
of estimation of the single-index model. We 

review the statistical properties of these 

estimates and show how they relate to the 

practical issues facing portfolio managers. 

 Despite the simplification they offer, index 

models remain true to the concepts of the 

efficient frontier and portfolio optimization. 

Empirically, index models are as valid as the 

assumption of normality of the rates of return 

on available securities. To the extent that 

short-term returns are well approximated 

by normal distributions, index models can 

be used to select optimal portfolios nearly 

as accurately as the Markowitz algorithm. 

Finally, we examine optimal risky portfolios 

constructed using the index model. While the 

principles are the same as those employed 

in the previous chapter, the properties of 

the portfolio are easier to derive and inter-

pret in this context. We illustrate how to use 

the index model by constructing an optimal 

risky portfolio using a small sample of firms. 

This portfolio is compared to the correspond-

ing portfolio constructed from the Markowitz 

model. We conclude with a discussion of sev-

eral practical issues that arise when imple-

menting the index model.  

 INDEX MODELS 
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   THE MARKOWITZ PROCEDURE    introduced in 

the preceding chapter suffers from two 

drawbacks. First, the model requires a huge 

number of estimates to fill the covariance 

matrix. Second, the model does not pro-

vide any guideline to the forecasting of the 

security risk premiums that are essential to 

construct the efficient frontier of risky assets. 

Because past returns are unreliable guides to 

expected future returns, this drawback can 

be telling. 

 In this chapter we introduce index mod-

els that simplify estimation of the covariance 

matrix and greatly enhance the analysis of 

security risk premiums. By allowing us to 

explicitly decompose risk into systematic 

and firm-specific components, these mod-

els also shed considerable light on both 

the power and limits of diversification. Fur-

ther, they allow us to measure these com-

ponents of risk for particular securities and 

portfolios. 

 We begin the chapter by describing a 

single-factor security market and show how 

it can justify a single-index model of secu-

rity returns. Once its properties are ana-

lyzed, we proceed to an extensive example 
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   The Input List of the Markowitz Model 

 The success of a portfolio selection rule depends on the quality of the input list, that is, 
the estimates of expected security returns and the covariance matrix. In the long run, effi-
cient portfolios will beat portfolios with less reliable input lists and consequently inferior 
reward-to-risk trade-offs. 

 Suppose your security analysts can thoroughly analyze 50 stocks. This means that your 
input list will include the following:

    

n �        50 estimatesof expectedreturns

nn

n n

�        

�

50
2

estimatesof variances

( )// estimatesof covariances

tota
2 1 225

1 325
� ,

, ll estimates   

 This is a formidable task, particularly in light of the fact that a 50-security portfolio 
is relatively small. Doubling  n  to 100 will nearly quadruple the number of estimates to 
5,150. If  n   �  3,000, roughly the number of NYSE stocks, we need more than 4.5  million  
estimates. 

 Another difficulty in applying the Markowitz model to portfolio optimization is that 
errors in the assessment or estimation of correlation coefficients can lead to nonsensical 
results. This can happen because some sets of correlation coefficients are mutually incon-
sistent, as the following example demonstrates:    1              

  

Asset
Standard 

Deviation (%)

Correlation Matrix

A B C

A 20 1.00 0.90 0.90

B 20 0.90 1.00 0.00

C 20 0.90 0.00 1.00

Suppose that you construct a portfolio with weights:  � 1.00; 1.00; 1.00, for assets A; B; C, 
respectively, and calculate the portfolio variance. You will find that the portfolio variance 
appears to be negative ( � 200). This of course is not possible because portfolio variances 
cannot be negative: we conclude that the inputs in the estimated correlation matrix must be 
mutually inconsistent. Of course,  true  correlation coefficients are always consistent.    2 But 
we do not know these true correlations and can only estimate them with some imprecision. 
Unfortunately, it is difficult to determine at a quick glance whether a correlation matrix is 
inconsistent, providing another motivation to seek a model that is easier to implement. 

 Introducing a model that simplifies the way we describe the sources of security risk 
allows us to use a smaller, consistent set of estimates of risk parameters and risk premiums. 
The simplification emerges because positive covariances among security returns arise from 
common economic forces that affect the fortunes of most firms. Some examples of com-
mon economic factors are business cycles, interest rates, and the cost of natural resources. 
The unexpected changes in these variables cause, simultaneously, unexpected changes 

   1 We are grateful to Andrew Kaplin and Ravi Jagannathan, Kellogg Graduate School of Management, North-
western University, for this example.  

   2 The mathematical term for a correlation matrix that cannot generate negative portfolio variance is “positive 
definite.”  

    8.1 A SINGLE-FACTOR SECURITY MARKET
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in the rates of return on the entire stock market. By decomposing uncertainty into these 
system-wide versus firm-specific sources, we vastly simplify the problem of estimating 
covariance and correlation.  

  Normality of Returns and Systematic Risk 

 We can always decompose the rate of return on any security,  i,  into the sum of its expected 
plus unanticipated components:

     r E r ei i i� �( )   (8.1)  

where the unexpected return,  e   i   , has a mean of zero and a standard deviation of  �   i   that 
measures the uncertainty about the security return. 

 When security returns can be well approximated by normal distributions that are cor-
related across securities, we say that they are  joint normally distributed.  This assump-
tion alone implies that, at any time, security returns are driven by one or more common 
variables. When more than one variable drives normally distributed security returns, these 
returns are said to have a  multivariate normal distribution.  We begin with the simpler 
case where only one variable drives the joint normally distributed returns, resulting in a 
single-factor security market. Extension to the multivariate case is straightforward and is 
discussed in later chapters. 

 Suppose the common factor, m, that drives innovations in security returns is some mac-
roconomic variable that affects all firms. Then we can decompose the sources of uncertainty 
into uncertainty about the economy as a whole, which is captured by  m,  and uncertainty 
about the firm in particular, which is captured by  e   i   . In this case, we amend  Equation 8.1  to 
accommodate two sources of variation in return:

     r E r m ei i i� � �( )   (8.2)   

 The macroeconomic factor,  m,  measures unanticipated macro surprises. As such, it has 
a mean of zero (over time, surprises will average out to zero), with standard deviation of 
 �   m  . In contrast,  e   i   measures only the firm-specific surprise. Notice that  m  has no subscript 
because the same common factor affects all securities. Most important is the fact that  m  
and  e   i   are uncorrelated, that is, because  e   i   is firm-specific, it is independent of shocks to 
the common factor that affect the entire economy. The variance of  r   i   thus arises from two 
uncorrelated sources, systematic and firm specific. Therefore,

     � � � � �i m ie2 2 2( )   (8.3)  

The common factor,  m,  generates correlation across securities, because all securities 
will respond to the same macroeconomic news, while the firm-specific surprises, captured 
by  e   i  , are assumed to be uncorrelated across firms. Because  m  is also uncorrelated with any 
of the firm-specific surprises, the covariance between any two securities  i  and  j  is

     Cov Cov( , ) ( , )r r m e m ei j i j m� � � � �2   (8.4)   

 Finally, we recognize that some securities will be more sensitive than others to macro-
economic shocks. For example, auto firms might respond more dramatically to changes in 
general economic conditions than pharmaceutical firms. We can capture this refinement by 
assigning each firm a sensitivity coefficient to macro conditions. Therefore, if we denote 
the sensitivity coefficient for firm  i  by the Greek letter beta,  �   i  , we modify  Equation 8.2  to 
obtain the    single-factor model:   

     r E r m ei i i i� � � �( )    (8.5)  
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 Equation 8.5  tells us the systematic risk of security  i  is determined by its beta coefficient. 
“Cyclical” f irms have greater sensitivity to the market and therefore higher systematic risk. 
The systematic risk of security  i  is     � �i m

2 2 ,    and its total risk is

     � � � � � �i i m ie2 2 22 ( )   (8.6)  

The covariance between any pair of securities also is determined by their betas:

     Cov Cov ,( , ) ( )r r m e m ei j i i j j i j m� � � � � � � � �2   (8.7)  

In terms of systematic risk and market exposure, this equation tells us that firms are close 
substitutes. Equivalent beta securities give equivalent market positions. 

 Up to this point we have used only statistical implications from the joint normality of 
security returns. Normality of security returns alone guarantees that portfolio returns are 
also normal (from the “stability” of the normal distribution discussed in Chapter 5) and that 
there is a linear relationship between security returns and the common factor. This greatly 
simplifies portfolio analysis. Statistical analysis, however, does not identify the common 
factor, nor does it specify how that factor might operate over a longer investment period. 
However, it seems plausible (and can be empirically verified) that the variance of the com-
mon factor usually changes relatively slowly through time, as do the variances of indi-
vidual securities and the covariances among them. We seek a variable that can proxy for 
this common factor. To be useful, this variable must be observable, so we can estimate its 
volatility as well as the sensitivity of individual securities returns to variation in its value.       

8.2 THE SINGLE-INDEX MODEL

  A reasonable approach to making the single-factor model operational is to assert that the 
rate of return on a broad index of securities such as the S&P 500 is a valid proxy for the 
common macroeconomic factor. This approach leads to an equation similar to the single-
factor model, which is called a    single-index model    because it uses the market index to 
proxy for the common factor.  

   The Regression Equation of the Single-Index Model 

 Because the S&P 500 is a portfolio of stocks whose prices and rates of return can be 
observed, we have a considerable amount of past data with which to estimate systematic 
risk. We denote the market index by  M,  with excess return of  R   M    �   r   M    �   r   f   , and standard 
deviation of  �   M  . Because the index model is linear, we can estimate the sensitivity (or beta) 
coefficient of a security on the index using a single-variable linear regression. We regress 
the excess return of a security,  R   i    �   r   i    �   r   f   , on the excess return of the index,  R   M   . To esti-
mate the regression, we collect a historical sample of paired observations,  R   i   ( t ) and  R   M   ( t ), 
where  t  denotes the date of each pair of observations (e.g., the excess returns on the stock 
and the index in a particular month).    3 The    regression equation    is

     R t R t e ti i i M i( ) ( ) ( )� � � � �   (8.8)  

The intercept of this equation (denoted by the Greek letter alpha, or  � ) is the security’s 
expected excess return  when the market excess return is zero.  The slope coefficient,  �   i  , is 

   3 Practitioners often use a “modified” index model that is similar to  Equation 8.8  but that uses total rather than 
excess returns. This practice is most common when daily data are used. In this case the rate of return on bills is on 
the order of only about .01% per day, so total and excess returns are almost indistinguishable.  
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the security beta. Beta is the security’s sensitivity to the index: it is the amount by which 
the security return tends to increase or decrease for every 1% increase or decrease in the 
return on the index.  e   i   is the zero-mean, firm-specific surprise in the security return in time 
 t,  also called the    residual.     

