CHAPTER.LEIGCHT

INDEX MODELS

THE MARKOWITZ PROCEDURE introduced in
the preceding chapter suffers from two
drawbacks. First, the model requires a huge
number of estimates to fill the covariance
matrix. Second, the model does not pro-
vide any guideline to the forecasting of the
security risk premiums that are essential to
construct the efficient frontier of risky assets.
Because past returns are unreliable guides to
expected future returns, this drawback can
be telling.

In this chapter we introduce index mod-
els that simplify estimation of the covariance
matrix and greatly enhance the analysis of
security risk premiums. By allowing us to
explicitly decompose risk into systematic
and firm-specific components, these mod-
els also shed considerable light on both
the power and limits of diversification. Fur-
ther, they allow us to measure these com-
ponents of risk for particular securities and
portfolios.

We begin the chapter by describing a
single-factor security market and show how
it can justify a single-index model of secu-
rity returns. Once its properties are ana-
lyzed, we proceed to an extensive example

of estimation of the single-index model. We
review the statistical properties of these
estimates and show how they relate to the
practical issues facing portfolio managers.

Despite the simplification they offer, index
models remain true to the concepts of the
efficient frontier and portfolio optimization.
Empirically, index models are as valid as the
assumption of normality of the rates of return
on available securities. To the extent that
short-term returns are well approximated
by normal distributions, index models can
be used to select optimal portfolios nearly
as accurately as the Markowitz algorithm.
Finally, we examine optimal risky portfolios
constructed using the index model. While the
principles are the same as those employed
in the previous chapter, the properties of
the portfolio are easier to derive and inter-
pret in this context. We illustrate how to use
the index model by constructing an optimal
risky portfolio using a small sample of firms.
This portfolio is compared to the correspond-
ing portfolio constructed from the Markowitz
model. We conclude with a discussion of sev-
eral practical issues that arise when imple-
menting the index model.
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8.1 A SINCLE-FACTOR SECURITY MARKET

The Input List of the Markowitz Model

The success of a portfolio selection rule depends on the quality of the input list, that is,
the estimates ofxpected security returns and thevagance matrix. In the long run,fief
cient portfolios will beat portfolios with less reliable input lists and consequently inferior
reward-to-risk trade-ds.

Suppose your security analysts can thoroughly analyze 50 stdiksneans that your
input list will include the follaving:

n = 50 edtimatesof expectedreturns
n= 50 estimate®f varances
(N> — n)/2 = 1,225 edimatesof covariances

1,325 tota estimates

This is a formidable task, particularly in light of thect that a 50-security portfolio
is relatvely small. Doublingn to 100 will nearly quadruple the number of estimates to
5,150. Ifn = 3,000, roughly the number of NYSE stocks, we need more thamilién
estimates.

Another dificulty in applying the Maréwitz model to portfolio optimization is that
errors in the assessment or estimation of correlatiorficiesfts can lead to nonsensical
results.This can happen because some sets of correlatioficieets are mutually incon-
sistent, as the follwing example demonstratés:

Standard Correlation Matrix
Asset Deviation (%) A B c
A 20 1.00 090  0.90
B 20 0.90 100  0.00
< 20 090 000  1.00

Suppose that you construct a portfolio with weight4:00; 1.00;1.00, for asset4; B; C,
respectiely, and calculate the portfolicavianceYou will find that the portfolio ariance
appears to be gatve (—200). This of course is not possible because portfofinances
cannot be rgative: we conclude that the inputs in the estimated correlation matrix must be
mutually inconsistent. Of courstue correlation codfcients are alays consisteritBut
we do not knw these true correlations and can only estimate them with some imprecision.
Unfortunately it is difficult to determine at a quick glance whether a correlation matrix is
inconsistent, prading another motiation to seek a model that is easier to implement.
Introducing a model that simpkfs the vay we describe the sources of security risk
allows us to use a smalleronsistent set of estimates of risk parameters and risk premiums.
The simplifcation emeges because posiéi cosariances among security returns arise from
common economic forces thafedt the fortunes of mosirfns. Some xamples of com-
mon economicdctors are siness ycles, interest rates, and the cost of natural resources.
The unepected changes in thesariables cause, simultaneoysbnepected changes

We are grateful toAndrew Kaplin and Rei Jagannathan, élogg Graduate School of Management, North-
western Uniersity, for this example.

°The mathematical term for a correlation matrix that cannot genergtgiveeportfolio \ariance is “positie
definite”
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in the rates of return on the entire stock nearlBy decomposing uncertainty into these
system-wide grsus irm-specifc sources, we astly simplify the problem of estimating
covariance and correlation.

Normality of Returns and Systematic Risk

We can alvays decompose the rate of return oy s@curityi, into the sum of its)@ected
plus unanticipated components:

n=Er) +e (8.1

where the ungected returng, has a mean of zero and a standandadion of o; that
measures the uncertainty about the security return.

When security returns can be well approximated by normal distits that are cer
related across securities, we say thay thee joint normally distributed. This assump-
tion alone implies that, at griime, security returns are den by one or more common
variablesWhen more than oneaviable drves normally distribted security returns, these
returns are said to i@ amultivariate normal distribution. We begin with the simpler
case where only oneaxiable drves the joint normally distrilted returns, resulting in a
single-factor security maek. Extension to the muwiariate case is straightfoand and is
discussed in later chapters.

Suppose the commoadtor m, that drives innwations in security returns is some mac-
roconomic ariable that décts all frms.Then we can decompose the sources of uncertainty
into uncertainty about the economy as a whole, which is capturey &yd uncertainty
about theifm in particular which is captured bg. In this case, we amerithuation8.1to
accommodate tasources of ariation in return:

r=E®rn)+m+e (8.2

The macroeconomi@ttor m, measures unanticipated macro surpridésssuch, it has
a mean of zero {(@r time, surprises will\eerage out to zero), with standardsidgion of
o, In contrastg measures only thérm-specifc surprise. Notice thah has no subscript
because the same commautbr afects all securities. Most important is thect thatm
ande are uncorrelated, that is, becagse firm-specifc, it is independent of shocks to
the commondctor that aect the entire economyhe \ariance ofr; thus arises from tw
uncorrelated sources, systematic anu specifc. Therefore,

of = o + o%(8) (83)

The common dctor m, generates correlation across securities, because all securities
will respond to the same macroeconomiwsewhile the irm-specifc surprises, captured
by e, are assumed to be uncorrelated acriossf Becausenis also uncorrelated with gn
of the frm-specifc surprises, the eariance between griwo securities andj is

Cov(r, ;) = Cov(m+ g, m+¢g) = oh (8.4)

Finally, we recognize that some securities will be more sgaditian others to macro-
economic shocks.df example, autoifms might respond more dramatically to changes in
general economic conditions than pharmaceuticakt We can capture this ieEment by
assigning eachrin a sensitiity coeficient to macro conditions herefore, if we denote
the sensitiity coeficient for firm i by the Greek letter betg;, we modifyEquation 8.20
obtain thesingle-factor model:

h=E®r)+tBm+e (8.5)
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Equation8.5tells us the systematic risk of secuiiifg determined by its beta céiefent.
“Cyclical” firms have greater sensiiity to the marlet and therefore higher systematic risk.
The systematic risk of securitys B2c2, and its total risk is

of = plon + o%(8) (86)
The cwariance between grpair of securities also is determined by their betas:
Cov(r,, 1;) = Cov(Bim + g, B;m + ) = BBoh (8.7)

In terms of systematic risk and metleposure, this equation tells us thatrfs are close
substitutes. Equalent beta securities\@ equvalent markt positions.

Up to this point we hae used only statistical implications from the joint normality of
security returns. Normality of security returns alone guarantees that portfolio returns are
also normal (from the “stability” of the normal distuiion discussed in Chapter 5) and that
there is a linear relationship between security returns and the coraotonThis greatly
simplifies portfolio analysis. Statistical analysisweeer, does not identify the common
factor nor does it specify o that factor might operatever a longer imestment period.
However, it seems plausible (and can be empiricadlyified) that the ariance of the com-
mon factor usually changes reblaly slavly through time, as do theaviances of indi-
vidual securities and the eariances among therte seek a ariable that can proxy for
this common dctor To be useful, thisariable must be obseable, so we can estimate its
volatility as well as the sensitty of individual securities returns t@siation in its alue.

8.2 THE SINCLE=INDEX MODEL

A reasonable approach to making the singlgtdr model operational is to assert that the
rate of return on a broad indef securities such as the S&P 500 isaidsproxy for the
common macroeconomiadtor This approach leads to an equation similar to the single-
factor model, which is called @ingle-index model because it uses the matknde to
proxy for the commonafctor

The Regression Equation of the Single-Index Model

Because the S&P 500 is a portfolio of stocks whose prices and rates of return can be
obsered, we hae a considerable amount of past data with which to estimate systematic
risk. We denote the maek index by M, with excess return oRy, = r,, — r, and standard
deviation ofo,. Because the indemodel is linearwe can estimate the sengily (or beta)
coeficient of a security on the ingeising a single-ariable linear rgressionWe reyress

the ecess return of a securitg = r; — r;, on the &cess return of the indeR,,. To esti-

mate the rgression, we collect a historical sample of paired olasiemns,R; (t) andRy, (t),

wheret denotes the date of each pair of obatons (e.g., thexeess returns on the stock

and the indein a particular month) Theregression equation is

R() = o +BiRu(D) + &(1) (8.8)

The intercept of this equation (denoted by the Greek letter alphg, isrthe security
expected gcess returmvhen the market excess return is zero. The slope coéicient, 3;, is

SPractitioners often use a “moifi” index model that is similar t&quation8.8 hut that uses total rather than
excess returndhis practice is most common when daily data are used. In this case the rate of return on bills is on
the order of only about .01% per dayp total and»xess returns are almost indistinguishable.
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the security beta. Beta is the secusitgensitiity to the inde: it is the amount by which
the security return tends to increase or decreasevéoy 4% increase or decrease in the
return on the inde e is the zero-meanirm-specifc surprise in the security return in time
t, also called theesidual.

The Expected Return-Beta Relationship

BecauseE(e) = 0, if we tale the epected alue of E(R) in Equation8.8, we obtain the
expected return—beta relationship of the single-xaedel:

E(R) = o + BE(Rw) (8.9)
The second term iBquation8.9tells us that part of a securiyfisk premium is due to the
risk premium of the inde The marlet risk premium is multiplied by the relati sensiti-
ity, or beta, of the inglidual securityWe call this thesystematic risk premium because it
derives from the risk premium that characterizes the entireehankich proxies for the
condition of the full economy or economic system.

The remainder of the risk premium isgn by theifst term in the equatiom. Alphais
anonmarket premium. er example,a may be lage if you think a security is underpriced
and therefore éérs an attractie expected return. Later on, we will see that when secu-
rity prices are in equilibrium, such attragtiopportunities ought to be competadag, in
which casex will be driven to zero. But for ng, let's assume that each security analyst
comes up with his or hemm estimates of alpha. If managers bai¢hat thg can do a
superior job of security analysis, thenytheill be confdent in their ability to ihd stocks
with nonzero alues of alpha.

