3 Decision Theory

3.1 Utility Functions
Suppose the utility of having x units of a good is u(x).

It is normally assumed that v is a concave, increasing function and
u(0) = 0.

i.e. the utility from having 2x Euros is greater than the utility of
having x Euros, but not more than twice as great.

It is assumed that individuals act so as to maximise their
(expected) utility.
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Utility functions

Utility functions for the acquisition of n goods can be defined in a
similar way.

Suppose x = (x1, X2, ..., xn) defines a bundle of goods, i.e. an
individual has x; units of good i.

The utility from having such a bundle is defined to be u(x), where

u(0) =0, g—)‘jf > 0 and 83,28)9 < 0.
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Utility functions and optimality in deterministic problems

From the assumptions made, if a deterministic problem only
involves the acquisition of one good (commonly money in the form
of profit), maximising profit will automatically maximise utility.

Hence, the form of the utility function will not have any effect on
the optimal solution of such a problem.
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Utility functions and optimality in deterministic problems

However, if a problem involves the acquisition of two goods, then
the form of the utility function will in general have an effect on the
optimal solution,

e.g. when allowed to choose five pieces of fruit some individuals
may prefer to take 3 apples and 2 oranges, while others prefer 2
oranges and 3 apples.

However taking 2 apples and 2 oranges would clearly be a
sub-optimal solution.
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Concavity of utility functions

The assumption that a utility function is concave seems reasonable
as follows:

The utility | gain by obtaining an apple (the marginal utility of an
apple) when | have no apples is greater than the utility | gain by
obtaining an apple when | already have a large number of apples.

It should be noted that
a) Individuals have different utility functions.

b) A person’s utility function depends on his/her present
circumstances.
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Utility functions and optimality in probabilistic problems

In probabilistic models we maximise expected utility. In general,
the optimal solution depends on the form of this utility function.

The concept of utility is related to Jensen’s inequalities.

Jensen's Inequalities

If f is a concave function, g is a convex function and X a random
variable then

E[F(X)]<FIE(X)]
Elg(X)]=g[E(X)]
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Risk neutral individuals

Suppose u(x) is an individual's utility function for obtaining x
units of money.

If u”(x) =0 for all x (i.e. u(x) is linear), then that individual is
said to be risk neutral.

When presented with the choice between a fixed sum of money k
and lottery in which the expected prize is k, such an individual is
indifferent between these choices.
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Risk averse individuals

If a person has a utility function that is strictly concave, then that
individual is said to be risk averse.

When presented with the choice between a fixed sum of money k
and lottery in which the expected prize is k, such an individual
would choose the fixed sum.

This follows from the fact that if u is a strictly concave function
E[u(X)] < u[E(X)]. The first expression is the expected utility
from playing the lottery. The second expression is the utility from
choosing the fixed sum.
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Example 3.1

Consider the following situation. A contestant in a game show
must choose between

a) A guaranteed reward of 125 000 Euros.

b) Taking one of two bags. One of the bags is empty,
the other contains 250 000 Euro.

It can be seen that by taking option b), the expected amount of
money obtained by the player is also 125 000 Euros.
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Example 3.1

We consider 3 utility functions describing the utility of obtaining x
Euro

u1(x) = x; ua(x) = Vx; uz(x) = x°
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Example 3.1 - Risk neutral individual

If an individual has a utility function given by u;(x) = x, then by
taking option a), he/she obtains an expected utility of 125 000.

By taking option b), he/she obtains an expected utility of
1 1
Efur(X)] = 5 x 0+ 3 x 250000 = 125000,
Hence, this player is indifferent between choosing a guaranteed

amount of money and a lottery which gives the same expected
amount of money (i.e. is risk neutral).
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Example 3.1 - Risk averse individual

If an individual has a utility function given by up(x) = v/, then by
taking option a), he/she obtains an expected utility of

/125000 =~ 353.55.

By taking option b), he/she obtains an expected utility of

1 1
E[ua(X)] = 5 x 0+ 5 x v/250000 = 250.