  The Expected Return–Beta Relationship 

 Because  E ( e   i  )  �  0, if we take the expected value of  E ( R   i  ) in  Equation 8.8 , we obtain the 
expected return–beta relationship of the single-index model:

     E R E Ri i i M( ) ( )� � � �   (8.9)  

The second term in  Equation 8.9  tells us that part of a security’s risk premium is due to the 
risk premium of the index. The market risk premium is multiplied by the relative sensitiv-
ity, or beta, of the individual security. We call this the  systematic  risk premium because it 
derives from the risk premium that characterizes the entire market, which proxies for the 
condition of the full economy or economic system. 

 The remainder of the risk premium is given by the first term in the equation,  � . Alpha is 
a  nonmarket  premium. For example,  �  may be large if you think a security is underpriced 
and therefore offers an attractive expected return. Later on, we will see that when secu-
rity prices are in equilibrium, such attractive opportunities ought to be competed away, in 
which case  �  will be driven to zero. But for now, let’s assume that each security analyst 
comes up with his or her own estimates of alpha. If managers believe that they can do a 
superior job of security analysis, then they will be confident in their ability to find stocks 
with nonzero values of alpha. 

 We will see shortly that the index model decomposition of an individual security’s risk 
premium to market and nonmarket components greatly clarifies and simplifies the opera-
tion of macroeconomic and security analysis within an investment company.  

  Risk and Covariance in the Single-Index Model 

 Remember that one of the problems with the Markowitz model is the overwhelming 
number of parameter estimates required to implement it. Now we will see that the 
index model simplification vastly reduces the number of parameters that must be esti-
mated.  Equation 8.8  yields the systematic and firm-specific components of the overall 
risk of each security, and the covariance between any pair of securities. Both variances 
and covariances are determined by the security betas and the properties of the market 
index:

     

Total risk Systematicrisk Firm-specific r� � iisk

Covariance Product of

2� � � � � �

�

i i M ie2 2 2( )

bbetas Market index risk

Cov

�

� � � �( , )r ri j i j M
2

CCorrelation Product of correlationswith t� hhemarket index

Corr( , )r ri j
i j M

i j

i
�

� � �

� �
�

�2 �� � �

� � � �
� �

M j M

i M j M
i M j Mr r r r

2 2

Corr Corr( , ) ( , )
   

(8.10)  

 Equations 8.9  and  8.10  imply that the set of parameter estimates needed for the single-
index model consists of only  � ,  � , and  � ( e ) for the individual securities, plus the risk pre-
mium and variance of the market index. 
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CONCEPT 
CHECK

1

The data below describe a three-stock financial market that satisfies the single-index model.

The standard deviation of the market index portfolio is 25%.

  a. What is the mean excess return of the index portfolio?

b. What is the covariance between stock A and stock B?

 c. What is the covariance between stock B and the index?

d. Break down the variance of stock B into its systematic and firm-specific components.

Stock Capitalization Beta
Mean Excess 

Return
Standard 
Deviation

A $3,000 1.0 10% 40%
B $1,940 0.2  2 30
C $1,360 1.7 17 50

  The Set of Estimates Needed for the Single-Index Model 

 We summarize the results for the single-index model in the table below.   

Symbol

1.  The stock’s expected return if the market is neutral, that is, if the 
market’s excess return, rM – rf, is zero �i

2.  The component of return due to movements in the overall market; �i is 
the security’s responsiveness to market movements �i (rM – rf )

3.  The unexpected component of return due to unexpected events that 
are relevant only to this security (firm specific) ei

4.  The variance attributable to the uncertainty of the common
macroeconomic factor � �i M

2 2

5.  The variance attributable to firm-specific uncertainty �2(ei)

 These calculations show that if we have:

   •  n  estimates of the extra-market expected excess returns,  �   i    

  •  n  estimates of the sensitivity coefficients,  �   i    

  •  n  estimates of the firm-specific variances,  �  2 ( e   i  )  

  • 1 estimate for the market risk premium,  E ( R   M  )  

  • 1 estimate for the variance of the (common) macroeconomic factor,     �M
2      

then these (3 n   �  2) estimates will enable us to prepare the entire input list for this single-
index security universe. Thus for a 50-security portfolio we will need 152 estimates rather 
than 1,325; for the entire New York Stock Exchange, about 3,000 securities, we will need 
9,002 estimates rather than approximately 4.5 million! 

 It is easy to see why the index model is such a useful abstraction. For large universes of 
securities, the number of estimates required for the Markowitz procedure using the index 
model is only a small fraction of what otherwise would be needed. 

 Another advantage is less obvious but equally important. The index model abstraction 
is crucial for specialization of effort in security analysis. If a covariance term had to be 
calculated directly for each security pair, then security analysts could not specialize by 
industry. For example, if one group were to specialize in the computer industry and another 
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in the auto industry, who would have the common background to estimate the covariance 
 between  IBM and GM? Neither group would have the deep understanding of other indus-
tries necessary to make an informed judgment of co-movements among industries. In con-
trast, the index model suggests a simple way to compute covariances. Covariances among 
securities are due to the influence of the single common factor, represented by the market 
index return, and can be easily estimated using the regression Equation 8.8 on (p. 247). 

 The simplification derived from the index model assumption is, however, not without 
cost. The “cost” of the model lies in the restrictions it places on the structure of asset 
return uncertainty. The classification of uncertainty into a simple dichotomy—macro ver-
sus micro risk—oversimplifies sources of real-world uncertainty and misses some impor-
tant sources of dependence in stock returns. For example, this dichotomy rules out industry 
events, events that may affect many firms within an industry without substantially affect-
ing the broad macroeconomy. 

 This last point is potentially important. Imagine that the single-index model is perfectly 
accurate, except that the residuals of two stocks, say, British Petroleum (BP) and Royal 
Dutch Shell, are correlated. The index model will ignore this correlation (it will assume it 
is zero), while the Markowitz algorithm (which accounts for the full covariance between 
every pair of stocks) will automatically take the residual correlation into account when 
minimizing portfolio variance. If the universe of securities from which we must construct 
the optimal portfolio is small, the two models will yield substantively different optimal 
portfolios. The portfolio of the Markowitz algorithm will place a smaller weight on both 
BP and Shell (because their mutual covariance reduces their diversification value), result-
ing in a portfolio with lower variance. Conversely, when correlation among residuals is 
negative, the index model will ignore the potential diversification value of these securities. 
The resulting “optimal” portfolio will place too little weight on these securities, resulting 
in an unnecessarily high variance. 

 The optimal portfolio derived from the single-index model therefore can be signifi-
cantly inferior to that of the full-covariance (Markowitz) model when stocks with corre-

lated residuals have large alpha values 
and account for a large fraction of the 
portfolio. If many pairs of the covered 
stocks exhibit residual correlation, it 
is possible that a  multi-index  model, 
which includes additional factors to 
capture those extra sources of cross-
security correlation, would be better 
suited for portfolio analysis and con-
struction. We will demonstrate the 
effect of correlated residuals in the 
spreadsheet example in this chapter, 
and discuss multi-index models in 
later chapters.    

  The Index Model and Diversification 

 The index model, first suggested by Sharpe,    4 also offers insight into portfolio diversifica-
tion. Suppose that we choose an equally weighted portfolio of  n  securities. The excess rate 
of return on each security is given by

    R R ei i i M i� � � � �  

   4 William F. Sharpe, “A Simplified Model of Portfolio Analysis,”  Management Science,  January 1963.  

CONCEPT 
CHECK

2

Suppose that the index model for the excess returns of 
stocks A and B is estimated with the following results:

R R e

R R e
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A M A
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2 0 1 1
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Find the standard deviation of each stock and the cova-
riance between them.
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Similarly, we can write the excess return on the portfolio of stocks as

      R R eP P P M P� � � � �   (8.11)  

We now show that, as the number of stocks included in this portfolio increases, the part of 
the portfolio risk attributable to nonmarket factors becomes ever smaller. This part of the 
risk is diversified away. In contrast, market risk remains, regardless of the number of firms 
combined into the portfolio. 

 To understand these results, note that the excess rate of return on this equally weighted 
portfolio, for which each portfolio weight  w  i     �  1/ n,  is
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(8.12)

   

 Comparing  Equations 8.11  and  8.12 , we see that the portfolio has a sensitivity to the 
market given by

      
� � �

�

P i
i

n

n
1

1
∑

  
(8.13)

  

which is the average of the individual  �   i   s. It has a nonmarket return component of
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(8.14)
  

which is the average of the individual alphas, plus the zero mean variable
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eP i

i

n

�
�

1

1
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(8.15)
  

which is the average of the firm-specific components. Hence the portfolio’s variance is

      � � � � �P P M Pe2 2 2= 2 ( )   (8.16)   

 The systematic risk component of the portfolio variance, which we defined as the com-
ponent that depends on marketwide movements, is     � �P M

2 2    and depends on the sensitivity 
coefficients of the individual securities. This part of the risk depends on portfolio beta and 
    �M

2    and will persist regardless of the extent of portfolio diversification. No matter how 
many stocks are held, their common exposure to the market will be reflected in portfolio 
systematic risk.    5 

 In contrast, the nonsystematic component of the portfolio variance is  �  2 ( e   P  ) and is 
attributable to firm-specific components,  e   i  . Because these  e   i  s are independent, and all have 
zero expected value, the law of averages can be applied to conclude that as more and more 
stocks are added to the portfolio, the firm-specific components tend to cancel out, result-
ing in ever-smaller nonmarket risk. Such risk is thus termed  diversifiable.  To see this more 
rigorously, examine the formula for the variance of the equally weighted “portfolio” of 
firm-specific components. Because the  e   i   s are uncorrelated,
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1

2
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n
e

n
eP

i

n

i∑ 





1 1
  
(8.17)

  

where     �2( )e    is the average of the firm-specific variances. Because this average is indepen-
dent of  n,  when  n  gets large,  �  2 ( e   P  ) becomes negligible. 

   5Of course, one can construct a portfolio with zero systematic risk by mixing negative  �  and positive  �  assets. 
The point of our discussion is that the vast majority of securities have a positive  � , implying that well-diversified 
portfolios with small holdings in large numbers of assets will indeed have positive systematic risk.  
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 To summarize, as diversification increases, the total variance of a portfolio approaches 
the systematic variance, defined as the variance of the market factor multiplied by the 
square of the portfolio sensitivity coefficient,     �P

2 .    This is shown in  Figure 8.1 .   
  Figure 8.1  shows that as more and more securities are combined into a portfolio, the 

portfolio variance decreases because of the diversification of firm-specific risk. How-
ever, the power of diversification is limited. Even for very large  n,  part of the risk remains 
because of the exposure of virtually all assets to the common, or market, factor. Therefore, 
this systematic risk is said to be nondiversifiable. 

 This analysis is borne out by em -
pirical evidence. We saw the effect 
of portfolio diversification on portfo-
lio standard deviations in Figure 7.2. 
These empirical results are similar to 
the theoretical graph presented here 
in  Figure 8.1 .    