We will see shortly that the indemodel decomposition of an indilual securitys risk
premium to markt and nonmak components greatly clags and simplies the opera-
tion of macroeconomic and security analysis within aestment compan

Risk and Covariance in the Single-Index Model

Remember that one of the problems with the Maikz model is the werwhelming
number of parameter estimates required to implement itv We will see that the
index model simplifcation vastly reduces the number of parameters that must be esti-
mated.Equation8.8 yields the systematic andrh-specifc components of theverall

risk of each securityand the ceariance between gmpair of securities. Bothariances

and cwariances are determined by the security betas and the properties of tle¢ mark
index:

Totalrisk = Systematicrisk + Firm-specific risk

of = Bloy + o%(8)

Covaiance = Produd of betas X Market index risk
Cowv(r, 1;) = BiBjO-%/I (8.10)
Comelation = Produd of correlationswith the market index
R.~2 2 2
Cor(r, r;) = BBy _ BiowByo _ Cor(r;, ry) X Com(rj, ry)
O'iO'j O'iUMO'jUM

Equations3.9 and8.10 imply that the set of parameter estimates needed for the single-
index model consists of only, B, ando(€) for the indvidual securities, plus the risk pre-
mium and ariance of the magk inde.
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Mean Excess Standard
Stock Capitalization Beta Return Deviation
A $3,000 1.0 10% 40%
CONCEPT B $1,940 0.2 2 30
CHECK C $1,360 1.7 17 50
1 The standard deviation of the market index portfolio is 25%.

a. What is the mean excess return of the index portfolio?
b. What is the covariance between stock A and stock B?
c. What is the covariance between stock B and the index?

The data below describe a three-stock financial market that satisfies the single-index model.

d. Break down the variance of stock B into its systematic and firm-specific components.

The Set of Estimates Needed for the Single-Index Model
We summarize the results for the single-inaodel in the table belo

Symbol

1. The stock’s expected return if the market is neutral, that is, if the

market's excess return, ry, — ry, is zero Q;
2. The component of return due to movements in the overall market; B; is

the security’s responsiveness to market movements Bilrm = re)
3. The unexpected component of return due to unexpected events that

are relevant only to this security (firm specific) e;
4. The variance attributable to the uncertainty of the common

macroeconomic factor B2a?
5. The variance attributable to firm-specific uncertainty a?(e)

These calculations shothat if we hae:

n estimates of thextra-marlet expected &cess returnsy;

n estimates of the sensity coeficients,;

n estimates of thaérm-specifc variancesg?(e)

1 estimate for the maek risk premiumE(R,)

1 estimate for theariance of the (common) macroecononactbr o3,

then these 8+ 2) estimates will enable us to prepare the entire input list for this single-
index security unierse.Thus for a 50-security portfolio we will need 152 estimates rather
than 1,325; for the entire MeYork Stock Exchange, about 3,000 securities, we will need
9,002 estimates rather than approximately 4.5 million!

It is easy to see why the indmodel is such a useful abstractioor Rage unverses of
securities, the number of estimates required for the ddtk procedure using the inde
model is only a small fraction of what otherwiseuld be needed.

Another adentage is less @bus hut equally importantThe index model abstraction
is crucial for specialization of f&frt in security analysis. If a gariance term had to be
calculated directly for each security painen security analysts could not specialize by
industry For example, if one group were to specialize in the computer industry and another
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in the auto industrywho would hare the common background to estimate theadance
between IBM and GM? Neither group euld have the deep understanding of other indus-
tries necessary to makan informed judgment of co-m@ments among industries. In con-
trast, the inde model suggests a simpleawto compute o@riances. Ceariances among
securities are due to the influence of the single commactof represented by the maitk
index return, and can be easily estimated using theession Equation 8.8 on (p. 247).

The simplifcation derved from the inde model assumption is, hw@ver, not without
cost. The “cost” of the model lies in the restrictions it places on the structure of asset
return uncertaintyThe classitation of uncertainty into a simple dichotomy—macesv
sus micro risk—uwersimplifies sources of realavld uncertainty and misses some impor
tant sources of dependence in stock returoseample, this dichotomy rules out industry
ewents, gents that may &ct mary firms within an industry without substantiallyfexdt-
ing the broad macroeconomy

This last point is potentially important. Imagine that the singleximdedel is perfectly
accurate, xcept that the residuals of tmstocks, sayBritish Petroleum (BP) and Ral
Dutch Shell, are correlate@he index model will ignore this correlation (it will assume it
is zero), while the Madwitz algorithm (which accounts for the full variance between
ewvery pair of stocks) will automatically takthe residual correlation into account when
minimizing portfolio \ariance. If the unierse of securities from which we must construct
the optimal portfolio is small, the twmodels will yield substanly different optimal
portfolios. The portfolio of the Markwitz algorithm will place a smaller weight on both
BP and Shell (because their mutualadance reduces theindirsification \alue), result-
ing in a portfolio with lever variance. Coversely when correlation among residuals is
negative, the indg model will ignore the potential eirsification \alue of these securities.
The resulting “optimal” portfolio will place too little weight on these securities, resulting
in an unnecessarily highaxance.

The optimal portfolio devied from the single-indemodel therefore can be signif
cantly inferior to that of the full-c@riance (Markwitz) model when stocks with corre-
lated residuals ha lage alpha &lues
and account for a lge fraction of the
portfolio. If mary pairs of the ceered
stocks ehibit residual correlation, it
is possible that anulti-index model,

Suppose that the index model for the excess returns of
stocks A and B is estimated with the following results:

Ra =1.0% + .9Ru + ea which includes additionalattors to
CONCEPT Rs = —2.0% + 1.1Rw + ep capture thosextra sources of cross-
CHECK om = 20% security correlation, auld be better
2 olen) = 30% suited for portfolio analysis and con-

struction. We will demonstrate the
effect of correlated residuals in the
Find the standard deviation of each stock and the cova- | spreadsheetxample in this chapter
riance between them. and discuss multi-inde models in
laterchapters.

o(es) = 10%

The Index Model and Diversification

The index model, frst suggested by Sharpelso ofers insight into portfolio diersifica-
tion. Suppose that we choose an equally weighted portfoticeturities. Thexcessate
of return on each security isvgh by

R =a +BiRu t 8

‘William F. Sharpe, A Simplified Model of PortfolicAnalysis, Management Science, January 1963.
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Similarly, we can write thex@ess return on the portfolio of stocks as

Re = ap +BpRy + & (8.11)
We now shaw that, as the number of stocks included in this portfolio increases, the part of
the portfolio risk attribtable to nonmask factors becomesver smallerThis part of the
risk is diversified avay. In contrast, mat risk remains, gardless of the number afrhs
combined into the portfolio.
To understand these results, note that #teess rate of return on this equally weighted
portfolio, for which each portfolio weight; = 1/n, is

R=Y>WR=£>R=2Y («+BR,+6)
i=1 i=1 i=1
2%2‘;%"‘(%%&)%"‘%;%

ComparingEquations8.11 and8.12 we see that the portfolio has a semugitito the
market given by

(8.12)

1 n
Be=1 2.8, (8.13)
i=1
which is the gerage of the indidual B;s. It has a nonmaek return component of

1 n
ap=D (8.14)

i=1
which is the gerage of the indidual alphas, plus the zero meariable
n
=18 (815)
i=1
which is the gerage of theifm-specifc components. Hence the portfoBo/ariance is
02 = B2o? + o2(e,) (8.16)
The systematic risk component of the portfolesiance, which we diefed as the com-
ponent that depends on matkide meements, is32a2 and depends on the senati
coeficients of the indiidual securitiesThis part of the risk depends on portfolio beta and
a2, and will persist rgardless of thextent of portfolio dversification. No matter he
mary stocks are held, their commorpesure to the maét will be reflected in portfolio
systematiaisk.®
In contrast, the nonsystematic component of the portfaigamce iso?(e;) and is
attributable to frm-specifc componentsg. Because theses are independent, and alMea
zero epected @alue, the lav of averages can be applied to conclude that as more and more
stocks are added to the portfolio, thirenfspecifc components tend to cancel out, result-
ing in ever-smaller nonmart risk. Such risk is thus termellersifiable. To see this more

rigorously examine the formula for theaviance of the equally weighted “portfolio” of
firm-specifc components. Because tgs are uncorrelated,

(1Y 1
2 =3 (5] @ = o (617
where 52 (e) is the aerage of theifm-specifc variances. Because thigemage is indepen-
dent ofn, whenn gets lage,o?(e,) becomes mgigible.

50f course, one can construct a portfolio with zero systematic risk by mixgegires and positie 8 assets.
The point of our discussion is that thesst majority of securities kia a positie 8, implying that well-dversified
portfolios with small holdings in lge numbers of assets will indeed/éaositve systematic risk.

251
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Diversifiable Risk

2o F————— l— ———————————————————————————————————————

Systematic Risk

FIGURE 8.1 The variance of an equally weighted portfolio with risk
coefficient B in the single-factor economy

To summarize, as deérsification increases, the totawance of a portfolio approaches
the systematic ariance, dehed as the ariance of the magk factor multiplied by the
square of the portfolio sensitiy coeficient, 3. This is shavn in Figure 8.1

Figure8.1 shavs that as more and more securities are combined into a portfolio, the
portfolio variance decreases because of therdification of frm-specifc risk. How-
ewer, the paver of diversification is limited. Een for \ery lagen, part of the risk remains
because of thexposure of virtually all assets to the common, or regractor Therefore,
this systematic risk is said to be noratsifable.

This analysis is borne out by em
pirical evidence.We sav the efect
oo\ \[#3@8 Reconsider the two stocks in Concept Check 2. Sup- | Of portfolio diversification on portfo-

CHECK pose we form an equally weighted portfolio of A and | lio standard déations in Figure 7.2.
3 B. What will be the nonsystematic standard deviation of | These empirical results are similar to
that portfolio? the theoretical graph presented here
in Figure8.1.

8.3 ESTIMATING THE SINCLE=INDEX MODEL

Armed with the theoretical underpinnings of the single-neh@del, we na provide an
extended gample that bgins with estimation of the geession equation (8.8) and contin-
ues through to the estimation of the fullladance matrix of security returns.

To keep the presentation manageable, we focus on only gi& &S. corporations:
Hewlett-Packard and Dell from the information technology (IT) sector of the S&P 500,
Target andWal-Mart from the retailing sectoand British Petroleum and RRal Dutch
Shell from the engly sector
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We work with monthly obsemtions of rates of return for the six stocks, the S&P 500
portfolio, andT-bills over the period\pril 2001 to March 2006 (60 obsextions) As a frst
step, the xcess returns on thevan risky assets are computedle start with a detailed
look at the preparation of the input list for wlett-Packard (HP), and then proceed to
display the entire input list. Later in the chaptee will shav howv these estimates can be
used to construct the optimal nsgortfolio.

