure 7.8.

Now let us consider each part of the portfolio construction problem in more detail. In
the frst part of the problem, risk—return analysis, the portfolio manager needs as inputs
a set of estimates for thepected returns of each security and a set of estimates for the
covariance matrix. (In &t Five on security analysis we witkamine the securityaluation
techniques and methods dafidncial analysis that analysts user Rov, we will assume
that analysts already Y spent the time and resources to prepare the inputs.)

The portfolio manager is moarmed with the estimates oE(r;) and then X nestimates
of the cwariance matrix in which the diagonal elements are estimates of thgances,

a?, and then? — n = n(n — 1) off-diagonal elements are the estimates of theitances
between each pair of asset returnau¥an erify this fromTable 7.2for the case = 2.)
We know that each ceariance appears twice in this table, so actually we hén — 1)/2
different coariance estimates. If our portfolio management uniec®50 securities, our
security analysts need to deli 50 estimates ofxpected returns, 50 estimates airiv
ances, and 5& 49/2= 1,225 diferent estimates of eariancesThis is a daunting task!
(We shav later hav the number of required estimates can be reduced substantially

Once these estimates are compiled, ttpeeted return andaviance of ay risky port-
folio with weights in each securijty;, can be calculated from the borderediar@ance

matrix or, equialently from the follaving formulas:

E(r,) = X, WE(r)
i=1

(7.15)

21
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5=, > Ww Cov(r,r;) (7.16)

i=1 j=1

An extended werked example shwing you hav to do this using a spreadsheet is presented
in Appendix Aof this chapter

Wementioned earlier that the idea o¥elisification is age-oldThe phrase “dom’put all
your eggs in one bask” existed long before modermfnce theorylt was not until 1952,
however, that Harry Markwitz published a formal model of portfolio selection embodying
diversification principles, thereby ping the vay for his 1990 Nobel Prize in Economfts.
His model is precisely step one of portfolio management: the idexith of the dicient
set of portfolios, or thefiicient frontier of risky assets.

The principal idea behind the frontier set of yiglortfolios is that, for anrisk level,
we are interested only in that portfolio with the highegteeted returnAlternatively, the
frontier is the set of portfolios that minimizes theriance for ap target expected return.

Indeed, the tw methods of computing thefigient set of risi portfolios are equa-
lent. To see this, consider the graphical representation of these procdegres7.12
shaows the minimum-griance frontier

The points mar&d by squares are the result ofaai@nce-minimization progranwe
first draw the constraints, that is, horizontal lines at tivellef required gpected returns.
We then look for the portfolio with the Yeest standard détion that plots on each hori-
zontal line—we look for the portfolio that will ploafthest to the left (smallest standard
deviation) on that lineWhen we repeat this for mamevels of required xpected returns,
the shape of the minimumaxiance frontier emges.We then discard the bottom (dashed)
half of the frontierbecause it is in&tient.

E(r)

m Frontier
of Risky Assets

E(r,) "/
[

el

Global Minimum\—\\
E(r,) Variance Portfolio |~

FIGURE 7.12 The efficient portfolio set

®Harry Marlowitz, “Portfolio Selectiori, Journal of Fnance March 1952,
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In the alternatie approach, we dnaa \ertical line that represents the standardiate
tion constraintWe then consider all portfolios that plot on this linevghthe same standard
deviation) and choose the one with the highegteeted return, that is, the portfolio that
plots highest on thisertical line. Repeating this procedure for mamrtical lines (leels
of standard deation) gives us the points magkl by circles that trace the upper portion of
the minimum-ariance frontierthe eficient frontier

When this step is completed, wevhan list of eficient portfolios, because the solution
to the optimization program includes the portfolio proportiams,the epected return,
E(rp), and the standard dation, o,.

Let us restate what our portfolio manager has donarsdle estimates generated by
the security analysts were transformed into a sekpéaed rates of return and avae
riance matrixThis group of estimates we shall call thput list. This input list is then fed
into the optimization program.

Before we proceed to the second step of choosing the optimalpaskolio from the
frontier set, let us consider a practical point. Some clients may be subject to additional
constraints. Br example, map institutions are prohibited from taking short positions in
ary asset. br these clients the portfolio manager will add to the optimization program
constraints that rule out gative (short) positions in the search fofi@ént portfolios.

In this special case it is possible that single assets may be, in and of tesmaftient
risky portfolios. For example, the asset with the highegpected return will be a frontier
portfolio because, without the opportunity of short sales, the cajytavobtain that rate of
return is to hold the asset as anehtire risk portfolio.

Short-sale restrictions are by no means the only such constraintexafple, some
clients may want to ensure a minimalJel of expected diidend yield from the optimal
portfolio. In this case the input list will beganded to include a set ofgected diidend
yieldsd, . . .,d, and the optimization program will include an additional constraint that
ensures that thexpected diidend yield of the portfolio will equal orxeeed the desired
level, d.

Portfolio managers can tailor thdiefent set to conform to gndesire of the client. Of
course, ay constraint carries a price tag in the sense thatfameet frontier constructed
subject to gtra constraints will dér a revard-to-wlatility ratio inferior to that of a less
constrained oneThe client should be madevare of this cost and should carefully con-
sider constraints that are not mandated by la

Another type of constraint is aimed at ruling owtgistments in industries or countries
considered ethically or politically undesirablehis is referred to asocially responsible
investing which entails a cost in the form of aner revard-to-wlatility on the resultant
constrained, optimal portfolidhis cost can be just#bly viewed as a contriltion to the
underlying cause.

Capital Allocation and the Separation Property

Now that we hae the eficient frontier we proceed to step tnand introduce the risk-free
assetFigure7.13shaws the eficient frontier plus three CALSs representirgrious portfo-
lios from the dficient setAs before, we ratchet up the CAL by selectindedént portfo-
lios until we reach portfoli®, which is the tangencpoint of a line frontF to the eficient
frontier. Portfolio P maximizes the ngard-to-wlatility ratio, the slope of the line frof

to portfolios on the éicient frontier At this point our portfolio manager is done. Portfolio
P is the optimal risk portfolio for the manages’clients.This is a good time to ponder our
results and their implementation.
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eXcel APPLICATIONS: optimal portfolios

spreadsheet model featuring optimal risky port-
folios is available on the Online Learning Center
at www.mhhe.com/bkm. It contains a template that is
similar to the template developed in this section. The
model can be used to find optimal mixes of securities
for targeted levels of returns for both restricted and

unrestricted portfolios. Graphs of the efficient fron-
tier are generated for each set of inputs. The example
available at our Web site applies the model to port-
folios constructed from equity indexes (called WEBS
securities) of several countries.

A | B | c | o | E F

1 Efficient Frontier for World Equity Benchmark Securities (WEBS)

2

3 Mean Standard

4 WEBS Return Deviation Country

5 EWD 15.56393 26.4868 Sweden

6 EWH 6.3852 41.1475 Hong Kong

7 EWI 26.5999 26.0514 Italy

8 EWJ 1.4133 26.0709 Japan

9 EWL 18.0745 21.6916 Switzerland

10 EWP 18.6347 25.0779 Spain

1 EWW 16.2243 38.7686 Mexico

12 S&P 500 17.2306 17.1944

The most striking conclusion is that a portfolio man-
E(n) ager will ofer the same rigkportfolio, P, to all clients
regardless of their dgee of risk @ersion’ The dgree
CAL(P) of risk aversion of the client comes into play only in

Efficient Frontier
CAL(A) of Risky Assets

CAL(G)

G (Global Minimum-Variance Portfolio)

FIGURE 7.13 Capital allocation lines with
various portfolios from the efficient set

the selection of the desired point along the CRhus
the only diference between clientshoices is that the
more risk-&erse client will iwest more in the risk-free
asset and less in the optimal sigbortfolio than will a
less risk-aerse client. Havever, both will use portfolio
P as their optimal riskinvestment ehicle.

This result is called separ ation property; it tells us
that the portfolio choice problem may be separated into
two independent task&The frst task, determination of
the optimal risk portfolio, is purely technical. @én
the manages’ input list, the best rigkportfolio is the
same for all clients, gardless of risk\arsion.The sec-
ond task, haever, allocation of the complete portfolio
to T-bills versus the riskportfolio, depends on personal
preference. Here the client is the decisionenak

The crucial point is that the optimal portfokothat the manager fefrs is the same for
all clients. Put anotheray, investors with grying dgrees of risk @ersion wuld be satis-
fied with a unverse of only tw mutual funds: a mogemarket fund for risk-free imest-
ments and a mutual fund that hold the optimalyripkrtfolio, P, on the tangencpoint
of the CAL and the éftient frontier This result maks professional management more

10Clients who impose special restrictions (constraints) on the marsageras didend yield, will obtain another
optimal portfolio.Any constraint that is added to an optimization problem leads, in general, ferardifand
inferior optimum compared to an unconstrained program.

The separation propertyas frst noted by Nobel laureate JamEsbin, “Liquidity Preference as Betiar
toward RisK, Review of Economic Statistic&5 (February 1958), pp. 65-86.
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efficient and hence less costyne managemeritin can sere ary number of clients with
relatively small incremental administredi costs.

In practice, hwever, different managers will estimate fifent input lists, thus der
ing different eficient frontiers, and &ér different “optimal” portfolios to their clients.
The source of the disparity lies in the security analysis. ltoithymentioning here that
the unversal rule of GIGO (garbage in—garbage out) also applies to security analysis. If
the quality of the security analysis is poapassie portfolio such as a magkinde fund
will result in a better CAL than an ae#i portfolio that uses Vo-quality security analysis
to tilt portfolio weights tward seeminglydvorable (mispriced) securities.

One particular input list thatauld lead to a wrthless estimate of thefefient frontier
is based on recent securityeaage returns. If sampleerage returnsv@r recent years are
used as proxies for the truepected return on the securitiie noise in those estimates will
male the resultant &€ient frontier virtually useless for portfolio construction.

Consider a stock with an annual standardiat®n of 50%. Een if one were to use
a 10-year @erage to estimate itsxgected return (and 10 years is almost ancient his-
tory in the life of a corporation), the standardridéon of that estimate euld still be
50/+/10= 15 8. The chances that thiserage representsgected returns for the com-
ing year are ngligible.!? In Chapter 25, we see arample demonstrating thatfiefent
frontiers constructed from past data may be wildly optimistic in terms ofppaent
opportunities thg offer to imprase Sharpe ratios.

As we hae seen, optimal rigkportfolios for diferent clients also mayavy because
of portfolio constraints such asvaiend-yield requirements, tax considerations, or other
client preferences. Nertheless, this analysis suggests that a limited number of portfolios
may be sufcient to sere the demands of a wide range ofastorsThis is the theoretical
basis of the mutual fund industry

The (computerized) optimization technique is the easiest part of the portfolio construction
problem.The real arena of competition among portfolio managers is in sophisticated secu-
rity analysis.This analysis, as well as its proper interpretation, is part of the art of portfolio
constructiont3

Suppose that two portfolio managers who work for competing investment management houses
each employ a group of security analysts to prepare the input list for the Markowitz algorithm.
When all is completed, it turns out that the efficient frontier obtained by portfolio manager A
seems to dominate that of manager B. By dominate, we mean that A's optimal risky portfolio
lies northwest of B's. Hence, given a choice, investors will all prefer the risky portfolio that lies

(o0& on the CAL of A.
CHECK
. What should be made of this outcome?