   

8.3 ESTIMATING THE SINGLE-INDEX MODEL

  Armed with the theoretical underpinnings of the single-index model, we now provide an 
extended example that begins with estimation of the regression equation (8.8) and contin-
ues through to the estimation of the full covariance matrix of security returns. 

 To keep the presentation manageable, we focus on only six large U.S. corporations: 
Hewlett-Packard and Dell from the information technology (IT) sector of the S&P 500, 
Target and Wal-Mart from the retailing sector, and British Petroleum and Royal Dutch 
Shell from the energy sector. 

 F I G U R E  8.1  The variance of an equally weighted portfolio with risk 
coefficient  �   P   in the single-factor economy

σ2
P

n

σ2
 (eP) = σ2(e)/n

Diversifiable Risk

Systematic Risk

β2
P σ

2
M

CONCEPT 
CHECK

3

Reconsider the two stocks in Concept Check 2. Sup-
pose we form an equally weighted portfolio of A and 
B. What will be the nonsystematic standard deviation of 
that portfolio?
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 We work with monthly observations of rates of return for the six stocks, the S&P 500 
portfolio, and T-bills over the period April 2001 to March 2006 (60 observations). As a first 
step, the excess returns on the seven risky assets are computed. We start with a detailed 
look at the preparation of the input list for Hewlett-Packard (HP), and then proceed to 
display the entire input list. Later in the chapter, we will show how these estimates can be 
used to construct the optimal risky portfolio.  

   The Security Characteristic Line for Hewlett-Packard 

 The index model regression Equation 8.8 (on p. 247), restated for Hewlett-Packard (HP) is

R t R t e tHP HP HP S P500 HP( ) ( ) ( )&� � � � �

The equation describes the (linear) dependence of HP’s excess return on changes in the 
state of the economy as represented by the excess returns of the S&P 500 index portfolio. 
The regression estimates describe a straight line with intercept  �  HP  and slope  �  HP , which 
we call the    security characteristic line    (SCL) for HP. 

  Figure 8.2  shows a graph of the excess returns on HP and the S&P 500 portfolio over 
the 60-month period from April 2001 to March 2006. The graph shows that HP returns 
generally follow those of the index, but with much larger swings. Indeed, the annual-
ized standard deviation of the excess return on the S&P 500 portfolio over the period was 
13.58%, while that of HP was 38.17%. The swings in HP’s excess returns suggest a greater-
than-average sensitivity to the index, that is, a beta greater than 1.0. 

 The relationship between the returns of HP and the S&P 500 is made clearer by the 
   scatter diagram    in  Figure 8.3 , where the regression line is drawn through the scatter. The 
vertical distance of each point from the regression line is the value of HP’s residual,  e  HP ( t ), 
corresponding to that particular date. The rates in  Figures 8.2  and  8.3  are not annualized, 
and the scatter diagram shows monthly swings of over  � 30% for HP, but returns in the 
range of  � 11% to 8.5% for the S&P 500. The regression analysis output obtained by using 
Excel is shown in  Table 8.1 .    

  The Explanatory Power of 
the SCL for HP 

 Considering the top panel of  Table 8.1  
first, we see that the correlation of 
HP with the S&P 500 is quite high 
(.7238), telling us that HP tracks 
changes in the returns of the S&P 500 
fairly closely. The  R -square (.5239) 
tells us that variation in the S&P 500 
excess returns explains about 52% 
of the variation in the HP series. The 
adjusted  R -square (which is slightly 
smaller) corrects for an upward bias 
in  R -square that arises because we use 
the fitted values of two parameters,    6 
the slope (beta) and intercept (alpha), 
rather than their true, but unobservable, 

   6 In general, the adjusted  R -square     ( )RA
2    is derived from the unadjusted by     R R

n

n kA
2 21 1

1

1
� � �

�

� �
( ) ,    where 

 k  is the number of independent variables (here,  k   �  1). An additional degree of freedom is lost to the estimate of 
the intercept.  

 F I G U R E  8.2  Excess returns on HP and S&P 500 for April 2001 
to March 2006
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values. With 60 observations, this bias is 
small. The standard error of the regression 
is the standard deviation of the residual, 
which we discuss in more detail shortly. 
This is a measure of the slippage in the 
average relationship between the stock 
and the index due to the impact of firm- 
specific factors, and is based on  in-sample  
data. A more severe test is to look at returns 
from periods after the one covered by the 
regression sample and test the power of 
the independent variable (the S&P 500) to 
predict the dependent variable (the return 
on HP). Correlation between regression 
forecasts and realizations of  out-of-sample  
data is almost always considerably lower 
than in-sample correlation.  

  Analysis of Variance 

 The next panel of  Table 8.1  shows the 
analysis of variance (ANOVA) for the 
SCL. The sum of squares (SS) of the re -
gression (.3752) is the portion of the vari-

ance of the dependent variable (HP’s return) that is explained by the independent variable 
(the S&P 500 return); it is equal to     � �HP

2
S P500
2

& .    The MS column for the residual (.0059) 
shows the variance of the  unexplained  portion of HP’s return, that is, the portion of return 
that is independent of the market index. The square root of this value is the standard error 
(SE) of the regression (.0767) reported in the first panel. If you divide the total SS of the 
regression (.7162) by 59, you will obtain the estimate of the variance of the dependent 
variable (HP), .012 per month, equivalent to a monthly standard deviation of 11%. When 

 F I G U R E  8.3   Scatter diagram of HP, the S&P 500, and the 
security characteristic line (SCL) for HP 
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 Excel output: Regression statistics 
for the SCL of Hewlett-Packard           

Regression Statistics

Multiple R .7238

R-square .5239

Adjusted R-square .5157

Standard error .0767

Observations 60 

ANOVA

df SS MS

Regression 1 .3752 .3752

Residual 58 .3410 .0059

Total 59 .7162

Coefficients Standard Error t-Stat p-Value

Intercept 0.0086 .0099 0.8719 .3868

S&P 500 2.0348 .2547 7.9888 .0000
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annualized,    7 we obtain an annualized standard deviation of 38.17%, as reported earlier. Notice 
that the  R -square (the ratio of explained to total variance) equals the explained (regression) 
SS divided by the total SS.    8      

  The Estimate of Alpha 

 Moving to the bottom panel, the intercept (.0086  �  .86% per month) is the estimate of 
HP’s alpha for the sample period. Although this is an economically large value (10.32% on 
an annual basis), it is statistically insignificant. This can be seen from the three statistics 
next to the estimated coefficient. The first is the standard error of the estimate (0.0099).9     
This is a measure of the imprecision of the estimate. If the standard error is large, the range 
of likely estimation error is correspondingly large.         

 The  t -statistic reported in the bottom panel is the ratio of the regression parameter to its 
standard error. This statistic equals the number of standard errors by which our estimate 
exceeds zero, and therefore can be used to assess the likelihood that the true but unob-
served value might actually equal zero rather than the estimate derived from the data.10     
The intuition is that if the true value were zero, we would be unlikely to observe estimated 
values far away (i.e., many standard errors) from zero. So large  t -statistics imply low prob-
abilities that the true value is zero. 

 In the case of alpha, we are interested in the average value of HP’s return net of the 
impact of market movements. Suppose we define the nonmarket component of HP’s return 
as its actual return minus the return attributable to market movements during any period. 
Call this HP’s firm-specific return, which we abbreviate as  R   fs   .

    R R R Rfsfi rm-specific HP HP S P500� � � � &   

 If  R   fs   were normally distributed with a mean of zero, the ratio of its estimate to its stan-
dard error would have a  t -distribution. From a table of the  t -distribution (or using Excel’s 
TINV function) we can find the probability that the true alpha is actually zero or even 
lower given the positive estimate of its value and the standard error of the estimate. This 
is called the  level of significance  or, as in  Table 8.1 , the probability or  p-value.  The con-
ventional cut-off for statistical significance is a probability of less than 5%, which requires 
a  t -statistic of about 2.0. The regression output shows the  t -statistic for HP’s alpha to 

   7When annualizing monthly data, average return and variance are multiplied by 12. However, because variance is 
multiplied by 12, standard deviation is multiplied by     12.    
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   10The  t -statistic is based on the assumption that returns are normally distributed. In general, if we standardize the 
estimate of a normally distributed variable by computing its difference from a hypothesized value and dividing by the 
standard error of the estimate (to express the difference as a number of standard errors), the resulting variable will have 
a  t -distribution. With a large number of observations, the bell-shaped  t -distribution approaches the normal distribution.  
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be .8719, indicating that the estimate is not significantly different from zero. That is, we 
cannot reject the hypothesis that the true value of alpha equals zero with an acceptable level 
of confidence. The  p -value for the alpha estimate (.3868) indicates that if the true alpha 
were zero, the probability of obtaining an estimate as high as .0086 (given the large stan-
dard error of .0099) would be .3868, which is not so unlikely. We conclude that the sample 
average of  R   fs   is too low to reject the hypothesis that the true value of alpha is zero. 

 But even if the alpha value were both economically  and  statistically significant  within the 
sample,  we still would not use that alpha as a forecast for a future period. Overwhelming 
empirical evidence shows that 5-year alpha values do not persist over time, that is, there seems 
to be virtually no correlation between estimates from one sample period to the next. In other 
words, while the alpha estimated from the regression tells us the average return on the security 
when the market was flat during that estimation period, it does  not  forecast what the firm’s 
performance will be in future periods. This is why security analysis is so hard. The past does 
not readily foretell the future. We elaborate on this issue in Chapter 11 on market efficiency.  

  The Estimate of Beta 

 The regression output in  Table 8.1  shows the beta estimate for HP to be 2.0348, more than 
twice that of the S&P 500. Such high market sensitivity is not unusual for technology 
stocks. The standard error (SE) of the estimate is .2547.    11 

 The value of beta and its SE produce a large  t -statistic (7.9888), and a  p -value of prac-
tically zero. We can confidently reject the hypothesis that HP’s true beta is zero. A more 
interesting  t -statistic might test a null hypothesis that HP’s beta is greater than the market-
wide average beta of 1. This  t -statistic would measure how many standard errors separate 
the estimated beta from a hypothesized value of 1. Here too, the difference is easily large 
enough to achieve statistical significance:

    
Estimatedvalue Hypothesized value

Standard

�

eerror
�

�
�

2 03 1

2547
4 00

.

.
.  

However, we should bear in mind that even here, precision is not what we might like it to 
be. For example, if we wanted to construct a confidence interval that includes the true but 
unobserved value of beta with 95% probability, we would take the estimated value as the 
center of the interval and then add and subtract about two standard errors. This produces a 
range between 1.43 and 2.53, which is quite wide.  

