Class 4. Th	e Solow-Sv	van Model	(Cont.)
			March 14 th , 2014

The Solow-Swan Model: Population Growth

• Labor force is growing at a constant rate **n**:

 $L_{t+1} = (1+n)L_t$

$$Y_t = F(K_t, L_t)$$

What happens to Capital/Labor ratio (k)?

It is affect by investment (+), depreciation (-), and population growth (-)

Law of motion for k?

 $k_{t+1} = sf(k_t) + (1 - (n)k_t)$

$$\Delta k = sy - (\delta + n)k$$

Solow-Swan Model: Population Growth (Cont.)

Economies with high rates of population growth will have **lower** GDP per capita $y = \sqrt{k}$ 25 $(\delta + n_{new})k$ 20 $(\delta + n)k$ 15 v* $i = s\sqrt{k}$ > y_{new} 10 5 k_{nev}^* 0 *k* *200 100 0 300 400 500 k

Government policy response?

Population Growth: Summary

$$s\sqrt{k} = (\delta + n)k \rightarrow k^* = \frac{s^2}{(\delta + n)^2}$$

Steady state:

• Population growth **increases** Y and K (level effects)

N!B! Both Y and K grow in the steady state at the rate \mathbf{n} , but \mathbf{k}^* and \mathbf{y}^* are constant

• Population growth reduces k* and y*

Population growth consists of *natural* population increases + *migration*

Source: The World Bank

The Role of Technological Progress

• Technological change, increase in factor productivity

 \checkmark Larger output for given quantities of capital and labor

$$Y = F(K, L, A)$$

• State of technology (A)

How does technological progress translates into larger output?

Labor-augmenting technological progress

$$Y = F(K, A \cdot L)$$
 Effective labor

- A as labor efficiency
- TP reduced number of workers needed to produce the same output
- TP increases output using the same number of workers

The Solow-Swan Model with Technological Progr

$$Y = F(K_{(+)}, L_{(+)}, A_{(+)})$$

• Technology is improving every year at the exogenous rate (g)

$$\frac{A_{t+1} - A_t}{A_t} = g$$

Production function: GDP per effective labor

$$Y = F(K, A \cdot L)$$
$$\frac{Y_t}{A_t L_t} = F\left(\frac{K_t}{A_t L_t}\right)$$

The Solow-Swan Model with Technological Progre

• From GDP per effective labor to the GDP per capita?

$$Y = F(K, A \cdot L)$$

$$\frac{Y_t}{A_t L_t} = F\left(\frac{K_t}{A_t L_t}\right)$$

GDP per effective $\longrightarrow y'_t = f(k'_t)$ labor

> **Capital per** effective labor

• We are interested in **GDP per capita**

$$y = \frac{Y_t}{L_t} = A_t \cdot F\left(\frac{K_t}{A_t L_t}\right) = A_t \cdot f(k_t)$$

The Solow-Swan Model with Technological Progre

Steady state: Constant levels of capital and output per effective worker

The Solow-Swan Model: Technological Progress

- Capital and output per effective worker are constant in steady state
- What about per capita variables?

$$y^* = A_t \cdot f(k_*)$$

GDP per capita grows at the rate of technological progress (sustainable growth)

Balanced growth path: growth of variables at the same rate

- •Per capita variables (capital, output and consumption) grow at a constant rate g
- Per effective labor variables are not growing in the steady state

N!B! Solow model explains 60 % of cross-country variation of the GDP per capita by differences in savings rate and population growth

Growth Accounting

- Real GDP per capita growth rate for **Czech Republic** in 2011 was **1.7 %**
- Real GDP per capita growth rate for the USA in 2012 was 2.2 %

How much of this growth is due to the factors' accumulation and/or technology?

Growth accounting: breakdown of observed growth of GDP into changes in inputs and technology

Y = F(A, K, L) $\Delta Y = \Delta A + \Delta K + \Delta L$

Contribution of technology as a residual

$$\Delta A = \Delta Y - \Delta K - \Delta L$$

Growth Accounting (Cont.)

• Capital (K) increases by 1 unit

What is the effect on output Y?

