MACROECONOMICS I

Class 3. Explaining Economic Growth.

The Solow-Swan Model

March 7th, 2014

Homework assignment #1 is now posted on the web

Deadline: March 21st, before the class (12:00)

Submission: One hard copy of answers from a group

N!B! NO late submissions will be accepted

The evolution of GDP per capita, 1960-2010

Solow-Swan Model of Economic Growth(1956)

- What drives changes in GDP per capita **in the long run**?
- Robert Solow (1956)

Economic environment (a set of assumptions)

- A single composite good
- Two factors of production: capital and labor
- Two agents: firms and households
- A **closed** economy

Solow-Swan Model: Supply Side

Production function (technology)

• Maximum output for given inputs

Production of movies

Solow-Swan Model: Returns to Scale

• Output is a **positive** function of inputs Y = (T, T', T')

What would happen to GDP is both inputs increase twice?

• Constant returns to scale (CRS)

If the quantity of **both** inputs doubles, the output also doubles

$$2Y = (L)$$

- Decreasing vs. Increasing returns to scale

Solow-Swan Model: Returns to Factor Inputs

What would happen to GDP if **only one** input increases?

• **Diminishing returns** to factor inputs

For a **fixed L**, an increase in K would lead to smaller and smaller increase in Y

For a **fixed K**, an increase in L would lead to smaller and smaller increase in Y

• Increasing returns to factor inputs

Solow-Swan Model: GDP Per Capita

Transforming the model to per capital terms

$$Y = \begin{pmatrix} & & \\ & & \end{pmatrix} \end{pmatrix}$$

GDP per capita Capital per worker or Capital/Labor ratio

N!B! The level of **capital per worker** determines the level of **output per worker**

Solow-Swan Model: Diminishing Returns

Solow-Swan Model: Diminishing Returns (Cont.

Country	Average annual growth rate of GDP per capita			
	1950-1960	1980-1990		
Germany	6.6 %	1.9 %		
Japan	6.8 %	3.4 %		
France	9.6 %	2.8%		
USA	1.2 %	2.3 %		

Source: Blanchard et al (2010)

Solow-Swan Model: Demand Side

• A fixed fraction of HH income is saved

I=sY & C=(1-s)Y

• Constant savings rate (s): s=30 %

Savings rate determines the allocation of income between consumption and investment

Solow-Swan Model: Demand Side (Cont.)

• Transforming to per capita terms

I=sY & C=(1-s)Y

i = sf(k) & c = (1-s)f(k)

• y = f(k) - GDP per capita

• i = 0.3y – Investment per capita

• c = (1-0.3)y - Consumption per capita

Solow-Swan Model: Capital Accumulation

- •No population growth: L= const
- GDP per capital will increase only due to increase in capital stock

$$\frac{Y_t}{L} = \begin{pmatrix} & \\ & \\ \end{pmatrix}$$

- Households' savings are used as investment into **capital accumulation (**K)
- New capital
- -Replacement of old capital
- Capital **depreciation:** every year a fraction of capital δ breaks down and becomes useless

$$K_{t^+} = + -$$

Solow-Swan Model: Capital Accumulation (Cont

• Capital **accumulation**

$$k_{t+1} = sf(k) + (1 - \Box)k_t$$

• Change in capital from year t to year t+1

$$k_{t+1} - k_t = s f(k) - \Box k_t$$

 Δk – change in capital stock

- If $\Delta k > 0$ (capital stock increases) if $sf(k) > \Box k_{t}$
- If $\Delta k < 0$ (capital stock decreases) if $sf(k) < \Box k$

Solow-Swan Model: Graphical Representation

k

Solow Model: Steady-State (Cont.)

• Steady-state: the long-run equilibrium of the economy

The amount of savings per worker is just sufficient to cover the depreciation of the capital stock per worker

• Economy will **remain** in the steady state (unless additional channels of growth are introduced)

$$\Delta = - =$$

$$y^* = - \Delta_{j} =$$

• Economy which is not in the steady state will go there => convergence to the constant level of output per worker over time

• Different economies have **different steady state** value of capital

Solow Model: Steady-State

 $I = \longrightarrow \Delta = \longrightarrow \Delta =$

Solow Model: Steady-State Level of Capital per V

Convergence to steady state

Solow Model: Increase in Savings Rate

• Savings rate increases from 30 % to 40 %

• Economy moves to a **new steady state** => Higher capital and output per capita

Solow Model: Steady-State (Cont.)