  Firm-Specific Risk 

 The monthly standard deviation of HP’s residual is 7.67%, or 26.6% annually. This is quite 
large, on top of HP’s high-level systematic risk. The standard deviation of systematic risk 
is  �   �   � (S&P 500)  �  2.03  �  13.58  �  27.57%. Notice that HP’s firm-specific risk is as 
large as its systematic risk, a common result for individual stocks.  

  Correlation and Covariance Matrix 

  Figure 8.4  graphs the excess returns of the pairs of securities from each of the three sectors 
with the S&P 500 index on the same scale. We see that the IT sector is the most variable, 
followed by the retail sector, and then the energy sector, which has the lowest volatility. 

 Panel 1 in  Spreadsheet 8.1  shows the estimates of the risk parameters of the S&P 500 
portfolio and the six analyzed securities. You can see from the high residual standard 
deviations (column E) how important diversification is. These securities have tremendous 
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firm-specific risk. Portfolios concentrated in these (or other) securities would have unnec-
essarily high volatility and inferior Sharpe ratios. 

 Panel 2 shows the correlation matrix of the residuals from the regressions of excess 
returns on the S&P 500. The shaded cells show correlations of same-sector stocks, which 
are as high as .7 for the two oil stocks (BP and Shell). This is in contrast to the assump-
tion of the index model that all residuals are uncorrelated. Of course, these correlations 
are, to a great extent, high by design, because we selected pairs of firms from the same 
industry. Cross-industry correlations are typically far smaller, and the empirical estimates 

 F I G U R E  8.4   Excess returns on portfolio assets 
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 S P R E A D S H E E T  8.1 

 Implementing the index model   
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of correlations of residuals for industry indexes (rather than individual stocks in the same 
industry) would be far more in accord with the model. In fact, a few of the stocks in this 
sample actually seem to have negatively correlated residuals. Of course, correlation also 
is subject to statistical sampling error, and this may be a fluke. 

 Panel 3 produces covariances derived from  Equation 8.10  of the single-index model. 
Variances of the S&P 500 index and the individual covered stocks appear on the diagonal. 
The variance estimates for the individual stocks equal     � � �i M ie2 2 2+ ( ).    The off-diagonal 
terms are covariance values and equal     � � �i j M

2 .       

  8.4  PORTFOLIO CONSTRUCTION AND 

THE SINGLE-INDEX MODEL 

  In this section, we look at the implications of the index model for portfolio construction.12     
We will see that the model offers several advantages, not only in terms of parameter esti-
mation, but also for the analytic simplification and organizational decentralization that it 
makes possible.  

   Alpha and Security Analysis 

 Perhaps the most important advantage of the single-index model is the framework it pro-
vides for macroeconomic and security analysis in the preparation of the input list that is so 
critical to the efficiency of the optimal portfolio. The Markowitz model requires estimates 
of risk premiums for each security. The estimate of expected return depends on both mac-
roeconomic and individual-firm forecasts. But if many different analysts perform security 
analysis for a large organization such as a mutual fund company, a likely result is incon-
sistency in the macroeconomic forecasts that partly underlie expectations of returns across 
securities. Moreover, the underlying assumptions for market-index risk and return often 
are not explicit in the analysis of individual securities. 

 The single-index model creates a framework that separates these two quite different 
sources of return variation and makes it easier to ensure consistency across analysts. We 
can lay down a hierarchy of the preparation of the input list using the framework of the 
single-index model.

   1. Macroeconomic analysis is used to estimate the risk premium and risk of the 
market index.  

  2. Statistical analysis is used to estimate the beta coefficients of all securities and their 
residual variances,  �  2 ( e   i  ).  

  3. The portfolio manager uses the estimates for the market-index risk premium and the 
beta coefficient of a security to establish the expected return of that security  absent  any 
contribution from security analysis. The market-driven expected return is conditional on 
information common to all securities, not on information gleaned from security analysis 
of particular firms. This market-driven expected return can be used as a benchmark.  

  4. Security-specific expected return forecasts (specifically, security alphas) are derived 
from various security-valuation models (such as those discussed in Part Five). Thus, 
the alpha value distills the incremental risk premium attributable to private informa-
tion developed from security analysis.    

   12  The use of the index model to construct optimal risky portfolios was originally developed in Jack Treynor and 
Fischer Black, “How to Use Security Analysis to Improve Portfolio Selection,”  Journal of Business,  January 
1973.  
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 In the context of  Equation 8.9 , the risk premium on a security not subject to security 
analysis would be  �   i   E ( R   M  ). In other words, the risk premium would derive solely from the 
security’s tendency to follow the market index. Any expected return beyond this bench-
mark risk premium (the security alpha) would be due to some nonmarket factor that would 
be uncovered through security analysis. 

 The end result of security analysis is the list of alpha values. Statistical methods of esti-
mating beta coefficients are widely known and standardized; hence, we would not expect 
this portion of the input list to differ greatly across portfolio managers. In contrast, macro 
and security analysis are far less of an exact science and therefore provide an arena for dis-
tinguished performance. Using the index model to disentangle the premiums due to market 
and nonmarket factors, a portfolio manager can be confident that macro analysts compiling 
estimates of the market-index risk premium and security analysts compiling alpha values 
are using consistent estimates for the overall market. 

 In the context of portfolio construction, alpha is more than just one of the components 
of expected return. It is the key variable that tells us whether a security is a good or a 
bad buy. Consider an individual stock for which we have a beta estimate from statistical 
considerations and an alpha value from security analysis. We easily can find many other 
securities with identical betas and therefore identical systematic components of their risk 
premiums. Therefore, what really makes a security attractive or unattractive to a portfolio 
manager is its alpha value. In fact, we’ve suggested that a security with a positive alpha is 
providing a premium over and above the premium it derives from its tendency to track the 
market index. This security is a bargain and therefore should be overweighted in the over-
all portfolio compared to the passive alternative of using the market-index portfolio as the 
risky vehicle. Conversely, a negative-alpha security is overpriced and, other things equal, 
its portfolio weight should be reduced. In more extreme cases, the desired portfolio weight 
might even be negative, that is, a short position (if permitted) would be desirable.  

  The Index Portfolio as an Investment Asset 

 The process of charting the efficient frontier using the single-index model can be pursued 
much like the procedure we used in Chapter 7, where we used the Markowitz model to find 
the optimal risky portfolio. Here, however, we can benefit from the simplification the index 
model offers for deriving the input list. Moreover, portfolio optimization highlights another 
advantage of the single-index model, namely, a simple and intuitively revealing representation 
of the optimal risky portfolio. Before we get into the mechanics of optimization in this setting, 
however, we start by considering the role of the index portfolio in the optimal portfolio. 

 Suppose the prospectus of an investment company limits the universe of investable 
assets to only stocks included in the S&P 500 portfolio. In this case, the S&P 500 index 
captures the impact of the economy on the large stocks the firm may include in its portfolio. 
Suppose that the resources of the company allow coverage of only a relatively small subset 
of this so-called  investable universe.  If these analyzed firms are the only ones allowed in 
the portfolio, the portfolio manager may well be worried about limited diversification. 

 A simple way to avoid inadequate diversification is to include the S&P 500 portfolio as one 
of the assets of the portfolio. Examination of  Equations 8.8  and  8.9  reveals that if we treat the 
S&P 500 portfolio as the market index, it will have a beta of 1.0 (its sensitivity to itself), no firm-
specific risk, and an alpha of zero—there is no nonmarket component in its expected return. 
 Equation 8.10  shows that the covariance of any security,  i,  with the index is     � �i M

2 .    To distin-
guish the S&P 500 from the  n  securities covered by the firm, we will designate it the ( n   �  1)th 
asset. We can think of the S&P 500 as a  passive portfolio  that the manager would select in the 
absence of security analysis. It gives broad market exposure without the need for expensive secu-
rity analysis. However, if the manager is willing to engage in such research, she may devise an 
 active portfolio  that can be mixed with the index to provide an even better risk–return trade-off.  
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  The Single-Index-Model Input List 

 If the portfolio manager plans to compile a portfolio from a list of  n  actively researched 
firms and a passive market index portfolio, the input list will include the following 
estimates:

   1. Risk premium on the S&P 500 portfolio.  

  2. Estimate of the standard deviation of the S&P 500 portfolio.  

  3.  n  sets of estimates of (a) beta coefficients, (b) stock residual variances, and 
(c) alpha values. (The alpha values for each security, together with the risk premium 
of the S&P 500 and the beta of each security, will allow for determination of the 
expected return on each security.)     

  The Optimal Risky Portfolio of the Single-Index Model 

 The single-index model allows us to solve for the optimal risky portfolio directly and to 
gain insight into the nature of the solution. First we confirm that we easily can set up the 
optimization process to chart the efficient frontier in this framework along the lines of the 
Markowitz model. 

 With the estimates of the beta and alpha coefficients, plus the risk premium of the index 
portfolio, we can generate the  n   �  1 expected returns using  Equation 8.9 . With the esti-
mates of the beta coefficients and residual variances, together with the variance of the 
index portfolio, we can construct the covariance matrix using  Equation 8.10 . Given a col-
umn of risk premiums and the covariance matrix, we can conduct the optimization pro-
gram described in Chapter 7. 

 We can take the description of how diversification works in the single-index framework 
of Section 8.2 a step further. We showed earlier that the alpha, beta, and residual vari-
ance of an equally weighted portfolio are the simple averages of those parameters across 
component securities. Moreover, this result is not limited to equally weighted portfolios. 
It applies to any portfolio, where we need only replace “simple average” with “weighted 
average,” using the portfolio weights. Specifically,
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The objective is to maximize the Sharpe ratio of the portfolio by using portfolio weights, 
 w  1 , . . . ,  w   n  � 1 . With this set of weights, the expected return, standard deviation, and Sharpe 
ratio of the portfolio are
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At this point, as in the standard Markowitz procedure, we could use Excel’s optimization 
program to maximize the Sharpe ratio subject to the adding-up constraint that the portfo-
lio weights sum to 1. However, this is not necessary because the optimal portfolio can be 
derived explicitly using the index model. Moreover, the solution for the optimal portfolio 
provides considerable insight into the efficient use of security analysis in portfolio con-
struction. It is instructive to outline the logical thread of the solution. We will not show 
every algebraic step, but will instead present the major results and interpretation of the 
procedure. 

 Before delving into the results, let us first explain the basic trade-off the model reveals. 
If we were interested only in diversification, we would just hold the market index. Security 
analysis gives us the chance to uncover securities with a nonzero alpha and to take a differ-
ential position in those securities. The cost of that differential position is a departure from 
efficient diversification, in other words, the assumption of unnecessary firm-specific risk. 
The model shows us that the optimal risky portfolio trades off the search for alpha against 
the departure from efficient diversification. 

 The optimal risky portfolio turns out to be a combination of two component portfolios: 
(1) an  active portfolio,  denoted by  A,  comprised of the  n  analyzed securities (we call this 
the  active  portfolio because it follows from active security analysis), and (2) the market-
index portfolio, the ( n   �  1)th asset we include to aid in diversification, which we call the 
 passive portfolio  and denote by  M.  