Y = F(A, K, L)

$$F(A, K+1, L) - F(A, K, L)$$

Marginal product of capita (MP_K)

TE Capital stock increased by 10 units and $MP_K = 0.1$. What is the impact on GDP?

$$\Delta Y = 0.1 \cdot 10 = 1$$
 unit

Growth Accounting (Cont.)

• Labor (L) increases by 1 unit

What is the effect on output Y?

Y = F(A, K, L)

$$F(A,K,L+1) - F(A,K,L)$$

Marginal product of labor (MP_L)

TE Labor force increases by 10 units and $MP_K = 0.3$.

$$\Delta Y = 0.3 \cdot 10 = 3$$
 units

Solow Residual

Accounting for the increase in all components

$$Y = F(A, K, L)$$
$$\Delta Y = MP_A \cdot \Delta A + MP_K \cdot \Delta K + MP_L \cdot \Delta L$$

How to account for the technological change?

Calculate it as a residual

$$MP_A \cdot \Delta A = \Delta Y - MP_K \cdot \Delta K - MP_L \cdot \Delta L$$

Solow Residual: the left-over growth of output when growth attributed to the changes in labor and capital is subtracted

Solow Residual (Cont.)

• Where do we get marginal products of capital and labor?

$$\Delta Y = MP_A \cdot \Delta A + MP_K \cdot \Delta K + MP_L \cdot \Delta L$$

Mathematical manipulations

• Transforming changes to growth rates

GDP growth rate

$$\frac{\Delta Y}{Y} = MP_A \cdot \frac{\Delta A}{Y} + MP_K \cdot \frac{\Delta K}{Y} + MP_L \cdot \frac{\Delta L}{Y}$$
Unobservable
technological
change (g)

$$\frac{\Delta Y}{Y} = g + \frac{F_k K}{Y} \frac{\Delta K}{K} + \frac{F_L L}{Y} \frac{\Delta L}{L}$$

Solow Residual (Cont.)

N!B! Key assumption: Factors of production are **paid their marginal product**

• Wages and rental rate of capital reflect productivity of factors

$$\frac{\Delta Y}{Y} = g + \alpha \cdot \frac{\Delta K}{K} + \beta \cdot \frac{\Delta L}{L}$$

Historical Factor Shares

Source: Acemoglu, 2009

Ace	counting f	or E	conomic (Grow	th in the Unite	ed Sta	ates
			SOURCE OF GROWTH				
Years	Output Growth $\Delta Y/Y$	=	Capital αΔ <i>K/K</i>	+	Labor (1 − α)Δ <i>L/L</i>	+	Total Factor Productivity ∆A/A
			(average percentage increase per year)				
1948-2007	3.6		1.2		1.2		1.2