Hence, this player would rather choose a guaranteed amount of

money than a lottery which gives the same expected amount of
money (i.e. is risk aversive).
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Example 3.1 - Risk averse individual

We can calculate the guaranteed amount x; for which the player is
indifferent between that amount and the lottery as follows:

U2(X]_) = \/X>1 = 250 = x; = 62500.
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Example 3.1 - Risk seeking individual

If an individual has a utility function given by u3(x) = x?, then by
taking option a), he/she obtains an expected utility of
1250002 = 1.625 x 10%°.

By taking option b), he/she obtains an expected utility of
1 1 2 10
E[us(X)] = 5 X 0+ 5% 250000 = 3.125 x 10-".

Hence, this player would rather choose a lottery than a guaranteed

amount of money, if the lottery gives the same expected amount of
money (i.e. is risk seeking).
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Decision Analysis - Deterministic models

When making a decision we must often take various criteria into
account.

For example, when | want to buy an airline ticket | do not just take
the price of the ticket into account.

Other factors | take into account may be the time of the flight, the
distance of airports to a) my home b) to my destination etc.
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Decision Analysis - Deterministic models

In order to decide on which ticket to buy, | may ascribe
i) Various weights to these factors.

ii) Scores describing the attractiveness of price, time
of flights and location.

Such an approach is commonly used in defining the bid a public
sector company should accept.
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Decision Analysis - Deterministic models

| choose the option that maximises my utility, which is defined to
be the appropriate weighted average of these scores.

In mathematical terms, suppose there are k factors. Let w; be the
weight associated with factor i and s;; the score of option j
according to factor i (i.e. how good option j is according to factor

0.

It is normally assumed that Zf'(:l w; = 1.
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Decision Analysis - Deterministic models

| choose the option j, which maximises the utility of option j, u;,
which is taken to be the weighted average of the scores i.e.

i = Z w;s; j
i=1
Hence, a mathematical model of such a problem is defined by
a) The set of options.
b) The set of factors influencing the decision.
c) Weights for each of these factors.

d) Scores describing how attractive each option is
according to each factor.

18/61



Example 3.2

Suppose | am travelling to Barcelona and | consider two
possibilities.

| can fly using a cheap airline from Shannon to Girona (about
70km from Barcelona), with one of the flights being at a very early
time or

| can fly using a more expensive airline from Shannon to Barcelona
and the times of the flight are convenient.
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Example 3.2

The three factors | consider are price (factor 1), location (factor 2)
and time (factor 3). | ascribe the weights w; = 0.5, wp = 0.3 and
w3 = 0.2 to each of these factors.

The budget airline scores s1 1 = 90 according to price, s 1 = 40
according to location and s3; = 60 according to time.

The other airline scores s; 2 = 70 according to price, s3> = 90
according to location and s3> = 90 according to time.
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Example 3.2 - Utility of the options

Hence,

up=0.5x%x90+ 0.3 x 404 0.2 x 60 = 69
up=0.5x 70+ 0.3 x 90 4 0.2 x 90 = 80.

It follows that | should choose the flight from Shannon to
Barcelona.
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Multi-person decision processes

When more than one person is involved in the decision process, we
may define a composite utility as a weighted average of the utilities
of the alternatives to each of the decision makers.

Suppose Adam and Betty want to meet in one of two restaurants.
They take two factors into account a) the location of a restaurant
and b) the attractiveness of a restaurant.
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Multi-person decision processes

In this case we need to define
a) Weights describing the importance of each person
in the decision process (say p and g here).
b) The weights Adam gives to the importance of
location, p; and attractiveness, p» and the scores he
gives to restaurant j according to these criteria ry ;
and ;.
c) The weights Betty gives to the importance of
location, g1 and attractiveness, g» and the scores she
gives to restaurant j according to these criteria sy ;
and 52,

These scores must be made on the same scale.
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Multi-person decision processes

Under these assumptions we can define the utility of the choice of
restaurant j to both Adam, up j, and Betty, ug ;.

These are simply the weighted averages of the scores each one
gives for location and attractiveness. We have

2
UA,j:E Pili,j
i=1
2
UBJ:E qiSij
i=1
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Multi-person decision processes

The composite utility is the weighted average of these utilities
(weighted according to the importance of the decision makers).

In this case, the composite utility gained from choosing the j-th
restaurant is u;, where

Uj = pUa,j + qug,;.