 Assume first that the active portfolio has a beta of 1. In that case, the optimal weight 
in the active portfolio would be proportional to the ratio  �   A  / �  2 ( e   A  ). This ratio balances the 
contribution of the active portfolio (its alpha) against its contribution to the portfolio vari-
ance (residual variance). The analogous ratio for the index portfolio is     E RM M( ) / ,�2    and 
hence the initial position in the active portfolio (i.e., if its beta were 1) is

      

w E RA
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(8.20)

   

 Next, we amend this position to account for the actual beta of the active portfolio. For 
any level of     �A

2 ,    the correlation between the active and passive portfolios is greater when 
the beta of the active portfolio is higher. This implies less diversification benefit from the 
passive portfolio and a lower position in it. Correspondingly, the position in the active port-
folio increases. The precise modification for the position in the active portfolio is:    13

      
w

w

w
A

A

A A

*

( )
�

� � �

0

01 1   (8.21)  

Notice that when     � � �A A Aw w1 0, .*     

  The Information Ratio 

  Equations 8.20  and  8.21  yield the optimal position in the active portfolio once we know its 
alpha, beta, and residual variance. With     wA

*    in the active portfolio and     1� wA
*    invested in 

the index portfolio, we can compute the expected return, standard deviation, and Sharpe 
ratio of the optimal risky portfolio. The Sharpe ratio of an optimally constructed risky 

   13 With a little algebraic manipulation, beta can be shown to equal the product of correlation between the index 
and the active portfolio and the ratio of SD(index)/SD(active portfolio). If  �   A   > 1, then correlation is higher than 
envisioned in  Equation 8.20 , so the diversification value of the index is lower. This requires the modification in 
 Equation 8.21 .  
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portfolio will exceed that of the index portfolio (the passive strategy). The exact relation-
ship is
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(8.22)

  

 Equation 8.22  shows us that the contribution of the active portfolio (when held in its opti-
mal weight,     wA

*   ) to the Sharpe ratio of the overall risky portfolio is determined by the ratio 
of its alpha to its residual standard deviation. This important ratio is called the    information 
ratio.    This ratio measures the extra return we can obtain from security analysis compared 
to the firm-specific risk we incur when we over- or underweight securities relative to the 
passive market index.  Equation 8.22  therefore implies that to maximize the overall Sharpe 
ratio, we must maximize the information ratio of the active portfolio. 

 It turns out that the information ratio of the active portfolio will be maximized if we 
invest in each security in proportion to its ratio of  �   i   / �  2 ( e   i  ). Scaling this ratio so that the 
total position in the active portfolio adds up to     wA

* ,    the weight in each security is
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With this set of weights, we find that the contribution of each security to the information 
ratio of the active portfolio depends on its  own  information ratio, that is,
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 The model thus reveals the central role of the information ratio in efficiently taking 
advantage of security analysis. The positive contribution of a security to the portfolio is 
made by its addition to the nonmarket risk premium (its alpha). Its negative impact is to 
increase the portfolio variance through its firm-specific risk (residual variance). 

 In contrast to alpha, notice that the market (systematic) component of the risk premium, 
 �   i   E ( R   M  ), is offset by the security’s nondiversifiable (market) risk,     � �i M

2 2 ,   and both are 
driven by the same beta. This trade-off is not unique to any security, as any security with the 
same beta makes the same balanced contribution to both risk and return. Put differently, 
the beta of a security is neither vice nor virtue. It is a property that simultaneously affects 
the risk  and  risk premium of a security. Hence we are concerned only with the aggregate 
beta of the active portfolio, rather than the beta of each individual security. 

 We see from  Equation 8.23  that if a security’s alpha is negative, the security will assume 
a short position in the optimal risky portfolio. If short positions are prohibited, a negative-
alpha security would simply be taken out of the optimization program and assigned a port-
folio weight of zero. As the number of securities with nonzero alpha values (or the number 
with positive alphas if short positions are prohibited) increases, the active portfolio will 
itself be better diversified and its weight in the overall risky portfolio will increase at the 
expense of the passive index portfolio. 

 Finally, we note that the index portfolio is an efficient portfolio only if all alpha values 
are zero. This makes intuitive sense. Unless security analysis reveals that a security has a 
nonzero alpha, including it in the active portfolio would make the portfolio less attractive. 
In addition to the security’s systematic risk, which is compensated for by the market risk 
premium (through beta), the security would add its firm-specific risk to portfolio variance. 
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With a zero alpha, however, the latter is not compensated by an addition to the nonmarket 
risk premium. Hence, if all securities have zero alphas, the optimal weight in the active 
portfolio will be zero, and the weight in the index portfolio will be 1. However, when secu-
rity analysis uncovers securities with nonmarket risk premiums (nonzero alphas), the index 
portfolio is no longer efficient.  

  Summary of Optimization Procedure 

 To summarize, once security analysis is complete, and the index-model estimates of secu-
rity and market index parameters are established, the optimal risky portfolio can be formed 
using these steps:

   1. Compute the initial position of each security in the active portfolio as     
w ei i i

0 2� � �/ ( ).     

  2. Scale those initial positions to force portfolio weights to sum to 1 by dividing by 

their sum, that is,     w
w
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0

0
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.     

  3. Compute the alpha of the active portfolio:     � � �A i ii

n
w

=∑ 1
.     

  4. Compute the residual variance of the active portfolio:     � � �2 2 2
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( ) ( ).e w eA i ii
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=∑     

  5. Compute the initial position in the active portfolio:     w
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  6. Compute the beta of the active portfolio:     � �A i ii

n
w=

=∑ 1
.     

  7. Adjust the initial position in the active portfolio:     w
w

w
A

A

A A

*

( )
.�

� � �

0

01 1
    

  8. Note: the optimal risky portfolio now has weights:     w w w w wM A i A i
* * * *; .� � �1     

  9. Calculate the risk premium of the optimal risky portfolio from the risk 
premium of the index portfolio and the alpha of the active portfolio:     
E R w w E R wP M A A M A A( ) ( ) ( ) .* * *� � � � �    Notice that the beta of the risky 
portfolio is     w wM A A

* *� �    because the beta of the index portfolio is 1.  

   10. Compute the variance of the optimal risky portfolio from the variance 
of the index portfolio and the residual variance of the active portfolio:     
� � � � � � �P M A A M A Aw w w e2 2 2 2( ) [ ( )] .* * *        

  An Example 

 We can illustrate the implementation of the index model by constructing an optimal port-
folio from the S&P 500 index and the six stocks for which we analyzed risk parameters in 
Section 8.3. 

 This example entails only six analyzed stocks, but by virtue of selecting three  pairs  of 
firms from the same industry, it is designed to produce relatively high residual correlations. 
This should put the index model to a severe test, as the model ignores the correlation between 
residuals when producing estimates for the covariance matrix. Therefore, comparison 
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of results from the index model with the full-blown covariance (Markowitz) model should 
be instructive. 

  Risk Premium Forecasts   Panel 4 of  Spreadsheet 8.1  contains estimates of alpha and the 
risk premium for each stock. These alphas ordinarily would be the most important produc-
tion of the investment company in a real-life procedure. Statistics plays a small role here; 
in this arena, macro/security analysis is king. In this example, we simply use illustrative 
values to demonstrate the portfolio construction process and possible results. You may 
wonder why we have chosen such small, forecast alpha values. The reason is that even 
when security analysis uncovers a large apparent mispricing, that is, large alpha values, 
these forecasts must be substantially trimmed to account for the fact that such forecasts are 
subject to large estimation error. We discuss the important procedure of adjusting actual 
forecasts in Chapter 27.  

  The Optimal Risky Portfolio   Panel 5 of  Spreadsheet 8.1  displays calculations for the 
optimal risky portfolio. They follow the summary procedure of Section 8.4 (you should try 
to replicate these calculations in your own spreadsheet). In this example we allow short sales. 
Notice that the weight of each security in the active portfolio (see row 52) has the same sign 
as the alpha value. Allowing short sales, the positions in the active portfolio are quite large 
(e.g., the position in BP is .7349); this is an aggressive portfolio. As a result, the alpha of the 
active portfolio (2.22%) is larger than that of any of the individual alpha forecasts. However, 
this aggressive stance also results in a large residual variance (.0404, which corresponds to a 
residual standard deviation of 20%). Therefore, the position in the active portfolio is scaled 
down (see  Equation 8.20 ) and ends up quite modest (.1718; cell C57), reinforcing the notion 
that diversification considerations are paramount in the optimal risky portfolio. 

 The optimal risky portfolio has a risk premium of 6.48%, standard deviation of 14.22%, 
and a Sharpe ratio of .46 (cells J58 – J61). By comparison, the Sharpe ratio of the index 
portfolio is .06/.1358  �  .44 (cell B61), which is quite close to that of the optimal risky 
portfolio. The small improvement is a result of the modest alpha forecasts that we used. 
In Chapter 11 on market efficiency and Chapter 24 on performance evaluation we demon-
strate that such results are common in the mutual fund industry. Of course, some portfolio 
managers can and do produce portfolios with better performance. 

 The interesting question here is the extent 
to which the index model produces results 
that are inferior to that of the full-covariance 
(Markowitz) model.  Figure 8.5  shows the 
efficient frontiers from the two models with 
the example data. We find that the differ-
ence is infact negligible.  Table 8.2  compares 
the compositions and expected performance 
of the global minimum variance ( G ) and the 
optimal risky portfolios derived from the two 
models. The significant difference between 
the two portfolios is limited to the minimum-
variance portfolios that are driven only by 
considerations of variance. As we move up 
the efficient frontier, the required expected 
returns obviate the impact of the differences 
in covariance and the portfolios become simi-
lar in performance. 

 F I G U R E  8.5   Efficient frontiers with the index model 
and full-covariance matrix 
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 TA B L E  8.2 

 Comparison of 
portfolios from the 
single-index and 
full-covariance 
models           

Global Minimum Variance Portfolio Optimal Portfolio

Full-Covariance 
Model Index Model

Full-Covariance 
Model Index Model

Mean .0371 .0354 .0677 .0649

SD .1089 .1052 .1471 .1423
Sharpe ratio .3409 .3370 .4605 .4558

Portfolio Weights

S&P 500 .88 .83 .75 .83
HP �.11 �.17 .10 .07
DELL �.01 �.05 �.04 �.06
WMT .23 .14 �.03 �.05
TARGET �.18 �.08 .10 .06
BP .22 .20 .25 .13

SHELL �.02 .12 �.12 .03

  The tone of our discussions in this chapter indicates that the index model is the preferred 
one for practical portfolio management. Switching from the Markowitz to an index model 
is an important decision and hence the first question is whether the index model is really 
inferior to the Markowitz full-covariance model.  