4

. Should it be attributed to better security analysis by A’s analysts?
. Could it be that A’'s computer program is superior?

O o T 9o

. If you were advising clients (and had an advance glimpse at the efficient frontiers of various
managers), would you tell them to periodically switch their money to the manager with the
most northwesterly portfolio?

2Moreover, you cannotoid this problem by observing the rate of return on the stock more frequar@iap-
ter 5 we shwed that the accurgof the sample\gerage as an estimate ofpected return depends on the length
of the sample period, and is not imped by sampling more frequently within asgn sample period.

BYou can ind a nice discussion of some practical issues in implementfijeat diversification in a white
paper prepared by/ealthcare Capital Management at this addresaw.financewar e.com/ruminationsWP_
EfficiencyDeficiency.pdf. A copy of the report is alsovailable at the Online Learning Center for thist tevww.
mhhe.com/bkm.
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The Power of Diversification

Section 7.1 introduced the concept ofadtsification and the limits to the beirtsfof diver
sification resulting from systematic risk.v@n the tools we & developed, we can recon-
sider this intuition more rigorously and at the same time sharpen our ingightdireg the
power of diersification.

Recall fromEquation 7.16restated here, that the general formula for Hréawvce of a
portfolio is

n n

2 =3 > ww Cov(r,r)) (7.16)

i=1 j=1
Consider nw the nave diersification stratgy in which anequally weightegbortfolio is
constructed, meaning thet = 1/n for each securityln this caseequation 7.16may be
rewritten as follavs, where we break out the terms for which j into a separate sum,
notingthat Cov(r;, r;) = o?

> 1wl o2 wvwwe 1
op—ﬁz s o] +> Y = Cour,r;) (7.17)

Note that there ane variance terms ane(n — 1) covariance terms iquation 7.17
If we defne the aerage @ariance andwerage cwariance of the securities as

52 =13 g2 (7.18)
n& '
1 n n
ov(r;, 7.19
n(n 1) Jz:“ ; (5. 17) (719
J#
we can &press portfolio griance as
1_, n—1—
o5 = ﬁoz +——=Cov (7.20)

Now examine the déct of dversification.When the serage ceariance among security
returns is zero, as it is when all risk igrf-specifc, portfolio variance can be dmen to
zero.We see this fronkEquation 7.20The second term on the right-hand side will be zero
in this scenario, while thar§t term approaches zero adecomes larer Hence when
security returns are uncorrelated, thevpo of dversifcation to reduce portfolio risk is
unlimited.

However, the more important case is the one in which economy-wideatdsérs impart
positive correlation among stock returns. In this case, as the portfolio becomes more highly
diversified (0 increases) portfolioariance remains posrg. Although irm-specifc risk,
represented by ther$t term inEquation 7.20is still diversified avay, the second term
simply approacheCov as n becomes greatefNote that § — 1)/n =1 — 1/n, which
approaches 1 for lge n] Thus the irreducible risk of awdirsified portfolio depends on
the cwariance of the returns of the component securities, which in turn is a function of the
importance of systematiadtors in the economy

To see further the fundamental relationship between systematic risk and security corre-
lations, suppose for simplicity that all securitiegdha common standardwdation, o, and
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all security pairs hae a common correlation cdefient, p. Then the ceariance between
all pairs of securities iso?, andEquation 7.2(ecomes

i=lcz+—n_1p02 (7.21)
n n

(o)

The efect of correlation is n@ explicit. Whenp = 0, we again obtain the insurance
principle, where portfolio ariance approaches zeroralsecomes greatelFor p > 0, how-
ever, portfolio variance remains posit. In fact, forp = 1, portfolio \ariance equals?
regardless oh, demonstrating that dérsification is of no bendf In the case of perfect
correlation, all risk is systematic. More generalign becomes greateEquation 7.21
shaws that systematic risk becomas?.

Table7.4 presents portfolio standardui&ion as we includever-greater numbers of
securities in the portfolio for twcasesp = 0 andp = .40.The table tagso to be 50%.
As one vould expect, portfolio risk is greater when= .40. More surprising, perhaps, is
that portfolio risk diminishesaf less rapidly as increases in the posi# correlation case.
The correlation among security returns limits thevgioof diversification.

Note that for a 100-security portfolio, the standardiateon is 5% in the uncorrelated
case—still signitant compared to the potential of zero standakdatien. For p = .40,
the standard deation is high, 31.86%, yet it isevy close to undersifiable systematic
risk in the infnite-sized security umerse, \/5%7 =.4xX 50 = 31 6%, At this point,
further diersification is of little \alue.

Perhaps the most important insight from tkereise is thiswhen we hold diersified
portfolios, the contribtion to portfolio risk of a particular security will depend on the
covarianceof that securitys return with those of other securities, aodon the security
variance As we shall see in Chapter 9, this implies tlat fisk premiums also should
depend on oariances rather than totenability of returns.

Suppose that the universe of available risky securities consists of a large number of stocks, iden-
tically distributed with E(r) = 15%, ¢ = 60%, and a common correlation coefficient of p = .5.

‘o0 (e 2. What are the expected return and standard deviation of an equally weighted risky portfolio
CHECK of 25 stocks?

5 b. What is the smallest number of stocks necessary to generate an efficient portfolio with a
standard deviation equal to or smaller than 43%?

c. What is the systematic risk in this security universe?
d. If T-bills are available and yield 10%, what is the slope of the CAL?

Asset Allocation and Security Selection

As we hae seen, the theories of security selection and asset allocation are identical. Both
activities call for the construction of anfigient frontier and the choice of a particular
portfolio from along that frontiehe determination of the optimal combination of secu-
rities proceeds in the same manner as the analysis of the optimal combination of asset
classesWhy, then, do we (and thevastment community) distinguish between asset allo-
cation and security selection?

Three fictors are at wrk. First, as a result of greater need and ability ve ¢or col-
lege educations, recreation, longer life in retirement, health care needs, etc.), the demand
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TABLE 7.4

Risk reduction of
equally weighted
portfolios in
correlated and
uncorrelated
universes

Portfolio Theory and Practice

p=0 p=.4
Portfolio Standard Standard
Universe Weights w = 1/n Deviation Reduction  Deviation  Reduction

Size n (%) (%) ino (%) in o
1 100 50.00 14.64 50.00 8.17

2 50 35.36 41.83
5 20 22.36 1.95 36.06 0.70

6 16.67 20.41 35.36
10 10 15.81 0.73 33.91 0.20

11 9.09 15.08 33.71
20 5 11.18 0.27 32.79 0.06

21 4.76 10.91 32.73
100 1 5.00 0.02 31.86 0.00

101 0.99 4.98 31.86

for sophisticated westment management has increased enormdestynd, the widening
spectrum of ihancial markts and ihancial instruments has put sophisticatecegtment
beyond the capacity of mgnamateur iwestors. Finallythere are strong economies of
scale in imestment analysisThe end result is that the size of a competiirvestment
compaly has gravn with the industryand eficiencgy in organization has become an impor
tant issue.

A large investment companis likely to invest both in domestic and international mar
kets and in a broad set of asset classes, each of which requires speocipkrtsee Hence
the management of each asset-class portfolio needs to be decentralized, and it becomes
impossible to simultaneously optimize the entirgamizations risky portfolio in one
stage, although thisauld be prescribed as optimal treoetical grounds.

The practice is therefore to optimize the security selection of each asset-class portfolio
independentlyAt the same time, top management continually updates the asset allocation
of the oganization, adjusting thevastment bdget allotted to each asset-class portfolio.

7.5 RISK POOLING, RISK SHARING, AND RISK

IN THE LONG RUN

Consider an insurance compahat ofers a 1-year policon a residential propertyaiued
at $100,000. Suppose the follimg event tree gies the probability distriltion of yearend
payouts on the polc

p=.001 Loss: payout = $100,000

1-p=.999 No Loss: payout =0

Assume for simplicity that the insurance compaats aside $100,000 toveu its potential
payout on the polic The funds may be wested inf-bills for the coerage yearearning the



CHAPTER 7 Optimal Risky Portfolios

risk-free rate of 5%. Of course, tleepectedpayout on the policis far smaller; it equals
p X potential payout= .001x 100,000= $100.The insurer may chge an up-front pre-
mium of $120.The $120 yields (with 5% interest) $126 by yead.Therefore, the insur
er's xpected prdf on the poliy is $126— $100= $26, which maks for a risk premium
of 2.6 basis points (.026%) on the $100,000 set asidevéy potential losses. Rehadi to
what appears a paltrxeected praf of $26, the standard diation is enormous, $3,160.70
(try checking this); this implies a standardidgon of return ofr = 3.16% of the $100,000
investment, compared to a risk premium of only 0.26%.

By now you may be thinking aboutwdirsification and the insurance principle. Because
the compay will cover maity such properties, each of which has independent risk, perhaps
the lage one-polig risk (relative to the risk premium) can be broughtwhato a “satiséic-
tory” level. Before we proceed, ivaver, we pause for a digression on why this discussion
is relevant to understanding portfolio risk. It is because the analogy between the insurance
principle and portfolio diersification is essential to understanding risk in the long run.

Risk Pooling and the Insurance Principle

Suppose the insurance compaells 10,000 of these uncorrelated policies. In the gbnte

of portfolio diversification, one might think that 10,000 uncorrelated assetddvdiver-

sify away practically all riskThe pected rate of return on each of the 10,000 identical,
independent policies is .026%, and this is the rate of return of the collection of policies as
well. To find the standard d@tion of the rate of return we ukguation 7.20Because the
covariance between griwo policies is zero and is the same for each poliche \ariance

and standard d@tion of the rate of return on the 10,000-pyplportfolio are

2_1 >
O'P - ﬁ()'
=9 =319 _ ozies .
P Un /10,000

Now the standard dation is of the same order as the risk premium, anddhdould be
further decreased by sellinges more policiesThis is the insurance principle.

It seems that as thérh sells more policies, its risk continues tlf The standard
deviation of the rate of return on equity capitall$ relatve to the gpected return, and
the probability of loss with it. Sooner or Igtérappears, tharim will earn a risk-free risk
premium. Sound too good to be true? Itis.

This line of reasoning might remind you of thamiliar agument that imesting in
stocks for the long run reduces risk. In both cases, scaling up the bet (either by adding
more policies orx@ending the imestment to longer periods) appears to reduce Aisd,
in fact, the flav in this agument is the same as the one that we encountered when we
looked at the claim that stockviestments become less ysik the long runWe sav then
that the probability of loss is an inadequate measure of risk, as it does not account for the
magnitude of the possible loss. In the insurance application, the maximum possible loss
is 10,000x $100,000= $1 billion, and hence a comparison with a one-gdigrtfolio”
(with a maximum loss of $100,000) cannot be made on the basis of means and standard
deviations of rates of return.