The Security Characteristic Line for Hewlett-Packard
The inde model rgression Equation 8.8 (on p. 247), restated favletg-Packard (HP) is

Rip(t) = app + B 1eRse psoo(t) + &4 (t)
The equation describes the (linear) dependence of EtB&ss return on changes in the
state of the economy as represented by xbess returns of the S&P 500 ixdeortfolio.
The reyression estimates describe a straight line with interggpand slope3,e, which
we call thesecurity characteristic line (SCL) for HP

Figure8.2 shaws a graph of thexeess returns on HP and the S&P 500 portfoliero
the 60-month period frompril 2001 to March 2006The graph shes that HP returns
generally follav those of the inde but with much lager swings. Indeed, the annual-
ized standard deation of the &cess return on the S&P 500 portfolieeo the period was
13.58%, while that of HP &s 38.17%The swings in HR excess returns suggest a greater
than-aerage sensitity to the inde, that is, a beta greater than 1.0.

The relationship between the returns of HP and the S&P 500 is made clearer by the
scatter diagram in Figure 8.3 where the rgression line is dran through the scattefhe
vertical distance of each point from thgmession line is thealue of HPS residualgq(t),
corresponding to that particular daide rates irFigures 8.2and8.3 are not annualized,
and the scatter diagram st® monthly swings of wer =30% for HR but returns in the
range of—11% to 8.5% for the S&P 50The regression analysis output obtained by using
Excelis shavn in Table8.1.
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The Explanatory Power of — S&P 500
the SCL for HP 30007 — HP

Considering the top panel dable8.1 2000
first, we see that the correlation of
HP with the S&P 500 is quite high

w0l N A

(.7238), telling us that HP tracks
changes in the returns of the S&P 50
fairly closely The R-square (.5239)
tells us that ariation in the S&P 500

Excess Returns (%)

—.2000 A
—.3000

oo Y AR W DY

excess returns xplains about 52% —-4000
of the variation in the HP seriehe
adjustedR-square (which is slightly

smaller) corrects for an u@asd bias Month/Year
in R-square that arises because we u’
the ftted values of tvo parameter$,
the slope (beta) and intercept (alpha to March 2006

Mar.01
Sep.01
Apr.02
Nov.02
May.03
Dec.03
Jun.04
Jan.05

Jul.05

Feb.06

FIGURE 8.2 Excess returns on HP and S&P 500 for April 2001

rather than their truebunobserable,

. . . . n—-1
®In general, the adjusteRsquare(R2) is derived from the unadjusted big; = 1— (1— R?) k1 where

kis the number of independeranables (herek = 1). An additional dgree of freedom is lost to the estimate of
the intercept.
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»

Excess Return, HP
|
o

Excess Returns,.S&P 500

FIGURE 8.3 Scatter diagram of HP, the S&P 500, and the

security characteristic line (SCL) for HP

values.With 60 obserations, this bias is
small.The standard error of thegression

is the standard d@&tion of the residual,
which we discuss in more detail shaortly
This is a measure of the slippage in the
awerage relationship between the stock
and the inde due to the impact ofrmn-
specifc factors, and is based omrsample
dataA more sgere testis to look at returns
from periods after the oneered by the
regression sample and test thewpo of
the independentariable (the S&P 500) to
predict the dependenarable (the return
on HP). Correlation betweengmssion
forecasts and realizationsaft-of-sample
data is almost alays considerably {ger
than in-sample correlation.

Analysis of Variance

The ne&t panel of Table8.1 shawvs the
analysis of ariance (ANQYA) for the
SCL. The sum of squares (SS) of the re
gression (.3752) is the portion of theriv

ance of the dependeranable (HPS return) that isxplained by the independeranable
(the S&P 500 return); it is equal ®fp03¢ psoo- The MS column for the residual (.0059)
shavs the \ariance of thainexplained portion of HPS return, that is, the portion of return
that is independent of the matkindex. The square root of thisale is the standard error
(SE) of the rgression (.0767) reported in thiest panel. If you diide the total SS of the
regression (.7162) by 59, you will obtain the estimate of thgamce of the dependent
variable (HP), .012 per month, egalent to a monthly standardwiation of 11%.When

TABLE 8.1 Regression Statistics
Excel output: Regression statistics Multiple R .7238
for the SCL of Hewlett-Packard R-square 5239
Adjusted R-square .5157
Standard error .0767
Observations 60
ANOVA
df SS Ms
Regression 1 .3752 .3752
Residual 58 .3410 .0059
Total 59 7162
Coefficients Standard Error t-Stat p-Value
Intercept 0.0086 .0099 0.8719  .3868
S&P 500 2.0348 .2547 7.9888  .0000
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annualized,we obtain an annualized standardidion of 38.17%, as reported earlidotice
that theR-square (the ratio ofxplained to total ariance) equals thexglained (rgression)
SS dvided by the total S&.

The Estimate of Alpha

Moving to the bottom panel, the intercept (.068686%per month) is the estimate of
HP'’s alpha for the sample perigdlthough this is an economically e \alue (10.32% on
an annual basis), it is statistically insigognt. This can be seen from the three statistics
next to the estimated cdéfient. The frst is the standard error of the estimate (0.0699).
This is a measure of the imprecision of the estimate. If the standard errgejtha&range
of likely estimation error is correspondinglydar

Thet-statistic reported in the bottom panel is the ratio of tgeession parameter to its
standard errofThis statistic equals the number of standard errors by which our estimate
exceeds zero, and therefore can be used to assessedfieotkl that the trueud unob-
sened \alue might actually equal zero rather than the estimatgediefiom the dat&
The intuition is that if the truealue were zero, weauld be unlikely to obsere estimated
values &r avay (i.e., may standard errors) from zero. Sogat-statistics imply lav prob-
abilities that the truealue is zero.

In the case of alpha, we are interested in tleraae alue of HPS return net of the
impact of markt morements. Suppose we def the nonmarkt component of HB'return
as its actual return minus the return atttéble to mar&t morements during anperiod.
Call this HPS firm-specifc return, which we abbvéate asR.

R‘irm-spedﬁc = Ris = Rip — BurRsz pso

If R were normally distribted with a mean of zero, the ratio of its estimate to its stan-
dard error wuld have at-distribution. From a table of thiedistribution (or using Exce$
TINV function) we canifid the probability that the true alpha is actually zerovane
lower given the positie estimate of itsalue and the standard error of the estimakes
is called thdevel of significance or, as inTable8.1, the probability op-value. The con-
ventional cut-dffor statistical signitance is a probability of less than 5%, which requires
a t-statistic of about 2.0The reyression output shs thet-statistic for HPS alpha to

“When annualizing monthly datajexage return ancaviance are multiplied by 12. Mever, becauseariance is
multiplied by 12, standard diation is multiplied byy/12.
8 2 2
R-Square = — EHP(’S&FSOOZ = 3752 559
Birogsrsoo T 0 (Bp) 7162

Equivalently R-square equals 1 minus the fraction afiance that isot explained by mar&t returns, i.e., 1 minus
the ratio of irm-specifc risk to total risk. Br HP, this is

o2(ap) . 3410

7162
B i.p" é& oo T o2 ()

1_

9We can relate the standard error of the alpha estimate to the standard error of the residualssas follo

2
SE(ayp) = "(eHP)\/% + Var((sAg:/gsSﬁoF))iO((?n -1

The t-statistic is based on the assumption that returns are normallyutéstritn general, if we standardize the
estimate of a normally distuited \ariable by computing its dérence from a hypothesizediue and diiding by the
standard error of the estimate (ipeess the diérence as a number of standard errors), the resuétimaple will hae
at-distribution. With a lage number of obseations, the bell-shapedlistribution approaches the normal distition.

255



256

PART II

Portfolio Theory and Practice

be .8719, indicating that the estimate is not sigaiftly diferent from zeroThat is, we
cannot reject the hypothesis that the tralei@ of alpha equals zero with an acceptalviel le

of conidence.The p-value for the alpha estimate (.3868) indicates that if the true alpha
were zero, the probability of obtaining an estimate as high as .00&® (e lage stan-
dard error of .0099) wuld be .3868, which is not so urgil. We conclude that the sample
average ofR is too lav to reject the hypothesis that the tradue of alpha is zero.

But even if the alphaalue were both economicaléynd statistically signicantwithin the
sample, we still would not use that alpha as a forecast for a future periogtw®elming
empirical @idence shars that 5-year alphalues do not persister time, that is, there seems
to be virtually no correlation between estimates from one sample period tothim rgher
words, while the alpha estimated from thgression tells us therarage return on the security
when the mar&t was flat during that estimation period, it does forecast what tharm’s
performance will be in future periodBhis is why security analysis is so haftie past does
not readily foretell the futur&Ve elaborate on this issue in Chapter 11 on etakciengy.

The Estimate of Beta

The r@ression output ifable 8.1shaws the beta estimate for HP to be 2.0348, more than
twice that of the S&P 500. Such high metrlsensitiity is not unusual for technology
stocks The standard error (SE) of the estimate is .2%47.

The \alue of beta and its SE produce aérstatistic (7.9888), and@value of prac-
tically zero.We can coriflently reject the hypothesis that i$Rtue beta is zeré more
interestingt-statistic might test a null hypothesis that siBéta is greater than the metrk
wide average beta of IThis t-statistic would measure v mary standard errors separate
the estimated beta from a hypothesizatlig of 1. Here too, the ffrence is easily lge
enough to achiee statistical signi€ance:

Edimatedvalue — Hypothesized value _203-1_ 4.00
Standad error 2547 '

However, we should bear in mind thaten here, precision is not what we mighelik to
be. For example, if we vanted to construct a cadénce interal that includes the truaub
unobsered \alue of beta with 95% probabiljityve would tale the estimatedalue as the
center of the intel and then add and subtract about standard error3his produces a
range between 1.43 and 2.53, which is quite wide.

Firm-Specific Risk

The monthly standard diation of HPS residual is 7.67%, or 26.6% annualliis is quite

large, on top of HR high-level systematic riskThe standard deéation of systematic risk
is B X o(S&P 500)= 2.03X 13.58= 27.57%. Notice that HB’firm-specifc risk is as

large as its systematic risk, a common result forviddial stocks.

Correlation and Covariance Matrix

Figure8.4 graphs thexxess returns of the pairs of securities from each of the three sectors
with the S&P 500 indeon the same scalé/e see that the IT sector is the mostiable,
followed by the retail sectpand then the engy sectorwhich has the leest wlatility.

Panel 1 inSpreadsheei.1 shavs the estimates of the risk parameters of the S&P 500
portfolio and the six analyzed securitidu can see from the high residual standard
deviations (column E) he important dversification is.These securities kia tremendous

tempy (@)
SEP) = 7 2
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FIGURE 8.4 Excess returns on portfolio assets

firm-specifc risk. Portfolios concentrated in these (or other) securitmddwhare unnec-
essarily high wlatility and inferior Sharpe ratios.