   Is the Index Model Inferior to the Full-Covariance Model? 

 This question is partly related to a more general question of the value of parsimonious 
models. As an analogy, consider the question of adding additional explanatory variables in a 
regression equation. We know that adding explanatory variables will in most cases increase 
 R -square, and in no case will  R -square fall. But this does not necessarily imply a better 
regression equation.    14 A better criterion is contribution to the predictive power of the regres-
sion. The appropriate question is whether inclusion of a variable that contributes to in-
sample explanatory power is likely to contribute to out-of-sample forecast precision. Adding 
variables, even ones that may appear significant, sometimes can be hazardous to forecast 
precision. Put differently, a parsimonious model that is stingy about inclusion of indepen-
dent variables is often superior. Predicting the value of the dependent variable depends on 
two factors, the precision of the coefficient estimates and the precision of the forecasts of 
the independent variables. When we add variables, we introduce errors on both counts. 

 This problem applies as well to replacing the single-index with the full-blown Markowitz 
model, or even a multi-index model of security returns. To add another index, we need both 
a forecast of the risk premium of the additional index portfolio and estimates of security 
betas with respect to that additional factor. The Markowitz model allows far more flex-
ibility in our modeling of asset covariance structure compared to the single-index model. 
But that advantage may be illusory if we can’t estimate those covariances with any degree 

   14In fact, the adjusted  R -square may fall if the additional variable does not contribute enough explanatory power 
to compensate for the extra degree of freedom it uses.  

        8.5  PRACTICAL ASPECTS OF PORTFOLIO MANAGEMENT 

WITH THE INDEX MODEL 
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of confidence. Using the full-covariance matrix invokes estimation risk of thousands of 
terms. Even if the full Markowitz model would be better  in principle , it is very possible 
that cumulative effect of so many estimation errors will result in a portfolio that is actually 
inferior to that derived from the single-index model. 

 Against the potential superiority of the full-covariance model, we have the clear practi-
cal advantage of the single-index framework. Its aid in decentralizing macro and security 
analysis is another decisive advantage.  

  The Industry Version of the Index Model 

 Not surprisingly, the index model has attracted the attention of practitioners. To the extent 
that it is approximately valid, it provides a convenient benchmark for security analysis. 

 A portfolio manager who has no special information about a security nor insight that is 
unavailable to the general public will take the security’s alpha value as zero, and, according 
to  Equation 8.9 , will forecast a risk premium for the security equal to  �   i   R   M  . If we restate 
this forecast in terms of total returns, one would expect

      E r r E r rf M f( ) [ ( ) ]HP HP� � � �   (8.25)   

 A portfolio manager who has a forecast for the market index,  E ( r   M  ), and observes the 
risk-free T-bill rate,  r   f   , can use the model to determine the benchmark expected return for 
any stock. The beta coefficient, the market risk,     �M

2 ,   and the firm-specific risk,  �  2 ( e ), can 
be estimated from historical SCLs, that is, from regressions of security excess returns on 
market index excess returns. 

 There are many sources for such regression results. One widely used source is Research 
Computer Services Department of Merrill Lynch, which publishes a monthly  Security Risk 
Evaluation  book, commonly called the “beta book.” The Web sites for this chapter at the 
Online Learning Center ( www.mhhe.com/bkm ) also provide security betas. 

  Security Risk Evaluation  uses the S&P 500 as the proxy for the market portfolio. It relies 
on the 60 most recent monthly observations to calculate regression parameters. Merrill 
Lynch and most services15     use total returns, rather than excess returns (deviations from T-bill  
rates), in the regressions. In this way they estimate a variant of our index model, which is

      r a br eM� � � *   (8.26)  

instead of

      r r r r ef M f� � � � � � �( )   (8.27)  

To see the effect of this departure, we can rewrite  Equation 8.27  as

      r r r r e r r ef M f f M� � � � � � � � � � � � � � � �( )1   (8.28)  

Comparing  Equations 8.26  and  8.28 , you can see that if  r   f   is constant over the sample 
period, both equations have the same independent variable,  r   M   , and residual,  e.  Therefore, 
the slope coefficient will be the same in the two regressions.    16 

 However, the intercept that Merrill Lynch calls alpha is really an estimate of  �   �  
 r   f   (1  �   � ). The apparent justification for this procedure is that, on a monthly basis,  r   f   (1  �   � ) 
is small and is apt to be swamped by the volatility of actual stock returns. But it is worth 
noting that for  �  	 1, the regression intercept in  Equation 8.26  will not equal the index 
model alpha as it does when excess returns are used as in  Equation 8.27 . 

   15  Value Line is another common source of security betas. Value Line uses weekly rather than monthly data and 
uses the New York Stock Exchange index instead of the S&P 500 as the market proxy.  

   16  Actually,  r   f   does vary over time and so should not be grouped casually with the constant term in the regression. 
However, variations in  r   f   are tiny compared with the swings in the market return. The actual volatility in the T-bill 
rate has only a small impact on the estimated value of  � .  
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 Another way the Merrill Lynch procedure departs from the index model is in its use 
of percentage changes in price instead of total rates of return. This means that the index 
model variant of Merrill Lynch ignores the dividend component of stock returns. 

  Table 8.3  illustrates a page from the beta book which includes estimates for Hewlett-
Packard. The third column, Close Price, shows the stock price at the end of the sample 
period. The next two columns show the beta and alpha coefficients. Remember that Merrill 
Lynch’s alpha is actually an estimate of  �   �   r   f   (1  �   � ).   

 Much of the output that Merrill Lynch reports is similar to the Excel output ( Table 8.1 ) 
that we discussed when estimating the index model for Hewlett-Packard. The  R -square 
statistic is the ratio of systematic variance to total variance, the fraction of total volatility 
attributable to market movements. Merrill Lynch actually reports adjusted  R -squares (see 
footnote 6), which accounts for the instances of negative values. For most firms,  R -square 
is substantially below .5, indicating that stocks have far more firm-specific than systematic 
risk. This highlights the practical importance of diversification. 

 The  Resid Std Dev-n  column is the standard deviation of the monthly regression residu-
als, also sometimes called the standard error of the regression. Like Excel, Merrill Lynch 
also reports the standard errors of the alpha and beta estimates so we can evaluate the 
precision of the estimates. Notice that the estimates of beta are far more precise than those 
of alpha. 

 The next-to-last column is called Adjusted Beta. The motivation for adjusting beta esti-
mates is that, on average, the beta coefficients of stocks seem to move toward 1 over time. 
One explanation for this phenomenon is intuitive. A business enterprise usually is estab-
lished to produce a specific product or service, and a new firm may be more unconven-
tional than an older one in many ways, from technology to management style. As it grows, 
however, a firm often diversifies, first expanding to similar products and later to more 
diverse operations. As the firm becomes more conventional, it starts to resemble the rest of 
the economy even more. Thus its beta coefficient will tend to change in the direction of 1. 

 Another explanation for this phenomenon is statistical. We know that the average beta 
over all securities is 1. Thus, before estimating the beta of a security, our best forecast 
of the beta would be that it is 1. When we estimate this beta coefficient over a particular 
sample period, we sustain some unknown sampling error of the estimated beta. The greater 
the difference between our beta estimate and 1, the greater is the chance that we incurred a 
large estimation error and that beta in a subsequent sample period will be closer to 1. 

 The sample estimate of the beta coefficient is the best guess for that sample period. 
Given that beta has a tendency to evolve toward 1, however, a forecast of the future beta 
coefficient should adjust the sample estimate in that direction. 

 Merrill Lynch adjusts beta estimates in a simple way.    17 It takes the sample estimate of 
beta and averages it with 1, using weights of two-thirds and one-third:

 Adjusted beta � 2 3 sample beta � 1 3 (1)       (8.29)     

 Always remember that these alpha 
estimates are ex post (after the fact) 
measures. They do not mean that any-
one could have forecast these alpha 
values ex ante (before the fact). In 
fact, the name of the game in security 
analysis is to forecast alpha values 

   17A more sophisticated method is described in Oldrich A. Vasicek, “A Note on Using Cross-Sectional Information 
in Bayesian Estimation of Security Betas,”  Journal of Finance  28 (1973), pp. 1233–39.  

CONCEPT 
CHECK

4

What was HP’s index-model alpha per month during the 
period covered by the Merrill Lynch regression if during 
this period the average monthly rate of return on T-bills 
was .4%?
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EXAMPLE 8.1 Adjusted Beta

For the 60 months used in Table 8.3, HP’s beta was estimated at 1.76. Therefore, its 
adjusted beta is 2 3 � 1.76 � 1 3 � 1.51, taking it a third of the way toward 1.

In the absence of special information concerning HP, if our forecast for the market 
index is 11% and T-bills pay 5%, we learn from the Merrill Lynch beta book that the fore-
cast for the rate of return on HP stock is

E r r E r rf M f( ) [ ( ) ]

. (

HP adjustedbeta� � � �

� �5 1 51111 5 1406� �) . %

The sample period regression alpha is �.45%. Because HP’s beta is greater than 1, 
we know that this means that the index-model alpha estimate is somewhat larger. As in 
Equation 8.28, we have to subtract (1 � �)rf from the regression alpha to obtain the index 
model alpha. In any event, the standard error of the alpha estimate is 1.30%. The estimate 
of alpha is far less than twice its standard error. Consequently, we cannot reject the hypoth-
esis that the true alpha is zero.

ahead of time. A well-constructed portfolio that includes long positions in future positive-
alpha stocks and short positions in future negative-alpha stocks will outperform the market 
index. The key term here is “well constructed,” meaning that the portfolio has to balance 
concentration on high-alpha stocks with the need for risk-reducing diversification as dis-
cussed earlier in the chapter. 

 Note that HP’s RESID STD DEV- N  is 10.05% per month and its  R  2  is .40. This tells 
us that     � � �HP

2 ( ) . .e 10 05 10102    and, because  R  2   �  1  �   �  2 ( e )/ �  2 , we can solve for the 
estimate of HP’s total standard deviation by rearranging as follows:

    
� �

�

�
� �HP

HP
2 ( )

.

/ /e

R1

101

60
12

2

1 2 1 2









 .. %97 per month

  

This is HP’s monthly standard deviation for the sample period. Therefore, the annualized 
standard deviation for that period was     12 97 12 44 93. . %.�    

 Finally, the last column shows the number of observations, which is 60 months, unless 
the stock is newly listed and fewer observations are available.  

  Predicting Betas 

 Merrill Lynch’s adjusted betas are a simple way to recognize that betas estimated from past 
data may not be the best estimates of future betas: Betas seem to drift toward 1 over time. 
This suggests that we might want a forecasting model for beta. 