0.9

1.5

1.0

1.9

0.6

1.3

1.2

1.3

1.3

Source: Mankiw, 2009

1948-1972

1972-1995

1995-2007

4.0

3.4

3.5

Country	(1) Growth Rate of GDP	(2) Contribution from Capital	(3) Contribution from Labor	(4) TFP Growth Rate
	Panel A	A: OECD Countries, 19	47–73	
Canada	0.0517	0.0254	0.0088	0.0175
$(\alpha = 0.44)$		(49%)	(17%)	(34%)
Francea	0.0542	0.0225	0.0021	0.0296
$(\alpha = 0.40)$		(42%)	(4%)	(54%)
Germany	0.0661	0.0269	0.0018	0.0374
$(\alpha = 0.39)$		(41%)	(3%)	(56%)
Italv ^b	0.0527	0.0180	0.0011	0.0337
$(\alpha = 0.39)$		(34%)	(2%)	(64%)
Ianan ^b	0.0951	0.0328	0.0221	0.0402
$(\alpha = 0.39)$	0.0701	(35%)	(23%)	(42%)
Netherlands	0.0536	0.0247	0.0042	0.0248
$(\alpha = 0.45)$		(46%)	(8%)	(46%)
$\mathbf{U}\mathbf{K}^{d}$	0.0373	0.0176	0.0003	0.0193
$(\alpha = 0.38)$	0.0575	(47%)	(1%)	(52%)
U.S.	0.0402	0.0171	0.0095	0.0135
$(\alpha = 0.40)$		(43%)	(24%)	(34%)
	Panel 1	B: OECD Countries, 19	6095	1
Canada	0.0369	0.0186	0.0123	0.0057
$(\alpha = 0.42)$		(51%)	(33%)	(16%)
France	0.0358	0.0180	0.0033	0.0130
$(\alpha = 0.41)$		(53%)	(10%)	(38%)
Germany	0.0312	0.0177	0.0014	0.0132
$(\alpha = 0.39)$		(56%)	(4%)	(42%)
Italy	0.0357	0.0182	0.0035	0.0153
$(\alpha = 0.34)$		(51%)	(9%)	(42%)
Japan	0.0566	0.0178	0.0125	0.0265
$(\alpha = 0.43)$		(31%)	(22%)	(47%)
U.K.	0.0221	0.0124	0.0017	0.0080
$(\alpha = 0.37)$		(56%)	(8%)	(36%)
U.S.	0.0318	0.0117	0.0127	0.0076
$(\alpha - 0.30)$		(37%)	(40%)	(24%)

The Asian Growth Miracle?

A. Young (1995) QJE

Country	Period	Avg growth in per capita income (%)
Honk-Kong	1966-1991	5.7
Singapore	1966-1990	6.8
South Korea	1966-1990	6.8
Taiwan	1966-1990	6.7

Exceptional growth due to changes in TFP or factor accumulation?

The Asian Growth Miracle?

Country	Period	TFP growth
Asian Tigers		
Honk-Kong	1966-1991	2.3
Singapore	1966-1990	0.2
South Korea	1966-1990	1.7
Taiwan	1966-1990	2.1
ł		· •
Other Countries		1
Canada	1960-1989	0.5
France	1960-1989	1.5
Germany	1960-1989	1.6
Italy	1960-1989	2.0
Japan	1960-1989	2.0
ŪK	1960-1989	1.3
US	1960-1989	0.4
Brazil	1960-1985	1.6
Chile	1960-1985	0.8
Mexico	1960-1985	1.2

The miracle was bound to stop

Exceptional growth due to the factors accumulation? Conclusion?

Asian Tigers: Performance After 1990s

Source: IMF World Economic Outlook Database

Asian Tigers: Performance After 1990s

Country	Period	Avg growth in per capita income (%)
Honk-Kong	1966-1991	5.7
Singapore	1966-1990	6.8
South Korea	1966-1990	6.8
Taiwan	1966-1990	6.7

Country	Average growth rate
	1990-2012 (%)
Hong Kong	3.9
Singapore	5.9
South Korea	5
Taiwan	4.8

Global Slowdown in Economic Growth

GDP per capita growth rate (% per year)

Country	1948-1972	1972-1995	1995-2010
Canada	2.9	1.8	1.6
France	4.3	1.6	1.1
Germany	5.7	2	1.3
Italy	4.9	2.3	0.6
Japan	8.2	2.6	0.6
UK	2.4	1.8	1.7
USA	2.2	1.5	1.5

Source: Mankiw (2013)

What are the reasons?

Theories Explaining Disparities in Developmen

Fundamental causes

✓ Geography: geographical concentration of poverty and prosperity

Tropical climate: lazy people, diseases, and poor agricultural lands

Counter examples: Botswana, Nogales

 \checkmark Culture: beliefs, values, ethics, trust, cooperation

Counter examples: North and South Korea

✓ Ignorance of policy makers: poor policies

Transfer of resources to a small powerful group

The Institutional Hypothesis

• Countries differ in economic success because of **different institutions (rules)** Laws, regulations, enforcement of property rights and social norms

Extractive institutions: concentration of power in the hands of elite

Inclusive institutions: inclusive markets and opportunities Free choice of occupation, education, constrained and broadly distributed power

Institutions => **Incentives** to acquire education, start a business and innovate

Nogales

African Growth Miracle

Next class: Business cycles

N!B! Homework is due next week before the class