Panel 2 shars the correlation matrix of the residuals from thgressions of xcess
returns on the S&P 50The shaded cells shwocorrelations of same-sector stocks, which
are as high as .7 for thedvoil stocks (BP and ShellJhis is in contrast to the assump-
tion of the ind& model that all residuals are uncorrelated. Of course, these correlations
are, to a greatxéent, high by design, because we selected pairsro$ from the same
industry Cross-industry correlations are typicaldy Emallerand the empirical estimates
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A [ B [ ¢ | b [ E ] F [ G H 1 J
1 | Panel 1: Risk Parameters of the Investable Universe (annualized)
2
SD of SD of Correlation
Excess Sy ic SD of with the

3 Return Beta Component| Residual | S&P 500

4 S&P 500 0.1358 1.00 0.1358 0 1

5 HP 0.3817 2.03 0.2762 0.2656 0.72

6 DELL 0.2901 1.23 0.1672 0.2392 0.58

7 WMT 0.1935 0.62 0.0841 0.1757 0.43

8 | TARGET 0.2611 1.27 0.1720 0.1981 0.66

9 BP 0.1822 0.47 0.0634 0.1722 0.35

10 SHELL 0.1988 0.67 0.0914 0.1780 0.46

11

12 | Panel 2: Correlation of Residuals

13

14 HP DELL WMT | TARGET BP

15 HP 1

16 DELL 0.08 1

17 WMT -0.34 0.17 1

18| TARGET -0.10 0.12 0.50 1

19 BP -0.20 -0.28 -0.19 -0.13 1

20 SHELL —0.06 —0.19 —0.24 —0.22 0.70

21

22 | Panel 3: The Index Model Covariance Matrix

23

24 S&P 500 HP DELL WMT TARGET BP SHELL
25 Beta 1.00 2.03 1.23 0.62 1.27 0.47 0.67
26| S&P 500 1.00 0.0184 0.0375 0.0227 0.0114 0.0234 0.0086 0.0124
27 HP 2.03 0.0375 0.1457 0.0462 0.0232 0.0475 0.0175 0.0253
28 DELL 1.23 0.0227 0.0462 0.0842 0.0141 0.0288 0.0106 0.0153
29 WMT 0.62 0.0114 0.0232 0.0141 0.0374 0.0145 0.0053 0.0077
30| TARGET 1.27 0.0234 0.0475 0.0288 0.0145 0.0682 0.0109 0.0157
31 BP 0.47 0.0086 0.0175 0.0106 0.0053 0.0109 0.0332 0.0058
32 SHELL 0.67 0.0124 0.0253 0.0153 0.0077 0.0157 0.0058 0.0395
33

34 | Cells on the diagonal (shadowed) equal to variance

35 [ formula in cell C26 =B4"2

36 | Off-diagonal cells equal to covariance |

37 formula in cell G27 = C$25°$B27"$B$4"2

38 multiplies beta from row and column by index variance

39

40 [ Panel 4: Macro Forecast and Forecasts of Alpha Values

4

42

43 S&P 500 HP DELL WMT TARGET BP SHELL

44 | Aipha 0 0.0150| -0.0100| -0.0050 0.0075 0.012 0.0025

45 | Risk premium 0.0600 0.1371 0.0639 0.0322 0.0835 0.0400 0.0429

46

47 | Panel 5: Computation of the Optimal Risky Portfolio

48

49 S&P 500 [Active PfA HP DELL WMT TARGET BP SHELL Overall Pf
50 [ 6%(e) 0.0705| 0.0572 0.0309 0.0392 0.0297 0.0317
51 | 0/6%(e) 0.5505 0.2126| -0.1748 -0.1619 0.1911 0.4045 0.0789
52 | wO(i) 1.0000 0.3863| -0.3176|  -0.2941 0.3472 0.7349 0.1433
53 | [W°()]? 0.1492|  0.1009 0.0865 0.1205 0.5400 0.0205
54 | O, 0.0222

55| o%(e,) 0.0404

56 | W5 0.1691

57 | w'Risky portp|  0.8282 0.1718

58 | Beta 1 1.0922 2.0348 1.2315 0.6199 1.2672 0.4670 0.6736 1.0158
59 | Risk premium 0.06 0.0878 0.1371 0.0639 0.0322 0.0835 0.0400 0.0429 0.0648
60 | SD 0.1358 0.2497 0.1422
61 | Sharpe ratio 0.44 0.35 0.46
SPREADSHEET 8.1 eXcel

Implementing the index model

Please visit us at
www.mhhe.com/bkm
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of correlations of residuals for industry in@s (rather than indidual stocks in the same
industry) would be &ir more in accord with the model. lact, a fev of the stocks in this
sample actually seem toveneaatively correlated residuals. Of course, correlation also
is subject to statistical sampling errand this may be a fliek

Panel 3 produces wariances deved from Equation8.10 of the single-inde model.
Variances of the S&P 500 indand the indiidual covered stocks appear on the diagonal.
The \ariance estimates for the inttiual stocks equap?af, + o?(e). The of-diagonal
terms are ceariance alues and equdiB;o; -

8.4 PORTFOLIO CONSTRUCTION AND

THE SINGLE=INDEX MODEL

In this section, we look at the implications of the xdeodel for portfolio constructiott.

We will see that the model fe#rs seeral adantages, not only in terms of parameter esti-
mation, lut also for the analytic simpidation and aganizational decentralization that it
males possible.

Alpha and Security Analysis

Perhaps the most important advage of the single-indemodel is the frameork it pro-
vides for macroeconomic and security analysis in the preparation of the input list that is so
critical to the eficiengy of the optimal portfolioThe Marlowitz model requires estimates
of risk premiums for each securifjhe estimate ofx@ected return depends on both mac-
roeconomic and ingidual-firm forecasts. But if mandifferent analysts perform security
analysis for a laye oganization such as a mutual fund companlikely result is incon-
sisteng in the macroeconomic forecasts that partly undexigeetations of returns across
securities. Moreeer, the underlying assumptions for markndex risk and return often
are not gplicit in the analysis of indidual securities.

The single-inde model creates a framwerk that separates theseotwuite diferent
sources of returnariation and mads it easier to ensure consistgmcross analyst§Ve
can lay dwn a hierarchy of the preparation of the input list using the fraoreof the
single-index model.

1. Macroeconomic analysis is used to estimate the risk premium and risk of the
market index.

2. Statistical analysis is used to estimate the betdicimefts of all securities and their
residual ariancesg?(g).

3. The portfolio manager uses the estimates for theetartlex risk premium and the
beta codfcient of a security to establish thepected return of that securdipsent any
contribution from security analysi$he marlet-driven expected return is conditional on
information common to all securities, not on information gleaned from security analysis
of particular frms. This marlet-driven expected return can be used as a benchmark.

4. Security-specit expected return forecasts (spéwafly, security alphas) are deed
from various security-aluation models (such as those discussedihfve). Thus,
the alpha alue distills the incremental risk premium attrtiéble to pwate informa-
tion developed from security analysis.

2The use of the indemodel to construct optimal rigkportfolios was originally deeloped in JacKreynor and

Fischer Black, “Har to Use SecurityAnalysis to Impree Portfolio Selectioh,Journal of Business, January
1973.
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In the contgt of Equation8.9, the risk premium on a security not subject to security
analysis wuld beB,E(Ry). In other vords, the risk premium euld derve solely from the
securitys tendeng to follow the marlet index. Any expected return by@nd this bench-
mark risk premium (the security alphapwd be due to some nonmatkactor that wuld
be unceered through security analysis.

The end result of security analysis is the list of alplaes. Statistical methods of esti-
mating beta coétients are widely knon and standardized; hence, weuld not &pect
this portion of the input list to diér greatly across portfolio managers. In contrast, macro
and security analysis ararfless of anxact science and therefore pige an arena for dis-
tinguished performance. Using the irndaodel to disentangle the premiums due to mark
and nonmarét factors, a portfolio manager can be édeint that macro analysts compiling
estimates of the magk-inde risk premium and security analysts compiling alphkes
are using consistent estimates for thierall marlet.

In the cont&t of portfolio construction, alpha is more than just one of the components
of expected return. It is theel variable that tells us whether a security is a good or a
bad luy. Consider an indgidual stock for which we ha a beta estimate from statistical
considerations and an alphalwe from security analysisVe easily canifd mary other
securities with identical betas and therefore identical systematic components of their risk
premiums.Therefore, what really maks a security attrage or unattractie to a portfolio
manager is its alphaalue. In fict, weve suggested that a security with a pesitilpha is
providing a premium eer and abwee the premium it deres from its tenderycto track the
market index. This security is a bgain and therefore should beesweighted in theer
all portfolio compared to the passialternatie of using the magt-index portfolio as the
risky vehicle. Comersely a ngative-alpha security isverpriced and, other things equal,
its portfolio weight should be reduced. In moxéreme cases, the desired portfolio weight
might ezen be ngative, that is, a short position (if permittedpwd be desirable.

The Index Portfolio as an Investment Asset

The process of charting thefiefent frontier using the single-indenodel can be pursued
much like the procedure we used in Chapter 7, where we used thewitarkodel to ind

the optimal rislg portfolio. Here, havever, we can benéffrom the simplifcation the inde
model ofers for dewing the input list. Moreger, portfolio optimization highlights another
adwantage of the single-indenodel, namelya simple and intuitely revealing representation

of the optimal risl portfolio. Before we get into the mechanics of optimization in this setting,
however, we start by considering the role of the gertfolio in the optimal portfolio.

Suppose the prospectus of amestment companlimits the unverse of inestable
assets to only stocks included in the S&P 500 portfolio. In this case, the S&P 580 inde
captures the impact of the economy on thgdatocks therfm may include in its portfolio.
Suppose that the resources of the comadliow coverage of only a relately small subset
of this so-callednvestable universe. If these analyzedrims are the only ones all@d in
the portfolio, the portfolio manager may well berwed about limited diersification.

A simple way to aoid inadequate dersification is to include the S&P 500 portfolio as one
of the assets of the portfolio. ExaminationEgfuations8.8 and8.9 reveals that if we treat the
S&P 500 portfolio as the markinde, it will have a beta of 1.0 (its sengity to itself), no frm-
specifc risk, and an alpha of zero—there is no nonetadomponent in itsxpected return.
Equation8.10 shavs that the ceariance of ay security i, with the inde is 8,0, . To distin-
guish the S&P 500 from thesecurities ceered by theifm, we will designate it then(+ 1)th
assetWe can think of the S&P 500 agpassive portfolio that the managerauld select in the
absence of security analysis. k&g broad maek exposure without the need forensve secu-
rity analysis. Havever, if the manager is willing to engage in such research, she miag da
active portfolio that can be med with the inde to proavide an gen better risk—return tradefof
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The Single-Index-Model Input List

If the portfolio manager plans to compile a portfolio from a lish afctively researched
firms and a pass marlet inde portfolio, the input list will include the folleing
estimates:

1. Risk premium on the S&P 500 portfolio.
2. Estimate of the standard\dation of the S&P 500 portfolio.

3. nsets of estimates of (a) beta da@énts, (b) stock residuabviances, and
(c) alpha alues. (The alphaalues for each securjtipgether with the risk premium
of the S&P 500 and the beta of each secuwtl allow for determination of the
expected return on each secuity

The Optimal Risky Portfolio of the Single-Index Model

The single-inde model allavs us to solg for the optimal risk portfolio directly and to
gain insight into the nature of the solution. First we wonthat we easily can set up the
optimization process to chart thdieient frontier in this framwork along the lines of the
Markowitz model.

