MACROECONOMICS I	
-------------------------	--

Class 2. National Accounts (Cont).

Introduction to Economic Growth

February 28th, 201

Class Outline

- Real GDP: Chain-weighted approach
- GDP deflator
- Introduction to economic growth

GDP: Three Equivalent Approaches

1. Production approach (value-added)

- 2. Income approach
- 3. Expenditure approach

Why are they equivalent ?

THE CIRCULAR FLOW MODEL OF MARKET ECONOMY

The rule of accounting: Expenditure of buyers = Income of sellers

GDP by the Expenditure Approach

Expenditure category	Czech Republic	Qatar	China
Consumption	71.1%	26.9%	?
Investment	23.3%	35.3%	?
Net export	5.6%	37.8%	?
GDP	100%	100%	

Source: Czech Statistical Office. Qatar Ministry of development planning and statistics.

GDP by the Expenditure Approach

Expenditure category	Czech Republic	Qatar	China
Consumption	71.1%	26.9%	49.1%
Investment	23.3%	35.3%	48.3%
Net export	5.6%	37.8%	2.6 %
GDP	100%	100%	100%

Source: Czech Statistical Office. Qatar Ministry of development planning and statistics.

GDP Variations

Seasonally Adjusted GDP

- Quarter-to-quarter fluctuations
- A pronounced seasonal pattern:

```
Steady growth over the year - peaking in Q4 - sharp drop in Q1
```


Source: IMF Financial Statistics Database

PPP Adjusted GDP

- Comparing the standards of living (GDP per capita) across countries
- Converting GDP into common currency using currency exchange rates

Issues:

- 1. Variation of exchange rates
- 2. Difference in prices of basic goods

Solution: using a common set of prices which reflects the purchasing power

Purchasing power parity: The price of a typical basket of goods is equal

across countries being converted into the common currency

Real GDP: The Chain-Weighted Approach

$$GDP_t^R = Q_t^1 \cdot P_{base year}^1 + Q_t^2 \cdot P_{base year}^2 + \dots$$

• GDP growth rate: $g_t = \frac{GDP_t - GDP_{t-1}}{GDP_t}$

• The growth rate is affected by the choice of the base year

What year to choose?

Real GDP: The Chain-Weighted Approach

TE

	Popcorn		Mo	vies
Year	Q	P (\$)	Q	P(\$)
2010	10	5	5	3
2011	15	10	10	5
2012	10	15	12	10

Real GDP (100=2010)?

$$GDP_{2010}^{R} (100 = 2010) = \$5 \cdot 10 + \$3 \cdot 5 = \$65$$
$$GDP_{2011}^{R} (100 = 2010) = \$5 \cdot 15 + \$3 \cdot 10 = \$105$$
$$GDP_{2012}^{R} (100 = 2010) = \$5 \cdot 10 + \$3 \cdot 12 = \$85$$

Real GDP growth rate?

Real GDP: Example (Cont.)

	Popcorn		Movies		Real GDP
Year	Q	P (\$)	Q	P(\$)	rate
2010	10	5	5	3	
2011	15	10	10	5	60 %
2012	10	15	12	10	-20%

Real GDP (100=2011)

$$GDP_{2010}^{R} (100 = 2011) = \$10 \cdot 10 + \$5 \cdot 5 = \$125$$
$$GDP_{2011}^{R} (100 = 2011) = \$10 \cdot 15 + \$5 \cdot 10 = \$200$$
$$GDP_{2012}^{R} (100 = 2011) = \$10 \cdot 10 + \$5 \cdot 12 = \$160$$

Real GDP: Example (Cont.)

	Popcorn		Movies		Real GDP
Year	Q	P (\$)	Q	P(\$)	rate
2010	10	5	5	3	
2011	15	10	10	5	62 %
2012	10	15	12	10	-16%

Real GDP (100=2012)

$$GDP_{2010}^{R} (100 = 2012) = \$15 \cdot 10 + \$10 \cdot 5 = \$200$$

$$GDP_{2011}^{R} (100 = 2012) = \$15 \cdot 15 + \$10 \cdot 10 = \$325$$

$$GDP_{2012}^{R} (100 = 2012) = \$15 \cdot 10 + \$10 \cdot 12 = \$270$$

Real GDP: The Chain-Weighted Approach

Three step procedure: Step 1

	Real GDP growth rate (100=2010)	Real GDP growth rate (100=2011)	Real GDP growth rate (100=2012)	
Year	(100 2010)	(100 2011)	(100 2012)	
2010				
2011	61 %	60%	62%	
2012	-19%	-20%	-16%	

Real GDP: The Chain-Weighted Approach

Three step procedure: Step 2

	Real GDP growth rate	Real GDP growth rate	Real GDP growth rate
Year	(100–2010)	(100–2011)	(100–2012)
2010			
2011	61 %	60%	62%
2012	-19%	-20%	-16%

$$g_{2011}^{R} = \frac{g_{2011}^{R}(100 = 2010) + g_{2011}^{R}(100 = 2011)}{2} = \frac{61\% + 60\%}{2} = 60.5\%$$
$$g_{2012}^{R} = \frac{g_{2012}^{R}(100 = 2011) + g_{2012}^{R}(100 = 2012)}{2} = \frac{-20\% - 16\%}{2} = -18\%$$

Real GDP: The Chain-Weighted Approach (Cont

Three step procedure: Step 3

 $GDP^{CW}_{2011} = GDP_{2010} (1 + g^{R}_{2011})$

 $GDP^{CW}_{2012} = GDP^{CW}_{2011} (1 + g^{R}_{2012})$

- In order to calculate next year real GDP, we need to know the previous year figure
- If we start from year 2011, real GDP for 2010 is

$$GDP^{CW}_{2010} = GDP_{2011} / (1 + g^{R}_{2011})$$

The GDP Deflator

- Changes in the overall price level between the base year and the current year
- The price of output relative to ithe price in a base year

GDP Deflator(t) = Nominal GDP (t)/Real GDP(t)

- It is an index
- Equals to 1 or 100 in the base year
- Its level has no economic interpretation
- Removes the inflation out of nominal GDP

$$GDP_t^R = \frac{GDP_t^N}{GDP \ Deflator_t}$$

The GDP Deflator (Cont.)