 One simple approach would be to collect data on beta in different periods and then esti-
mate a regression equation:

      Current beta Past beta� �a b ( )   (8.30)  

Given estimates of  a  and  b,  we would then forecast future betas using the rule

      Forecast beta Current beta� �a b ( )   (8.31)  

There is no reason, however, to limit ourselves to such simple forecasting rules. Why not 
also investigate the predictive power of other financial variables in forecasting beta? For 
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example, if we believe that firm size and debt ratios are two determinants of beta, we might 
specify an expanded version of  Equation 8.30  and estimate

    Current beta Past beta Firm size� � � �a b b1 2( ) ( ) bb3( )Debt ratio  

Now we would use estimates of  a  and  b  1  through  b  3  to forecast future betas. 
 Such an approach was followed by Rosenberg and Guy    18 who found the following vari-

ables to help predict betas:

   1. Variance of earnings.  

  2. Variance of cash flow.  

  3. Growth in earnings per share.  

  4. Market capitalization (firm size).  

  5. Dividend yield.  

  6. Debt-to-asset ratio.    

 Rosenberg and Guy also found that even after controlling for a firm’s financial char-
acteristics, industry group helps to predict beta. For example, they found that the beta 
values of gold mining companies are on average .827 lower than would be predicted based 
on financial characteristics alone. This should not be surprising; the  � .827 “adjustment 
factor” for the gold industry reflects 
the fact that gold values are inversely 
related to market returns. 

  Table 8.4  presents beta estimates 
and adjustment factors for a subset of 
firms in the Rosenberg and Guy study.    

  Index Models and Tracking Portfolios 

 Suppose a portfolio manager believes she has identified an underpriced portfolio. Her 
security analysis team estimates the index model equation for this portfolio (using the S&P 
500 index) in excess return form and obtains the following estimates:

      R R eP P� � �. . &04 1 4 S P500   (8.32)  

Therefore,  P  has an alpha value of 4% and a beta of 1.4. The manager is confident in the 
quality of her security analysis but is wary about the performance of the broad market in the 

   18Barr Rosenberg and J. Guy, “Prediction of Beta from Investment Fundamentals, Parts 1 and 2,”  Financial Ana-
lysts Journal,  May–June and July–August 1976.  

CONCEPT 
CHECK

5

Compare the first five and last four industries in Table 8.4. 
What characteristic seems to determine whether the 
adjustment factor is positive or negative?

Industry Beta Adjustment Factor

Agriculture 0.99 –.140
Drugs and medicine 1.14 –.099
Telephone 0.75 –.288
Energy utilities 0.60 –.237
Gold 0.36 –.827
Construction 1.27 .062
Air transport 1.80 .348
Trucking 1.31 .098
Consumer durables 1.44 .132

 TA B L E  8.4 

 Industry betas and 
adjustment factors       
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near term. If she buys the portfolio, and the market as a whole turns down, she still could lose 
money on her investment (which has a large positive beta) even if her team is correct that the 
portfolio is underpriced on a relative basis. She would like a position that takes advantage of 
her team’s analysis but is independent of the performance of the overall market. 

 To this end, a  tracking portfolio  ( T ) can be constructed. A tracking portfolio for port-
folio  P  is a portfolio designed to match the systematic component of  P ’s return. The idea 
is for the portfolio to “track” the market-sensitive component of  P ’s return. This means the 
tracking portfolio must have the same beta on the index portfolio as  P  and as little nonsys-
tematic risk as possible. This procedure is also called  beta capture.  

 A tracking portfolio for  P  will have a levered position in the S&P 500 to achieve a beta 
of 1.4. Therefore,  T  includes positions of 1.4 in the S&P 500 and  � 0.4 in T-bills. Because 
 T  is constructed from the index and bills, it has an alpha value of zero. 

 Now consider buying portfolio  P  but at the same time offsetting systematic risk by 
assuming a short position in the tracking portfolio. The short position in  T  cancels out the 
systematic exposure of the long position in  P:  the overall combined position is thus  market 
neutral.  Therefore, even if the market does poorly, the combined position should not be 
affected. But the alpha on portfolio  P  will remain intact. The combined portfolio,  C,  pro-
vides an excess return per dollar of

      R R R R e RC P T P� � � � � � �(. . ) . .& &04 1 4 1 4 04S P500 S P500 �� eP   (8.33)  

  ALPHA BETTING 

 IT HAS never been easier to pay less to invest. No 
fewer than 136 exchange-traded funds (ETFs) were 
launched in the first half of 2006, more than in the 
whole of 2005. 

 For those who believe in efficient markets, this rep-
resents a triumph. ETFs are quoted securities that track 
a particular index, for a fee that is normally just a frac-
tion of a percentage point. They enable investors to 
assemble a low-cost portfolio covering a wide range of 
assets from international equities, through government 
and corporate bonds, to commodities. 

 But as fast as the assets of ETFs and index-tracking 
mutual funds are growing, another section of the indus-
try seems to be flourishing even faster. Watson Wyatt, 
a firm of actuaries, estimates that “alternative asset 
investment” (ranging from hedge funds through pri-
vate equity to property) grew by around 20% in 2005, 
to $1.26 trillion. Investors who take this route pay much 
higher fees in the hope of better performance. One 
of the fastest-growing assets, funds of hedge funds, 
charge some of the highest fees of all. 

 Why are people paying up? In part, because inves-
tors have learned to distinguish between the market 
return, dubbed beta, and managers’ outperformance, 
known as alpha. “Why wouldn’t you buy beta and 
alpha separately?” asks Arno Kitts of Henderson 
Global Investors, a fund-management firm. “Beta is a 
commodity and alpha is about skill.” 

 Clients have become convinced that no one firm can 
produce good performance in every asset class. That 
has led to a “core and satellite” model, in which part of 
the portfolio is invested in index trackers with the rest in 
the hands of specialists. But this creates its own prob-
lems. Relations with a single balanced manager are 
simple. It is much harder to research and monitor the 
performance of specialists. That has encouraged the 
middlemen—managers of managers (in the traditional 
institutional business) and funds-of-funds (in the hedge-
fund world), which are usually even more expensive. 

 That their fees endure might suggest investors can 
identify outperforming fund managers in advance. 
However, studies suggest this is extremely hard. And 
even where you can spot talent, much of the extra per-
formance may be siphoned off into higher fees. “A dis-
proportionate amount of the benefits of alpha go to 
the manager, not the client,” says Alan Brown at Schro-
ders, an asset manager. 

 In any event, investors will probably keep pursuing 
alpha, even though the cheaper alternatives of ETFs 
and tracking funds are available. Craig Baker of Watson 
Wyatt, says that, although above-market returns may 
not be available to all, clients who can identify them 
have a “first mover” advantage. As long as that belief 
exists, managers can charge high fees.  

 Source:  The Economist,  September 14, 2006. Copyright © 2007 The 
Economist Newspaper and The Economist Group. All rights reserved. 
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While this portfolio is still risky (due to the residual risk,  e   P  ), the systematic risk has been 
eliminated, and if  P  is reasonably well-diversified, the remaining nonsystematic risk will 
be small. Thus the objective is achieved: the manager can take advantage of the 4% alpha 
without inadvertently taking on market exposure. The process of separating the search for 
alpha from the choice of market exposure is called  alpha transport.  

 This “long-short strategy” is characteristic of the activity of many  hedge funds.  Hedge 
fund managers identify an underpriced security and then try to attain a “pure play” on 
the perceived underpricing. They hedge out all extraneous risk, focusing the bet only 
on the perceived “alpha” (see the box on p. 272). Tracking funds are the vehicle used to 
hedge the exposures to which they do  not  want exposure. Hedge fund managers use index 
regressions such as those discussed here, as well as more-sophisticated variations, to cre-
ate the tracking portfolios at the heart of their hedging strategies.       

     1. A single-factor model of the economy classifies sources of uncertainty as systematic (macro-
economic) factors or firm-specific (microeconomic) factors. The index model assumes that the 
macro factor can be represented by a broad index of stock returns.  

  2. The single-index model drastically reduces the necessary inputs in the Markowitz portfolio selec-
tion procedure. It also aids in specialization of labor in security analysis.  

  3. According to the index model specification, the systematic risk of a portfolio or asset equals     
� �2 2

M    and the covariance between two assets equals     � � �i j M
2 .     

  4. The index model is estimated by applying regression analysis to excess rates of return. The slope 
of the regression curve is the beta of an asset, whereas the intercept is the asset’s alpha during the 
sample period. The regression line is also called the  security characteristic line.   

  5. Optimal active portfolios constructed from the index model include analyzed securities in propor-
tion to their information ratios. The full risky portfolio is a mixture of the active portfolio and the 
passive market index portfolio. The index portfolio is used to enhance the diversification of the 
overall risky position.  

  6. Practitioners routinely estimate the index model using total rather than excess rates of return. This 
makes their estimate of alpha equal to  �   �   r   f   (1  �   � ).  

  7. Betas show a tendency to evolve toward 1 over time. Beta forecasting rules attempt to predict this 
drift. Moreover, other financial variables can be used to help forecast betas.    

 SUMMARY  SUMMARY 

  Related Web sites for 

this chapter are available 

at  www.mhhe.com/bkm   

  Related Web sites for 

this chapter are available 

at  www.mhhe.com/bkm   

   single-factor model  
  single-index model  
  regression equation  

  residuals  
  security characteristic line  
  scatter diagram  

  information ratio  
  tracking portfolio    

  KEY TERMS 

    1. What are the advantages of the index model compared to the Markowitz procedure for obtaining 
an efficiently diversified portfolio? What are its disadvantages?  

  2. What is the basic trade-off when departing from pure indexing in favor of an actively managed 
portfolio?  

  3. How does the magnitude of firm-specific risk affect the extent to which an active investor will be 
willing to depart from an indexed portfolio?  

  4. Why do we call alpha a “nonmarket” return premium? Why are high-alpha stocks desirable 
investments for active portfolio managers? With all other parameters held fixed, what would hap-
pen to a portfolio’s Sharpe ratio as the alpha of its component securities increased?    

 Quiz  Quiz 
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274 PART II Portfolio Theory and Practice

    5. A portfolio management organization analyzes 60 stocks and constructs a mean-variance effi-
cient portfolio using only these 60 securities.

    a.  How many estimates of expected returns, variances, and covariances are needed to optimize 
this portfolio?  

   b.  If one could safely assume that stock market returns closely resemble a single-index structure, 
how many estimates would be needed?     

  6. The following are estimates for two stocks.  

Stock Expected Return Beta Firm-Specific Standard Deviation

A  13% 0.8  30%

B 18 1.2 40

 The market index has a standard deviations of 22% and the risk-free rate is 8%.

    a.  What are the standard deviations of stocks  A  and  B?   

   b.  Suppose that we were to construct a portfolio with proportions:     

Stock A: .30

Stock B: .45

T-bills: .25

 Compute the expected return, standard deviation, beta, and nonsystematic standard deviation of 
the portfolio.  