With the estimates of the beta and alphafédehts, plus the risk premium of the inde
portfolio, we can generate the+ 1 expected returns usingquation8.9. With the esti-
mates of the beta cdafients and residualariances, together with thenance of the
index portfolio, we can construct the\@riance matrix usingquation8.10. Given a col-
umn of risk premiums and the @iance matrix, we can conduct the optimization pro-
gram described in Chapter 7.

We can tale the description of o diversifcation works in the single-indeframevork
of Section 8.2 a step furthaie shaved earlier that the alpha, beta, and residaal v
ance of an equally weighted portfolio are the simpkrages of those parameters across
component securities. Moreer, this result is not limited to equally weighted portfolios.
It applies to ay portfolio, where we need only replace “simplei@ge” with “weighted
average, using the portfolio weights. Speiélly,

n+1
ap = ) Way for theindex o,y = o, = 0
i=1

n+1

Bo = > W, for theindex B,y = By =1 (8.18)
i=1

n+1

o2(e) = Y, WPo?(g) for theindex o?(€,1) = o%(&y) = O
i=1

The objectie is to maximize the Sharpe ratio of the portfolio by using portfolio weights,
wi, . . . Wy, 1. With this set of weights, thexpected return, standardwi&tion, and Sharpe
ratio of the portfolio are

n+1 n+1

E(Re) = ap + ERy)Be = X Wi + E(Ry) D, Wi,

_ n+l1 :2 n+1 vz
op = [BRofy +o(e)]"? = loﬁ (_ZwiBiJ + Zwizoz(e)] (8.19)
_ER)

Op

S
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At this point, as in the standard Mavkitz procedure, we could use Excebptimization
program to maximize the Sharpe ratio subject to the adding-up constraint that the portfo-
lio weights sum to 1. Heever, this is not necessary because the optimal portfolio can be
derived eplicitly using the inde model. Morewer, the solution for the optimal portfolio
provides considerable insight into theiefent use of security analysis in portfolio con-
struction. It is instructie to outline the logical thread of the solutid¥e will not shev
ewery algebraic step,ub will instead present the major results and interpretation of the
procedure.

Before delving into the results, let ussf explain the basic trade-bthe model reeals.

If we were interested only inrsification, we vould just hold the magk index. Security
analysis gies us the chance to unven securities with a nonzero alpha and t@taklifer-
ential position in those securitieBhe cost of that diérential position is a departure from
efficient diversification, in other wrds, the assumption of unnecessam-fspecifc risk.
The model shws us that the optimal rigkportfolio trades dfthe search for alpha against
the departure from B€ient diversification.

The optimal risk portfolio turns out to be a combination ofawomponent portfolios:

(1) anactive portfolio, denoted byA, comprised of the analyzed securities (we call this
the active portfolio because it folls from actve security analysis), and (2) the meatrk
index portfolio, the o + 1)th asset we include to aid irversification, which we call the
passive portfolio and denote biv.

Assume ifrst that the actie portfolio has a beta of 1. In that case, the optimal weight
in the actve portfolio would be proportional to the ratin/o?(e,). This ratio balances the
contrikution of the actie portfolio (its alpha) against its conution to the portfolio &ri-
ance (residualariance).The analogous ratio for the indgortfolio is E(Ry) / o%,, and
hence the initial position in the agti portfolio (i.e., if its beta were 1) is

Q‘Q
>

>N

W =

) (8.20)

£

E(
o
Next, we amend this position to account for the actual beta of thes guuirtfolio. For
ary level of o3, the correlation between the agtiand passe portfolios is greater when
the beta of the aste portfolio is higherThis implies less dersifcation bendf from the
passve portfolio and a lver position in it. Correspondinglthe position in the acté port-
folio increasesThe precise modifation for the position in the acé portfolio is?3

WA

T 1T BOW 62

Wy
Notice that wherB, = 1, W, = WAR.

The Information Ratio

Equations8.20and8.21yield the optimal position in the aeti portfolio once we knae its
alpha, beta, and residuananceWith wj, in the actie portfolio andl — w/, invested in
the inde portfolio, we can compute theqgected return, standardvi@tion, and Sharpe
ratio of the optimal risk portfolio. The Sharpe ratio of an optimally constructed yisk

Bwith a little algebraic manipulation, beta can bevahto equal the product of correlation between thexnde
and the actie portfolio and the ratio of SD(inggSD(actve portfolio). IfB, > 1, then correlation is higher than
envisioned inEquation8.20, so the diersification \alue of the inde is lower. This requires the moddation in
Equation 8.21
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portfolio will exceed that of the indeportfolio (the passe stratgy). The «act relation-
ship is

2
2 _ 2 (SN
S; =Sy +L(eA)] (8.22)
Equation8.22 shavs us that the contriltion of the actie portfolio (when held in its opti-
malweight, wj, ) to the Sharpe ratio of theerall risky portfolio is determined by the ratio
of its alpha to its residual standard/@gion. This important ratio is called thefor mation
ratio. This ratio measures thatea return we can obtain from security analysis compared
to the frm-specifc risk we incur when wewer or underweight securities rebadi to the
passve marlet index. Equation 8.22herefore implies that to maximize theeoall Sharpe
ratio, we must maximize the information ratio of the\acportfolio.

It turns out that the information ratio of the aetiportfolio will be maximized if we
invest in each security in proportion to its ratiocgfr?(g). Scaling this ratio so that the
total position in the aacte portfolio adds up taw,, the weight in each security is

W =i, 7€) (8.23)
&
E o?(8)

With this set of weights, werfd that the contrilition of each security to the information
ratio of the actie portfolio depends on itsvn information ratio, that is,

2, 2
XA _ &
[G(GA)] 21 [0 (& )} (8.24)

The model thus xeals the central role of the information ratio ificéntly taking
adwantage of security analysishe positve contrilution of a security to the portfolio is
made by its addition to the nonmatkisk premium (its alpha). Its gative impact is to
increase the portfolioariance through itdrim-specifc risk (residual ariance).

In contrast to alpha, notice that the n&rfsystematic) component of the risk premium,
BiE(Ry), is ofiset by the securitg’ nondversifiable (marlet) risk, B2a2,, and both are
driven by the same befahis trade-dfis not unique to ansecurity as ag security with the
same beta mals the same balanced conttibn to both risk and return. Put iifently,
the beta of a security is neither vice nor virtue. It is a property that simultanedestyg af
the riskand risk premium of a securityHence we are concerned only with the aggte
beta of the acte portfolio, rather than the beta of eachvidlial security

We see fromEquation8.23that if a securitys alpha is ngative, the security will assume
a short position in the optimal rigloortfolio. If short positions are prohibited, agagve-
alpha security wuld simply be ta&n out of the optimization program and assigned a port-
folio weight of zeroAs the number of securities with nonzero alphkgs (or the number
with positive alphas if short positions are prohibited) increases, theegmtirtfolio will
itself be better diersified and its weight in theverall risky portfolio will increase at the
expense of the pas@ inde portfolio.

Finally, we note that the indeportfolio is an dfcient portfolio only if all alpha &lues
are zeroThis males intuitve sense. Unless security analysigerds that a security has a
nonzero alpha, including it in the actiportfolio would male the portfolio less attrags.

In addition to the security’systematic risk, which is compensated for by the etaigk
premium (through beta), the securitpuld add itsifm-specifc risk to portfolio \ariance.
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With a zero alpha, leever, the latter is not compensated by an addition to the nomtark
risk premium. Hence, if all securitiesuyeazero alphas, the optimal weight in the \axti
portfolio will be zero, and the weight in the indeortfolio will be 1. Havever, when secu-
rity analysis unceers securities with nonmagkrisk premiums (nonzero alphas), the inde
portfolio is no longer éicient.

Summary of Optimization Procedure

To summarize, once security analysis is complete, and thg-mdedel estimates of secu-
rity and marlet index parameters are established, the optimaynmktfolio can be formed
using these steps:

1. Compute the initial position of each security in thevacpiortfolio as
w0 = a;/a?(e).

2. Scale those initial positions to force portfolio weights to sum to 1\iglidg by

their sum, that isy, = w

Sw
i=1

3. Compute the alpha of the aaiportfolio: ap = Zin:lWiOti-
4. Compute the residuahviance of the aaté portfolio: o2(e,) = zin:lwizcz(e).

Qpa
5. Compute the initial position in the agti portfolio: w = % .
Vi
6. Compute the beta of the aaiportfolio: B, = Zin:lwiBi.
WA
T+ (1= B}
8. Note: the optimal risk portfolio nov has weightswy, = 1— Wh; W = Ww,.

7. Adjust the initial position in the agg portfolio: wj, =

9. Calculate the risk premium of the optimal gigortfolio from the risk
premium of the inde portfolio and the alpha of the aetiportfolio:
E(R:) = (Wy + W, BA)E(Ry) + Waa,. Notice that the beta of the risk
portfolio is wj, + w, B, because the beta of the imdeortfolio is 1.

10. Compute the ariance of the optimal rigkportfolio from the ariance
of the index portfolio and the residuabviance of the aate portfolio:
o = (W + Wa Ba)?cfy +[Wao(en))?.

An Example

We can illustrate the implementation of the irdaodel by constructing an optimal port-
folio from the S&P 500 indeand the six stocks for which we analyzed risk parameters in
Section 8.3.

This example entails only six analyzed stockst by virtue of selecting thrgeairs of
firms from the same industry is designed to produce relatly high residual correlations.
This should put the indtemodel to a seere test, as the model ignores the correlation between
residuals when producing estimates for theac@ance matrix.Therefore, comparison
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of results from the indemodel with the full-blavn covariance (Markwitz) model should
be instructe.

Risk Premium Forecasts Panel 4 ofSpreadsheei.1 contains estimates of alpha and the
risk premium for each stockhese alphas ordinarilyould be the most important produc-
tion of the ivestment companin a real-life procedure. Statistics plays a small role here;
in this arena, macro/security analysis is king. In tlesngple, we simply use illustrag
values to demonstrate the portfolio construction process and possible Msultpay
wonder why we hae chosen such small, forecast alpladugs.The reason is thatven
when security analysis uneers a lage apparent mispricing, that is, daralpha alues,
these forecasts must be substantially trimmed to account fadhtat such forecasts are
subject to lage estimation erroiVe discuss the important procedure of adjusting actual
forecasts in Chapter 27.

The Optimal Risky Portfolio Panel 5 ofSpreadsheet 8.displays calculations for the
optimal risky portfolio. They follow the summary procedure of Section 8.4 (you should try
to replicate these calculations in yowrospreadsheet). In thisample we allav short sales.
Notice that the weight of each security in thewvacportfolio (see v 52) has the same sign
as the alphaalue.Allowing short sales, the positions in the atportfolio are quite lage
(e.g., the position in BP is .7349); this is an aggvessortfolio.As a result, the alpha of the
active portfolio (2.22%) is layer than that of anof the indvidual alpha forecasts. Mever,
this aggresse stance also results in agaresidual ariance (.0404, which corresponds to a
residual standard diation of 20%).Therefore, the position in the aaiportfolio is scaled
down (seeEquation 8.2Pand ends up quite modest (.1718; cell C57), reinforcing the notion
that diversification considerations are paramount in the optimay msktfolio.