This claim may be surprising\fter all, the proits from maiy policies are normally
distributed!* so the distriition is symmetric and the standardvidéion should be an

¥This agument for normality is similar to that of thewsstand gample in Chapter 8/ith mary policies, the
most likely outcomes for total payout are near tRpeeted alue. D@iations in either direction are lessédil,
and the probability distriltion of payouts approaches tlzerfiliar bell-shaped cuer
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appropriate measure of riskccordingly, it would seem that the steady decline of the
portfolio standard dgation faithfully reflects risk reduction.

The problem with the gument is that increasing the size of thadile of policies does
not male for dwersification! Diversifying a portfolio means diding a fixed investment
budget across more assets. If avestment of $100,000 in Microsoft is to beefisifed,
the same $100,000 must beided between shares of Microsoft and share&/afMart
and otherifms. In contrast, an w@stor who currently has $100,00@ésted in Microsoft
doesnot reduce total risk by adding another $100,00@s$tment inNal-Mart.

An investment of $200,000 dded equally between Microsoft avdal-Mart, cannot
be compared to anvastment of $100,000 in Microsoft alone ushage of eturn statis-
tics. This is because the scales of theestments are ddrent. Put difierently, if we wish
to compare these twinvestments, the distnithion of the rate of return is not reliablde
must compare the disttiion ofdollar profits from the two investments$>

When we combine uncorrelated insurance policies, each with gpeeted praf of
$m, both expected total praf and standard daation (SD) grev in direct proportion tan.
This is so because

E(nm) = nE(w)
Var(nm) = n?Var(w) = r? o?
SD(nm) = no

The ratio of mean to standardvifgion does not change wherincreases. Theisk—
return trade-dftherefore does not impve with the assumption of additional policies.
Ironically, the economics of the insurance industry has little to do with what is commonly
called the insurance principle. Before we turn to the principle that do@stlde industry
let’s first turn back to see what thisample suggests about risk in the long run.

Consider the westor with a $100,000 portfolio.gé€ping the $100,000 in the risk
portfolio for a second year does notefisify the risk associated with thiest year ivest-
ment. Keeping $100,000 in a rigknvestment for an additional year is analogous to the
insurance companselling an additional $100,000 pofliAverage rates of return cannot
be used to meaningfully compare a 2-yeaesment in the rigkportfolio with a 1-year
investment in the same rigkortfolio. Instead, we must compare the disititn oftermi-
nal valueqor 2-year HPRs) of alternaé 2-yearinvestments: 2 years in the risgortfolio
versus 1 year in the righportfolioand 1 year in a risk-free irestment.

Risk Sharing

If risk pooling(the sale of additional independent policies) does xpia@e the insurance
industry then what doesPhe answer is riskharing the distrilution of a ixed amount of
risk among mayinvestors.

The birth of the insurance industry is beéd to hae talen place in Edard Lloyd’s
coffee house in the late 1600%e economic model underlying d's underwriters today
is quite similar to insurance underwriting when tinmfwas founded. Suppose a U.S.-cor
poration desires to insure the launch of a sateldteed at $100 million. It can contact
one of Llgyd’s independent underwriterBhat underwriter will contact other underwrit-
ers who each will tak a piece of the action—each will choose to insuiraetion of the
project risk.When the lead underwriter successfully puts together a consortium that is

15Think back to your corporaténfince class and you will see the analogy to ranking mutuatlysve projects

of different magnitudeThe rate of return, or IRR of twinvestments, can incorrectly rank the projects because it
ignores size; only the net preseatue criterion can be relied on to correctly rank competing projets.is so
because NPV accounts for the dollar magnitude of trestment and subsequent caskwiio
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willing to cover 100% of the risk, a proposal is made to the launch compimtice that
each underwriter hasfexed amounbdf equity capitalThe underwriter diersifies its risk

by allocating its imestment bdget across marprojects that are not perfectly correlated,
which is why one underwriter will decline to underwrite to@é&a fraction of ansingle
project. In other wrds, the underwriters engage in risk shariftggy limit their exposure

to ary single source of risk by sharing that risk with other underwriters. Each wersiéli
fies a lagely fixed portfolio across manprojects, and the risk of each project is shared
with mary other underwritersThis is the proper use of risk pooling: pooling manurces

of risk in a portfolio ofgivensizel®

Let's return to theproperty insurance. Suppose an insurance entrepreneur caet mark
ewvery year 10,000 policies of the type we discussed (each with $100,000echg®), for
$1 billion of total cowerage With such pravess, this entrepreneur can go public and sell
shares in the enterprise. leesay 10,000 irestors purchase one share of the billion-dollar
compary and share equally in the risk premium. If a particular pgays of, each ives-
tor is at risk for only $100,000/10,069 $10.There is minimal risk from ansingle polig.

Moreover, even if the insurance compgarhas not pooled manpolicies, indvidual
investors can still limit their risk by dérsifying their evn holdings. Shareholders of eor
porations do not look for the corporation to reduce their portfolio risk. Rategrdiver-
sify their investment portfolios by dvying them up across stocks of myazompanies.

Keeping with the assumption that all policies are truly independent, it actualgsmak
no diference ha mary separate insurance companieseroa gven number of policies
currently outstanding in an insurance neriSuppose that instead of the billion-dollar com-
pary, shares of t@ $500-million insurance companies trade, each with a “portfolio” of
5,000 policiesThe distrilution of the aggmgate proit of the two companies is identical to
that of the billion-dollar companTherefore, hiying one share in the & compan pro-
vides the same @@rsification \alue as bying one share in each of theotemaller irms.

The bottom line is that portfolio risk management is about the allocation inéé f
investment bdget to assets that are not perfectly correlated. In thisoement, rate of
return statistics, that isxpected returns,ariances, and eariances, are sfifient to opti-
mize the inestment portfolio. Choices among altermatinvestments of a dérent magni-
tude require that we abandon rates of returminrfof dollar proits. This applies as well
to investments for the long run.

Visit us at www.mhhe.com/bkm

6Underwriters that, through successful netikg and efcient administration, can underwrite pteble risks
beyond the capacity of theimm equity capital may turn to reinsurance companiesverca fraction of the risk
of a lage \enture. Competition in the reinsurance nearleeps rates @ and allavs the underwriter todep a
good share of the pritg of the reinsured risk3his is hav insurers can leerage their equity capital.

1. The «pected return of a portfolio is the weightedege of the component securitypected SUMMARY
returns with the imestment proportions as weights.

2. Theariance of a portfolio is the weighted sum of the elements of theiaace matrix with the
product of the imestment proportions as weight$ius the ariance of each asset is weighted by
the square of its restment proportioriThe cavariance of each pair of assets appears twice in the
covariance matrix; thus the portfolicasiance includes twice eachvemiance weighted by the
product of the imestment proportions in each of theotassets.

3. Even if the cwariances are posit, the portfolio standard dation is less than the weightedea
age of the component standardiidéons, as long as the assets are not perfectly ygitorre-
lated.Thus portfolio dversification is of \alue as long as assets are less than perfectly correlated.
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4. The greater an assettovariance with the other assets in the portfolio, the more it coigstio
portfolio variance An asset that is perfectly gatively correlated with a portfolio can seras a
perfect hedgeThe perfect hedge asset can reduce the portfaliance to zero.

5. The eficient frontier is the graphical representation of a set of portfolios that maxirpeeted
return for each Mel of portfolio risk. Rational iwestors will choose a portfolio on thefiefent
frontier.

6. A portfolio manager identiés the dicient frontier by frst establishing estimates for asset
expected returns and thewasiance matrixThis input list is then fed into an optimization pro-
gram that reports as outputs thegstment proportionsxpected returns, and standardidéons
of the portfolios on the &tient frontier

7. In general, portfolio managers will arei at diferent eficient portfolios because of &rences
in methods and quality of security analysis. Managers compete on the quality of their security
analysis relatie to their management fees.

8. If a risk-free asset isvailable and input lists are identical, alvé@stors will choose the same
portfolio on the dicient frontier of risly assets: the portfolio tangent to the CAl. investors
with identical input lists will hold an identical rigkportfolio, differing only in hav much each
allocates to this optimal portfolio and to the risk-free asHais result is characterized as the
separation principle of portfolio construction.

9. Diversification is based on the allocation ofized portfolio across seeral assets, limiting the
exposure to ayone source of riskAdding additional risi assets to a portfolio, thereby increas-
ing the total amounts wested, does not reduce dollar risker if it males the rate of return
more predictableThis is because that uncertainty is applied to gelaimvestment base. Nor
does iwvesting @er longer horizons reduce risk. Increasing theestment horizon is analogous
to investing in more assets. It increases total Asialogously the ley to the insurance industry

Related Web sites for is risk sharing—the spreading of risk across ynawuestors, each of whom tek on only a small
this chapter are available exposure to ay given source of risk. Risk pooling—the assumption \&renore sources of
at www.mhhe.com/bkm risk—may increase rate of return predictabjlliyt not the predictability of total dollar returns.

KEY TERMS diversification firm-specifc risk optimal risky portfolio
insurance principle nonsystematic risk minimum-\ariance frontier
market risk diversifiable risk efficient frontier of risl assets
systematic risk minimum-\ariance portfolio input list
nondiersifiable risk portfolio opportunity set separation property
unique risk reward-to-\olatility ratio

E
Y4
O
=

£

O

v

0
c
c

€

-

©

(72}

>

-
@
>

-u
2
O
w
-
m
=

. Which of the follaving factors reflecpure marlet risk for a gien corporation?

Increased short-term interest rates.
Fire in the corporate arehouse.
Increased insurance costs.

Death of the CEO.

Increased labor costs.

Paoop

2. When adding real estate to an asset allocation program that currently includes only stocks, bonds,
and cash, which of the properties of real estate retufect giortfoliorisk? Explain.
a. Standard déation.
b. Expected return.
c. Correlation with returns of the other asset classes.

3. Which of the follaving statements about the minimurariance portfolio of all risk securities
are \alid? (Assume short sales are waiéal.) Explain.
a. Its variance must be Veer than those of all other securities or portfolios.
b. Its expected return can bever than the risk-free rate.
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c. It may be the optimal rigkportfolio.
d. It must include all indiidual securities.

The following data apply to Problems 4 through 10: A pension fund manager is consid- Problems
ering three mutual funds. The first is a stock fund, the second is a long-term government

and corporate bond fund, and the third is a T-bill money market fund that yields a rate of

8%. The probability distribution of the risky funds is as follows:

Expected Return Standard Deviation

Stock fund (S) 20% 30%
Bond fund (B) 12 15

The correlation between the fund returns is .10.