  7. Consider the following two regression lines for stocks  A  and  B  in the following figure. 

 

rA − rf rB − rf

rM − rf rM − rf

     a.  Which stock has higher firm-specific risk?  
   b.  Which stock has greater systematic (market) risk?  
   c.  Which stock has higher  R  2 ?  
   d.  Which stock has higher alpha?  
   e.  Which stock has higher correlation with the market?    

  8. Consider the two (excess return) index model regression results for  A  and  B: 

    

R R

R
A M� �

�

1 1 2% .

.-square 576

Residual standard deeviation 10 3

-square

Resi

�

� � �

�

. %

% .

.

R R

R
B M2 8

436

ddual standard deviation � 9 1. %   

 Problems  Problems 



V
is

it
 u

s 
a
t 

w
w

w
.m

h
h

e
.c

o
m

/b
k
m

 CHAPTER 8 Index Models 275

    a.  Which stock has more firm-specific risk?  
   b.  Which has greater market risk?  
   c.  For which stock does market movement explain a greater fraction of return variability?  
   d.  If  r   f   were constant at 6% and the regression had been run using total rather than excess 

returns, what would have been the regression intercept for stock  A?       

  Use the following data for Problems 9 through 14.  Suppose that the index model for 
stocks A and B is estimated from excess returns with the following results:

    

R R e

R R e

R

A M A

B M B

M

� � �

� � � �

�

3 7

2 1 2

20

% .

% .

%;� -squaree -squareA BR� �. ; .20 12  

    9. What is the standard deviation of each stock?  

  10. Break down the variance of each stock to the systematic and firm-specific components.  

  11. What are the covariance and correlation coefficient between the two stocks?  

  12. What is the covariance between each stock and the market index?  

  13. For portfolio  P  with investment proportions of .60 in  A  and .40 in  B,  rework Problems 9, 10, 
and 12.  

  14. Rework Problem 13 for portfolio  Q  with investment proportions of .50 in  P,  .30 in the market 
index, and .20 in T-bills.  

  15. A stock recently has been estimated to have a beta of 1.24:

    a.  What will Merrill Lynch compute as the “adjusted beta” of this stock?  
   b.  Suppose that you estimate the following regression describing the evolution of beta over time:

    � � � �t t. .3 7 1−     

 What would be your predicted beta for next year?  

  16. Based on current dividend yields and expected growth rates, the expected rates of return on stocks 
 A  and  B  are 11% and 14%, respectively. The beta of stock  A  is .8, while that of stock  B  is 1.5. The 
T-bill rate is currently 6%, while the expected rate of return on the S&P 500 index is 12%. The 
standard deviation of stock  A  is 10% annually, while that of stock  B  is 11%. If you currently hold 
a passive index portfolio, would you choose to add either of these stocks to your holdings?  

  17. A portfolio manager summarizes the input from the macro and micro forecasters in the follow-
ing table:

      

Micro Forecasts

Asset Expected Return (%) Beta Residual Standard Deviation (%)

Stock A 20 1.3 58

Stock B 18 1.8 71

Stock C 17 0.7 60

Stock D 12 1.0 55

Macro Forecasts

Asset Expected Return (%) Standard Deviation (%)

T-bills 8 0

Passive equity portfolio 16 23

    a.  Calculate expected excess returns, alpha values, and residual variances for these stocks.  
   b.  Construct the optimal risky portfolio.  
   c.  What is Sharpe’s measure for the optimal portfolio and how much of it is contributed by the 

active portfolio?  
   d.  What should be the exact makeup of the complete portfolio for an investor with a coefficient 

of risk aversion of 2.8?     
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  18. Recalculate Problem 17 for a portfolio manager who is not allowed to short sell securities.

    a.  What is the cost of the restriction in terms of Sharpe’s measure?  
   b.  What is the utility loss to the investor ( A   �  2.8) given his new complete portfolio?     

  19. Suppose that based on the analyst’s past record, you estimate that the relationship between fore-
cast and actual alpha is:

    Actualabnormal return Forecast of alpha� �.3  

 Use the alphas from Problem 17. How much is expected performance affected by recognizing 
the imprecision of alpha forecasts?      

   20. Suppose that the alpha forecasts in row 44 of Spreadsheet 8.1 are doubled. All the other data 
remain the same. Recalculate the optimal risky portfolio. Before you do any calculations, how-
ever, use the Summary of Optimization Procedure to estimate a back-of-the-envelope calcula-
tion of the information ratio and Sharpe ratio of the newly optimized portfolio. Then recalculate 
the entire spreadsheet example and verify your back-of-the-envelope calculation.    

 Challenge 
Problem 
 Challenge 
Problem 

       1. When the annualized monthly percentage rates of return for a stock market index were regressed 
against the returns for ABC and XYZ stocks over a 5-year period ending in 2008, using an ordi-
nary least squares regression, the following results were obtained:

    

Statistic ABC XYZ

Alpha –3.20% 7.3%

Beta 0.60 0.97

R2 0.35 0.17

Residual standard deviation 13.02% 21.45%

 Explain what these regression results tell the analyst about risk–return relationships for each 
stock over the sample period. Comment on their implications for future risk–return relation-
ships, assuming both stocks were included in a diversified common stock portfolio, especially 
in view of the following additional data obtained from two brokerage houses, which are based 
on 2 years of weekly data ending in December 2008.

      

Brokerage House Beta of ABC Beta of XYZ

A .62 1.45

B .71 1.25

     2. Assume the correlation coefficient between Baker Fund and the S&P 500 Stock Index is .70. 
What percentage of Baker Fund’s total risk is specific (i.e., nonsystematic)?  

     3. The correlation between the Charlottesville International Fund and the EAFE Market Index 
is 1.0. The expected return on the EAFE Index is 11%, the expected return on Charlottesville 
International Fund is 9%, and the risk-free return in EAFE countries is 3%. Based on this analy-
sis, what is the implied beta of Charlottesville International?  

     4. The concept of  beta  is most closely associated with:

    a.  Correlation coefficients.  
   b.  Mean-variance analysis.  
   c.  Nonsystematic risk.  
   d.  Systematic risk.     

     5. Beta and standard deviation differ as risk measures in that beta measures:

    a.  Only unsystematic risk, while standard deviation measures total risk.  
   b.  Only systematic risk, while standard deviation measures total risk.  
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   c.  Both systematic and unsystematic risk, while standard deviation measures only unsystem-
atic risk.  

   d.  Both systematic and unsystematic risk, while standard deviation measures only systematic 
risk.       

  Go to   www.mhhe.com/edumarketinsight   and click on the  Company  link. Enter the ticker 
symbol for the stock of your choice and click on the  Go  button. In the  Excel Analytics  sec-
tion go to the  Market Data  section and get the  Monthly Adjusted Prices  data for the past 
4 years. The page will also show monthly returns for your stock and for the S&P 500. Copy 
the data into an  Excel  worksheet and then do a regression to generate the characteristic 
line for the stock. (Use the menus for  Tools, Data Analysis, Regression,  input the X range 
and the Y range, select  New Worksheet Ply  under  Output Options,  and click on  OK. ) Based 
on the regression results, what is the beta coefficient for your stock? 

 Next use  Excel  to plot an X-Y Scatter graph of the stock’s returns versus the S&P 500’s 
returns. Once the graph is constructed, select one of the data points and right click on it. 
Choose the  Add Trendline  option and select the  Linear  type. On the  Options  tab, select 
 Display Equation on Chart.  How does the equation compare with your regression results? 

 Go back to the main page for your stock’s information and select  S&P Stock Reports  
from the menu. Choose  Stock Report  from the submenu and when the stock report opens, 
find the beta coefficient for the firm. How does this beta compare to your results? What are 
possible reasons for any differences?  

 Beta Estimates 

 Go to   http://finance.yahoo.com   and click on Stocks link under the  Investing  tab. 
Look for the  Stock Screener  link under Research Tools. The  Java Yahoo! Finance 
Screener  lets you create your own screens. In the  Click to Add Criteria  box, find 
 Trading and Volume  on the menu and choose  Beta.  In the  Conditions  box, choose 
<  �   and in the  Values  box, enter  1.  Hit the  Enter  key and then request the top 200 
matches in the Return Top_Matches box. Click on the  Run Screen  button. 

 Select the  View Table  tab and sort the results to show the lowest betas at the top 
of the list by clicking on the  Beta  column header. Which firms have the lowest betas? 
In which industries do they operate? 

 Select the  View Histogram  tab and when the histogram appears, look at the bot-
tom of the screen to see the  Show Histogram for  box. Use the menu that comes up 
when you click on the down arrow to select  beta.  What pattern(s), if any, do you see 
in the distributions of betas for firms that have betas less than 1? 
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   1.     a.   Total market capitalization is 3,000  �  1,940  �  1,360  �  6,300. Therefore, the mean excess 
return of the index portfolio is
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   b.  The covariance between stocks  A  and  B  equals

    Cov( , ) . . .R RA B A B M� � � � � � � �2 21 2 25 0125    

   c.  The covariance between stock  B  and the index portfolio equals

    Cov( , ) . . .R RB M B M� � � � � �2 22 25 0125    

   d.  The total variance of  B  equals

    � � � � �B B M B B M BR e e2 2 2 2= + = +Var( ) ( )  

 Systematic risk equals     � � � � �B M
2 2 2 22 25 0025. . . .      

  Thus the firm-specific variance of  B  equals

    � � � � � � � � � �2 2 2 2( ) .eB B B M 30 .2 25 .08752 2 2.    

  2. The variance of each stock is     � � � �2 2
M e2 ( ).    

  For stock  A,  we obtain

    
1,2242 2 2� � � �

� �

A

A

2 9 30

35

.

%

(20)
  

 For stock  B, 

    
� � � �

� �

B

B

2 1 1 20 10 584

24

2 2 2. ( )

%   

 The covariance is

    � � � � � � �A B M
2 29 1 1 20 396. .    

  3. �2(eP) � (    )2[�2(eA) � �2(eB)]

�     (.302 � .102)

0250.�

1 2

1 4

      

 Therefore  � ( e   P  )  �  .158  �  15.8%  

  4. Merrill Lynch’s alpha is related to the index-model alpha by

    � � � � � �Merrill index model ( )1 rf
  

 For HP,  �   Merrill   �   � .45%,  �   �  1.76, and we are told that  r   f   was .4%. Thus

    � � � � � � �index model . % ( . ). % . %.45 1 1 76 4 146  

 HP’s return was somewhat disappointing even after correcting Merrill Lynch’s alpha. It under-
performed its “benchmark” return by an average of .146% per month.  

  5. The industries with positive adjustment factors are most sensitive to the economy. Their betas 
would be expected to be higher because the business risk of the firms is higher. In contrast, the 
industries with negative adjustment factors are in business fields with a lower sensitivity to the 
economy. Therefore, for any given financial profile, their betas are lower.                                                                      