The decision makers should choose the restaurant which maximises
the composite utility.
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Multi-person decision processes

For example, suppose the decision makers are of equal importance,
i.,e. p=¢q=0.5.

Adam’s weights for the importance of location and attractiveness
are 0.7 and 0.3.

Betty's weights are 0.4 and 0.6, respectively.
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Multi-person decision processes

They must choose between 2 restaurants. Adam assigns a score of
70 (out of 100) for location and 50 for attractiveness to
Restaurant 1 and a score of 40 for location and 90 for
attractiveness to Restaurant 2.

The analogous scores given by Betty are 50 and 60 (to Restaurant
1) and 30 and 80 (to Restaurant 2).
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Multi-person decision processes

The utilities to Adam of these restaurants are

UA,1:0.7 X 70+ 0.3 x 50 = 64
ua2=0.7 x 40 + 0.3 x 90 = 55.

The utilities to Betty of these restaurants are given by

ug,1=0.4 x 50 + 0.6 x 60 = 56
ug2=0.4 x 30 + 0.6 x 80 = 60.
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Multi-person decision processes

Hence, the composite utilities of these choices are given by

u1=0.5 x 64 + 0.6 x 56 = 60
up=0.5 x 55 + 0.6 x 60 = 57.5.

It follows that Restaurant 1 should be chosen.
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Probabilistic models

In many cases we do not know what the outcome of our decisions
will be, but we can ascribe some likelihood (probability) to these
outcomes.

In this case we can define a decision tree to illustrate the actions we
may take and the possible outcomes resulting from these actions.
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Probabilistic models

Consider the following simplified model of betting on a horse.

Suppose there are only 2 horses we are interested in. If the going is
good or firmer (this occurs with probability 0.6), horse 1 wins with
probability 0.5, otherwise it wins with probability 0.2.

If the going is good horse 2 wins with probability 0.1, otherwise it
wins with probability 0.4.
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Probabilistic models

The odds on horse 1 are evens. The odds on horse 2 are 2 to 1.

Hence (ignoring taxes), if we place a 10 Euro bet on horse 1, we
win 10 Euro if it wins. If we place a 10 Euro bet on horse 2, we
win 20 Euro if it wins.

In all other cases we lose 10 Euro. Winnings are denoted by W.
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Probabilistic models

It should be noted that if the odds are valid only before the ground
conditions are known, we are only really interested whether these
horses win or lose and not in whether the ground is good or not.

Hence, to simplify the decision tree, we calculate the probability
that a horse wins.

Let A be the event that the first horse wins and let B be the event
that the second horse wins.

Let G be the event that the ground is good or firmer (G€ is the
complement of event G, i.e. not G).
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Probabilistic models

Using the law of complete probability

P(A)=P(A|G)P(G) + P(A|G)P(GS) = 0.5 x 0.6 + 0.2 x 0.4 = 0.38
P(B)=P(B|G)P(G) + P(B|G)P(G) = 0.1 x 0.6 + 0.4 x 0.4 = 0.22
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Probabilistic models

The simplified decision tree for this problem is given by
Choice

10 -10 20 -10

Fig. 1. Decision Tree for Betting Problem
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Criteria for Choosing under Uncertainty

In the case where risk exists, there are various criteria for choosing
the optimal action. The first criterion we consider is the criterion
of maximising the expected amount of the good to be
obtained. Here we should maximise the expected winnings.

This criterion is valid for individuals who are indifferent to risk (i.e.
have a linear utility function).

By betting on horse 1, my expected winnings (in Euros) are
E(W)=10x0.38 — 10 x 0.62 = —2.4.

By betting on horse 2, my expected winnings are
E(W)=20x0.22—-10 x 0.78 = —3.4.

Thus, it is better to bet on horse 1 than on horse 2. Of course, in

this case it would be better not to bet at all.
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Information in probabilistic problems

One interesting point to note regarding this example is that there
is a signal (the state of the ground), which is correlated with the
results of the race.

It was assumed that the bet took place before the signal could be
observed.

The probabilities of each horse winning in this case are termed the
"a priori”" probabilities.
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Information in probabilistic problems

Suppose now the signal was observed before the bet was made.

In this case we may base our bet on the signal, using the
" posterior” probabilities of each horse winning.

These are the conditional probabilities of the horses winning given
the state of the ground.