4. What are the westment proportions in the minimuranance portfolio of the tavrisky funds,
and what is thexpected alue and standard dation of its rate of return?

5. Tahulate and dna the irvestment opportunity set of thedwisky funds. Use imestment pro-
portions for the stock fund of zero to 100% in increments of 20%.

6. Draw a tangent from the risk-free rate to the opportunityMgeat does your graph sivdor the
expected return and standard/dgion of the optimal portfolio?

7. Solve numerically for the proportions of each asset and forxpected return and standard
deviation of the optimal risk portfolio.

8. What is the revard-to-wlatility ratio of the best feasible CAL?

9. You require that your portfolio yield axgected return of 14%, and that it béi@ént, on the
best feasible CAL.
a. What is the standard dation of your portfolio?
b. What is the proportion irested in thd-bill fund and each of the wwrisky funds?

10. If you were to use only the twrisky funds, and still require anxpected return of 14%, what
would be the imestment proportions of your portfolio? Compare its standardtiten to that of
the optimized portfolio in Problem ®hat do you conclude?

11. Stocks ofer an epected rate of return of 18%, with a standandaten of 22%. Gold dérs an
expected return of 10% with a standardiidéon of 30%.

a. In light of the apparent inferiority of gold with respect to both mean return alatiliy,
would aryone hold gold? If so, demonstrate graphicallywhe would do so.

b. Given the data alve, reanswerd) with the additional assumption that the correlation coef-
ficient between gold and stocks equals 1vDaggraph illustrating whone wuld or would
not hold gold in one' portfolio. Could this set of assumptions fgpected returns, standard
deviations, and correlation represent an equilibrium for the securityatvark

12. Suppose that there are nyastocks in the security maekand that the characteristics of Stocks
A andB are gven as follovs:

Stock Expected Return Standard Deviation

A 10% 5%
B 15 10
Correlation = -1

Suppose that it is possible to barrat the risk-free rate; What must be thealue of the risk-
free rate?Klint: Think about constructing a risk-free portfolio from stogkandB.)

13. Assume thatxpected returns and standardiidéions for all securities (including the risk-free
rate for borraving and lending) are kman. In this case all wrestors will hae the same optimal
risky portfolio. (True or flse?)

14. The standard dgation of the portfolio is alays equal to the weightedezage of the standard
deviations of the assets in the portfolior(€& or filse?)
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15. Suppose you va a project that has a .7 chance of doubling yorgsiment in a year and a .3
chance of halving your #estment in a yeawhat is the standard dation of the rate of return
on this irvestment?

16. Suppose that you ki $1 million and the follwing two opportunities from which to construct
a portfolio:
a. Risk-free asset earning 12% per year
b. Risky asset with xpected return of 30% per year and standawiatien of 40%.

If you construct a portfolio with a standardsiion of 30%, what is itsxpected rate of return?

The following data are for Problems 17 through 19: The correlation coefficients between
pairs of stocks are as follows: Corr(A,B) = .85; Corr(A,C) = .60; Corr(A,D) = .45. Each
stock has an expected return of 8% and a standard deviation of 20%.

17. If your entire portfolio is nw composed of stock and you can add some of only one stock to
your portfolio, would you choose fplain your choice):
a. B.
b. C.
c. D.
d. Need more data.

18. Would the answer to Problem 17 change for more rigkse or risk-tolerant irestors? Explain.
19. Suppose that in addition toviesting in one more stock you canest inT-bills as well. Would
you change your answers to Problems 17 and 18 if-thikt rate is 8%7?

Cha"enge The following table of compound annual returns by decade applies to Challenge Prob-
Problems lems 20 and 21.

1920s* 1930s 1940s 1950s 1960s 1970s 1980s 1990s

Small-company stocks -3.72% 7.28% 20.63% 19.01% 13.72% 8.75% 12.46%  13.84%
Large-company stocks 18.36 =23 9.1 19.41 7.84 5.90 17.60 18.20
Long-term government 3.98 4.60 3.59 0.25 1.14 6.63 11.50 8.60
Intermediate-term government 3.77 3.91 1.70 1.1 3.41 6.11 12.01 7.74
Treasury bills 3.56 0.30 0.37 1.87 3.89 6.29 9.00 5.02
Inflation —1.00 —2.04 5.36 2.22 2.52 7.36 5.10 2.93

*Based on the period 1926-1929.
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20. Input the data from the table into a spreadsheet. Compute the serial correlation in decade returns
for each asset class and for inflatiddso find the correlation between the returns afious
asset classe¥hat do the data indicate?

21. Corvert the asset returns by decade presented in the table into real rates. Repeat the analysis of
Challenge Problem 20 for the real rates of return.

/—\ The following data apply to CFA Problems 1 through 3: Hennessy & Associates manages
CFAo a $30 million equity portfolio for the multimanager Wilstead Pension Fund. Jason Jones,
\ JROBLEMS financial vice president of Wilstead, noted that Hennessy had rather consistently achieved

the best record among the Wilstead’s six equity managers. Performance of the Hennessy
portfolio had been clearly superior to that of the S&P 500 in 4 of the past 5 years. In the one
less-favorable year, the shortfall was trivial.

Hennessy is a “bottom-up” manager. The firm largely avoids any attempt to “time the
market.” It also focuses on selection of individual stocks, rather than the weighting of
favored industries.

There is no apparent conformity of style among the six equity managers. The five manag-
ers, other than Hennessy, manage portfolios aggregating $250 million made up of more than
150 individual issues.
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Jones is convinced that Hennessy is able to apply superior skill to stock selection, but
the favorable returns are limited by the high degree of diversification in the portfolio. Over
the years, the portfolio generally held 40-50 stocks, with about 2%-3% of total funds com-
mitted to each issue. The reason Hennessy seemed to do well most years was that the firm
was able to identify each year 10 or 12 issues that registered particularly large gains.

Based on this overview, Jones outlined the following plan to the Wilstead pension
committee:

Let's tell Hennessy to limit the portfolio to no more than 20 stocks. Hennessy will
double the commitments to the stocks that it really favors, and eliminate the remain-
der. Except for this one new restriction, Hennessy should be free to manage the
portfolio exactly as before.

All the members of the pension committee generally supported Jones's proposal
because all agreed that Hennessy had seemed to demonstrate superior skill in selecting
stocks. Yet the proposal was a considerable departure from previous practice, and several
committee members raised questions. Respond to each of the following questions.

1. a. Will the limitation to 20 stocks li&ly increase or decrease the risk of the portfolio? Explain.
b. Is there ap way Hennessy could reduce the number of issues from 40 to 20 withouit signif
cantly afecting risk? Explain.

2. One committee memberas particularly enthusiastic concerning Josigsbposal. He suggested
that Hennessyg’ performance might beriefurther from reduction in the number of issues to 10.
If the reduction to 20 could bexgected to be ad@ntageous,»@lain why reduction to 10 might
be less likly to be adantageous. (Assume théfilstead will ezaluate the Hennessy portfolio
independently of the other portfolios in the fund.)

3. Another committee member suggested that, rather tlunate each managed portfolio indepen-
dently of other portfolios, it might be better to consider tliectés of a change in the Hennessy
portfolio on the total fund. Explain othis broader point of vie could afect the committee
decision to limit the holdings in the Hennessy portfolio to either 10 or 20 issues.

4. Which one of the follwing portfolios cannot lie on the fafient frontier as described by
Markowitz?

Portfolio Expected Return (%) Standard Deviation (%)
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a. w 15 36
b. X 12 15
(of Zz 5 7
d. Y 21

5. Which statement about portfoliowdirsification is correct?
a. Proper diersification can reduce or eliminate systematic risk.
b. Diversification reduces the portfol®&pected return because it reduces a portfotiatal risk.
c. As more securities are added to a portfolio, total risk typicatlyldvbe &pected todll at a
decreasing rate.
d. The risk-reducing benig$ of diversification do not occur meaningfully until at least 30 indi-
vidual securities are included in the portfolio.

6. The measure of risk for a security held ineedsified portfolio is:
a. Specifc risk.
b. Standard déation of returns.
c. Reirvestment risk.
d. Covariance.

7. Portfolio theory as described by Mariitz is most concerned with:
a. The elimination of systematic risk.
b. The efect of dversification on portfolio risk.
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c. The identifcation of unsystematic risk.
d. Active portfolio management to enhance return.

8. Assume that a riskvarse iwestor avning stock in Miller Corporation decides to add the stock
of either Mac or Green Corporation to her portfod.three stocks dér the samexpected
return and total ariability. The coariance of return between Miller and Mac-s05 and
between Miller and Green i5.05. Portfolio risk is gpected to:

a. Decline more when thevestor lnys Mac.

b. Decline more when thevestor luys Green.

c. Increase when either Mac or Green is bought.
d. Decline or increase, depending on otleatdrs.

9. StocksA, B, andC have the samexpected return and standardvidgion. The folloving table
shows the correlations between the returns on these stocks.

Stock A Stock B Stock C

Stock A +1.0

Stock B +0.9 +1.0
Stock C +0.1 -0.4 +1.0
Given these correlations, the portfolio constructed from these stocikg lihe lavest risk is a
kv portfolio:
O a. Equally invested in stocké andB.
£ b. Equally irnvested in stocké andC.
8 c. Equally invested in stockB andC.
8] d. Totally invested in stoclC.
E 10. Statistics for three stock8, B, andC, are shan in the follaving tables.
S
g Standard Deviations of Returns

% Stock: A B C
"6 Standard deviation (%): 40 20 40
(72}
3 Correlations of Returns
‘»
s Stock A B C

A 1.00 0.90 0.50

B 1.00 0.10

(& 1.00

Basedonly on the information pnaded in the tables, andwgin a choice between a portfolio
made up of equal amounts of stoékandB or a portfolio made up of equal amounts of stocks
B andC, which portfolio would you recommend? Justify your choice.

11. Geoge Stephensos’current portfolio of $2 million is irested as follws:

Summary of Stephenson’s Current Portfolio

Percent of Expected Annual Annual Standard

Value Total Return Deviation
Short-term bonds $ 200,000 10% 4.6% 1.6%
Domestic large-cap equities 600,000 30% 12.4% 19.5%
Domestic small-cap equities 1,200,000 60% 16.0% 29.9%
Total portfolio $2,000,000 100% 13.8% 23.1%

Stephenson soormxgects to recee an additional $2 million and plans teést the entire amount
in an index fund that best complements the current portfolio. Stephanie Copfigis@aluating
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the four ind& funds shan in the follaving table for their ability to produce a portfolio that will
meet tvo criteria relatie to the current portfolio: (1) maintain or enhangpeeted return and
(2) maintain or reduceolatility.

Each fund is imested in an asset class that is not substantially represented in the current
portfolio.

Index Fund Characteristics

Expected Annual Correlation of Returns
Index Fund  Expected Annual Return  Standard Deviation  with Current Portfolio

Fund A 15% 25% +0.80
Fund B 11 22 +0.60
Fund C 16 25 +0.90
Fund D 14 22 +0.65

State which fund Coppa should recommend to Stephenson. Justify your choice by describing
how your chosen funfiestmeets both of Stephenssrtriteria. No calculations are required.