Implications

- Savings rate (s) has **no effect** on the long-run **growth rate of GDP** per capita
- Increase in savings rate will lead to higher growth of output per capita only *for some time*, but not forever.
- Saving rate is bounded by interval [0, 1]
- Savings rate determines the level of GDP per capita in a long run

Solow Model: The Role of Savings

• A nation that devotes a large fraction of its income to savings will have a higher

steady-state capital stock and a high level of income

The Solow-Swan Model: Steady State

- Steady state: the long-run equilibrium of the economy
 - •Savings are just sufficient to cover the depreciation of the capital stock
- ✤ In the long run, capital per worker reaches its steady state for an exogenous s
- ✤ Increase in s leads to higher capital per worker and higher output per capita
- Output grows only during the transition to a new steady state (not sustainable)
- Economy will remain in the steady state (no further growth)
- Economy which is not in the steady state will go there => Convergence

Government policy response?

N!B! Savings rate is a fraction of wage, thus is bounded by the interval [0, 1]

The Solow-Swan Model: Numerical Example

Production function Y = _ _ _ =

Production function in **per capita terms** V

$$\frac{Y}{L} = \begin{bmatrix} \mathbf{r} & 0.5 & \mathbf{r} & 0.5 \\ L & L & L \end{bmatrix} = \begin{bmatrix} \mathbf{r} & 0.5 \\ L & L \end{bmatrix}$$

$$k = \begin{bmatrix} \mathbf{r} & \mathbf{r} & \mathbf{r} \\ L & \mathbf{r} & \mathbf{r} \end{bmatrix}$$

GDP per capita: $y = \frac{1}{2}$

Savings rate: S =

Depreciation rate: $\delta =$

Initial stock of capital per worker: $k_0 =$

The Solow-Swan Model: Numerical Example (Co

Year	k	У	i	c	δk	Δk
1	4					
2						
•••						

Consumption: C = (1-s)Y

Consumption **per capita** C/Y = c

Steady state capital/labor ration:

$$s\sqrt{k} = \rightarrow = \frac{2}{\delta}$$

k	у	с	i	δk	Δk
4.000	2.000	1.400	0.600	0.400	0.200
4.200	2.049	1.435	0.615	0.420	0.195
4.395	2.096	1.467	0.629	0.440	0.189
4.584	2.141	1.499	0.642	0.458	0.184
4.768	2.184	1.529	0.655	0.477	0.178
5.602	2.367	1.657	0.710	0.560	0.150
7.321	2.706	1.894	0.812	0.732	0.080
8.962	2.994	2.096	0.898	0.896	0.002
0.000	3 000	2 100	0.000	0.000	0.000
	k 4.000 4.200 4.395 4.584 4.768 5.602 7.321 8.962 9.000	k y 4.000 2.000 4.200 2.049 4.395 2.096 4.584 2.141 4.768 2.184 5.602 2.367 7.321 2.706 8.962 2.994 9.000 3.000	kyc 4.000 2.000 1.400 4.200 2.049 1.435 4.395 2.096 1.467 4.584 2.141 1.499 4.768 2.184 1.529 5.602 2.367 1.657 7.321 2.706 1.894 8.962 2.994 2.096 9.000 3.000 2.100	kyci 4.000 2.000 1.400 0.600 4.200 2.049 1.435 0.615 4.395 2.096 1.467 0.629 4.584 2.141 1.499 0.642 4.768 2.184 1.529 0.655 5.602 2.367 1.657 0.710 7.321 2.706 1.894 0.812 8.962 2.994 2.096 0.898 9.000 3.000 2.100 0.900	kyci δk 4.0002.0001.4000.6000.4004.2002.0491.4350.6150.4204.3952.0961.4670.6290.4404.5842.1411.4990.6420.4584.7682.1841.5290.6550.4775.6022.3671.6570.7100.5607.3212.7061.8940.8120.7328.9622.9942.0960.8980.8969.0003.0002.1000.9000.900

The Golden Rule Level of Capital

Increasing savings rate means less present consumption

What is the optimal savings rate?

The Solow-Swan Model: Convergence to Steady

N!B! Regardless of k_0 , if two economies have the same **s**, δ , **L**, they will reach the **same** steady state

- The property of catching-up is known as **convergence**
- If countries have the same steady state, poorest countries grow faster
- Not much convergence worldwide

Different countries have different **institutions and policies**

• Conditional convergence: comparison of countries with similar savings rates

World Wide Convergence

Catch up amongst Europe's big 4

Output per head (US \$ 1990)

Source : Maddison and GGDC

Next class: Solow-Swan Growth Model (Cont.)

N!B! Reading Assignment: Handout "Theories that don't work"