Hence, we should define the decision to be made when the
conditions are good or firmer D¢ and the decision to be made
when the conditions are different Dy, i.e. we define the decision
to be made for each possible signal.
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Information in probabilistic problems

Suppose the conditions are good or firmer. If | bet on horse 1 (who
wins with probability 0.5), my expected winnings are

E(W)=10x05-10x05=0

If | bet on horse 2 (who wins with probability 0.1), my expected
winnings are

E(W)=20x01-10x09=—7

Hence, when the conditions are good or firmer | should bet on
horse 1. In this case | am indifferent between betting and not
betting.
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Information in probabilistic problems

Suppose the conditions are softer than good. If | bet on horse 1
(who wins with probability 0.2), my expected winnings are

E(W)=10x0.2—10x 0.8 = —6

If | bet on horse 2 (who wins with probability 0.4), my expected
winnings are

E(W)=20x0.4—10x 0.6 =2

Hence, when the conditions are softer | should bet on horse 2. In
this case, | prefer betting to not betting.
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Maximisation of expected utility

The second criterion we consider is the maximisation of utility.

Although the criterion of maximisation of the expected amount of
the good to be obtained is very simple to use, some people may be
more averse to risk than others.

In this case it may be useful to use the maximisation of utility.
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Example 3.3

Consider the previous example in which the ground conditions are
observed before the bet is made.

Assume that my utility function is u(x) = /10 + x, where x are
my winnings.

Note that 10 + x is the amount of money | have after the bet.
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Example 3.3

Suppose the conditions are good or firmer. If | bet on horse 1 (who
wins with probability 0.5), my expected utility is

E(W) = V20 x 0.5+ 0 x 0.5 = 2.236

If | bet on horse 2 (who wins with probability 0.1), my expected
winnings are

E(W) =30 x 0.1 -0 x 0.9 = 0.5477

If I do not bet, then my utility is v/10 = 3.162.

Hence, when the conditions are good or firmer (if | bet) | should
bet on horse 1. In this case | would rather not bet.
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Example 3.3

Suppose the conditions are softer than good. If | bet on horse 1
(who wins with probability 0.2), my expected utility

E(W) = V20 x 0.2 — 0 x 0.8 = 0.8944

If | bet on horse 2 (who wins with probability 0.4), my expected
utility is
E(W)=+v30x0.4—-0x0.6=2.191

Hence, when the conditions are softer (if | bet) | should bet on
horse 2. However in this case, | prefer not betting to betting.
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Other criteria for choice under uncertainty

Other criteria for choosing under uncertainty are
1) Laplace’s criterion

2) The minimax criterion

3) The Savage criterion

)

4) The Hurwicz criterion
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Laplace’s criterion

The Laplace criterion is based on the principle of insufficient
reason.

Since normally we do not know the probabilities of the events that
interest us, we should assume that these are equally likely.

This means that if there are n horses in a race, then we assume
that each has a probability % of winning. In this case it is clear
that in order to maximise our expected winnings (or utility) any
bet should be placed on the horse with the largest odds.
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The minimax criterion

The minimax criterion is based on the conservative attitude of
minimising the maximum possible loss (this is equivalent to
maximising the minimum possible gain).
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The Savage criterion

The Savage (regret) criterion aims at moderating conservatism
by introducing a regret matrix.

Let v(a;,s;) be the payoff (or loss) when a decision maker takes
action a; and the state (result of the random experiment) is s;.

If v denotes a payoff, then the measure of regret r(a;, s;) is given
by

r(ai, 5i) = max{v(a, 5)} — v(ai, 5j).
This is the maximum gain a decision maker could have made, if
he/she knew what the state of nature was going to be.
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The Savage criterion

If v denotes a loss, then the measure of regret r(aj, s;) is given by
(i, 57) = v(@i,5) = min{v(ak, )}

This is the maximum decrease in costs a decision maker could have
made (relative to the loss he/she actually incurred), if he/she knew
what the state of nature would be.

The decision is made by applying the minimax criterion to the
regret matrix. Since regret is a " cost”, we minimise the maximum
regret.
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The Hurwitz criterion

The Hurwitz criterion is designed to model a range of
decision-making attitudes from the most conservative to the most
optimistic.

