Pareto analysis-simplified

J.Skorkovský, KPH

What is it?

- tool to specify priorities
- which job have to be done earlier than the others
- which rejects must be solved firstly
- which product gives us the biggest revenues
- 80|20 rule

How to construct Lorenz Curve and Pareto chart

- list of causes (type of rejects) in \%
- table where the most frequent cause is always on the left side of the graph

Reject	Type	Importance	Importance (\%)	Accumulative (\%)
$\mathbf{1}$	Bad size	$\mathbf{1 0}$	$\mathbf{7 1 \%}$	$71 \%=71 \%$
$\mathbf{2}$	Bad material	$\mathbf{3}$	$\mathbf{2 1 \%}$	$92 \%=71 \%+21 \%$
$\mathbf{3}$	Rust	$\mathbf{1}$	$\mathbf{8 \%}$	$100 \%=92 \%+8 \%$

Pareto chart

Use of PA in Inventory Management

- ABC analysis = Always Better Control
- Use in Selective Inventory Control based on different criteria :
- VALUE (Σ (Annual demand $*$ Unit price)- ABC
- CRITICALITY (vital, Essential, Desirable) = vED
- USAGE FREQUENCY (Fast, Slow, Non moving)= FSN

Statements I.

- ABC analysis divides an inventory into three categories :
- "A items" with very tight control and accurate records
- "B items" with less tightly controlled and good records
- "C items" with the simplest controls possible and minimal records.

Statements II.

- The ABC analysis suggests that inventories of an organization are not of equal value
- The inventory is grouped into three categories (\mathbf{A}, \mathbf{B}, and \mathbf{C}) in order of their estimated importance.

Example of possible allocation into categories

- A' items -20% of the items accounts for 70% of the annual consumption value of the items.
- ' \mathbf{B} ' items -30% of the items accounts for 25% of the annual consumption value of the items.
- 'C' items - 50% of the items accounts for 5% of the annual consumption value of the items

Example of possible categories allocation-graphical representation (4051 items in the stock)

ABC Distribution

ABC class
A
B
C
Total

Number of items
10\%
20\%
70\%
100\%

Total amount required
70\%
20\%
10\%
100\%

Objective of ABC analysis

- Rationalization of ordering policies
- Equal treatment
- Preferential treatment

See next slide

Equal treatment

Item code	Annual consumption (value)	Number of orders	Value per order	Average inventory
1	60000	4	15000	7500
2	4000	4	1000	500
3	1000	4	250	125

Preferential treatment

Item code	Annual consumption (value)	Number of orders	Value per order	Average inventory
1	60000	8	7500	7500
2	4000	3	1333	666
3	1000	1	1000	500

Determination of the Reorder Point (ROP)

- ROP = expected demand during lead time + safety stock

Determination of the Reorder Point (ROP)

- ROP $=$ expected demand during lead time $+z^{*} \sigma_{\mathrm{dLT}}$
where $\mathbf{Z}=$ number of standard deviations and
$\boldsymbol{\sigma}_{\mathrm{dLT}}=$ the standard deviation of lead time demand

Example

- The manager of a construction supply house determined knows that demand for sand during lead time averages is 50 tons.
- The manager knows, that demand during lead time could be described by a normal distribution that has a mean of 50 tons and a standard deviation of 5 tons
- The manager is willing to accept a stock out risk of no more than 3 percent

Example-data

- lead time averages $=50$ tons.
- $\sigma_{\mathrm{dLT}}=5$ tons
- Risk $=3$ \% max
- Questions:
- What value of \mathbf{z} is appropriate?
- How much safety stock should be held?
- What reorder point should be used?

Example-solution

- Service level $=1,00-0,03=0,97$ and from probability tables you will get $z=+1,88$

See next slide with probability table

Probability table

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.

\mathbf{Z}	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09	
$\mathbf{0 . 0}$.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	.53586	
	$\mathbf{0 . 1}$.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142	.57535
	$\mathbf{0 . 2}$.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026	.61409
	$\mathbf{0 . 3}$.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803	.65173
$\mathbf{0 . 4}$.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439	.68793	
$\mathbf{0 . 5}$.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904	.72240	
$\mathbf{0 . 6}$.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175	.75490	
$\mathbf{0 . 7}$.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230	.78524	
$\mathbf{0 . 8}$.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057	.81327	
$\mathbf{0 . 9}$.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646	.83891	
$\mathbf{1 . 0}$.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993	.86214	
$\mathbf{1 . 1}$.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100	.88298	
$\mathbf{1 . 2}$.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973	.90147	
$\mathbf{1 . 3}$.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621	.91774	
$\mathbf{1 . 4}$.91924	.92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056	.93189	
$\mathbf{1 . 5}$.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295	.94408	
$\mathbf{1 . 6}$.94520	.94630	.94738	.94845	.94950	.95053	.95154	.95254	.95352	.95449	
$\mathbf{1 . 7}$.95543	.95637	.95728	.95818	.95907	.95994	.96080	.96164	.96246	.96327	
$\mathbf{1 . 8}$.96407	.96485	.96562	.96638	.96712	.96784	.96856	.96926	.96995	.97062	
$\mathbf{1 . 9}$.97128	.97193	.97257	.97320	.97381	.97441	.97500	.97558	.97615	.97670	

Example-solution

- Service level $=1,00-0,03=0,97$ and from probability tables we have got : $z=+1,88$
- Safety stock $=\mathbf{z}$ * $\boldsymbol{\sigma}_{\mathrm{dLT}}=1,88$ * $5=9,40$ tons
- ROP = expected lead time demand + safety stock $=50+9.40=59.40$ tons
- For $z=1$ service level $=84,13 \%$
- For $z=2$ service level= 97,72 \%
- For $z=3$ service level $=99,87 \%$

ABC and VED and service levels

A items should have low level of service level (0,8 or so)
B items should have low level of service level (0,95 or so)
C items should have low level of service level (0,95 to 0,98 or so)

D items should have low level of service level (0,8 or so)
E items should have low level of service level (0,95 or so)
V items should have low level of service level (0,95 to 0,98 or so)

Matrix

Resource : https://www.youtube.com/watch?v=tO5MmOBdkxk
Prof. Arun Kanda (IIT), 2003