Abigail Grace has a $900,000 fullydrsified portfolio. She subsequently inhe@BC Com-
pary common stock wrth $100,000. Herirfiancial adviser pnaded her with the follwing
forecast information:

Risk and Return Characteristics

Expected Monthly Standard Deviation of

Returns Monthly Returns
Original Portfolio 0.67% 2.37%
ABC Company 1.25 2.95

The correlation coétient of ABC stock returns with the original portfolio returns is .40.

a. The inheritance changes Graxeverall portfolio and she is deciding whether &efg the
ABC stock.Assuming Graceéeps théBC stock, calculate the:

i. Expected return of her meportfolio which includes thABC stock.
ii. Covariance ofABC stock returns with the original portfolio returns.
iii. Standard déation of her ne portfolio which includes th&BC stock.

b. If Grace sells th&BC stock, she will imest the proceeds in risk-freevgonment securities
yielding .42% monthlyAssuming Grace sells thRBC stock and replaces it with the\go
ernment securities, calculate the

i. Expected return of her meportfolio, which includes the gernment securities.
ii. Covariance of the geernment security returns with the original portfolio returns.
iii. Standard déation of her ne portfolio, which includes the gernment securities.

c. Determine whether the systematic risk of hew pertfolio, which includes the gernment
securities, will be higher or\eer than that of her original portfolio.

d. Based on corersations with her husband, Grace is considering selling the $100,88Cof
stock and acquiring $100,000 of XYZ Compacommon stock instead. XYZ stock has
the same xpected return and standard/@gion asABC stock. Her husband comments, “It
doesnt matter whether youdep all of theABC stock or replace it with $100,000 of XYZ
stock” State whether her hushasdtomment is correct or incorrect. Justify your response.

e. In a recent discussion with hendincial adviserGrace commented, “If | just ddnfose
moneg in my portfolio, | will be satiséd” She went on to sayl am more afraid of losing
moneg/ than | am concerned about achirgy high returns.

i. Describeone weakness of using standardvidion of returns as a risk measure for

Grace.
ii. Identify an alternate risk measure that is more appropriate under the circumstances.
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13. Dudley Trudy, CFA, recently met with one of his clientSrudy typically irvests in a master
list of 30 equities dnan from seeral industriesAs the meeting concluded, the client made the
following statement: “I trust your stock-picking ability and bedi¢hat you should irest my
funds in your iive best ideas/Vhy invest in 30 companies when youvadusly have stronger
opinions on a f& of them?"Trudy plans to respond to his client within the cahtef Modern
Portfolio Theory
a. Contrast the concepts of systematic risk amd-specifc risk, and gie an &ample ofeach

type of risk.
b. Critique the cliens suggestion. DiscussWdoth systematic andrin-specifc risk change
as the number of securities in a portfolio is increased.

Diversification

Go to the www.investopedia.com/articles/basics/03/050203.asp Web site to learn
more about diversification, the factors that influence investors’ risk preferences, and
the types of investments that fit into each of the risk categories. Then check out
E-Investments www.investopedia.com/articles/pf/05/061505.asp for asset allocation guidelines
for various types of portfolios from conservative to very aggressive. What do you
conclude about your own risk preferences and the best portfolio type for you? What
would you expect to happen to your attitude toward risk as you get older? How
might your portfolio composition change?

SOLUTIONS TO CONCEPT CHECKS

1. a. The frst term will bewy X wy X 0'[2), because this is the element in the top corner of the
matrix (0[2)) times the term on the column bordew) times the term on the woborder
(Wp). Applying this rule to each term of thevasiance matrix results in the sumﬁ(rg F
WoWeCOV(re, Ip) + WeWpCov(rp, Ie) + W2oZ, which is the same as Equation 7.3, because
Cov(rg, rp) = Cov(rp, re)-

b. The bordered a@riance matrix is
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Wx Wy wz
2
Wy Ox Cov(ry, 1y) Cov(ry, ry)
2
Wy Cov(ry, ry) oy Cov(ry, 1)
w; Cov(ry, ry) Cov(ry, ry) (ri

There are nine terms in thevemiance matrix. Portfolioariance is calculated from these nine
terms:

(rﬁ, = Wi(ri + WYZ(rf + W§0’§
+w, W, Cov(ry, ry) + W, W, Cov(y,ry)
+w, w,Cov(y,r,) +w,w,Cov(,,ry)
+w, w,Cov(, r,) +w wCov( ,r )

= Wi(rf< + W,z(rf, + Wgcr;

+ 2w, W, Cov(ry, Iy) + 2w, W, Cov(r,,r, ) + 2m w,Cov(y, I ,)
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2. The parameters of the opportunity set &f(gy) = 8%,E(rg) = 13%,0p = 12%,0 = 20%,
andp(D,E) = .25. From the standard \dations and the correlation cdiefent we generate the
covariance matrix:

Fund D E
D 144 60
E 60 400

Theglobal minimum-varianceortfolio is constructed so that

0% —CoV(p,re)
Wp =— 2
op tog—2Cov(,,re)
_ 400—-60
(144+ 400 —(2x 60)
w, =1—w, =.1981

=.8019

Its expected return and standard/d@gion are

E(r,) =(.8019% § +(. 198K 1B= 8 9%
o, =[Waod +Wia2 + 2w, w.Cov(r,, 1 )] ?
=[(.801% X144) +(.198F X 400) +(2X.8019X. 198K 6J]"2
=112%
For the other points we simply increasg from .10 to .90 in increments of .10; accordingly
we ranges from .90 to .10 in the same incremeénes.substitute these portfolio proportions in
the formulas for epected return and standardviddion. Note that whemg = 1.0, the portfolio

parameters equal those of the stock fund; wiigr- 1, the portfolio parameters equal those of
the debt fund.

We then generate the follong table:
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Wg Wp E(r) o
0.0 1.0 8.0 12.00
0.1 0.9 8.5 11.46
0.2 0.8 9.0 11.29
0.3 0.7 9.5 11.48
0.4 0.6 10.0 12.03
0.5 0.5 10.5 12.88
0.6 0.4 11.0 13.99
0.7 0.3 11.5 15.30
0.8 0.2 12.0 16.76
0.9 0.1 12.5 18.34
1.0 0.0 13.0 20.00
0.1981 0.8019 8.99 11.29 minimum variance portfolio

You can nw drav your graph.

3. a. The computations of the opportunity set of the stock ang hiskid funds are lé those of
Question 2 and will not be siva hereYou should perform these computationsybeer, in
order to gve a graphical solution to pat Note that the cmriance between the funds is

Cou(r,, rg) =p(A B) X0, Xog
=—.2X 20X 60=— 240
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b. The proportions in the optimal riglportfolio are gien by

_ (10— 560 —(30- ¥—240)
w, =
(10— 560 +(30- 5 206—30(—240)
=.6818
w, =1—w, =.3182

The pected return and standard/d@gion of the optimal risk portfolio are

E(r,) = (6818 10 +(. 318X 3D= 16 36
o, ={(.6818% X 20°) +(:3182 x 6(F) +[ 2<. 681&. 31§2240)}"°
=211

Note that in this case the standardidgon of the optimal risk portfolio is smaller than the
standard déation of stockA. Note also that portfoli® is not the global minimumariance
portfolio. The proportions of the latter arevgh by

60° — (—240)
Wa=—3
60° + 20° — 7—240)
w; =1-—w, =.1429

=.8571

With these proportions, the standardidéon of the minimum-ariance portfolio is

a(min) ={(.857F X 20)+(. 1428% 68 +[ X. 8571.1429% (—240)[}"?
=17.50
which is less than that of the optimal gigbortfolio.

c. The CAL is the line from the risk-free rate through the optimalyrigértfolio. This line
represents all &tient portfolios that combin@&-bills with the optimal risk portfolio. The
slope of the CAL is

E(r.)—r —
g  E(R)—r _1636-5_ . .
op 2113

d. Given a dgree of risk gersion,A, an investor will choose a proportiow,in the optimal risk
portfolio of (remember toxress returns as decimals when ugig
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E(r.)—r =
" (p)2 r_-1636-.05_ . oo
Ac? 5x.2113

This means that the optimal rislortfolio, with the gien data, is attrast® enough for an
investor withA = 5 to invest 50.89% of his or her wealth in it. Because sthckakes up

68.18% of the risk portfolio and stockB makes up 31.82%, the wvestment proportions for
this investor are

Stock A: .5089 X 68.18 = 34.70%
Stock B: .5089 X 31.82 = 16.19%
Total 50.89%

4. Efficient frontiers derxied by portfolio managers depend on forecasts of the rates of return on
various securities and estimates of risk, that is, theriance matrixThe forecasts themsels
do not control outcome¥hus preferring managers with rosier forecasts (northwesterly frontiers)
is tantamount to rearding the bearers of goodwe and punishing the bearers of badvsie
What we should do is ward bearers dadccuatenews. Thus if you get a glimpse of the frontiers
(forecasts) of portfolio managers on gukar basis, what you amt to do is deelop the track
record of their forecasting accuyaand steer your adviseesmard the more accurate forecaster
Their portfolio choices will, in the long run, outperform tiedd.

5. The parameters atgr) = 15,0 = 60, and the correlation betweeryanair of stocks ip = .5.
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a. The portfolio &pected return is irariant to the size of the portfolio because all stocke ha
identical &pected returnsThe standard deation of a portfolio withn = 25 stocks is
o, =[0?/n+pxa?(n—1)/ "
=[60?/ 25+.5x 66 x 24 2B?= 4323

b. Because the stocks are identicaiiognt portfolios are equally weightetb obtain a standard
deviation of 43%, we need to s@\forn:

2 20
42 =%, 5x50(0~3
n n
1,849 = 3,600+1,800n—1,800
n= 1800_ 36.73
49

Thus we need 37 stocks and will come in withatility slightly under the tayet.

c. As n gets \ery lage, the ariance of an éitient (equally weighted) portfolio diminishes,
leaving only the variance that comes from thevemiances among stocks, that is

0p =\lpXx0? = 5X60 = 42 436

Note that with 25 stocks we came within .84% of the systematic risk, that is, the nonsystematic
risk of a portfolio of 25 stocks is only .84%ith 37 stocks the standardwvii&ion is 43%, of
which nonsystematic risk is .57%.

d. If the risk-free is 10%, then the risk premium ory aize portfolio is 15- 10 = 5%. The
standard déation of a well-dversified portfolio is (practically) 42.43%; hence the slope of
the CAL is

S=5/42.43= .1178

APPENDIX A: A Spreadsheet Model for Efficient Diversification

Seeral softvare packages can be used to generate fieat frontier We will dem-
onstrate the method using Microsoft Excel. Excelaisffom the best program for this
purpose and is limited in the number of assets it can handlepbking through a simple
portfolio optimizer in Excel can illustrate concretely the nature of the calculations used in
more sophisticated “black-box” progranyau will find that @en in Excel, the computa-
tion of the eficient frontier is &irly easy

We apply the Markwitz portfolio optimization program to a practical problem of inter
national dversifcation.We tale the perspeate of a portfolio manager serving U.S. clients,
who wishes to construct for thextgear an optimal rigkportfolio of lage stocks in the U.S
and six deeloped capital magts (Japan, GermgnU.K., France, Canada, aAdstralia).
First we describe the input list: forecasts of risk premiums and tagi@aoce matrix. Net,
we describe Exced’Soler, and fnally we shav the solution to the managgiproblem.