The optimal risk portfolio has a risk premium of 6.48%, standardiat&on of 14.22%,
and a Sharpe ratio of .46 (cells 3a81). By comparison, the Sharpe ratio of the xnde
portfolio is .06/.1358= .44 (cell B61), which is quite close to that of the optimalyrisk
portfolio. The small impreement is a result of the modest alpha forecasts that we used.
In Chapter 11 on maek eficiengy and Chapter 24 on performanc@&keiation we demon-
strate that such results are common in the mutual fund ind@ftopurse, some portfolio
managers can and do produce portfolios with better performance.

The interesting question here is theeat
to which the inde model produces results
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that are inferior to that of the full-gariance 4

(Markowitz) model. Figure8.5 shavs the 12 4

efficient frontiers from the tev models with

the xample dataWe find that the difer- £ 107

ence is indct n@ligible. Table8.2 compares g .08

the compositions andxpected performance & |

of the global minimum ariance G) and the g Efficient frontier (full covariance)
optimal risky portfolios denved from the tw 047 — Efficient frontier (index model)
models. The signifcant diference between .02 A S&P 500

the two portfolios is limited to the minimum- 00 . . . . . .

variance portfolios that are den only by 00 .05 10 .15 20 .25 .30
considerations of ariance.As we mae up Standard Deviation

the eficient frontier the required xpected
returns obiate the impact of the ddrences
in covariance and the portfolios become sim
lar in performance.

and full-covariance matrix

FIGURE 8.5 Efficient frontiers with the index model

.40
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TABLE 8.2 Global Minimum Variance Portfolio Optimal Portfolio

Comparison of Full-Covariance Full-Covariance

portfolios from the Model Index Model Model Index Model

single-index and

el evErEnE Mean .0371 .0354 .0677 .0649

models SD .1089 1052 1471 1423
Sharpe ratio .3409 .3370 .4605 .4558
Portfolio Weights
S&P 500 .88 .83 .75 .83
HP -1 -.17 .10 .07
DELL -.01 —.05 —.04 —.06
WMT .23 14 —-.03 -.05
TARGET -.18 -.08 .10 .06
BP 22 .20 .25 A3
SHELL —.02 12 -.12 .03

8.5 PRACTICAL ASPECTS OF PORTFOLIO MANAGEMENT

WITH THE INDEX MODEL

The tone of our discussions in this chapter indicates that the imdeel is the preferred
one for practical portfolio management. Switching from the Maitz to an ind& model
is an important decision and hence thstfquestion is whether the indenodel is really
inferior to the Markwitz full-covariance model.

Is the Index Model Inferior to the Full-Covariance Model?

This question is partly related to a more general question ofallue wf parsimonious
modelsAs an analogyconsider the question of adding additiongdlanatory wariables in a
regression equatiom/e knav that adding xplanatory wariables will in most cases increase
R-square, and in no case wiltsquare &ll. But this does not necessarily imply a better
regressiorequationt*A better criterion is contriltion to the predictie paver of the rgres-
sion. The appropriate question is whether inclusion ofadable that contristes to in-
sample gplanatory puver is likely to contrilute to out-of-sample forecast precisiddding
variables, een ones that may appear sigzaht, sometimes can be hazardous to forecast
precision. Put dferently, a parsimonious model that is stingy about inclusion of indepen-
dent \ariables is often superidPredicting the alue of the dependenasiable depends on
two factors, the precision of the ctiefent estimates and the precision of the forecasts of
the independentariablesWhen we add ariables, we introduce errors on both counts.

This problem applies as well to replacing the singlexmwi¢h the full-blaovn Markowitz
model, or gen a multi-ind& model of security return$o add another indewe need both
a forecast of the risk premium of the additional ingertfolio and estimates of security
betas with respect to that additionattor The Marlowitz model allavs far more fle-
ibility in our modeling of asset wariance structure compared to the singlesnchedel.
But that adantage may be illusory if we cdr@stimate those variances with andegree

HIn fact, the adjusteB-square maydll if the additional ariable does not conttilte enough@lanatory paer
to compensate for thexiea degree of freedom it uses.
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of conidence. Using the full-c@riance matrix imokes estimation risk of thousands of
terms. Een if the full Marlowitz model would be bettein principle, it is very possible
that cumulatie efect of so may estimation errors will result in a portfolio that is actually
inferior to that dexied from the single-indemodel.

Against the potential superiority of the fullx@riance model, we ka the clear practi-
cal adwantage of the single-inddramevork. Its aid in decentralizing macro and security
analysis is another deoisi adwantage.

The Industry Version of the Index Model

Not surprisingly the ind& model has attracted the attention of practitioriBvshe etent
that it is approximatelyalid, it provides a comenient benchmark for security analysis.
A portfolio manager who has no special information about a security nor insight that is
unavailable to the general public will takhe security alpha alue as zero, and, according
to Equation8.9, will forecast a risk premium for the security equapiB,,. If we restate
this forecast in terms of total returns, oneud expect

E(rp) = 1t + BrplE(rv) — 1] (8.25)

A portfolio manager who has a forecast for the reakde, E(ry,), and obserms the
risk-freeT-bill rate, r;, can use the model to determine the benchmaukaed return for
ary stock.The beta coéicient, the markt risk, o2,, and the ifm-specifc risk, 0%(€), can
be estimated from historical SCLs, that is, fromressions of securityxeess returns on
market index excess returns.

There are mansources for such geession results. One widely used source is Research
Computer Services Department of Merrijirich, which publishes a monthB8gcurity Risk
Evaluation book, commonly called the “beta bobRhe Web sites for this chapter at the
Online Learning Centemiww.mhhe.com/bkm) also preide security betas.

Security Risk Evaluation uses the S&P 500 as the proxy for the raagortfolio. It relies
on the 60 most recent monthly obssions to calculate geession parameters. Merrill
Lynch and most servic®sise total returns, rather thaxcess returns (detions fromT-bill
rates), in the igressions. In this ay thegy estimate aariant of our inde model, which is

r=a+bry +€ (8.26)
instead of
r—r =a+p(y —r) +e (8.27)
To see the ééct of this departure, we cananéte Equation 8.27s
r=r;+a+pry —pry +te=a+r,(L—B)+pry +e (8.28)

ComparingEquations8.26 and 8.28 you can see that if is constant eer the sample
period, both equations & the same independeratriable,r,,, and residuale. Therefore,
the slope coéitient will be the same in the oaregressions®

However, the intercept that Merrill ynch calls alpha is really an estimate coft
r: (1 — B). The apparent justifation for this procedure is that, on a monthly bas{4, — B)
is small and is apt to be amped by the olatility of actual stock returns. But it isonth
noting that for@ # 1, the rgression intercept ikEquation8.26 will not equal the inde
model alpha as it does whexcess returns are used asiquation 8.27

%Value Line is another common source of security b¥asie Line uses weekly rather than monthly data and
uses the N& York Stock Exchange indenstead of the S&P 500 as the metrroxy

16Actually, ry does wary over time and so should not be grouped casually with the constant term igreresien.
However, variations inr; are tiry compared with the swings in the metrketurnThe actual elatility in the T-bill

rate has only a small impact on the estimatddesof3.
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Another way the Merrill Lynch procedure departs from the irdaodel is in its use
of percentage changes in price instead of total rates of ratnisymeans that the inde
model \ariant of Merrill Lynch ignores the didend component of stock returns.

Table8.3 illustrates a page from the beta book which includes estimates Wdettie
Packard.The third column, Close Price, sk® the stock price at the end of the sample
period.The net two columns shw the beta and alpha cdiefents. Remember that Merrill
Lynch’s alpha is actually an estimatecof+ r; (1 — B).

Much of the output that Merrillynch reports is similar to the Excel outptiable8.1)
that we discussed when estimating the indedel for Hevlett-Packard.The R-square
statistic is the ratio of systematianiance to total ariance, the fraction of totablatility
attributable to markt morements. Merrill lynch actually reports adjustédsquares (see
footnote 6), which accounts for the instances ofatiee values. Br most frms, R-square
is substantially bel@ .5, indicating that stocks hafar more irm-specifc than systematic
risk. This highlights the practical importance ofelisification.

TheResid Sd Dev-n column is the standard dation of the monthly rgression residu-
als, also sometimes called the standard error of tiression. Lilke Excel, Merrill Lynch
also reports the standard errors of the alpha and beta estimates so waleaie ¢he
precision of the estimates. Notice that the estimates of betararofe precise than those
of alpha.

The net-to-last column is calleddjusted BetaThe motvation for adjusting beta esti-
mates is that, orvarage, the beta cdafients of stocks seem to m®tovard 1 wer time.
One aplanation for this phenomenon is intuéi A business enterprise usually is estab-
lished to produce a speicifproduct or service, and awdirm may be more unceen-
tional than an older one in maways, from technology to management stjeit grows,
however, a irm often dversifies, irst expanding to similar products and later to more
diverse operation#s the frm becomes more ceantional, it starts to resemble the rest of
the economywen moreThus its beta coétient will tend to change in the direction of 1.

Another &planation for this phenomenon is statistidale knav that the serage beta
over all securities is IThus, before estimating the beta of a secunoty best forecast
of the beta wuld be that it is IWhen we estimate this beta clieEnt over a particular
sample period, we sustain some unknsampling error of the estimated béthe greater
the diference between our beta estimate and 1, the greater is the chance that we incurred a
large estimation error and that beta in a subsequent sample period will be closer to 1.

The sample estimate of the beta €cednt is the best guess for that sample period.
Given that beta has a tendgrto evolve tovard 1, havever, a forecast of the future beta
coeficient should adjust the sample estimate in that direction.

Merrill Lynch adjusts beta estimates in a simpég/i¥ It takes the sample estimate of
beta anderages it with 1, using weights ofdvthirds and one-third:

Adjusted beta= 24 sample beta- 15 (1) (8.29)

Always remember that these alpha
estimates arexepost (after thedct)
(oo \(e= 3@ What was HP's index-model alpha per month during the | measuresThey do not mean that gn

CHECK period covered by the Merrill Lynch regression if during | one could hee forecast these alpha
4 this period the average monthly rate of return on T-bills | values & ante (before theatt). In
was .4%? fact, the name of the game in security
analysis is to forecast alphalues

1A more sophisticated method is described in Oldéictasicek, A Note on Using Cross-Sectional Information
in Bayesian Estimation of Security Betadurnal of Finance 28 (1973), pp. 1233-39.
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PART II

Portfolio Theory and Practice

EXAMPLE 8.1 Adjusted Beta

For the 60 months used ifable8.3, HPS beta was estimated at 1.7@herefore, its
adjusted beta i% X 1.76+ 153 = 1.51, taking it a third of theay tavard 1.