Define 0 < o < 1 and suppose the gain function is v(aj, s;).

The action selected is the action which maximises

amaxv(aj,s;) + (1 — a) minv(aj, s;).
g g
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The Hurwitz criterion

The parameter « is called the index of optimism.

If « =0, this criterion is simply the minimax criterion (i.e. the
minumum gain is maximised, a conservative criterion).

If &« =1, then the criterion seeks the maximum possible payoff (an
optimistic criterion). A typical value for «v is 0.5.
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The Hurwitz criterion

If v(aj, sj) is a loss, then the criterion selects the action which
minimises
aminv(a;,s;) + (1 — a) maxv(aj, s;).
& Sj
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Example 3.4

Suppose a farmer can plant corn (a;), wheat (az), soybeans (a3) or
use the land for grazing (as).

The possible states of nature are: heavy rainfall (s1), moderate
rainfall (s;), light rainfall (s3) or drought (s4). The payoff matrix
in thousands of Euro is as follows

S1 So S3 S4
ap |-20| 60 | 30| -5
a) | 40 | 50 | 35| O
a3 | -b0 | 100 | 45 | -10
ag | 12 | 15 | 15| 10
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Example 3.4

Using the four criteria given above, determine the action that the
farmer should take.

Use an optimality index oo = 0.4.
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Example 3.4 - Using Laplace’s criterion

Using Laplace's criterion, we assume each of the states is equally
likely and we calculate the expected reward obtained for each
action E(W; a;).

We have
E(W: al):—2O+604+ 30-5 _ 16.25
E(W: 32):40+50:35+0 _ 3105
E(W: 33):—50—1— 10(14— 45 — 10 _ 9105
E(W: a4):12+ 15:15+ 10 13

Under this criterion, the farmer should take action ap (plant
wheat).
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Example 3.4 - Using the minimax criterion

Under the minimax criterion, we maximise the minimum possible
reward.

Let Whin(a;) be the minimum possible reward given that action a;
is taken

Wmin(al) = —20; Wmin(32) =0; Wmin(a3) = —50; Wml'n(a4) = 10.

Under this criterion, the farmer should take action as (use for
grazing).
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Example 3.4 - Using the Savage criterion

When using Savage's criterion, we first need to calculate the regret
matrix.

The values in the column of the regret matrix corresponding to
state s; are the gains that a decision maker could make by
switching his action from the action taken to the optimal action in
that state.

Given the state is s1, the optimal action is ap, which gives a payoff
of 40.

Hence, the regret from playing a; is 60. The regret from playing a3
is 90 and the regret from playing a, is 28.
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Example 3.4 - Using the Savage criterion

Calculating in a similar way, the regret matrix is given by

S1

2

53

Sa

a1

60

40

15

15

az

0

50

10

10

a3

90

0

0

20

dg

28

85

30

0
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Example 3.4 - Using the Savage criterion

In order to choose the appropriate action, we apply the minimax
criterion to the regret matrix.

Since regret is a cost (loss), we minimise the maximum regret.

Let Rmax(a;) be the maximum regret possible given that action a;
is taken. We have

Rmax(al) = 60; Rmax(aZ) = 50; Rmax(33) = 90; Rmax(34) =85

It follows that according to this criterion, the action a; should be
taken (plant wheat).
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Example 3.4 - Using the Hurwicz criterion

Finally, we consider the Hurwicz criterion with o = 0.4. Let the
Hurwicz score of action a; be given by

H(a;) = amaxv(aj, sj) + (1 — a) min v(aj, 5;).
Sj Sj

If the farmer takes action a;, the maximum possible reward is 60
and the minimum possible reward is -20. The Hurwicz score is thus

given by
H(a1) = 0.4 x 60 + 0.6 x (—20) = 12.
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Example 3.4 - Using the Hurwicz criterion

Similarly,

H(a2)=0.4 x 50 + 0.6 x 0 = 20
H(a3)=0.4 x 100 + 0.6 x (—50) = 10
H(a4)=0.4 x 15 + 0.6 x 10 = 12.

Hence, according to this criterion action ay (plant wheat) should
be taken.

It can be seen that for small « (the decision maker is pessimistic),
then action as should be taken. If a is close to 1 (the decision
maker is optimistic), then action az should be taken.
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