The Covariance Matrix

To capture recent risk parameters the manager compiles an array of 60 recent monthly
(annualized) rates of return, as well as the morHjil rates for the same period.

The standard ddations of ecess returns are shio in Table7A.1 (column C).They
range from 14.93% (U.K. lge stocks) to 22.7% (GermgnFor perspectie on hav these
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parameters can changeeo time, standard d&tions for the period 1991-2000 are also

shavn (column B). In addition, we present the correlationfameht between layje stocks in

the six foreign marts with U.S. lage stocks for the samedvperiods. Here we see that-cor

relations are higher in the more recent period, consistent with the process of globalization.
The coariance matrix shen in Table7A.2 was estimated from the array of 60 returns

of the seen countries using the GBRIANCE function from the dialog box dbata

Analysisin Excel'sTools menu. Due to a quirk in the Excel safte, the ceariance matrix

is not corrected for dgees-of-freedom bias; hence, each of the elements in the masrix w

multiplied by 60/59 to eliminate dmward bias.

Expected Returns

While estimation of the risk parameters (theyartance matrix) from »xess returns is
a simple technical matteestimating the risk premium (thepected gcess return) is a
daunting taskAs we discussed in Chapter 5, estimatingested returns using histori-
cal data is unreliable. Considdéor example, the ngative aserage gcess returns on U.S.
large stocks wer the period 2001-2005 (cell G6) and, more genetthkéybig diferences
in average returns between the 1991-2000 and 2001-2005 periods, as demonstrated in
columns F and G.
In this example, we simply present the managéorecasts of future returns aswhadn
column H. In Chapter 8 we will establish a framoek that maks the forecasting process
more &plicit.

The Bordered Covariance Matrix and Portfolio Variance

The cwariance matrix infable7A.2 is bordered by the portfolio weights, agpkined

in Section 7.2 andable7.2 The \alues in cellA18-A24, to the left of the a@riance
matrix, will be selected by the optimization programr Row, we arbitrarily input 1.0
for the U.S. and zero for the others. CAll6—116, aboe the coariance matrix, must be
set equal to the column of weights on the left, so that Wik change in tandem as the
column weights are changed by Exseboler. CellA25 sums the column weights and is
used to force the optimization program to set the sum of portfolio weights to 1.0.

Cells C25-125, belo the covariance matrix, are used to compute the portfadidance
for ary set of weights that appears in the borders. Each cell accumulates theutiontrib
to portfolio variance from the column abe it. It uses the function SUMEHOUCT to
accomplish this task.df example, rev 33 shaevs the formula used to dee the alue that
appears in cell C25.

Finally, the short columA26—A28 belav the bordered a@riance matrix presents port-
folio statistics computed from the bordered/agance matrix. First is the portfolio risk
premium in cellA26, with formula shan in ronv 35, which multiplies the column of port-
folio weights by the column of forecasts (H6—H12) frdable7A.1. Next is the portfolio
standard daation in cellA27. The \ariance is gien by the sum of cells C25-125 balo
the bordered a@mriance matrix. Cel\27 tales the square root of this sum to produce the
standard daation. The last statistic is the portfolio Sharpe ratio, é&lB, which is the
slope of the CAL (capital allocation line) that runs through the portfolio constructed using
the column weights (thealue in cellA28 equals cel”A26 divided by cellA27). The opti-
mal risky portfolio is the one that maximizes the Sharpe ratio.

Using the Excel Solver

Excel's Soler is a usefriendly, but quite peverful, optimizer It has three parts: (1) an
objective function, (2) decisionariables, and (3) constraintSigure7A.1 shawvs three
pictures of the Sokr. For the current discussion we refer to pictére
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A B c D E | F | @ | H eXcel

1 Please visit us at
2 | www.mhhe.com/bkm
T 7A.1 Country Index istics and Forecasts of Excess Returns

Correlation with the

| 4 | Standard Deviation U.s. Average Excess Return Forecast

5 | Country 1991-2000 | 2001-2005 1991-2000 | 2001-2005 1991-2000 | 2001-2005 2006

6 |us 0.1295 0.1495 1 1 0.1108 -0.0148 0.0600
7 | UK 0.1466 0.1493 0.64 0.83 0.0536 0.0094 0.0530
8 | France 0.1741 0.2008 0.54 0.83 0.0837 0.0247 0.0700
E Germany 0.1538 0.2270 0.53 0.85 0.0473 0.0209 0.0800

10 | Australia 0.1808 0.1617 0.52 0.81 0.0468 0.1225 0.0580
1 Japan 0.2432 0.1878 0.41 0.43 -0.0177 0.0398 0.0450

12 | canada 0.1687 0.1727 0.72 0.79 0.0727 0.1009 0.0590

A B C D E F G H |

1138 |
| 14 | 7A.2 The Bordered Covariance Matrix

15

Portfolio

16 |Weights —» 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
117 | * us | UK | France Germany Australia Japan Canada
| 18 | 1.0000 |[US 0.0224 0.0184 0.0250 0.0288 0.0195 0.0121 0.0205
119 | 0.0000 |UK 0.0184 0.0223 0.0275 0.0299 0.0204 0.0124 0.0206 E
120 | 0.0000 |France 0.0250 0.0275 0.0403 0.0438 0.0259 0.0177 0.0273
|21 | 0.0000 |Germany 0.0288 0.0299 0.0438 0.0515 0.0301 0.0183 0.0305 O
| 22 | 0.0000 |Australia 0.0195 0.0204 0.0259 0.0301 0.0261 0.0147 0.0234 E
| 23 | 0.0000 |Japan 0.0121 0.0124 0.0177 0.0183 0.0147 0.0353 0.0158 le)

24 0.0000 |Canada 0.0205 0.0206 0.0273 0.0305 0.0234 0.0158 0.0298 (U]

25 1.0000 0.0224 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 QS
| 26 | 0.0600 Mean N
| 27 | 0.1495 SD <
| 28 | 0.4013  Slope E,
129 |
i Cell A18 - A24 A18 is set arbitrarily to 1 while A19 to A24 are set to 0
3_1 Formulain cell C16 =A18 Formula in cell 116 =A24
| 32 |Formulain cell A25 =SUM(A18:A24) ‘:.6’
| 33 | Formulain cell C25 =C16*SUMPRODUCT($A$18:$A$24,C18:C24) 17,
| 34 [Formulain cell D25-125 Copied from C25 (note the absolute addresses) =)
| 35 |Formulain cell A26 =SUMPRODUCT($A$18:$A$24,H6:H12) %
| 86 |Formulain cell A27 =SUM(C25:125)"0.5 ;
3_7 Formulain cell A28 =A26/A27

38

A B [ D E F G H 1 J K L

39 | 7A.3 The Efficient Frontier
40
iCeII to store constraint on risk prenjium 0.0400

42

43 Min Var Optimum
| 44 |Mean 0.0383 0.0400 0.0450 0.0500 0.0550 0.0564 0.0575 0.0600 0.0700 0.0800
| 45 [SD 0.1 0.1132 0.1135 0.1168 0.1238 0.1340 0.1374 0.1401 0.1466 0.1771 0.2119

46 |Slope 0.3386 0.3525 0.3853 0.4037 0.4104 0.4107 0.4106 0.4092 0.3953 0.3774
| 47 |US 0.6112 0.6195 0.6446 0.6696 0.6947 0.7018 0.7073 0.7198 0.7699 0.8201
| 48 UK 0.8778 0.8083 0.5992 0.3900 0.1809 0.1214 0.0758| -0.0283| -0.4465| -0.8648
| 49 [France -0.2140| -0.2029| -0.1693| -0.1357| -0.1021| -0.0926| -0.0852| -0.0685| —-0.0014 0.0658
| 50 |Germany -0.5097| -0.4610( -0.3144| -0.1679| -0.0213 0.0205 0.0524 0.1253 0.4185 0.7117
| 51 |Australia 0.0695 0.0748 0.0907 0.1067 0.1226 0.1271 0.1306 0.1385 0.1704 0.2023
| 52 |Japan 0.2055 0.1987 0.1781 0.1575 0.1369 0.1311 0.1266 0.1164 0.0752 0.0341

53 |Canada -0.0402| -0.0374| -0.0288| -0.0203| -0.0118| -0.0093| -0.0075| -0.0032 0.0139 0.0309

54 |CAL* 0.0411 0.0465 0.0466 0.0480 0.0509 0.0550 0.0564 0.0575 0.0602 0.0727 0.0871

55 [*Risk premium on CAL = SD x slope of optimal risky portfolio

TABLE 7A.1, 7A.2, 7A.3

Spreadsheet model for international diversification
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FIGURE 7A.1 Solver dialog box

Portfolio Theory and Practice

The top panel of the Sadv lets you choose a tgat cell for the “objectie function’; that
is, the \ariable you are trying to optimize. In pictuke the taget cell isA27, the portfo-
lio standard dé@ation. Belav the taget cell, you can choose whether your objects to
maximize, minimize, or set your objeaifunction equal to aalue that you specifyHere
we choose to minimize the portfolio standardidgon.

The net panel contains the decisioanablesThese are cells that the Sehcan change
in order to optimize the objeug function in the tayet cell. Here, we input cellsl8—A24,
the portfolio weights that we select to minimize portfoladatility.

The bottom panel of the S@wcan include annumber of constraints. One constraint
that must akays appear in portfolio optimization is the “feasibility constraingmely,
that portfolio weights sum to 1.When we bring up the constraint dialogue box, we spec-
ify that cellA25 (the sum of weights) be set equal to 1.0.

Finding the Minimum Variance Portfolio

It is helpful to bgin by identifying the global minimumaviance portfolio G). This pro-
vides the starting point of thefigient part of the frontierOnce we input the tget cell,
the decision ariable cells, and the feasibility constraint, as in picAireve can select
“solve” and the Soler returns portfolids. We copy the portfolio statistics and weights to
our outputTable7A.3. Column C inTable7A.3 shaws that the lavest standard detion
(SD) that can be achied with our input list is 11.32%. Notice that the SD of portfolio
G is considerably lver than gen the lovest SD of the indidual indexes. From the risk
premium of portfolioG (3.83%) we bgin huilding the eficient frontier with eer-larger
risk premiums.