In the absence of special information concerning ifiBur forecast for the maek
index is 11% andr-bills pay 5%, we learn from the Merrillybhch beta book that the fore-
cast for the rate of return on HP stock is

E(ryp) = r; + adustedbeta X [E(ry) — r¢]
=5+ 15Y11— 5 = 1406%

The sample period geession alpha is-.45%. Because HP’beta is greater than 1,
we knav that this means that the indmodel alpha estimate is sowigat lager As in
Equation8.28, we hge to subtract (- B)r; from the rgression alpha to obtain the ixde
model alpha. In anevent, the standard error of the alpha estimate is 1.30%estimate
of alpha is &r less than twice its standard er@onsequentlywe cannot reject the hypoth-
esis that the true alpha is zero.

ahead of timeA well-constructed portfolio that includes long positions in future passiti
alpha stocks and short positions in futurgat®e-alpha stocks will outperform the matk
index. The key term here is “well constructédneaning that the portfolio has to balance
concentration on high-alpha stocks with the need for risk-reducisgsification as dis-
cussed earlier in the chapter

Note that HR RESID STD DEW is 10.05% per month and i is .40.This tells
usthat ofp(e) = 10.05 = 1010 and, becaus& = 1 — o?(e)/a?, we can solg for the
estimate of HR total standard @@tion by rearranging as foliss:

2 1/2 1/2
Oup = awe(®) | _ (&1) = 12.97% per month
1-R? .60

This is HPS monthly standard g&tion for the sample periodherefore, the annualized
standard déation for that period ws12.97%/12= 44 9%.

Finally, the last column shwes the number of obsaations, which is 60 months, unless
the stock is nely listed and fever obserations are \aailable.

Predicting Betas

Merrill Lynch’s adjusted betas are a simpl@wto recognize that betas estimated from past
data may not be the best estimates of future betas: Betas seem tavdrift tower time.
This suggests that we mightmt a forecasting model for beta.

One simple approachauld be to collect data on beta infdient periods and then esti-
mate a rgression equation:

Curentbeta = a + b (Past beta) (8.30)

Given estimates ad andb, we would then forecast future betas using the rule

Forecasbeta = a + b (Current beta) (8.31)

There is no reason, hever, to limit ourselhes to such simple forecasting rul@ghy not
also irvestigate the predict paver of other ihancial \ariables in forecasting beta®rF



example, if we beliee that frm size and debt ratios aredwleterminants of beta, we might
specify an gpanded ersion ofEquation 8.3&nd estimate

Such an approachas follaved by Rosenbgrand Guy? who found the follaving vari-

CHAPTER 8

Cunmentbeta = a + by (Past beta) + b,(Firm size) + b;(Debt ratio)

Now we would use estimates afandb, throughb; to forecast future betas.

ables to help predict betas:

1.

o Ok WN

Rosenbey and Guy also found thatven after controlling for airfim’s financial char
acteristics, industry group helps to predict betar. &ample, thg found that the beta
values of gold mining companies are aetage .827 ler than vould be predicted based
on financial characteristics alon€his should not be surprising; the.827 “adjustment

Variance of earnings.

. Variance of cash fi@.

. Growth in earnings per share.
. Market capitalization {fm size).
. Dividendyield.

. Debt-to-assetatio.

factor” for the gold industry reflects

the fact that gold &lues are iversely
related to margt returns.

Table8.4 presents beta estimatg
and adjustmentattors for a subset @
firms in the Rosenbgrand Guy study

Index Models
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CONCEPT
CHECK

Compare the first five and last four industries in Table 8.4.
What characteristic seems to determine whether the
5 adjustment factor is positive or negative?

Index Models and Tracking Portfolios

Suppose a portfolio manager beks she has identfd an underpriced portfolio. Her
security analysis team estimates the inehe@del equation for this portfolio (using the S&P

500 ind&) in excess return form and obtains the fallng estimates:

Re =.04+ L4Rsg oo + &

ThereforeP has an alphaalue of 4% and a beta of 1.Bhe manager is coident in the
quality of her security analysisibis wary about the performance of the broad retik the

Industry Beta Adjustment Factor
Agriculture 0.99 -.140
Drugs and medicine 1.14 -.099
Telephone 0.75 -.288
Energy utilities 0.60 -.237
Gold 0.36 -.827
Construction 1.27 .062
Air transport 1.80 .348
Trucking 1.31 .098
Consumer durables 1.44 132

18Barr Rosenbeyand J. Guy‘Prediction of Beta from estment Fundamentalsafss 1 and 2,Financial Ana-

lysts Journal, May—June and July—August 1976.

TABLE 8.4

Industry betas and
adjustment factors
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ALPHA BETTING

IT HAS never been easier to pay less to invest. No
fewer than 136 exchange-traded funds (ETFs) were
launched in the first half of 2006, more than in the
whole of 2005.

For those who believe in efficient markets, this rep-
resents a triumph. ETFs are quoted securities that track
a particular index, for a fee that is normally just a frac-
tion of a percentage point. They enable investors to
assemble a low-cost portfolio covering a wide range of
assets from international equities, through government
and corporate bonds, to commodities.

But as fast as the assets of ETFs and index-tracking
mutual funds are growing, another section of the indus-
try seems to be flourishing even faster. Watson Wyatt,
a firm of actuaries, estimates that “alternative asset
investment” (ranging from hedge funds through pri-
vate equity to property) grew by around 20% in 2005,
to $1.26 trillion. Investors who take this route pay much
higher fees in the hope of better performance. One
of the fastest-growing assets, funds of hedge funds,
charge some of the highest fees of all.

Why are people paying up? In part, because inves-
tors have learned to distinguish between the market
return, dubbed beta, and managers’ outperformance,
known as alpha. “Why wouldnt you buy beta and
alpha separately?” asks Armno Kitts of Henderson
Global Investors, a fund-management firm. “Beta is a
commodity and alpha is about skill.”

Clients have become convinced that no one firm can
produce good performance in every asset class. That
has led to a “core and satellite” model, in which part of
the portfolio is invested in index trackers with the rest in
the hands of specialists. But this creates its own prob-
lems. Relations with a single balanced manager are
simple. It is much harder to research and monitor the
performance of specialists. That has encouraged the
middlemen—managers of managers (in the traditional
institutional business) and funds-of-funds (in the hedge-
fund world), which are usually even more expensive.

That their fees endure might suggest investors can
identify outperforming fund managers in advance.
However, studies suggest this is extremely hard. And
even where you can spot talent, much of the extra per-
formance may be siphoned off into higher fees. “A dis-
proportionate amount of the benefits of alpha go to
the manager, not the client,” says Alan Brown at Schro-
ders, an asset manager.

In any event, investors will probably keep pursuing
alpha, even though the cheaper alternatives of ETFs
and tracking funds are available. Craig Baker of Watson
Wyatt, says that, although above-market returns may
not be available to all, clients who can identify them
have a “first mover” advantage. As long as that belief
exists, managers can charge high fees.

Source: The Economist, September 14, 2006. Copyright © 2007 The
Economist Newspaper and The Economist Group. All rights reserved.

near term. If sheuys the portfolio, and the maegkas a whole turns dm, she still could lose
mone/ on her ivestment (which has a g positve beta) een if her team is correct that the
portfolio is underpriced on a relegi basis. She auld like a position that tas adantage of
her teans analysis bt is independent of the performance of therall marlet.

To this end, aracking portfolio (T) can be constructed tracking portfolio for port-
folio P is a portfolio designed to match the systematic componddsaéturn. Theidea
is for the portfolio to “track” the magt-sensitre component of’s return.This means the
tracking portfolio must hae the same beta on the imdeortfolio asP and as little nonsys-
tematic risk as possibl&his procedure is also callégta capture.

A tracking portfolio forP will have a levered position in the S&P 500 to ackéea beta
of 1.4.Therefore,T includes positions of 1.4 in the S&P 500 and.4 inT-bills. Because
T is constructed from the indend bills, it has an alphale of zero.

Now consider bying portfolio P but at the same time fsktting systematic risk by
assuming a short position in the tracking portfolibe short position i cancels out the
systematic posure of the long position Pt the overall combined position is thunsarket
neutral. Therefore, een if the markt does poorlythe combined position should not be
affected. But the alpha on portfolRwill remain intact.The combined portfolioC, pro-
vides an gcess return per dollar of

Re =R — R = (04+ L4Rse o0 + &) — L.4Rsg o0 = -04+ 6  (8.33)
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While this portfolio is still risk (due to the residual risky), the systematic risk has been
eliminated, and iP is reasonably well-gersified, the remaining nonsystematic risk will
be small.Thus the objecte is achiged: the manager can wmkdwantage of the 4% alpha
without inadertently taking on maek exposure The process of separating the search for
alpha from the choice of markeposure is calledlpha transport.

This “long-short stratgy” is characteristic of the aegtty of mary hedge funds. Hedge
fund managers identify an underpriced security and then try to attain a “pure play” on
the perceied underpricingThey hedge out all xdraneous risk, focusing the bet only
on the perceied “alpha” (see the box on p. 27Zyacking funds are theehicle used to
hedge thexgosures to which tlyedo not want exposure. Hedge fund managers usexnde
regressions such as those discussed here, as well as more-sophistidatemhs, to cre-
ate the tracking portfolios at the heart of their hedging sfiete

[EEY

. A single-factor model of the economy clagsf sources of uncertainty as systematic (machUMMARY
economic) &ctors or ifm-specifc (microeconomic) dctors.The index model assumes that the
macro actor can be represented by a broadxrafestock returns.

2. The single-inde model drastically reduces the necessary inputs in thedwaekportfolio selec- e
tion procedure. It also aids in specialization of labor in security analysis. %
~~
3. According to the inde model specitation, the systematic risk of a portfolio or asset equals e
B2 and the ceariance between vassets equalg;of; . 8
4. The indx model is estimated by applyinggression analysis toceess rates of returfihe slope o
of the r@ression cure is the beta of an asset, whereas the intercept is thesadpht during the E
sample periodThe rgression line is also called teecurity characteristic line. E
5. Optimal actve portfolios constructed from the indmodel include analyzed securities in prepor
tion to their information ratios'he full risky portfolio is a mixture of the as# portfolio and the
passve marlet index portfolio. The index portfolio is used to enhance thevelisification of the o
overall risky position. g
6. Practitioners routinely estimate the indaodel using total rather tharaess rates of returhis S
malkes their estimate of alpha equabte- r; (1 — B). Related Web sites for o
7. Betas shw a tendenyg to evolve tovard 1 wer time. Beta forecasting rules attempt to predict thikis chapter are available >
drift. Moreover, other fnancial \ariables can be used to help forecast betas. at www.mhhe.com/bkm
single-factor model residuals information ratio KEY TERMS
single-inde model security characteristic line tracking portfolio
regression equation scatter diagram

1. What are the adntages of the indemodel compared to the Mankitz procedure for obtaining PROBLEM
an eficiently diversified portfolio?What are its disacdntages? S ETS

2. What is the basic tradefoivhen departing from pure ingieg in favor of an actiely managed
portfolio?

3. How does the magnitude dfrh-specifc risk afect the &tent to which an acté investor will be  Quiz
willing to depart from an indesd portfolio?