• US GDP deflator (100=2005)	Year	Deflator
	2000	88.723
GDP Deflator $(2006) = 103$	2001	90.727
	2002	92.196
\Rightarrow Increase in overall prices by 3 % relative	2003	94.135
- mereuse in everal prices by 5 % relative	2004	96.786
to the hose week	2005	100
to the base year	2006	103.231
	2007	106.227
• GDP Deflator $(2000) = 88.7$	2008	108.582
	2009	109.529
	2010	110.993
\Rightarrow Increase in overall prices between 2000	2011	113.359
	2012	115.36
and 2005 by 11.3 % compared		

N!B! Deflator shows the change in prices relative to the base year

The GDP Deflator (Cont.)

 $Inflation_{t} = \frac{GDP \ Deflator_{t} - GDP \ Deflator_{t-1}}{GDP \ Deflator_{t-1}}$

•Inflation – a change in aggregate price

level from one year to another

Year	Deflator	Inflation rate
2000	88.723	2.17
2001	90.727	2.26
2002	92.196	1.62
2003	94.135	2.10
2004	96.786	2.82
2005	100	3.32
2006	103.231	3.23
2007	106.227	2.90
2008	108.582	2.22
2009	109.529	0.87
2010	110.993	1.34
2011	113.359	2.13
2012	115.36	1.77

GDP as a Measure of Well-Being

GDP does **not** account for:

- Non-marker transactions
- Leisure
- Improved product quality
- Distribution of income
- Quality of environment
- Depletion of resources
- Developed by Simon Kuznets in 1930 for BEA as a tool which allows to monitor the effect of government policy

Data Sources

Czech Republic: Czech statistical office Český statistický úřad (CSU) <u>www.czso.cz</u>

Czech National Bank: Global Economics Outlook

USA U.S. Bureau of Economic Analysis (BEA) www.bea.gov

European Union Directorate General on Economic and Financial Affairs of the European Commission <u>http://ec.europa.eu/economy_finance/eu/index_en.htm</u>

OECD www.oecd.org

Long Run: Economic Growth

Definition: Increase in real GDP per capita

Two aspects

- Changes in GDP per capita within one country over time
- Tremendous differences in GDP per capital across countries

The World Bank Classification based on GNP per capita

- Low income: < \$1,005
- Middle income: \$1,006 \$12,000
- High income: >\$12,000

Cross-Country Income Differences

Country Income Groups

- Low income \$1,005 or less
- Lower middle income \$1,006-\$3,975
- Upper middle income \$3,976-\$12,275
- High income: nonOECD \$12,275 or more
- High income: OECD \$12,275 or more

Year: July 2011 Source: The World Bank Group

Economic Growth

Changes over time

Country	Period	Real GDP per Person at Beginning of Period [*]	Real GDP per Person at End of Period [*]	Growth Rate (per year)
Japan	1890-2008	\$1,504	\$35,220	2.71%
Brazil	1900-2008	779	10,070	2.40
Mexico	1900-2008	1,159	14,270	2.35
Germany	1870-2008	2,184	35,940	2.05
Canada	1870-2008	2,375	36,220	1.99
China	1900–2008	716	6,020	1.99
United States	1870-2008	4,007	46,970	1.80
Argentina	1900–2008	2,293	14,020	1.69
United Kingdom	1870-2008	4,808	36,130	1.47
India	1900-2008	675	2,960	1.38
Indonesia	1900–2008	891	3,830	1.36
Pakistan	1900–2008	737	2,700	1.21
Bangladesh	1900-2008	623	1,440	0.78

Source: Mankiw (2011)

Economic Growth (Cont.)

Distribution of countries according to PPP-adjusted real GDP per capita

Source: Acemoglu, D. (2009)

Economic Growth (Cont.)

How can the US be 32 times richer than Bangladesh?

• Different growth rate

TE If we take two countries with the same GDP per capita

One country is growing at 2 % per year

Another country is not growing (0% per year)

 \Rightarrow In 200 years

$$GDP_{200}^{A} = GDP_{0}^{A} (1+0.02)^{200} = GDP_{0}^{A} \cdot 52$$
$$GDP_{200}^{B} = GDP_{0}^{B} (1+0)^{200} = GDP_{0}^{B} \cdot 1$$

The evolution of GDP per capita, 1960-2010

Logarithmic Scale

• If GPD per capita grows at a constant rate of 2 % per year, the value of GDP per capita increases by **larger and larger increments over time**

Logarithmic Scale (Cont.)

• The same proportional increase in GDP per capita is represented by the same **vertical distance** on the scale (constant growth rate)

Fundamental Causes

• The factors potentially affecting why societies make different technology and capital accumulation choices

✓ Geographical differences

Nature, physical, ecological, and geographical environment

✓ Institution

Laws, regulations, enforcement of property rights

✓ Culture

Values, preferences, and believes

✓ Luck (multiple equilibrium): divergent passes of the economies which are otherwise identical

The Vicious Circle of Poverty

Correlates of Economic Growth

• Investment in physical capital

Correlates of Economic Growth (Cont.)

• Investment in human capital

Economic and Population Growth

Savings and Economic Growth

Next class: Solow-Swan Growth Model

N!B! Reading Assignment: Handout "Theories that don't work"