Solver Parameters B
SetTarget Cell: BAS2Z (A @ Solver Parameters
Equal Omax @ min O valueof: 0 ] {_ Close seTugercor: (SARAT_[IA]
To: |
ee: 5 ro—— T
By Changing el (. Options... ) gm O max @M O valueof. 0 L y
SASIBSAS2Y 4] Guess ) ( Reset All ) By Changing Cells: { Options...
Subject to the Constraints s Help ) SAS1RNack SR ,_R"‘_'lﬂ'
SAS25 = 1 G | :
( Add Subject to the Constraints —— Help )
f
Solver Parameters SATIE = $T84L [ Add )
Set Target Cell ‘_m_ | | @ -"m’i
Egual @ max O Min O valueot 0 ] _ o (_Delete
To S
By Changing Celis (Opth
SAS18 5AS24 al (_Guess )} CReserall )
Suliject to the Constraints (" Help
c $A525 = 1 Caad) |
Change
{ “Delete
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Charting the Efficient Frontier of Risky Portfolios

We determine the desired risk premiums (points on tfieieft frontier) that we wish to
use to construct the graph of th&@ént frontier It is good practice to choose more points
in the neighborhood of portfoli@ because the frontier has the greatestature in that
region. It is suficient to choose for the highest point the highest risk premium from the
input list (here, 8% for Germgh You can produce the entirefiefent frontier in minutes
following this procedure.
1. Input to the Soler a constraint that says: CAR6 (the portfolio risk premium)
must equal thealue in cell E41The Soler at this point is shven in picture B of
Figure 7A.1 Cell E41 will be used to change the required risk premium and thus
generate dferent points along the frontier
2. For each additional point on the frontigou input a diierent desired risk premium
into cell E41, and ask the Selvto sole again.

3. Every time the Soler gives you a solution to the request in (2),\ctre results into
Table 7A.3 which talulates the collection of points along th&a@ént frontier For
the net step, change cell E41 and repeat from step 2.

Finding the Optimal Risky Portfolio on the Efficient Frontier

Now that we hge an eficient frontier we look for the portfolio with the highest Sharpe
ratio (i.e., revard-to-\olatility ratio). This is the dicient frontier portfolio that is tangent
to the CAL.To find it, we just need to makiwo changes to the Saw First, change the
tamget cell from cellA27 to cellA28, the Sharpe ratio of the portfolio, and request that the
value in this cell be maximized. K eliminate the constraint on the risk premium that
may be left wer from the last time you used the SmhAt this point the Soler looks lile
picture C inFigure 7A.1

The Soler nav yields the optimal risk portfolio. Copy the statistics for the optimal
portfolio and its weights to yodrable 7A.3 In order to get a clean graph, place the column
of the optimal portfolio infable 7A.3so that the risk premiums of all portfolios in the table
are steadily increasing from the risk premium of portf@i¢3.83%) all the \&y up to 8%.

The eficient frontier is graphed using the data in cells C45-145 (the horizontal or
x-axis is portfolio standard d@tion) and C44-144 (theevtical ory-axis is portfolio risk
premium).The resulting graph appearsHigure 7A.2
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The Optimal CAL

It is instructve to superimpose on the graph of thicefnt frontier inFigure7A.2 the
CAL that identifes the optimal risk portfolio. This CAL has a slope equal to the Sharpe
ratio of the optimal risk portfolio. Therefore, we add at the bottomT&ble7A.3 a rov
with entries obtained by multiplying the SD of each colwswortfolio by the Sharpe ratio
of the optimal risk portfolio from cell H46This results in the risk premium for each port-
folio along the CAL dicient frontier We nav add a series to the graph with the standard
deviations in B45—145 as theaxis and cells B54—-154 as tlgeaxis.You can see this CAL

in Figure 7A.2

The Optimal Risky Portfolio and the Short-Sales Constraint

With the input list used by the portfolio managie optimal risi portfolio calls for sig-
nificant short positions in the stocks of France and Canada (see coluniablexfA.3).

In mary cases the portfolio manager is prohibited from taking short positions. If so, we
need to amend the program to preclude short sales.
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.0900 | —e— Efficient frontier
—u— Capital allocation line

.0800 - Eff frontier — No short sales
€ 4
2 0700 Risk premium SD  Slope
g Efficient Pf  0.0564 0.1374 0.4107
a -0600 + /\/ No short ~ 0.0575 0.1401 0.4104
v Min. Var pf 0.0383 0.1132 0.3386
£ .0500 - No short ~ 0.0540  0.1350 0.3960

.0400 1

.0300 T T T T T T

.1000 .1200 .1400 .1600 .1800 .2000 .2200 .2400

Standard Deviation

FIGURE 7A.2 Efficient frontier and CAL for country stock indexes

To accomplish this task, we repeat theereise, it with one changeWe add to
the Soler the follaving constraint: Each element in the column of portfolio weights,
A18-A24, must be greater than or equal to 2éoa. should try to produce the short-sale
constrained dicient frontier in your wn spreadsheethe graph of the constrained fron-
tier is also shawn in Figure 7A.2

APPENDIX B: Review of Portfolio Statistics

We base this ndew of scenario analysis on advasset portfolioWe denote the assdis
andE (which you may think of as debt and equity)f the risk and return parameters we
use in this appendix are not necessarily consistent with those used in Section 7.2.

Visit us at www.mhhe.com/bkm

Expected Returns

We use “epected alue” and “mean” interchangeablyor an analysis witm scenarios,
where the rate of return in scenairig r(i) with probabilityp(i), the epected return is

E(r) =Y p()r (i) (7B.1)
i=1

If you were to increase the rate of return assumed for each scenario by some &mount
then the mean return will increase dylf you multiply the rate in each scenario byaa-f
tor w, the nev mean will be multiplied by thaattor:

ip(i)x[r(i)+A]=ip(0><r(i)+Aip(D=E(r)+A (7B.2)

i=1 i=1 i=1

2. p() X [wr(i)] =w, p(i) X (i) = wE(r)

i=1 i=1
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A B @ D E F G eXcel
; Please visit us at
2 Scenario rates of return LT
3 Scenario Probability rp(i) rp(i) +0.03 0.4*rp(i)
4 1 0.14 -0.10 -0.07 -0.040
5 2 0.36 0.00 0.03 0.000
6 3 0.30 0.10 0.13 0.040
7 4 0.20 0.32 0.35 0.128
8 Mean 0.080 0.110 0.032
9 Cell C8 =SUMPRODUCT($B$4:$B$7,C4:C7)
10
11
12
TABLE 7B.1

Scenario analysis for bonds

EXAMPLE 7B.1 Expected Rates of Return

Column C ofTable7B.1 shavs scenario rates of return for debt,In column D we add

3% to each scenario return and in column E we multiply each rate Bge4able shws

how we compute thexpected return for columns C, D, and E. Itv&dent that the mean
increases by 3% (from .08 to .11) in column D and is multiplied by .4 (from .08 to 0.032)
in column E.

Now let’s construct a portfolio thatvests a fraction of the westment bdget,w(D), in
bonds and the fractiom(E) in stocks.The portfolios rate of return in each scenario and its
expected return are\gn by
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e (1) = Wprp (i) + Were (i) (7B.3)
E(rp) = Z p()[Wprp (i) +Were ()] = Z (i) wprp (i) + z (1) Were (i)
=W, E(1p) + W E(re)

The rate of return on the portfolio in each scenario is the weightrdge of the com-
ponent ratesThe weights are the fractionsvasted in these assets, that is, the portfolio
weights.The epected return on the portfolio is the weightedrage of the asset means.

EXAMPLE 7B.2 Portfolio Rate of Return

Table7B.2 lays out rates of return for both stocks and bonds. Using assumed weights of .4
for debt and .6 for equityhe portfolio return in each scenario appears in column L. Cell L8
shaws the portfolio gpected return as .1040, obtained using the SURIPBCT function,

which multiplies each scenario return (column L) by the scenario probability (column I)
and sums the results.
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eXcel
Please visit us at
www.mhhe.com/bkm

Portfolio Theory and Practice

H I J K L
1
2 Scenario rates of return Portfolio return
3 Scenario Probability rp(i) reli) 0.4*rp(i)+0.6*rg(i)
4 1 0.14 -0.10 —-0.35 —0.2500
5 2 0.36 0.00 0.20 0.1200
6 3 0.30 0.10 0.45 0.3100
7 4 0.20 0.32 -0.19 0.0140
8 Mean 0.08 0.12 0.1040
9 Cell L4 =0.4*J4+0.6"K4
10 Cell L8 =SUMPRODUCT($1$4:$1$7,L4:L7)
11
12
TABLE 7B.2

Scenario analysis for bonds and stocks

Variance and Standard Deviation

The ariance and standardwation of the rate of return on an asset from a scenario analy-
sis are gien by’

a?(r) =, p()Ir(i) — E(n)° (7B.4)
i=1
o(r) = o?(r)

Notice that the unit ofariance is percent squared. In contrast, standasidtim, the
square root of ariance, has the same dimension as the original returns, and therefore is
easier to interpret as a measure of retameability.

When you add aiXed incremental returrdy, to each scenario return, you increase the
mean return by that same incremdriterefore, the deation of the realized return in each
scenario from the mean return is Udeafed, and bothariance and SD are unchanged. In
contrast, when you multiply the return in each scenario lagt@rw, the \ariance is mul-
tiplied by the square of thaadtor (and the SD is multiplied ly):

Var(wr) = i p(i) X [wr(i) — E(wr)]? = szn: p(i)[r@i) —E(r)]* = w?c?
i- E (7B.5)

SD(wr) = Vw2 = wo(r)

Excel does not hee a direct function to computeariance and standard \dation
for a scenario analysis. Its STDEV avdR functions are designed for time seriéée
need to calculate the probability-weighted squaredatiens directly To avoid having

Variance (here, of an asset rate of return) is not the only possible choice to quaidlility. An alternatve
would be to use thabsolutedeviation from the mean instead of teguaeddeviation. Thus, the mean absolute
deviation (MAD) is sometimes used as a measureaofibility. The \ariance is the preferred measure foresel
reasons. First, it is mathematically morefidiflt to work with absolute deations. Second, squaring\dations
gives more weight to lger deiations. In ivestments, ging more weight to laye deiations (hence, losses) is
compatible with risk @ersion.Third, when returns are normally disuiied, the ariance is one of the twparam-
eters that fully characterize the distriion.
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A B c D E F G eXcel

13 Please visit us at
14 Scenario rates of return voww.mhhe.com/bkim
15 Scenario Probability rp(i) rp(i) +0.03 0.4*rp(i)

16 1 0.14 -0.10 -0.07 -0.040

17 2 0.36 0.00 0.03 0.000

18 3 0.30 0.10 0.13 0.040

19 4 0.20 0.32 0.35 0.128

20 Mean 0.0800 0.1100 0.0240

21 Variance 0.0185 0.0185 0.0034

22 SD 0.1359 0.1359 0.0584

23| Cell C21 =SUMPRODUCT($B$16:$B$19,C16:C19,C16:C19)-C20/2

24| Cell C22 =C2170.5
TABLE 7B.3

Scenario analysis for bonds

to first compute columns of squaredvidgions from the mean, a@ver, we can simplify
our problem by xpressing the ariance as a dérence between tweasily computable
terms:

o?(r) = E[r —E(N]* = E{r* + [E(N]* — 2E(1)}
= E(r*) +[E(M]* - 2E(N E(n)

, (7B.6)
= )~ (£ = 3, pir ()2~ | £ o)

EXAMPLE 7B.3 Calculating the Variance of a Risky Asset in Excel

You can compute thér$t expressionE(r?), in Equation 7B.6 using Excel'SUMPROD-

UCT function. er example, inTable7B.3, E(r?) is first calculated in cell C21 by using
SUMPRODUCT to multiply the scenario probability times the asset return times the asset
return againThen [E(r)]? is subtracted (notice the subtraction of C2072 in cell C21), to
arrive at\ariance.