4. Why do we call alpha a “nonmak return premium2Vhy are high-alpha stocks desirable
investments for acte portfolio managers®ith all other parameters helkéd, what would hap-
pen to a portfoli Sharpe ratio as the alpha of its component securities increased?
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Problems 5. A portfolio management ganization analyzes 60 stocks and constructs a neréance €fi-
cient portfolio using only these 60 securities.

a. How mary estimates of xpected returns,ariances, and e@riances are needed to optimize
this portfolio?

b. If one could safely assume that stock neareturns closely resemble a single-ixd&ucture,
how mary estimates wuld be needed?

6. The following are estimates for wstocks.

Stock  Expected Return Beta Firm-Specific Standard Deviation

A 13% 0.8 30%

B 18 1.2 40
The marlet index has a standard diations of 22% and the risk-free rate is 8%.
a. What are the standardwdations of stock#\ andB?
b. Suppose that we were to construct a portfolio with proportions:

Stock A: .30

Stock B: .45
E Tbills: 25
X
Q Compute the xpected return, standardwi&tion, beta, and nonsystematic standandad®n of
g the portfolio.
(O] 7. Consider the follwing two regression lines for stock& andB in the follaving figure.
V)
e A= Ty rg—=Tr¢
£
E. ° °

® [ )
° (]
- ° o/
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. Which stock has higheiri-specifc risk?
Which stock has greater systematic (nedykisk?
Which stock has highe®??
. Which stock has higher alpha?
Which stock has higher correlation with the netfk
8. Consider the tw (excess return) indemodel rgression results fok andB:
Ry = 1% + 1.2Ry
R-squae = .576
Residud standad deviation = 10 3%
Rs = —2% + .8Ry
R-square = .436
Residud standad deviation = 9.1%

Pao o
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Which stock has morérfn-specifc risk?

Which has greater maagkrisk?

For which stock does magk moazement &plain a greater fraction of returanability?

If r; were constant at 6% and thegression had been run using total rather tharess
returns, what wuld hase been the gression intercept for stoék?

oo o

Use the following data for Problems 9 through 14. Suppose that the index model for
stocks A and B is estimated from excess returns with the following results:

Ry = 3%+ .7Ry + €
Ry = —2%+12R, +6€;
oy = 20%; R-square, = .20; Rsquaeg = .12
9. What is the standard dation of each stock?
10. Break davn the \ariance of each stock to the systematic ama-§pecifc components.
11. What are the o@riance and correlation cdiefent between the twstocks?
12. What is the ceariance between each stock and the eiaride?

13. For portfolio P with investment proportions of .60 hand .40 inB, rework Problems 9, 10,
and 12.

14. Rework Problem 13 for portfoli®@ with investment proportions of .50 B .30 in the markt
index, and .20 inr-bills.

15. A stock recently has been estimated teeha beta of 1.24:

a. What will Merrill Lynch compute as the “adjusted beta” of this stock?
b. Suppose that you estimate the faliog regression describing the@ution of beta wer time:

Br = 3+ . 7B
What would be your predicted beta forxterear?

16. Based on currentvdend yields andxected graith rates, thexgected rates of return on stocks
AandB are 11% and 14%, respety. The beta of stock is .8, while that of stocBis 1.5.The
T-bill rate is currently 6%, while thexpected rate of return on the S&P 500 e 12%.The
standard daation of stockA is 10% annuallywhile that of stociB is 11%. If you currently hold
a passie inde portfolio, would you choose to add either of these stocks to your holdings?

17. A portfolio manager summarizes the input from the macro and micro forecasters in tie follo

£
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ing table:
Micro Forecasts
Asset Expected Return (%) Beta Residual Standard Deviation (%)
Stock A 20 1.3 58
Stock B 18 1.8 71
Stock C 17 0.7 60
Stock D 12 1.0 55
Macro Forecasts
Asset Expected Return (%) Standard Deviation (%)
T-bills 8 0
Passive equity portfolio 16 23

a. Calculate gpected gcess returns, alphales, and residuabviances for these stocks.

b. Construct the optimal rigkportfolio.

¢. What is Sharps’measure for the optimal portfolio andahmuch of it is contribted by the
active portfolio?

d. What should be thexact maleup of the complete portfolio for anvestor with a coéicient
of risk aversion of 2.8?
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18. Recalculate Problem 17 for a portfolio manager who is nowvatldo short sell securities.

a. What is the cost of the restriction in terms of Sharpeéasure?
b. What is the utility loss to the westor A = 2.8) given his nev complete portfolio?

19. Suppose that based on the anadygtist record, you estimate that the relationship between fore-
cast and actual alpha is:

Actualabnomalretun = .3 X Forecas of alpha

Use the alphas from Problem 17.wmuch is &pected performancefatted by recognizing
the imprecision of alpha forecasts?

Cha"enge 20. Suppose that the alpha forecasts iw ¥t of Spreadsheet 8.1 are doublkliithe other data

Problem remain the same. Recalculate the optimalyristrtfolio. Before you do gncalculations, hw-
ewer, use the Summary of Optimization Procedure to estimate a back-ofvble calcula-
tion of the information ratio and Sharpe ratio of the/lgeoptimized portfolio.Then recalculate
the entire spreadsheetaenple and erify your back-of-the-arelope calculation.

/—\ 1. When the annualized monthly percentage rates of return for a stocktnmaid were rgressed
CFAe against the returns f&BC and XYZ stocks wer a 5-year period ending in 2008, using an ordi-
= \ JROBLEMS nary least squaresgeession, the follwing results were obtained:
X
O
E Statistic ABC XYz
S Alpha 3.20%  7.3%
I8 Beta 0.60 0.97
= R2 0.35 0.17
e Residual standard deviation 13.02% 21.45%
Explain what these geession results tell the analyst about risk—return relationships for each
stock aver the sample period. Comment on their implications for future risk—return relation-
- ships, assuming both stocks were included invardified common stock portfolio, especially
g in view of the folloving additional data obtained from dvbrolerage houses, which are based
S on 2 years of weekly data ending in December 2008.
-
§ Brokerage House Beta of ABC  Beta of XYZ
A .62 1.45
B 71 1.25

2. Assume the correlation cdifient between Badr Fund and the S&P 500 Stock Imde .70.
What percentage of Bak Funds total risk is spedit (i.e., nonsystematic)?

3. The correlation between the Charlottesville International Fund and the EAFEetMade
is 1.0.The epected return on the EAFE Indés 11%, the ®pected return on Charlottesville
International Fund is 9%, and the risk-free return in EAFE countries is 3%. Based on this analy-
sis, what is the implied beta of Charlottesville International?

4. The concept obeta is most closely associated with:

a. Correlation codfcients.
b. Mean-variance analysis.
c. Nonsystematic risk.

d. Systematic risk.

5. Beta and standard dation differ as risk measures in that beta measures:

a. Only unsystematic risk, while standard/@gion measures total risk.
b. Only systematic risk, while standardvilion measures total risk.
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c. Both systematic and unsystematic risk, while standavéhtien measures only unsystem-
atic risk.

d. Both systematic and unsystematic risk, while standavihtien measures only systematic
risk.

Go to www.mhhe.com/edumarketinsight and click on the Company link. Enter the ticker

symbol for the stock of your choice and click on the Go button. In the Excel Analytics sec-

tion go to the Market Data section and get the Monthly Adjusted Prices data for the past

4 years. The page will also show monthly returns for your stock and for the S&P 500. Copy

the data into an Excel worksheet and then do a regression to generate the characteristic

line for the stock. (Use the menus for Tools, Data Analysis, Regression, input the X range

and the Y range, select New Worksheet Ply under Output Options, and click on OK.) Based .

on the regression results, what is the beta coefficient for your stock? S&ND{\RD
Next use Excel to plot an X-Y Scatter graph of the stock’s returns versus the S&P 500's &POOR'S

returns. Once the graph is constructed, select one of the data points and right click on it.

Choose the Add Trendline option and select the Linear type. On the Options tab, select

Display Equation on Chart. How does the equation compare with your regression results?
Go back to the main page for your stock’s information and select S&P Stock Reports

from the menu. Choose Stock Report from the submenu and when the stock report opens,

find the beta coefficient for the firm. How does this beta compare to your results? What are

possible reasons for any differences?

Beta Estimates

Go to http://finance.yahoo.com and click on Stocks link under the Investing tab.
Look for the Stock Screener link under Research Tools. The Java Yahoo! Finance
Screener lets you create your own screens. In the Click to Add Criteria box, find
Trading and Volume on the menu and choose Beta. In the Conditions box, choose
< = and in the Values box, enter 1. Hit the Enter key and then request the top 200
matches in the Return Top_Matches box. Click on the Run Screen button.

Select the View Table tab and sort the results to show the lowest betas at the top
of the list by clicking on the Beta column header. Which firms have the lowest betas?
In which industries do they operate?

Select the View Histogram tab and when the histogram appears, look at the bot-
tom of the screen to see the Show Histogram for box. Use the menu that comes up
when you click on the down arrow to select beta. What pattern(s), if any, do you see
in the distributions of betas for firms that have betas less than 1?

E-Investments
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SOLUTIONS TO CONCEPT CHECKS

1 a. Total marlet capitalization is 3,008 1,940+ 1,360= 6,300. Therefore, the meanxeess
return of the inde portfolio is

3,000 %10+ 1,940 e 1,360
6,300 6,300 6,300

X 17 = 9036 = .0905
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b. The cwariance between stocksandB equals
CoV(Ra, Rs) = BaBso? = 1X.2X 25 = .0125
c. The cwariance between stoékand the inde portfolio equals
CoV(Rs, Ry) = Bgod = .2X .28 = 0125
d. The total ariance oB equals
0§ = Var(BgRy + &) = Bao + o’(es)
Systematic risk equalgio = .22 X .252 = 0025.
Thus the ifm-specifc variance oB equals
o?(eg) = o — 3oy = .30 —.22 X .25? = .0875
2. The \ariance of each stock 2%, + o2(e).
For stockA, we obtain

04 = .92(20)2 + 302 = 1,224

§ oa = 35%

g For stockB,

o o3 = 1.12(202 +10? = 584

§ op = 24%

< The cwariance is

€ BaBgo? = .9X 11X 2% = 396

§ 3. o%er) = (4)lo*(e) + o%(e)]

o = (30 + .10

0 =.0250

S

= Thereforeo(e,) = .158= 15.8%

> 4. Merrill Lynch’s alpha is related to the indenodel alpha by
Olerrill = Cindexmodd T (1 — B¢

For HR o yerin = —-45%,B = 1.76, and we are told thgtwas .4%Thus

Qindecmodd = —-45% — (1— 1 76. 46 = —.146%.

HP’s return vas somehat disappointing\en after correcting Merrill ¥nch’s alpha. It under
performed its “benchmark” return by aveaage of .146% per month.

5. The industries with posite adjustmentdctors are most sensii to the economyrheir betas
would be &pected to be higher because thusibess risk of tharims is higherIn contrast, the
industries with ngative adjustmentéctors are in isinessields with a lover sensitiity to the
economyThereforefor ary givenfinancialprofile, their betasarelower.