The variance of gortfolio return is not as simple to compute as the m&he.portfolio
variance isnotthe weighted eerage of the assearancesThe deiation of the portfolio
rate of return in anscenario from its mean return is

e —E(rp) = Wplp (i) + Were (i) —[wp E(rp) + W E(rg)]
= Wp [p (1) — E(rp)] + We[re(i) — E(re)] (7B.7)
= Wp d(i) + wge(i)

where the lwercase ariables denote dations from the mean:
d(@i) =rp(i) — E(p)
e(i) =rg (i) —E(re)
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We express the ariance of the portfolio return in terms of theseiagons from the mean
in Equation 7B.7

o =2 p()rs — E(ro)]2 = 2 o) [ W) + e )] 2

= i p() W3 d(i)? + we(i) * + 2wy wed(i) )]
o ) ) (7B.8)
= w%; p(i)d(i)> +w.§; p(iYe()’ + 2waEzl p(i)d (i)e(i)

=W5op +WeaZ +2wpwe Y p(i)d(i)e(i)
i=1

The last line irEquation 7B.8&ells us that theariance of a portfolio is the weighted sum
of portfolio variances (notice that the weights are the squares of the portfolio weights),
plus an additional term that, as we will soon see,anall the dierence.

Notice also thatl(i) X (i) is the product of the d&tions of the scenario returns of the
two assets from their respactimeansThe probability-weightedverage of this product is
its expected wlue, which is calledovarianceand is denoted Garp, rz). Thecovariance
between the tav assets can fia a big impact on theaviance of a portfolio.

Covariance
The cwariance between wariables equals

CoMrp, rg) = E(d X e) = E{[rp —E(rp)I[re — E(re)l} (7B.9)
= E(rpre) — E(rp)E(1e)

The coariance is an ef@ant way to quantify the ogriation of two variablesThis is easi-
est seen through a numericabeple.

Imagine a three-scenario analysis of stocks and bondvers igiTable7B.4. In sce-
nario 1, bonds go dam (negatve deviation) while stocks go up (posigé deviation). In
scenario 3, bonds are upjtistocks are den. When the rates nve in opposite directions,
as in this case, the product of thevidéons is ngative; coversely if the rates meed in
the same direction, the sign of the productild be positie. The magnitude of the product
shaws the atent of the opposite or common weanent in that scenaridhe probability-
weighted s&erage of these products therefore summarizesvb@&ge tendenyg for the
variables to co-ary across scenarios. In the last line of the spreadsheet, we see that the
covariance is—80 (cell H6).

Suppose our scenario analysis hadiganed stocks generally mimg in the same
direction as bondSo be concrete, let’switch the forecast rates on stocks in tre &nd
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eXcel A B | c D E | F G H

Please visit us at 1 Rates of Return Deviation from Mean Product of

www.mhhe.com/bkm 2 Probability Bonds Stocks| Bonds| Stocks| Deviations
3 0.25 -2 30! -8 20 -160
4 0.50 6 10 0 0 0
5 0.25 14 -10 8 -20 -160
6 Mean: 6 10, 0 0 -80

TABLE 7B.4

Three-scenario analysis for stocks and bonds
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third scenarios, that is, let the stock return+i#0% in the if'st scenario and 30% in the
third. In this case, the absolutelwe of both products of these scenarios remains the same,
but the signs are posi#, and thus the wariance is posite, at+80, reflecting the ten-
deng for both asset returns tany in tandem. If the iels of the scenario returns change,
the intensity of the a@riation also may change, as reflected by the magnitude of the prod-
uct of deviations.The change in the magnitude of thev@eance quantiés the change in
both direction and intensity of theariation.

If there is no comeement at all, because posiiand ngative products are equally
likely, the covariance is zerdAlso, if one of the assets is risk-free, itzvanance with an
risky asset is zero, because itvidéons from its mean are identically zero.

The computation of a@riance using Excel can be made easy by using the last line in
Equation 7B.9The frst term,E(rp X rg), can be computed in one steokising Exce$
SUMPRODUCT function. Specitally, in Table 7B.4, SUMPRODUCT(A3:A5, B3:B5,
C3:C5) multiplies the probability times the return on debt times the return on equity in
each scenario and then sums those three products.

Notice that adding\ to each rate muld not change the wariance because dations
from the mean wuld remain unchanged. But if yonultiply either of the ariables by a
fixed factor the caoariance will increase by thaadtor Multiplying both \ariables results
in a cavariance multiplied by the products of tteefors because

Cov(Wp Iy, Were) = E{[ Wi Iy — Wp E(rp)][Were — WeE(re)]}

7B.10
= Wp W Cov(rp, Ie) : )

The cwariance inrEquation 7B.10s actually the term that we add (twice) in the last line of
the equation for portfolioariance Equation 7B.8So we ind that portfolio ariance is the
weighted sum (notverage) of the indidual asset ariancesplustwice their coariance
weighted by the tw portfolio weights\p X wg).

Like variance, the dimension (unit) ofv@riance is percent squared. But here we can-
not get to a more easily interpreted dimension by taking the square root, becawse the a
age product of deations can be rmative, as it vas inTable7B.4. The solution in this case
is to scale the a@riance by the standardwiations of the tw variables, producing the
correlation coeficient.
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Correlation Coefficient

Dividing the cwariance by the product of the standardiaions of the ariables will gen-
erate a pure number calledrrelation.We define correlation as folles:

CoVv(ry, r
Conm(rp,reg) = Collp, e) (7B.11)
Op0E
The correlation coéitient must &ll within the range {1, 1]. This can be »xplained as

follows. What two variables should k& the highest dgee comwement? Logic says a
variable with itself, so let' check it out.

Cov(ip, Ip) = E{[rp — E(rp)] X[rp — E(rp)1}

— — 2 = 0'2
= E[r, — E(rp)] ) (7B.12)

Similarly, the lavest (most ngative) value of the correlation cdéfient is—1. (Check this
for yourself by inding the correlation of aariable with its an negative.)
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An important property of the correlation chefent is that it is undécted by both addi-
tion and multiplication. Suppose we start with a return on dgpmultiply it by a con-
stant,wp, and then add axed amouni\. The correlation with equity is urfaetted:
Cov@A +wprp, Ie)

JVar(A +wyrp) X og

_ WpCoV(rp, re) _ Wy Coviy, 1)
\/W%O'ZD Xog WpOop XOg

= Corr(rp, Ie)

Corr(A +wprp, 1g) = (7B.13)

Because the correlation cfiefent gives more intuition about the relationship between
rates of return, we sometimegpeess the cariance in terms of the correlation coegnt.
Rearrangind=quation 7B.11we can write ceariance as

Cov(rp, rg) = opoeCorr(rp, re) (7B.14)

EXAMPLE 7B.4 Calculating Covariance and Correlation

Table7B.5 shavs the coariance and correlation between stocks and bonds using the same

scenario analysis as in the othramples in this appendix. @ariance is calculated using
Equation 7B.9The SUMPRODUCT function used in cell J22\gis usk(rp X rg), from
which we subtradE(rp) X E(rg) (i.e., we subtract J28 K20). Then we calculate correla-
tion in cell J23 by diiding covariance by the product of the asset standavditiens.

Portfolio Variance

We have seen irEquation 7B.8with the help ofEquation 7B.10that the @riance of a
two-asset portfolio is the sum of the midiual variances multiplied by the square of the
portfolio weights, plus twice the gariance between the rates, multiplied by the product
of the portfolio weights:

o2 =wiod + wWo 2 + 2wy wCov(rp, )

7B.15
=wW202 + W2o2 + 2wy Weo po e COr(rp, Ie) ( )
H I J K L M
13
14 Scenario rates of return
15 Scenario Probability rp(i) re(i)
16 1 0.14 -0.10 -0.35
17 2 0.36 0.00 0.20
18 3 0.30 0.10 0.45
19 4 0.20 0.32 -0.19
20 Mean 0.08 0.12
21 SD 0.1359 0.2918
22 Covariance —-0.0034
23 Correlation -0.0847
24| Cell J22 =SUMPRODUCT(116:119,J16:J19,K16:K19)-J20*K20
25| Cell J23 =J22/(J21*K21)
TABLE 7B.5

Scenario analysis for bonds and stocks
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A B c D E F & eXcel
25 Please visit us at
26 www.mhhe.com/bkm
27
28 Scenario rates of return Portfolio return
29 Scenario Probability rpi) re(i) 0.4*r,(i)+0.6rg(i)
30 1 0.14 -0.10 -0.35 -0.25
31 2 0.36 0.00 0.20 0.12
32 3 0.30 0.10 0.45 0.31
33 4 0.20 0.32 -0.19 0.014
34 Mean 0.08 0.12 0.1040
35 SD 0.1359 0.2918 0.1788
36 Covariance —0.0034 SD:  0.1788
37 Correlation ~0.0847
38| Cell E35 =SUMPRODUCT(B30:B33,E30:E33,E30:E33)-E34/2)A0.5
39| Cell E36 =(0.4*C35)"2+(0.6"D35)"2+2*0.4*0.6*C36)"0.5
TABLE 7B.6

Scenario analysis for bonds and stocks

EXAMPLE 7B.5 Calculating Portfolio Variance

We calculate portfolio griance inTable7B.6. Notice there that we calculate the portfolio
standard déation in two ways: once from the scenario portfolio returns (cell E35) and
again (in cell E36) using thérdt line of Equation 7B.15The two approaches yield the
same resultYou should try to repeat the second calculation using the correlation coef-
ficient from the second line in Equation 7B.15 instead ohdance in the formula for
portfolio variance.

Suppose that one of the assets, Eais replaced with a mogemarket instrument, that
is, a risk-free assethe \ariance ok is then zero, as is thexariance withD. In that case,
as seen frorkquation 7B.15the portfolio standard d&tion is justwy op In other words,
when we mix a risk portfolio with the risk-free asset, portfolio standardidéon equals
the risky asses standard deation times the weight irested in that assefhis result vas
usedextensiely in Chapter6.
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